The effect of powder re-use on the coalescence behaviour and isothermal crystallisation kinetics of polyamide 12 within powder bed fusion

Ben Sanders, Edward Cant, Catherine A. Kelly, Michael Jenkins*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Polymer powder bed fusion (PBF) is becoming increasingly popular for the fabrication of lightweight, high-performance parts, particularly for medical and aerospace applications. This study investigates the effect of powder re-use and material aging on the coalescence behaviour, melt flowability, and isothermal crystallisation kinetics of polyamide-12 (PA-12) powder. With increased powder re-use, a progressive reduction in melt flowability and material coalescence is observed; at 200 °C, the particle consolidation time increases from 15 s in virgin powder to 180 s in powder recovered from build 6. The observed changes in the behaviour of PA-12 were attributed to polycondensation and cross-linking; these aging phenomena also create structural defects, which hinder the rate and extent of primary crystallisation. At an isothermal crystallisation temperature of 165 °C, the crystallisation half-time increased from 12.78 min in virgin powder to 23.95 min in powder re-used across six build cycles. As a result, the commonly used Avrami model was found to be unsuitable for modelling the crystallisation behaviour of aged PA-12 powder, with the coefficient of determination (R2) reducing from >0.995 for virgin powder to as low as 0.795 for reused powder. On the other hand, an alternative method, the Hay model, is able to successfully track full phase transformation within re-used powder (R2 >0.99). These results highlight the importance of selecting the most appropriate model for analysing the crystallisation kinetics of PA-12 powder re-used across multiple build cycles. This understanding is crucial for obtaining the strong mechanical properties and dimensional precision required for the fabrication of functional, end-use parts within PBF.
Original languageEnglish
Article number612
Number of pages22
JournalPolymers
Volume16
Issue number5
DOIs
Publication statusPublished - 23 Feb 2024

Bibliographical note

Funding:
The authors would also like to thank ASTM for funding the laser sintering build cycles, which were completed by Prototal UK Ltd.

Keywords

  • powder bed fusion
  • polyamide-12
  • Avrami
  • polycondensation
  • cross-linking
  • powder re-use

Fingerprint

Dive into the research topics of 'The effect of powder re-use on the coalescence behaviour and isothermal crystallisation kinetics of polyamide 12 within powder bed fusion'. Together they form a unique fingerprint.

Cite this