

University of Birmingham

Plundervolt: How a Little Bit of Undervolting Can
Create a Lot of Trouble
Murdock, Kit; Oswald, David; Garcia, Flavio; Van Bulck, Jo; Gruss, Daniel; Piessens, Frank

DOI:
10.1109/MSEC.2020.2990495

Document Version
Peer reviewed version

Citation for published version (Harvard):
Murdock, K, Oswald, D, Garcia, F, Van Bulck, J, Gruss, D & Piessens, F 2020, 'Plundervolt: How a Little Bit of
Undervolting Can Create a Lot of Trouble', IEEE Security & Privacy Magazine, vol. 18, no. 5, 9104908, pp. 28-
37. https://doi.org/10.1109/MSEC.2020.2990495

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1109/MSEC.2020.2990495
https://doi.org/10.1109/MSEC.2020.2990495
https://birmingham.elsevierpure.com/en/publications/3df54830-6bd9-4a96-bb20-f5e5e7e9aeae

Plundervolt: How a little bit of
undervolting can create a lot of
trouble
Kit Murdock∗, David Oswald∗, Flavio D. Garcia∗, Jo Van Bulck‡, Daniel Gruss†, and Frank
Piessens‡
∗University of Birmingham, UK
kxm663@cs.bham.ac.uk, d.f.oswald@bham.ac.uk, f.garcia@bham.ac.uk
†Graz University of Technology, Austria
daniel.gruss@iaik.tugraz.at
‡imec-DistriNet, KU Leuven, Belgium
jo.vanbulck@cs.kuleuven.be, frank.piessens@cs.kuleuven.be

Introduction
Two-thirds of the world’s population now own

a personal computing device in the form of a
smart phone. These devices store vast amounts of
privacy-sensitive data along with a large number
of user applications. Trusted Execution Environ-
ments (TEEs) were created out of the need to
protect our private and valuable data from other,
possibly malicious, applications and even the
operating system itself.

But it is not just mobile phones that store valu-
able data—our personal computers often carry
copies of our passwords. We use our computers
for online banking and this is where it’s desirable
that no adversary can tamper with the data, even if
the computer’s operating system is compromised.

For these reasons, Intel processors (from
2015 onward) include Software Guard Exten-
sions (SGX), which allows an application to self-
quarantine sensitive data and functions in an
enclave using dedicated CPU instructions. Intu-
itively, SGX enclaves represent a secure vault
or fortress in the processor, which cannot be
read or modified by any other software, includ-
ing the privileged operating system. Intel SGX
was purposely designed to protect against the
most advanced types of adversaries who have

unrestricted physical access to the host machine,
e.g., untrusted cloud providers under the juris-
diction of foreign nation states. SGX therefore
includes state-of-the-art memory encryption tech-
nology [4] that protects the confidentiality, in-
tegrity and freshness of all enclave memory while
it resides in untrusted off-chip DRAM.

Performance vs. security
More and more is being demanded of our

computers: faster response times to render com-
plex graphics, multiple programs being run at
once and constantly switching applications. These
demands increase power consumption and raise
the temperature of already over-worked comput-
ers. To manage this, CPU manufacturers have
introduced various software interfaces to dynami-
cally adjust the processor’s operating voltage and
frequency.But, as we will see, putting this power
at a user’s finger tips comes with a cost. With
great power comes great responsibility.

Hardware is being optimized to meet the
growing need for performance. The aim: to max-
imize performance whilst keeping functional cor-
rectness. Modern processors cannot continuously
run at maximum clock frequency—they would
simply get too hot. And, in mobile devices, the

1

mailto:kxm663@cs.bham.ac.uk
mailto:d.f.oswald@bham.ac.uk
mailto:f.garcia@bham.ac.uk
mailto:daniel.gruss@iaik.tugraz.at
mailto:jo.vanbulck@cs.kuleuven.be
mailto:frank.piessens@cs.kuleuven.be

battery would drain too quickly.
In an electrical circuit, voltage and frequency

can be thought of as two sides of the same coin:
higher clock frequencies require higher voltages
for electrical signals to arrive in time, and, like-
wise, lower voltages require the processor and
memory to operate at a slower rate.

Power management jargon therefore specifies
optimal “frequency/voltage pairs” for different
use cases. Hence, the question arises: if frequency
and voltage are changed independently, what will
happen? As we discuss below, this is the ques-
tion that security researchers have been exploring
when attempting to deliberately induce faulty
computations and take advantage of the resulting
errors.

Software-based fault attacks
Since the early days of computing, researchers

recognized that software computation results may
be affected when hitting the physical limits of
the underlying hardware, e.g., after adjusting the
voltage, glitching the clock, overheating or cool-
ing the operating temperature, or even focusing
a laser at a chip [2]. Apart from apparent safety
concerns, for instance in the avionics or space
industry, these fault injections have also been ex-
tensively studied from a security perspective. That
is, fault attacks may deliberately corrupt calcula-
tions in order to bypass security mechanisms such
as sophisticated “You shall not pass” functions.
For a long time, such advanced fault attacks were
considered to be of limited importance as they
required physical access to the target device, e.g.,
a smart card.

This all changed, however, in 2014 with the
discovery of the Rowhammer [7] effect, which
causes bits flips in memory—entirely from soft-
ware. Underlying this attack is the physical layout
of DRAM, which consists of capacitors storing
very small voltage charges for ‘1’s and ‘0’s. Se-
curity researchers observed that DRAM memory
cells can leak their charges into nearby memory
rows when they are accessed at high frequency—
causing memory corruption and bit flips. In other
words, Rowhammer fundamentally changed the
threat of fault attacks. It is no longer just adver-
saries with physical access, attacks can now be
mounted by remotely executing code to modify
specific data structures and escalate privileges.

Mem

OS kernel

App Enclave app

CPU

Figure 1. Plundervolt circumvents SGX’s memory
encryption engine protection boundaries by abusing
an undocumented voltage scaling interface which al-
lows privileged software adversaries to induce pre-
dictable computation faults within the processor itself.

Rowhammer remained, for some time, the
only known purely software-based fault attack on
x86 systems. However, Intel ultimately considers
main memory as an untrusted storage facility in
the design of SGX [4]. When researchers tried
to attack SGX with Rowhammer, they merely
discovered a denial-of-service effect because the
memory encryption engine produced an integrity
check error, halting the entire system. Intel SGX
enclaves were hence considered immune to such
fault attacks!

Initially, researchers were only interested in
attackers who were unprivileged, e.g., in a sand-
boxed environment like JavaScript. However,
with the creation of TEEs such as Intel SGX,
ARM TrustZone, and AMD SEV, threat mod-
els changed once again. In the newly emerging
TEE landscape, it suddenly becomes vital to
protect against attackers who have gained root
privileges. In 2017, Tang et al. [11] presented a
privileged software fault attack called CLKscrew.
They discovered that ARM processors permitted
changing the frequency and voltage from system
software. And this is where the story really starts.
CLKscrew showed that overclocking features can
be abused to jeopardize the integrity of com-
putations for privileged adversaries in the ARM
Trustzone TEE. This attack has been demon-
strated to defeat RSA signature checks and extract
full cryptographic keys from the TrustZone of a
Nexus 6 mobile phone.

2

Why Plundervolt is different
With our new attack, Plundervolt, we demon-

strate the first ever software-based fault injection
attack against Intel SGX enclaves. Plundervolt
abuses undocumented power management inter-
faces present in all recent Intel Core processors.
We use these interfaces to lower the voltage
and cause predictable faults in secure enclave
computations. Our attack is able to steal secrets—
even in the presence of state-of-the-art memory
encryption technology (Fig. 1). In contrast to
prior high-profile attacks on Intel SGX, which
abused microarchitectural design flaws to break
confidentiality of enclave secrets [13, 14], we are
the first to demonstrate that even the integrity
of seemingly secure enclave computations cannot
be trusted anymore. But we didn’t only break
crypto code. We show that an attacker can induce
memory-misbehavior in secure, bug-free code
without any enclave software vulnerabilities [15].

For a more technical description, we point
interested readers to our original paper [9], on
which this article is based.

Current status and concurrent discoveries
After we responsibly disclosed our findings

and Intel prepared a microcode patch, Plundervolt
was disclosed to the public on December 10,
2019. Intel confirmed that we were the first to
report this issue. However, during the embargo
period, two other research teams independently
investigated undervolting security implications.
One of these, known as V0LTpwn [6] outlines
a similar attack on Intel SGX enclaves where
undervolting is used, in combination with addi-
tional stress from a sibling logical processor, to
study the fault behavior of x86 vector instruc-
tions. Also, another group of researchers devel-
oped the VoltJockey [10] attack against ARM
processors. VoltJockey continued the CLKscrew
saga by showing that secure TrustZone computa-
tions can also be faulted through voltage changes.
This attack was later also demonstrated on Intel
SGX processors, by faulting a proof-of-concept
software-based AES implementation.

The Plundervolt effect
Before we discuss undervolting, we need to

talk about overclocking. CPUs have official max-
imum clock frequency limits, but gamers often

63 42 40 36 32 31 21 0

1 plane idx

0 = CPU core
1 = GPU
2 = cache (core)
3 = uncore
4 = analog I/O

1 r/w

write-enable

offset

11-bit signed voltage offset
(in units of 1/1024 V)

Figure 2. Layout of the undocumented MSR 0x150

for undervolting.

want to speed up their machines by pushing the
clock frequency over the recommended values.

This can be tricky because integrated circuits
have strict timing requirements. The electrical
signals need to pass through the circuitry within
one clock cycle before the next signals arrive. If
the clock is too fast, computation results may not
arrive in time: leading to bit flips in the expected
output. Similarly, the lower the voltage, the longer
it takes to propagate input signals throughout
the circuitry. So, if the voltage is too low (for
a specific frequency) the input signals may not
traverse the circuitry before the next clock tick.

Intel processors have features that enable the
modification of both clock frequency and CPU
voltage from privileged software. These are con-
trolled through undocumented Model Specific
Registers (MSRs). We focus on MSR 0x150
which is responsible for voltage. Figure 2 shows
how the 64-bit value in MSR 0x150 can be
decomposed into a plane index and a voltage
offset. By specifying the plane index, system
software can select which components will have
their voltage changed. The CPU core and cache
share the same voltage plane on all machines we
tested and the higher voltage will be applied to
both. The voltage offset is encoded as an 11-bit
signed integer relative to the core’s base voltage
in units of approximately 1 mV.

This feature can be abused to inject faults
into secure SGX computations. For starters, we
configured the CPU to run at a fixed frequency.
Then, undervolting is applied by writing to the
concealed MSR 0x150 just before entering the
code in the victim enclave. After returning from
the enclave, the host program immediately returns
to a stable operating voltage.

One of the hardest parts of this research was

3

finding good parameters to work with. Too much
undervolting and the system repeatedly crashes,
too little and no faults are injected. We experi-
mented by reducing the voltage in small steps of
1 mV until a fault occurs but before the dreaded
kernel panic or system freeze. In practice, we
found that it is sufficient to undervolt for short pe-
riods of time (<100 ms) by -100 mV to -260 mV,
depending on the specific CPU, frequency, and
temperature.

Tested processors
We tested different SGX-enabled processors

from Skylake onwards , cf. Table 1. We had
multiple CPUs with the same model numbers
and, surprisingly, we found they can respond
very differently when undervolted. We list each
individual processor with a letter appended. All
our tests were run on Ubuntu 16.04 or 18.04 with
stock Linux v4.15 and v4.18 kernels.

Table 1. Processors used for the experiments in this paper.

Code name Model no. µ-code Frequency

Skylake i7-6700K 0xcc 2.0 GHz
Kaby Lake i7-7700HQ 0x48 2.0 GHz

i3-7100U-A 0xb4 1.0 GHz
i3-7100U-B 0xb4 2.0 GHz
i3-7100U-C 0xb4 2.0 GHz

Kaby Lake-R i7-8650U-A 0xb4 1.9 GHz
i7-8650U-B 0xb4 1.9 GHz
i7-8550U 0x96 2.6 GHz

Coffee Lake-R i9-9900U 0xa0 3.6 GHz

Inducing the first enclave fault
We tried undervolting various x86 instruc-

tions. We observed that multiplications (e.g.,
imul) and other complex instructions such as the
AES-NI extensions can be most easily faulted.
We do not definitively know why these specific
instructions, but we can put forward a conjecture:
these instructions will have longer critical paths
compared to simpler operations. Not only that,
they will have been more aggressively optimized.
When lowering the voltage, electrical signals may
not have enough time to propagate through the
circuitry before the next clock tick.

Consider the following enclave multiplication
proof-of-concept (the code compiles to assembly
with imul instructions):

uint64_t multiplier = 0x1122334455667788;

uint64_t correct = 0xdeadbeef * multiplier;

uint64_t var = 0xdeadbeef * multiplier;

while (var == correct)

{

var = 0xdeadbeef * multiplier;

}

uint64_t flipped_bits = var ˆ correct;

Clearly, this is an infinite loop—it should
never terminate. But undervolting leads to a bit-
flip in var, typically in byte 3 (counting from the
least-significant byte as byte 0). This forces the
enclave program to erroneously exit the loop. The
XOR on the last line highlights only the flipped
bit(s). In this configuration, the output is always
0x04000000. This is worth emphasising: the
loop always exits with the same bit flipped.

In-depth analysis of undervolting effects
To better understand what was happening, we

undervolted and measured the core voltage using
the fully documented MSR 0x198(MSR_PERF
_STATUS). For different clock frequencies, we
recorded both the base voltage and the voltage
when the first faulty result appeared. The results
for the i3-7100U-A are shown in Figure 3.

Figure 3. Base voltage (blue) and voltage for first fault
(orange) vs. CPU frequency for the i3-7100U-A

We induced thousands of faulted multiplica-
tions and were able to draw up some conclusions.
The faulty results, see Table 2 for selected exam-
ples, generally fell into the following categories:
(i) one to five (contiguous) bits flip or (ii) all
most-significant bits flip. And, very occasionally
we observed faulty states in between. From this,
we can summarise:

4

• The smallest first operand to fault was
0x89af;
• the smallest second operand to fault was
0x1;
• the smallest faulted product was
0x80000*0x4, resulting in 0x200000;
• the order of the operands is important: for

example, 0x4*0x80000 never faulted in
our experiments.

Table 2. Faulted multiplications on i3-7100U-B at 2 GHz

Start Mult Faulty result Flipped bits

0x080004 0x0008 0xfffffffff0400020 0xfffffffff0000000
0xa7fccc 0x0335 0x000000020abdba3c 0x0000000010000000
0x9fff4f 0x00b2 0x000000004f3f84ee 0x0000000020000000
0xacff13 0x00ee 0x000000009ed523aa 0x000000003e000000
0x2bffc0 0x0008 0x00000000005ffe00 0x0000000001000000
0x2bffc0 0x0008 0xfffffffff15ffe00 0xfffffffff0000000
0x2bffc0 0x0008 0x00000100115ffe00 0x0000010010000000

The probability of a fault increases with the
undervolting: on the i3-7100U-B, we had to re-
peat 0xae0000 * 0x18 around 1,000,000,000
times to fault at -130 mV, while 500,000 repeti-
tions were sufficient at -146 mV.

From faults to enclave key extraction
Having shown that Plundervolt can practically

fault in-enclave computations, let us see how that
translates to actual attacks against widely-used
cryptographic algorithms that secure our everyday
communications.

Factoring RSA keys with one fault
We wrote a proof-of-concept application for

RSA signature generation that would run inside
an enclave. We used Intel’s example code which
uses the Chinese Remainder Theorem (CRT) op-
timization. Given an RSA public key (n, e) and
the corresponding private key (d, p, q), RSA-
CRT makes the computation time of y = xd

(mod n) up to four times faster.
RSA-CRT private key operations (decryption

and signature) are well-known to be vulnerable
to the famous Bellcore attack, one of the first
published fault attacks [3]. This requires a fault in
one of the two exponentiations of the core RSA
operations. And if we can do that—we only need
one single faulty signature to be able to factor the
modulus n:

q = gcd (y − y′, n) , p = n/q

The Lenstra method removes the need to ob-
tain both correct and faulty outputs for the same
input x by computing q = gcd ((x′)

e − y, n).
To make sure we only hit one exponentiation

we undervolted for roughly the first third of the
enclave computation. The obtained faults could
then be used to factor the 2048-bit RSA modu-
lus using the Lenstra and Bellcore attacks—thus
recovering the full key.

Breaking AES-NI
Intel’s AES New Instructions (AES-NI) pro-

vide efficient hardware implementations for key
schedule and round computation. These instruc-
tions are widely used in the Intel SGX-SDK
to implement crucial operations like sealing and
unsealing, which refers to the encryption and
decryption of enclave secrets so that they can be
persistently stored outside the enclave, e.g., on
the untrusted hard drive [1]. Other SGX crypto
libraries (e.g., mbedtls in Microsoft OpenEn-
clave) similarly rely on AES-NI instructions.

Our experiments show that the AES-NI en-
cryption round instruction (v)aesenc is vul-
nerable to Plundervolt attacks: we observed faults
on the i7-8650U-A with -195 mV undervolting
and on the i3-7100U-A with -232 mV undervolt-
ing. The faults were always a single bit-flip on the
leftmost two bytes of the round function’s output.
Such single bit-flip faults are ideally suited for
Differential Fault Analysis (DFA).

We ran a canonical implementation using
AES-NI instructions in an enclave with under-
volting as before. By repeating the attack a few
times, we got a fault in round 8:
plaintext: 5ABB97CCFE5081A4598A90E1CEF1BC39
CT1: DE49E9284A625F72DB87B4A559E814C4 <- faulty
CT2: BDFADCE3333976AD53BB1D718DFC4D5A <- correct

input to round 10:
1: CD58F457 A9F61565 2880132E 14C32401
2: AEEBC19C D0AD3CBA A0BCBAFA C0D77D9F

input to round 9:
1: 6F6356F9 26F8071F 9D90C6B2 E6884534
2: 6F6356C7 26F8D01F 9DF7C6B2 A4884534

input to round 8:
1: 1C274B5B 2DFD8544 1D8AEAC0 643E70A1
2: 1C274B5B 2DFD8544 1D8AEAC0 646670A1

Now we apply the differential fault analysis
technique by Tunstall et al. [12], which, given a
pair of correct and faulty ciphertexts on the same
plaintext, recovers the full 128-bit AES key with
a computational complexity of only 232 + 256

5

encryptions on average. In practice it takes a few
minutes to extract the full AES key from the
enclave, including both fault injection and key
recovery phases. It is worth noting that the attacks
we are using were first discovered in embedded
systems. These twenty-year-old fault attacks can
now be leveraged against CPUs on non-embedded
devices such as consumer laptops and company
servers.

Other faults in crypto
Besides key extractions from RSA-CRT and

AES-NI, we were able to inject faults into SGX-
provided crypto functions: the MAC used in AES-
GCM, elliptic curve signatures and key exchange.
We also looked at the SGX-provided instruc-
tions for key derivation and attestation [1]. The
EGETKEY instruction derives an enclave-specific
128-bit symmetric key from a hardware-level
master secret, which is never directly exposed
to software. The key derivation uses AES-CMAC
with a software-provided KeyID and the calling
enclave’s identity. Our experiments on the i3-
7100U-C running at 2 GHz with -134 mV under-
volting showed that Plundervolt can reliably fault
such key derivations. Interestingly, we noticed
that key derivation faults appear to be largely
deterministic: for a fixed KeyID, the same wrong
key seems to be produced most of the time when
undervolting, even across reboots.

SGX supports local attestation through the
EREPORT primitive to create a measurement
report for another target enclave on the same
platform. EREPORT first performs an internal
key derivation to establish a secret key that can
only be derived by the intended target enclave
on the same processor. This key is then used to
create a 128-bit AES-CMAC that authenticates
the report data. We experimentally confirmed
that Plundervolt can indeed reliably induce faults
in local attestation report MACs. As with the
EGETKEY experiments above, we noticed that
the faulty MACs appear to be deterministic—but
they do change across reboots, because EREPORT
generates an internal random KeyID on every
processor power cycle.

This does not directly break SGX’s security
objectives (attestation will simply fail), but faulty
key derivations may reveal information about the
processor’s long-term key material that should

a[0]

a[1]

...

a[i]

+

i x

sizeof(elem_t)

&a[i]

Figure 4. The address of element a[i] in an array is
computed as &a[0]+i*sizeof(elem_t).

never be exposed. We leave further exploration
and cryptanalysis of the above faults as future
work.

Beyond crypto
From our previous examples it would be log-

ical to assume that only cryptographic code is
vulnerable to Plundervolt. However, we were able
to attack standard code—and this is where things
get really interesting.

We know that compilers rely on multiplica-
tion results for pointer arithmetic and memory
allocation. These multiplications themselves are
not visible at the source-code level—but they
are generated under the hood. Consequently, if
we can fault one of these compiler-generated
multiplications, we can introduce memory-safety
issues in code that is entirely bug-free. As an
example, Fig. 4 illustrates how the pervasive code
pattern of indexing into an array may cause the
compiler to use a multiplication to dynamically
compute the address of element a[i]. Crucially,
unexpected out-of-bounds accesses will occur if
an attacker can fault such compiler-generated
multiplications to produce incorrect addresses. In
other words, Plundervolt ultimately breaks the
processor’s architectural instruction specification,
thereby violating the hardware-software contract
expected by the compiler.

We explore two scenarios where faulty mul-
tiplications break memory safety in seemingly
secure code. We first present a case-study en-
clave application where a trusted in-enclave array
pointer is flipped to untrusted, attacker-controlled
memory outside the enclave. Next, we look at
memory allocations where Plundervolt may cause
heap corruption.

6

Faulting pointer arithmetics
Let us revisit the array indexing example of

Fig. 4, where a multiplication is used to cal-
culate the effective memory address of the i-th
element in an array. Intuitively, all an attacker
has to do is undervolt whilst the multiplication is
being performed and unexpected addresses will
be produced. However, there are some limitations.
When the type elem_t has a size that is a power
of two, compilers will use left bitshifts instead
of explicit imul instructions. We also found
it difficult to consistently produce multiplication
faults where both operands are ≤0xFFFF. We
were able to fault with smaller operands—but we
crashed the computer a lot more. Therefore we
only consider cases where:

sizeof(elem_t) 6= 2x and i > 216.

An example scenario
To demonstrate that our attack is realistic and can
be exploited in compiler-generated enclave code,
we constructed a small case-study application.
Consider an enclave that holds a relatively large
amount of data in an array of struct elements.
This could, for example, be a long list of biomet-
ric features in a fingerprint template.

We assume that the enclave loads secret data
into this array, e.g., the user’s fingerprint tem-
plate decrypted from permanent storage. The code
might look like this:

// Get offset to feature in large array

// with around 500k elements

fingerprint_feature_t *f = &features[idx];

// Store some secret data into array entry

f->data = some_secret_feature;

Figure 5 overviews the attack procedure. Dur-
ing normal execution, only trusted memory inside
the enclave will ever be referenced. When under-
volting 1 during the imul used for computing
the pointer f, however, the higher bits of the
product may flip. This effectively causes the result
to become a large negative offset, relative to
the trusted array base address. Crucially, after
adding this corrupted offset, the resulting address
suddenly points into the untrusted address space
outside the enclave. Now, the victim enclave
unknowingly dereferences the outside pointer as
if it was in-enclave memory. As the referenced

FEATURE_A

FEATURE_B

...

idx

Enclave virtual memory range

Attacker-controlled memory page

fill_user_features:

...
f	=	features	+	idx	*	sizeof

SECRET_FEATURE

...

12

4

mmap(...)3

5

Page fault handler

Figure 5. Example scenario of an application en-
clave where erroneous multiplication bitflips allow to
redirect a trusted fingerprint array lookup to attacker-
controlled memory outside the enclave.

address is most likely not currently mapped, this
access causes a page fault 2 which invokes the
untrusted operating system. We installed a custom
page fault handler 3 that maps the required
untrusted memory page on demand. The attacker
can now simply resume 4 the enclave. It will un-
knowingly 5 write some_secret_feature
into untrusted, attacker-controlled memory. Plun-
dervolt has succeeded in breaking perfectly se-
cure, bug-free code.

Faulting memory allocations
Another example for fault-induced vulnerabil-

ities are size computations for dynamic memory
allocations. These are very common and (again)
rely on multiplications. For example, a large array
of struct elements might be allocated using:

// Compute size

size_t size = count * sizeof(elem_t);
// Allocate array

elem_t *array = malloc(size);

// ... use array ...

But we showed that Plundervolt breaks the
processor’s architectural guarantees as imul can
be faulted to produce erroneous results that are
smaller than the expected value. If a multiplica-
tion fault occurs during calculation of the size
variable, a smaller buffer than expected will be al-
located. Because Plundervolt corrupts multiplica-
tions silently, without failing the malloc() call,

7

the subsequent code has no means of determining
the actual size of the allocated buffer. Subsequent
writes or reads to the allocated buffer will assume
a larger buffer and hence read or write out of
bounds, corrupting the trusted enclave heap—
Plundervolt has again induced a memory-safety
issue in memory-safe code.

The bigger picture
The ideas presented here have implications

beyond SGX and Plundervolt. Many researchers
have studied the use of faults to break crypto-
graphic algorithms. Less attention has been paid
to fault injection for inducing memory-safety
issues into safe code. But any code, whether
it is running on a small embedded device or
inside an enclave on a complex processor, is, in
principle, vulnerable to this type of attack—the
only requirement is that some vector for fault
injection exists. This is a substantial shift in the
risk potential for at least two reasons.

Firstly, now all software, not just crypto-
graphic implementations, needs protection against
fault attacks, forming a much bigger pool of
attack targets than previously anticipated.

Secondly, code execution for software-based
fault attacks is often easier to obtain than hooking
up an oscilloscope and glitching equipment to
a specific victim machine. Thus, inducing faults
via (remote) code execution may be a much
more realistic threat and, at the same time, affect
substantially more users.

Countermeasures and counterattacks
Due to SGX’s threat model, countermeasures

cannot be implemented at the level of the un-
trusted OS or in the untrusted runtime com-
ponents (which the attacker controls). Instead,
unsafe undervolting can only be prevented in the
CPU hardware or microcode.

Alternatively, the trusted in-enclave code itself
can be hardened against faults. One approach to
do that would be to detect faulty computation
results. Such a defense could leverage ideas from
multi-variant execution techniques. Specifically:
one could execute enclaved computations twice
in parallel on two different cores or hyperthreads
and halt if executions diverge.

Many fault injection countermeasures have
been proposed for cryptographic algorithms, in-

cluding the use of (generic) temporal redun-
dancy (i.e., compute-twice-and-compare) as well
as more algorithm-specific approaches. For in-
stance in the RSA-CRT case, the signature could
be verified. In the AES-NI case the encryption
can be verified with a subsequent decryption,
and so on. However, this would incur substantial
performance overheads.

For non-cryptographic code the situation is
complicated—the exact results of a fault injection
will vary. Mitigations like address space layout
randomization (which changes the location of the
program in memory each time it runs) make
exploits harder but still do not remove the root
cause.

Removing the undervolting interface (MSR
0x150) via microcode or in hardware is a rather
radical solution and will certainly mitigate our
specific attack. Following the responsible dis-
closure (embargoed from June 7, 2019 to De-
cember 10, 2019), Intel informed us that their
countermeasure is exactly this—they included an
option to disable MSR 0x150. The fact that an
enclave runs on a “protected” machine, i.e., with-
out software-controlled undervolting, is verifiable
through remote attestation. Similiar to previous
high-profile SGX attacks like Foreshadow [13]
and LVI [14], Intel’s mitigation for Plundervolt
requires trusted computing base recovery [1].
After the microcode update, different sealing and
attestation keys will be derived depending on
whether or not the undervolting interface has been
disabled at boot time. This allows remote verifiers
to restore trust after re-encrypting all existing
enclave secrets with the new key material.

However, we consider this to be an ad-hoc
mitigation which does not address the root cause
for Plundervolt. Other undiscovered vectors for
software-based fault injection through power or
clock management features might exist and would
need to be similarly disabled. Ultimately, even
without any software-accessible interfaces, ad-
versaries with physical access to the CPU are
also within Intel SGX’s threat model. The CPU
requests a specific voltage from the mainboard’s
voltage regulator via the SerialVID bus. But this
bus appears to be completely unauthenticated. So
an attacker could physically connect to this Se-
rialVID bus and overwrite the requested voltage
directly.

8

Lessons learned
SGX has brought flexible, trusted execution

onto laptops, desktops and servers. Unfortunately,
building a high-assurance SGX “fortress” on
weak foundations (like the complex and general-
purpose x86 microarchitecture), seems unlikely
to succeed. Over and over again, attacks like
Foreshadow [13], Spectre [8], and LVI [14] have
shown that microarchitectural optimisations prove
catastrophic to SGX’s security.

Some of these attacks, like LVI and Spectre,
are somewhat similar in spirit to our work, as they
too “inject” faulty computations and cause the
program to deviate from its intended execution
path

Crucially, however, these techniques manifest
entirely at the microarchitectural level: the faulty
computations are only “speculatively” executed
and are never persisted to the architectural state.
Plundervolt goes one step further and induces
persistent architectural faults by exploiting funda-
mental physical properties of the CPU—namely
the need for a stable supply voltage. In this, our
work once again shows that abstraction levels are
only relative in the eyes of attackers. Plundervolt,
for the first time, has extended the attack surface
of SGX from the “high-level” microarchitectural
design to the underlying physical properties of
the electronic circuitry itself. We can only expect
more, yet-undiscovered physical effects to be
exploited in the future.

The smartcard industry has spent decades de-
fending much less complex chips (typically con-
strained 8-bit, 16-bit, or 32-bit microcontrollers)
against side channels, power glitching and other
fault attacks. This has led to countermeasures
with substantial overheads. For example, Infineon
smartcard chips include the “Integrity Guard”
technology [5] in which the same code is ex-
ecuted by two identical CPUs in parallel. The
two CPUs constantly cross-check their results to
detect fault injection.

The chip layout itself is carefully designed
with special meshes to avoid attackers connecting
to the internal data lines and stealing or tampering
with chip-internal secrets. Third-party labs carry
out extensive and expensive tests (e.g. under
Common Criteria) to check and certify that the
countermeasures are effective.

These overheads and costs may be acceptable

for smartcards that protect high-value data in
narrow use cases like bank cards or passports.
But for general-purpose consumer-grade proces-
sors, doubling the size of the whole CPU core
would be absolutely prohibitive. So it remains
to be seen if Intel and others can learn from
the smartcard experience and strike a balance
between performance, functionality and security.
After all, having a TEE properly secured against
physical attacks would open up many fantastic,
new applications.

In summary
With Plundervolt, we created a new and pow-

erful attack that breaks the integrity and (indi-
rectly) confidentiality of SGX. We demonstrated
realistic and practical attacks against RSA and
AES. Fault injection is not limited to small em-
bedded devices—it is applicable to large scale
CPUs, and this opens up the landscape of attacks.

Excitingly, we also show that fault attacks
are not limited to cryptographic operations—we
introduced controlled memory corruptions, e.g.,
flipping bits in pointer arithmetic so as to redirect
enclave secrets to be written to untrusted memory
outside the enclave. As Plundervolt and other
fault attacks ultimately break the processor’s in-
struction set specification, even formally verified
and bug-free code can be successfully attacked.

https://plundervolt.com/

Acknowledgments
This research is partially funded by the Re-

search Fund KU Leuven, and by the Agency for
Innovation and Entrepreneurship (Flanders). Jo
Van Bulck is supported by a grant of the Research
Foundation – Flanders (FWO). This research is
partially funded by the Engineering and Phys-
ical Sciences Research Council (EPSRC) under
grants EP/R012598/1, EP/R008000/1, and by the
European Union’s Horizon 2020 research and in-
novation programme under grant agreements No.
779391 (FutureTPM) and No. 681402 (SOPHIA).

9

https://plundervolt.com/

REFERENCES
1. Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scar-

lata. Innovative technology for CPU based attestation and
sealing. In Proceedings of the 2nd international workshop on
hardware and architectural support for security and privacy,
volume 13. ACM New York, NY, USA, 2013.

2. Hagai Bar-El, Hamid Choukri, David Naccache, Michael
Tunstall, and Claire Whelan. The sorcerer’s apprentice guide
to fault attacks. Proceedings of the IEEE, 94(2):370–382,
2006.

3. Dan Boneh, Richard A. Demillo, and Richard J. Lipton. On
the Importance of Checking Computations. In Proceedings
of Eurocrypt’97, pages 37 – 51, 1997.

4. Shay Gueron. A memory encryption engine suitable for
general purpose processors. ePrint 2016/204, 2016.

5. Infineon. Integrity guard. online, accessed 2020-04-
05: https://www.infineon.com/dgdl/Infineon-Integrity
Guard The smartest digital security technology
in the industry 06.18-WP-v01 01-EN.pdf?fileId=
5546d46255dd933d0155e31c46fa03fb, 2018.

6. Zijo Kenjar, Tommaso Frassetto, David Gens, Michael
Franz, and Ahmad-Reza Sadeghi. V0ltpwn: Attacking
x86 processor integrity from software. arXiv preprint
arXiv:1912.04870, 2019.

7. Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye
Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur
Mutlu. Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors. In ISCA,
2014.

8. Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and
Yuval Yarom. Spectre Attacks: Exploiting Speculative Exe-
cution. In S&P, 2019.

9. Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van
Bulck, Daniel Gruss, and Frank Piessens. Plundervolt:
Software-based fault injection attacks against Intel SGX. In
Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P’20), 2020.

10. Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang
Qu. VoltJockey: Breaching TrustZone by Software-
Controlled Voltage Manipulation over Multi-core Frequen-
cies. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’19, pages
195–209, New York, NY, USA, 2019. ACM.

11. Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo.
CLKSCREW: Exposing the perils of security-oblivious en-
ergy management. In USENIX Security Symposium, 2017.

12. Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali.
Differential fault analysis of the advanced encryption stan-
dard using a single fault. In Claudio A. Ardagna and
Jianying Zhou, editors, Information Security Theory and
Practice. Security and Privacy of Mobile Devices in Wireless
Communication, pages 224–233, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

13. Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin,
Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F.
Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient
out-of-order execution. In USENIX Security Symposium,
2018.

14. Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz
Lipp, Marina Minkin, Daniel Genkin, Yarom Yuval, Berk
Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking
Transient Execution through Microarchitectural Load Value
Injection. In 41th IEEE Symposium on Security and Privacy
(S&P’20), 2020.

15. Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Al-
doseri, Flavio Garcia, and Frank Piessens. A tale of two
worlds: Assessing the vulnerability of enclave shielding
runtimes. In Proceedings of the 26th ACM Conference on

Computer and Communications Security (CCS’19). ACM,
November 2019.

10

https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb

	Introduction
	Performance vs. security
	Software-based fault attacks
	Why Plundervolt is different
	Current status and concurrent discoveries

	The Plundervolt effect
	Tested processors

	Inducing the first enclave fault
	In-depth analysis of undervolting effects

	From faults to enclave key extraction
	Factoring RSA keys with one fault
	Breaking AES-NI
	Other faults in crypto

	Beyond crypto
	Faulting pointer arithmetics
	Faulting memory allocations
	The bigger picture

	Countermeasures and counterattacks
	Lessons learned
	In summary

