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ABSTRACT   

Understanding the tribological behaviour of articular cartilage enables the development of effective 

replacement biomaterials. This study presents a technique for the investigation of the frictional torque of 

articular cartilage, for the assessment of replacement biomaterials. A calcium alginate hydrogel was used as 

the biomaterial for this study. Three different specimen types were examined to include articular cartilage, 

calcium alginate hydrogel, alone, and in combination with articular cartilage. An axial load, varying from 10 to 

100 N, was applied to the specimen and the frictional torque measured whilst an indenter underwent axial 

rotation from 0° to 2° to 0° for 100 cycles. The resulting frictional torque magnitude was evaluated with a 

smooth curve fitting function. Linear regression identified a statistically significant relationship between 

torque magnitude and axial load (p < 0.05) for all specimen variations. From 10 to 100 N of applied load, 

mean torque magnitude ranged from 0.08±0.010 to 0.11±0.013 N m, 0.08±0.012 to 0.09±0.016 N m and 

0.07±0.017 to 0.09±0.020 N m (mean ± standard deviation), for articular cartilage, calcium alginate 

separately and in combination with articular cartilage, respectively. This study has established a suitable 

frictional torque testing protocol for potential cartilage replacement biomaterials.  

 

Keywords:  
Articular cartilage 
Axial-rotation 
Calcium alginate  
Frictional torque 
Osteoarthritis 
Replacement biomaterials  

 

mailto:HXM624@student.bham.ac.uk
mailto:d.e.shepherd@bham.ac.uk
mailto:d.m.espino@bham.ac.uk


2 
 

 
 

1. Introduction   

 

Synovial joints consist of articular cartilage and surrounding synovial fluid, including subchondral 

bone [1]. The articular cartilage conceals the bone ends in synovial joints [2], contributing to a low 

coefficient of friction reported in the range of 0.002 to 0.02 [3]–[5], aided by a surface roughness of 

80 – 170 nm [6]. The lubrication mechanisms of articular cartilage contribute to its low friction 

characteristics [7], [8], minimalising wear [8], [9].  

 
Osteoarthritis (OA) is a disease that can affect synovial joints [1]. OA development includes 

degradation of articular cartilage due to the “imbalance of synthesis and catabolism” [10] as a 

result of the disruption of chondrocyte cells [10]. OA induces a rough, fibrillated appearance to the 

surface of cartilage, greatly different to its original smooth surface configuration [11]. OA 

contributes to the increased friction of articular cartilage whilst the joint undergoes motion. Further, 

OA is not solely associated with articular cartilage, as the underlying subchondral bone also plays 

a role. During the earlier stages of OA, increased bone remodelling is observed [12]–[14].  

 
As a result of the incidence of OA, cartilage repair methodologies are required for the treatment of 

damaged articular cartilage tissue [15], [16], such as hydrogels [17], which are defined as a 

network of polymers of a hydrophilic gel [18]. Hydrogels are commonly used as tissue 

replacements [19], due to the biocompatibility [17], biodegradability and absence of toxicity, 

specifically of those with a polysaccharide origin [18]. Alginate is a linear copolysaccharide, 

constituted of monomers β-D-mannuronate (M) and α-L-guluronate (G) [20]. For the formation of a 

biocompatible gel [19], [21], the G monomer components are combined with cations of Ca2+ [19], 

synthesising a calcium alginate hydrogel [21]. The calcium alginate hydrogel is well-known for its 

use in several biomedical applications [19], [21], [22], particularly for use in cartilage tissue 

engineering [23], [24].   

 
The successful development of cartilage replacement biomaterials requires an understanding of 

the frictional characteristics of articular cartilage [25]. Previous studies have explored the effect of 

sliding speed [26], [27], time [28] as well as cyclic loading [29] on the coefficient of friction of 

articular cartilage. However, the previously measured coefficient of friction does not consider the 
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rotational motion of articular cartilage, but is limited to the movement in linear sliding. The frictional 

torque of articular cartilage as a result of the response to a rotational motion is unknown, yet is 

important to measure, as the underlying kinetic closely mimics joint movement in vivo. 

Consequently, for the development of a successful cartilage replacement biomaterial, it is essential 

to compare the frictional torque to that of articular cartilage.  

 
The aim of this study was to develop a technique for the evaluation of the frictional torque of 

articular cartilage, to which a biomaterial can be compared. Based on the use of calcium alginate in 

several biomedical engineering applications, it was selected as the biomaterial for this study. For 

insertion of the hydrogel for investigation, a small cartilage surface defect was induced.  

 

2. Materials and Methods  

2.1 Tissue storage and handling  

Twelve bovine humeral heads were obtained from a supplier (Dissect Supplies, Kings Heath, 

Birmingham, UK) extracted from animals between the ages of 18-30 months at slaughter. Bovine 

articular cartilage has been identified as a suitable model for human cartilage [30]. See our 

previous work on the protocol for storage and identification of suitable cartilage areas for testing 

[31], [32]. The underlying subchondral bone was used for the secure fixation of the specimen for 

friction measurements. Prior to testing, all specimens were immersed in Ringer’s solution for 30 

minutes [30].   

2.2 Preparation of articular cartilage specimens   

 

To evaluate the frictional torque of articular cartilage, rectangular specimens were extracted from 

the central area of the humeral head. This region was selected as it is typically flat. Also, the 

central segment acts as a central point of contact within the shoulder joint [33]. All specimens were 

extracted across six different humeral heads with a 300 mm bi-metal hacksaw blade (RS 

Components Ltd, Corby, UK). The specimens were approximately 11 mm thick, with a cross-

section of 26 mm × 21 mm. In total, eighteen individual cartilage specimens, six per torque test, 

were prepared. The three torque tests focused on: i. cartilage alone, ii. cartilage with a 2 mm insert 
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of calcium alginate, iii. cartilage with a 10 mm insert of calcium alginate.  

To prepare the 2- and 10 mm inserts for calcium alginate, a 2- and 10 mm diameter drill head (EW 

Equipment, Stockport, UK) attached to a drill (Makita UK Ltd, Milton Keynes, UK), was respectively 

used to create a cavity, of an approximate depth of 3 mm, within the surface of the cartilage 

specimen. The induced cavity allowed for the insertion of the biomaterial. A simple schematic is 

displayed in Fig. 1 to represent the various cavities for each specimen type.  

2.3 Manufacture of calcium alginate biomaterial for specimen preparation  

Calcium alginate hydrogel was formed by mixing 7.5 g of sodium alginate (Sigma-Aldrich, Dorset, 

UK) with 125 ml of deionised water [21]. 12.5 g of calcium chloride dihydrate (EMD Millipore, 

Darmstadt, Germany) was mixed with an additional 125 ml of deionised water and transferred into 

the sodium alginate mixture [21]. An image of the formed calcium alginate hydrogel post-48 hours 

of setting is presented in Fig. 2.  

An identical 5 mm diameter region was tested with a single indenter across all specimens; i) 5 mm 

diameter region of articular cartilage, ii) 2 mm hydrogel with surrounding 3 mm of articular 

cartilage, iii) 10 mm hydrogel. This allowed the biomaterial alone and in combination with articular 

cartilage to be assessed.  

To prepare the specimen with the 2 mm insertion, a cork-borer with a diameter of 5 mm was used 

to obtain a core of the biomaterial for insertion within a cavity perforated at the surface of the 

articular cartilage (Fig. 3a; Fig. 3b). This procedure was repeated for the 10 mm diameter 

biomaterial insertion, with use of a hand cork-borer with an outer diameter of 11 mm (Fig. 3c; Fig. 

3d).  

2.4 Frictional torque  

To assess the frictional torque a Bose ElectroForce SDWS testing machine operated with the Bose 

WinTest 4.1 software (Bose Corporation, ElectroForce Systems Group, Minnesota, USA) was 

used. Testing involved compressing a stainless-steel indenter against the specimen surface and 
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applying an axial-rotation. The indenter was manufactured from polished stainless-steel to match 

previous studies which reported the Ra as 0.02 µm [25], [34].  

The indenter was designed with a diameter of 5 mm, 7.5 mm in length and with a 0.5 mm 

chamfered end to prevent damage to the cartilage [31], [35]. The chamfered-polished end ensured 

a smooth surface for the assessment of the frictional torque. The indenter was attached to a 

stainless-steel plate with a diameter of 110 mm which was secured to the upper plate of the testing 

machine. All specimens were secured within a customised circular aluminium test rig via two 

screws positioned through the subchondral bone for fixation. The rig was designed with a diameter 

of 63 mm and a thickness of 13.5 mm. Ringer’s solution was used as the lubricant similar to 

previous cartilage friction work [3], prepared as described previously [31]. For the preservation of 

the hydration of the tissue during testing, the Ringer’s solution was inserted within the test rig [35]–

[37]. The test rig was secured on a stainless-steel fixture [38], followed by the insertion within a 

water bath for mounting onto the machine [38]. The overall experimental set-up is shown in Fig. 4a, 

to illustrate the position of the indenter, test-rig with specimen, water bath as well as rotation stage. 

Fig. 4b and Fig. 4c display the indenter and test-rig.  

A static load of 10 N was applied onto the specimen, followed by a rotation from 0° to 2° to 0°, 

completed in one second for 100 cycles. This testing method was repeated for a further nine static 

loads from 20 to 100 N, evaluating the effect of an induced stress range from 0.51 to 5.09 MPa, of 

a physiological range [39], [40]. All frictional torque tests were completed at 1 Hz. The frictional 

torque of articular cartilage on-bone was evaluated, to include six repeat tests per load, on each of 

six cartilage specimens, for 360 individual experiments. A separate six cartilage specimens were 

assessed to obtain the torque of the 2 and 10 mm calcium alginate inserts, for which the 2 mm 

insert was located below the centre of the stainless-steel indenter. Based on a 1 minute load 

removal for friction measurements in a previous study [3], all specimens were left to recover for 5 

minutes between each increase in load, ensuring consistent inner fluid recovery.  
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2.5 Quantification of the frictional torque magnitude   

The magnitude of the frictional torque was evaluated for the final 10 cycles from each 100-cycle 

test per load. The selection of the final 10 cycles for analysis is based on a suitable endpoint that is 

of the form of a dynamic “steady-state”. Identical ranges in the absolute frictional torque of articular 

cartilage are identified between the final 10 and 20 cycles, for instance a range of 0.16 to 0.29 N m 

is shown at 100 N, respectively. Similarly, an identical range was identified as 0.17 to 0.29 N m at 

10 N, at both the final 10 and 20 cycles. Yet, due to the nature of biological material where 

variations in the frictional behaviour are expected, the final 10 cycles accounts for potential 

instabilities in the friction that may occur earlier on in the test. The maximum frictional stability is 

therefore predicted at the final 10 cycles, where the extraction at this segment allows repeatable 

dynamic data to be recorded. MATLAB (Version R2017a, MathWorks, Cambridge, UK) was used 

to fit a sinusoidal wave to the last 10 cycle plot of the frictional torque generated with respect to 

time, for a fitted smooth curve fit from the original torque plot. The absolute maximum and 

minimum curve points were used to obtain two distinct torque values, for which the calculated 

absolute difference was reported as the torque magnitude. This process was performed for all 

specimen repeats.  

 
2.6 Data analysis  

 
Regressions analysis was used to assess the relationship between axial load and mean frictional 

torque magnitude for all specimens (Sigmaplot Version 12.0 (Systat Software Inc., London, UK)). 

Statistical significance was p < 0.05.                                     

 

3. Results  

 

3.1 Effect of axial load on the frictional torque magnitude  

 

The mean torque magnitude with respect to axial load across all six specimens is presented in Fig. 

5a-c, for cartilage on-bone, and the 2 and 10 mm calcium alginate inserts, respectively. The 

relationship between torque magnitude and axial load is represented by a line of best fit as 

described by equation (1):  
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 (1) 

 

where  is the frictional torque magnitude in N m,  is the load (in N),  and  are constants. 

Across all six cartilage on-bone specimens, the mean frictional torque magnitude with respect to all 

loads tested, ranged from 0.08 to 0.11 N m (Fig. 5a). The range for the 2 mm calcium alginate 

insert was of 0.07 to 0.09 N m (Fig. 5b), whilst the range for the 10 mm calcium alginate insert was 

of 0.08 to 0.09 N m (Fig. 5c), at 10 and 100 N, respectively. The linear regression fits of the mean 

torque magnitude and load curves indicated statistical significance for all specimen types, p < 0.05, 

(Fig. 5a, b, c, respectively).  

4. Discussion  

 
This is the first study to develop a technique to evaluate the frictional torque of articular cartilage, 

exploring the resulting effect of axial load, incorporating a method for the comparable assessment 

of replacement biomaterials. The frictional torque magnitude of articular cartilage increased with 

load, ranging from 0.08 to 0.11 N m at 10 and 100 N, respectively. The frictional torque magnitude 

of calcium alginate was also observed to increase with load, from 0.08 to 0.09 N m. Greater 

variability in the obtained data was noticed during the initial few cycles of testing, which is typical of 

soft connective tissues. Measurements are to within 0.01 N m, based on the assessment of the 

initial and final datasets obtained per samples tested.  

 
The 0 to 2 to 0° range of rotation reflects the internal rotation of the hip at standing of 1° when 

putting on lower garments, and of the right hip at 2° when tying shoe laces and picking up objects 

[41]. Note, the method developed in this study establishes a controlled and repeatable approach, 

whilst not with the aim to replicate complete joint movement. Limited studies have investigated the 

rotation of articular cartilage [42], which can investigate the boundary lubrication mode [43], 

representing the lubrication present at the cartilage-cartilage boundary in vivo [42]. Thus, this study 

is novel in its approach to report the frictional torque magnitude of articular cartilage.  
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The linear regression increase in the frictional torque with load of articular cartilage indicates the 

relationship which a suitable biomaterial should adopt, from a tribology perspective. The torque 

magnitude of a biomaterial should be no greater than the range identified in this study, of 0.08 to 

0.11 N m (cylindrical sample 5 mm in diameter within the test parameters used). Note, within the 

test parameters of 100 N and a rotation of 0 to 2°, this range would act as target values. For future 

studies, loading may vary beyond 2° and 100 N, and as a result of the evaluation of a wider range, 

this study provides a broader test protocol which can be used to evaluate ‘baseline’ data.  

 
Several studies have shown similar trends in the observed increase in the friction of cartilage; 

commonly with varied load, time and sliding speed. Previous work has reported an increase in the 

coefficient of friction of bovine articular cartilage against stainless-steel, with time [34]. That study 

was conducted under a reciprocating motion, with an observed rise in the coefficient of friction from 

0.005 to 0.50 when testing with synovial fluid, and up to 0.57 for Ringer’s solution [34].  

 
The estimated coefficient of friction which can be approximated from our study is compared to 

existing literature. For our study, at a normal force of a defined indenter radius, the estimated 

coefficient of friction is estimated at 0.32 to 0.44, at the maximum applied load of 100 N, for the 

minimum (0.08 N m) and maximum (0.11 N m) frictional torque, respectively. The minimum load of 

10 N is associated with an estimated friction coefficient range of 0.03 to 0.04, at the minimum and 

maximum obtained torque values, respectively. Thus, the values inferred from this study are close 

to the range observed in previous work described above [34]. In addition, the estimated coefficient 

of friction from our study is comparable to previous work that identifies a coefficient of friction range 

of approximately 0.01 to 0.28, of cartilage against metal, in Ringer’s solution [3]. It is also similar to 

previous work that demonstrates a coefficient of friction of approximately 0.22 of cartilage against 

stainless-steel, on completion of 20 minutes of testing [44], and a value of 0.25 on completion of 4-

hours of testing for cartilage against stainless-steel [45].  

 
Previous work has explored the coefficient of friction of bovine articular cartilage subject to sliding 

against glass, at varied frequencies from 0.05 to 1 Hz [46] for which the coefficient of friction is 

reported to increase with time at 1 Hz [46]. Therefore, both the time in that study [46], and the load 
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in our study, have resulted in the increase in the friction of articular cartilage. With reference to the 

previous study [46], when the loading frequency is lowered from 1 Hz to 0.05 Hz, the friction 

coefficient is observed to increase [46]. Therefore, it is anticipated that the frictional torque would 

also follow this trend on application of a lower frequency (e.g. 0.05 Hz).  

 
Previous studies on articular cartilage have noted an increase in the coefficient of friction [42], 

linking their results to rotation movement and postulating that interstitial fluid leaves the surfaces in 

contact, with implications for the extracellular matrix and its loading [42], [44]. However, in our 

study we have found a linear increase in frictional torque with normal load, which aligns directly to 

standard equations for calculating friction and torque (regardless of the type of material or whether 

fluid is present/absent). Yet, previous work suggests testing in multi-directional configurations can 

lead to the decline in boundary lubricants at the contact surfaces, and therefore, increase the 

resulting friction [25].   

 
The frictional torque magnitude for the hydrogel is suitably comparable to articular cartilage, with 

an observed 12.5 % and 28.6 % increase for the 10- and 2 mm inserts, respectively. To mimic the 

boundary lubrication mode of articular cartilage, the biomaterial was assessed in an identical 

manner to the cartilage.  

 
A limitation of the study may be that the cartilage was tested as an isolated tissue sample. In vivo, 

the surrounding ligaments and tendons, as well as the attachment to bone, may alter the resulting 

frictional torque. However, cartilage specimens extracted from a joint allows for direct friction 

measurements (or indeed frictional torque), with enhanced control of the tribological protocol [3].  

 
Although the metal testing configuration utilised in this study is not a physiological representation, 

an increase in the start-up coefficient of friction for both cartilage-cartilage and cartilage-metal with 

stationary loading time was identified [3]. This suggests that no difference in the relationship 

between coefficient of friction and loading time were observed between metal and cartilage [3]. In 

addition, the use of an indentation procedure is repeatable, and has previously been used for the 

evaluation of the mechanical behaviour of articular cartilage [47], including failure [31]. Note, 
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although the homogeneity in stress cannot be confirmed below the indenter as it is expected for a 

different spatial stress distribution to exist amongst the specimens, the forces have been applied 

equally to each specimen. This ensures a comparable assessment of the torque. Thus, despite a 

limitation, the conclusions presented in this study remain unaltered.  

 
A further potential limitation may be the existence in error of misalignment of the cartilage surface, 

as a result of the extent of the surface flatness. However, misalignment error has been controlled 

in this study by the extraction of cartilage specimens from the central, and therefore flattest region 

of the humeral head. Although an error in misalignment may still have occurred, for which an exact 

figure would be difficult to estimate, a previous study demonstrates the feasibility in obtaining 

sheets of cartilage (40 ⨯ 20 mm), from which curvature was not observed visually [37].  

 
Although the measurement of frictional torque is not a material property, but rather limited to the 

specimen size, this technical note describes a novel technique for a consistent comparison of the 

torque between articular cartilage and a replacement biomaterial. This new method is 

advantageous in comparison to the pin-on-disc set-up, due to the direct extraction of the unknown 

frictional torque of articular cartilage with respect to rotation.  

 
5. Conclusions  

 
The technique developed in this study can be implemented in future studies for evaluating potential 

articular cartilage replacement biomaterials, from a frictional torque perspective. This study has 

identified a mean frictional torque magnitude of bovine articular cartilage of 0.08 to 0.11 N m at 

testing 10 through to 100 N, whilst a statistical difference is observed between the torque 

magnitude and load (p < 0.05).  
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Figure 1: Schematic to represent the articular cartilage specimen for each testing group. a) cartilage on-
bone specimen, b) 2 mm calcium alginate insert specimen, c) 10 mm calcium alginate insert 
specimen. ‘y’ represents the cartilage specimen for each case, as indicated by the white rectangular 
space. The insertions for both the 2- and 10-mm calcium alginate hydrogels are shown by the blue 
shaded area highlighted by ‘x’. Key dimensions are shown with a scale bar 

 

                                              

Figure 2: Calcium Alginate Hydrogel: synthesised result post 48-hours of setting. Scale bar is included 
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Figure 3: Illustration of the insertion procedure of the calcium alginate hydrogel within the cartilage on-

bone specimen, for both 2- and 10-mm hydrogel inserts: a) 2 mm hydrogel extraction. This is inserted into 

the cartilage on-bone specimen as shown in part b). The black surrounding circular staining of the hydrogel 

insert in part b) is the use of India ink to locate the insertion location for the biomaterial. The inserted 

biomaterial is highlighted with a red arrow. c) 10 mm hydrogel extraction. This is inserted into the cartilage 

on-bone specimen as shown in part d). The inserted biomaterial is highlighted with a red arrow. Scale bar is 

included 
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Figure 4: Testing Apparatus: a) Overall schematic of the experimental set-up on the Bose ElectroForce 

SDWS to display the stainless-steel indenter, test-rig with specimen, water bath and rotation stage. Part b) 

shows the stainless-steel indenter, part c) displays the test-rig to contain the specimen which is tightened in 

position with the two black screws either side 
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Figure 5: Mean frictional torque with respect to axial load: a) cartilage on-bone; mean of 36 data points 

calculated across six specimens (n=6). b) 2 mm calcium alginate insert; mean of 6 data points calculated 

across six specimens (n=6). c) 10 mm calcium alginate insert; mean of 6 data points calculated across 6 

specimens (n=6). Error bars represent standard deviation. Linear fit details derived from equation (1) are 

included within each plot. P-value less than 0.05 indicates statistical significance 

 


