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Forbidden vector-valued intersections

Peter Keevash and Eoin Long

Abstract

We solve a generalised form of a conjecture of Kalai motivated by attempts to improve the bounds
for Borsuk’s problem. The conjecture can be roughly understood as asking for an analogue of
the Frankl–Rödl forbidden intersection theorem in which set intersections are vector-valued.
We discover that the vector world is richer in surprising ways: in particular, Kalai’s conjecture
is false, but we prove a corrected statement that is essentially best possible, and applies to a
considerably more general setting. Our methods include the use of maximum entropy measures,
VC-dimension, dependent random choice and a new correlation inequality for product measures.

1. Introduction

Intersection theorems have been a central topic of Extremal Combinatorics since the seminal
paper of Erdős, Ko and Rado [9], and the area has grown into a vast body of research (see [2, 4,
19] for an overview). The Frankl–Rödl forbidden intersection theorem is a fundamental result
of this type, which has had a wide range of applications to different areas of mathematics,
including discrete geometry [12], communication complexity [28] and quantum computing [6].

To state their result we introduce the following notation. Let [n] = {1, . . . , n} and let
(
[n]
k

)
=

{A ⊂ [n] : |A| = k}. For A ⊂ (
[n]
k

)
and t ∈ [n] let A×t A be the set of all (A,B) ∈ A×A with

|A ∩B| = t. Note that
(
[n]
k

)×t

(
[n]
k

)
is non-empty if and only if max(2k − n, 0) � t � k. Frankl

and Rödl proved the following ‘supersaturation theorem’, showing that if t is bounded away
from these extremes and A is ‘exponentially dense’ in

(
[n]
k

)
then A×t A is ‘exponentially dense’

in
(
[n]
k

)×t

(
[n]
k

)
.

Theorem 1.1 (Frankl–Rödl [11]). Let† 0 < n−1 � δ � ε < 1 and max(2k − n, 0) + εn �
t � k − εn. Suppose A ⊂ (

[n]
k

)
with |A| � (1 − δ)n

(
n
k

)
. Then |A ×t A| � (1 − ε)n|([n]

k

)×t

(
[n]
k

)|.
In a recent survey on the Borsuk problem, Kalai [21] remarked that the Frankl–Rödl theorem

can be used to give a counterexample to the Borsuk conjecture (the Frankl–Wilson intersection
theorem [13] was used in Kahn and Kalai’s celebrated counterexample [20]), and suggested that
improved bounds might follow from a suitably generalised Frankl–Rödl theorem. He proposed
the following supersaturation conjecture as a possible step in this direction, in which one
measures a set by its size |A| =

∑
i∈A 1 and its sum

∑
A =

∑
i∈A i. Let [n]k,s be the set of

A ⊂ [n] with |A| = k and
∑

A = s. For A ⊂ [n]k,s write

A×(t,w) A =
{

(A,B) ∈ A×A : A �= B with |A ∩B| = t and
∑

(A ∩B) = w
}
.
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Conjecture 1.2 (Kalai). Let 0 < n−1 � δ � ε, α1, α2, β1, β2 < 1, k = �α1n�,
s = �α2

(
n
2

)�, t = �β1n� and w = �β2

(
n
2

)�. Suppose A ⊂ [n]k,s with |A| � (1 − δ)n|[n]k,s|.
Then |A ×(t,w) A| � �(1 − ε)n|[n]k,s ×(t,w) [n]k,s|�.

Although this conjecture holds in a number of natural special cases, it fails quite dramatically
in general; for most pairs (α1, α2) there is exactly one choice of (β1, β2) for which Conjecture 1.2
holds. Before stating this result, we first remark that Conjecture 1.2 is only non-trivial when
[n]k,s is exponentially large in n (when |[n]k,s ×(t,w) [n]k,s| � (1 − ε)−n, requiring |[n]k,s| �
(1 − ε)−n/2). Defining α1, α2 as in Conjecture 1.2, we can therefore assume that (α1, α2) belongs
to

Λ := {(x, y) : 0 < x < 1, x2 < y < 2x− x2}.
We say that g = (α1, α2, β1, β2) is (n, δ, ε)-Kalai if Conjecture 1.2 holds for g, that is, any
A ⊂ [n]k,s with |A| � (1 − δ)n|[n]k,s| satisfies |A ×(t,w) A| � �(1 − ε)n|[n]k,s ×(t,w) [n]k,s|�. We
will classify the Kalai parameters g in terms of the following set Γ; note that the definition of Γ1

uses two functions β1, β2 : Λ → R that will be defined in Section 10, see (9). Let Γ =
⋃

i∈[3] Γi,
where

(Popular intersections) Γ1 ={(α1, α2, β1, β2) : (α1, α2) ∈ Λ, α1 �= α2 and βi = βi(α1, α2)};
(Doubly random) Γ2 ={(α, α, β, β) : 0 < α < 1 and max(2α− 1, 0) < β < α};

(Uniformly random sets) Γ3 ={(1/2, 1/2, β1, β2) : (2β1, 2β2) ∈ Λ}.

Theorem 1.3. Suppose g = (α1, α2, β1, β2) ∈ [0, 1]4 with (α1, α2) ∈ Λ and n−1 � δ � ε �
ε′ � g. Let d(g,Γ) = inf{‖g − g′‖1 : g′ ∈ Γ}.

(1) If d(g,Γ) � δ then g is (n, δ, ε)-Kalai.
(2) If d(g,Γ) � ε′ and |[n]k,s ×(t,w) [n]k,s| � (1 − ε)−n then g is not (n, δ, ε)-Kalai.

Remark 1.4. The condition |[n]k,s ×(t,w) [n]k,s| � (1 − ε)−n in Theorem 1.3 just appears
to ensure that the lower bound on |A ×(t,w) A| in Conjecture 1.2 is non-trivial.

The labels assigned to the parts of Γ correspond to the following interpretations:

• Popular intersections: For (α1, α2) ∈ Λ with α1 �= α2 there is exactly one (α1, α2, β1, β2) ∈
Γ1. For n large, the value (β1n, β2

(
n
2

)
) is essentially the most popular intersection between sets

in [n]k,s, where (k, s) = (α1n, α2

(
n
2

)
).

• Doubly random: If A ⊂ [n] is a uniformly random set of size k = αn, the expected size
of

∑
A is s = α

(
n
2

)
+ o(n2). Similarly, if two sets A and B in [n]k,s with |A ∩B| = βn are

randomly selected then the expected value of
∑

(A ∩B) is β
(
n
2

)
+ o(n2). Theorem 1.3 for Γ2

shows Conjecture 1.2 holds for ‘random-like βn intersections’ between ‘random-like αn sets’,
provided α and β satisfy the Frankl–Rödl conditions.
• Uniformly random sets: Most sets A ⊂ [n] have k = 1

2n + o(n), s = 1
2

(
n
2

)
+ o(n2) and |A ∩

[2L]| = L± o(n) for all L � n/2. Intersections of type (t, w) = (β1n, β2

(
n
2

)
) can only occur

between such sets if (2β1 + o(1), 2β2 + o(1)) ∈ Λ. Theorem 1.3 for Γ3 shows that Conjecture 1.2
is true for (α1, α2) = (1/2, 1/2) provided this necessary condition is fulfilled.

Remark 1.5. While Theorem 1.3 shows that Conjecture 1.2 is generally false, for expository
purposes we will also give two concrete counterexamples (one of which draws a straightforward
analogy with the Frankl–Rödl setting), illustrating two different reasons why the conjecture
fails. We defer these examples to Section 5 as their analysis uses some results from Sections 2– 4.
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Although the bounds from Conjecture 1.2 in general do not hold, it is still natural to ask
whether we can find any (t, w)-intersection in such ‘exponentially dense’ subsets A ⊂ [n]k,s. If
so, what is the optimal lower bound on |A ×(t,w) A|? This paper investigates these questions;
in particular, we give a natural correction to Conjecture 1.2.

Our results will apply to the following more general setting of vector-valued set ‘sizes’: given
vectors V = (vi : i ∈ [n]) in R

D, we define the V-size of A ⊂ [n] by

|A|V =
∑
i∈A

vi.

We note that the Frankl–Rödl theorem concerns V-sizes where D = 1 and all vi = 1, and the
Kalai conjecture concerns V-sizes where D = 2 and vi = (1, i).

1.1. Vector-valued intersections

In order to prove our forbidden V-intersection theorem, we need to work over a general alphabet,
where we associate a vector with each possible value of each coordinate, as follows.

Definition 1.6. Suppose vi
j ∈ Z

D for all i ∈ [n] and j ∈ J . We call V = (vi
j) an (n, J)-array

in Z
D. For a ∈ Jn we define

V(a) =
∑
i∈[n]

vi
ai
.

For A ⊂ Jn and w ∈ Z
D we define AV

w = {a ∈ A : V(a) = w}.

By identifying subsets of [n] with their characteristic vectors in {0, 1}n, and pairs of subsets
of [n] with vectors in ({0, 1} × {0, 1})n, this definition extends the definition of V-size and
V-intersection via the following specialisation (note that V(A) = |A|V and V∩(A,B) = |A ∩
B|V).

Definition 1.7. Suppose V = (vi : i ∈ [n]), where vi ∈ Z
D for all i ∈ [n]. We also let V =

(vi
j) denote the (n, {0, 1})-array in Z

D, where vi
1 = vi and vi

0 = 0. We let V∩ = ((v∩)ij,j′)
denote the (n, {0, 1} × {0, 1})-array in Z

D, where (v∩)i1,1 = vi and (v∩)ij,j′ = 0 otherwise.

We also introduce a class of norms on R
D to account for the possibility that different

coordinates of vectors in V may operate at different scales. In the following definition we
think of R as a scaling; for example, for the Kalai vectors (1, i), we take R = (1, n).

Definition 1.8. Suppose R = (R1, . . . , RD) ∈ R
D. We define the R-norm on R

D by
‖v‖R = maxd∈[D] |vd|/Rd. We say that V = (vi

j) is R-bounded if all ‖vi
j‖R � 1.

Our V-intersection theorem requires two properties of the set of vectors V. The first property,
roughly speaking, says that any vector in Z

D can be efficiently generated by changing the values
of coordinates, and that furthermore this holds even if a small set of coordinates are frozen, so
that no coordinate is overly significant. To see why such a condition is necessary, suppose that
D = 1 and almost all coordinates have only even values: then there are large families where all
intersections have a fixed parity.

Definition 1.9. Let V = (vi
j) be an (n, J)-array in Z

D. We say that V is γ-robustly (R, k)-
generating in Z

D if for any v ∈ Z
D with ‖v‖R � 1 and T ⊂ [n] with |T | � γn there is S ⊂

[n] \ T with |S| � k and ji, j
′
i ∈ J for all i ∈ S such that v =

∑
i∈S(vi

ji
− vi

j′i
).
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Note that if V = (vi : i ∈ [n]), considered as an (n, {0, 1})-array, then Definition 1.9 says
that for all such v and T there are disjoint S, S′ ⊂ [n] \ T with |S| + |S′| � k such that
v =

∑
i∈S vi −

∑
i∈S′ vi. To illustrate the definition, and for future reference, we note that

the Kalai vectors are 0.1-robustly ((1, n), 7)-generating in Z
2. (1)

To see this, first note that for any vector (0, b) with b ∈ [n/2], there are n/3 disjoint pairs
{i1, i2} with (0, b) = (1, i1) − (1, i2). This implies that for any vector (0, b) with |b| � n there
are n/9 disjoint sets {i1, i2, j1, j2} with (0, b) = (1, i1) + (1, i2) − (1, j1) − (1, j1). Also, there are
n/6 disjoint triples {i1, i2, i3} with (1, 0) = (1, i1) + (1, i2) − (1, i3). Combined, given T ⊂ [n]
with |T | � n/10 < n/9 − 3 and (a, b) ∈ Z

2 with ‖(a, b)‖R � 1, there are disjoint S, S′ ⊂ [n] \ T
with |S| + |S′| � 7 with (a, b) =

∑
i∈S vi −

∑
i∈S′ vi. Thus (1) holds.

We also make the following ‘general position’ assumption for V.

Definition 1.10. Suppose V = (vi) is an (n, {0, 1})-array in Z
D. For I ∈ (

[n]
D

)
, let VI =

{vi : i ∈ I} and say that I is (γ,R)-generic if |det(VI)| � γ
∏

d∈[D] Rd. We say that V is γ′-
robustly (γ,R)-generic if for any X ⊂ [n] with |X| > γ′n, some I ⊂ X is (γ,R)-generic for
V.

We note for future reference that

the Kalai vectors are γ-robustly (γ/2,R)-generic for any γ > 0. (2)

Indeed, if X ⊂ [n] with |X| � γn then we can choose i, i′ ∈ X with |i− i′| � γn− 1 � γn/2,
and then (1, i) and (1, i′) span a parallelogram of area |i− i′| � (γ/2) · 1 · n.

We are now in a position to state our main theorem. It shows that, under the above
assumptions on V, there are only two obstructions to a set X = ({0, 1}n)Vz satisfying a
supersaturation result as in Kalai’s conjecture (case (i)): either (case (ii)) there is a small
set Bfull ⊂ X responsible for almost all w-intersections in X , or (case (iii)) there is a large
set Bempty ⊂ X containing no w-intersections. Furthermore, in case (ii) we obtain optimal
supersaturation relative to Bfull.

Theorem 1.11. Let n−1 � δ � γ1, γ
′
1 � γ2, γ

′
2 � ε,D−1, C−1, k−1 and R ∈ R

D with
maxd Rd � nC . Suppose V = (vi : i ∈ [n]) where each vi ∈ Z

D is R-bounded and V is γ′
j-

robustly (γj ,R)-generic and γj-robustly (R, k)-generating for j = 1, 2. Let z,w ∈ Z
D with

z �= w and let X = ({0, 1}n)Vz . Then one of the following holds:

(i) All A ⊂ X with |A| � (1 − δ)n|X | satisfy |(A×A)V∩
w | � (1 − ε)n|(X × X )V∩

w |.
(ii) There exists Bfull ⊂ X with |Bfull| � (1 − δ)n|X | satisfying

|(X × X )V∩
w \ (Bfull × Bfull)V∩

w | � (1 − δ)n|(X × X )V∩
w |.

(iii) There is Bempty ⊂ X with |Bempty| � �(1 − ε)n|X |� satisfying (Bempty × Bempty)V∩
w = ∅.

Furthermore, if (ii) holds and (iii) does not then any B ⊂ Bfull with |B| � (1 − δ)n|Bfull|
satisfies |(B × B)V∩

w | � (1 − ε)n|(X × X )V∩
w |.

Remark 1.12. (i) Theorem 1.11 applies to (t, w)-intersections in [n]k,s, as we have shown
above that its hypotheses hold for the Kalai vectors.

(ii) As indicated above, cases (ii) and (iii) of Theorem 1.11 may simultaneously hold (see
counterexample 1 of Section 5).

(iii) The assumption that V is γ1-robustly (R, k)-generating is redundant, as it is implied by
γ2-robustly (R, k)-generating, but the assumptions of γ′

j-robustly (γj ,R)-generic for j = 1, 2
are incomparable, and our proof seems to require this ‘multiscale general position’.
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We have highlighted Theorem 1.11 as our main result for the sake of giving a clean
combinatorial statement. However, we will in fact obtain considerably more general results
in two directions, whose precise statements are postponed until later in the paper.

• Our most general result, Theorem 6.3, implies cross-intersection theorems for two or more
families and applies to families of vectors over any finite alphabet.
• Theorem 1.11 leaves open the question of how many w-intersections are guaranteed in

large subsets of X when case (ii) holds; this is answered by Theorem 11.1.

It is natural to ask under which conditions the alternate cases of Theorem 1.11 hold.
These conditions are best understood in relation to our proof framework, so we postpone this
discussion to Section 1.4, after we have introduced the two principal components of the proof.

1.2. A probabilistic forbidden intersection theorem

A key paradigm of our approach is that V-intersection theorems often have equivalent
formulations in terms of certain product measures (the maximum entropy measures described
in the next subsection), and that the necessary condition for these theorems appears naturally
as a condition on the product measures. (A similar idea arose in the new proof of the density
Hales–Jewett theorem developed by the first Polymath project [26], although in this case the
natural ‘equal slices’ distribution was not a product measure.)

To illustrate this point, we recast the Frankl–Rödl theorem in such terms. Again we identify
subsets of [n] with their characteristic vectors in {0, 1}n, on which we introduce the product
measure μp(x) =

∏
i∈[n] pxi

, where p1 = k/n and p0 = 1 − p1. Pairs of subsets are identified
with {0, 1}n × {0, 1}n, which we can identify with ({0, 1} × {0, 1})n, on which we introduce the
product measure μq(x,x′) =

∏
i∈[n] qxi,x′

i
, where q1,1 = t/n, q0,1 = q1,0 = (k − t)/n and q0,0 =

(n− 2k + t)/n. It follows from our general large deviation principle in the next subsection (or is
easy to see directly in this case) that the hypothesis of Theorem 1.1 is essentially equivalent to
μp(A) > (1 − δ)n and the conclusion to μq(A×t A) > (1 − ε)n. Furthermore, the assumption
on t can be rephrased as qj,j′ � ε for all j, j′ ∈ {0, 1}, and this indicates the condition that we
need in general.

Let us formalise the above discussion of product measures in a general context. Although we
only considered the cases when the ‘alphabet’ J is {0, 1} or {0, 1} × {0, 1}, we remark that it
is essential for our arguments to work with general alphabets, as the proofs of our results even
in the binary case rely on reductions that increase the alphabet size.

Definition 1.13. Suppose p = (pij : i ∈ [n], j ∈ J) with all pij ∈ [0, 1] and
∑

j∈J pij = 1 for
all i ∈ [n]. The product measure μp on Jn is given, for a ∈ Jn, by μp(a) =

∏
i∈[n] p

i
ai

.
Given an (n, J)-array V and a measure μ on Jn, we write V(μ) = Ea∼μV(a).
Suppose μq is a product measure on (

∏
s∈S Js)n, with q = (qij : i ∈ [n], j ∈ ∏

s∈S Js). For
s ∈ S the s-marginal of μq is the product measure μps

on Jn
s with (ps)ij =

∑
qij for all i ∈ [n],

j ∈ Js, where the sum is over all j with js = j.
We say that μq has marginals (μps

: s ∈ S). We say that μq is κ-bounded if qij ∈ [κ, 1 − κ]
for all j ∈ ∏

s∈S Js. Note that if μq is κ-bounded then so are its marginals.

Remark 1.14. We will often simply write qij1,j2 for qi(j1,j2), etc.

A rough statement of our probabilistic forbidden intersection theorem (Theorem 1.17 below)
is that if A has ‘large measure’ then the set of w-intersections in A has ‘large measure’. We will
combine this with an equivalence of measures discussed in the next subsection to deduce our
main theorem. First will highlight two special cases of Theorem 1.17 that have independent
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interest. The first is the following result, which ignores the intersection conditions, and is only
concerned with the relationship between the measures of A and A×A; it is a new form of
correlation inequality (see Theorem 7.1 for a more general statement that applies to several
families defined over general alphabets).

Theorem 1.15. Let 0 < n−1, δ � κ, ε < 1 and μq be a κ-bounded product measure on
({0, 1} × {0, 1})n with both marginals μp. Suppose A ⊂ {0, 1}n with μp(A) > (1 − δ)n. Then
μq(A×A) > (1 − ε)n.

Next we consider the problem of finding V-intersections that are close to w, which is also
natural, and somewhat easier than finding V-intersections that are (exactly) w. We require
some notation. For r > 0 let BR(w, r) = {w′ ∈ Z

D : ‖w − w′‖R � r}. For A ⊂ P[n] and
L ⊂ Z

D let (A×A)V∩
L = {(A,B) ∈ A×A : V∩(A,B) ∈ L}.

Theorem 1.16. Let 0 < n−1, δ � ζ � κ, ε � D−1 and R ∈ Z
D. Suppose that

(i) μq is a κ-bounded product measure on ({0, 1} × {0, 1})n with both marginals μp;
(ii) V = (vi : i ∈ [n]) is an R-bounded array in Z

D;
(iii) V∩(μq) = w ∈ R

D and L := BR(w, ζn).

Then any A ⊂ {0, 1}n with μp(A) > (1 − δ)n satisfies μq((A×A)V∩
L ) > (1 − ε)n.

Theorem 1.16 naturally fits into the wide literature on forbidden L-intersections in extremal
set theory (see [2, 4, 19]). Here one aims to understand how large certain families of sets can
be if all intersections between elements of A are restricted to lie in some set L. For example, the
Erdős–Ko–Rado theorem [9] can be viewed as an L0-intersection theorem for families A ⊂ (

n
k

)
,

where L0 = {l ∈ N : 1 � l � k}. Similarly, Katona’s t-intersection theorem [22] can be viewed
as an L�t-intersection theorem for families A ⊂ P[n], where L�t = {l ∈ N : l � t}. We also
note that when D = 1 the set L = BR(w, ζn) in Theorem 1.16 is simply an interval, and this
case naturally arose in Frankl and Rödl’s original proof of Theorem 1.1.

Now we state our probabilistic forbidden intersection theorem: if V is robustly generating
then Theorem 1.16 can be upgraded to find fixed V-intersections.

Theorem 1.17. Let 0 < n−1, δ � ζ � κ, γ, ε � D−1, C−1, k−1 and R ∈ Z
D with

maxd Rd < nC . Suppose that

(i) μq is a κ-bounded product measure on ({0, 1} × {0, 1})n with both marginals μp;
(ii) V = (vi : i ∈ [n]) is R-bounded and γ-robustly (R, k)-generating in Z

D;
(iii) w ∈ Z

D with ‖w − V∩(μq)‖R < ζn.

Then any A ⊂ {0, 1}n with μp(A) > (1 − δ)n satisfies μq((A×A)V∩
w ) > (1 − ε)n.

1.3. Maximum entropy and large deviations

Next we will discuss an equivalence of measures that will later combine with Theorem 1.17
to yield Theorem 1.11. Here we are guided by the maximum entropy principle (proposed by
Jaynes [18] in the context of statistical mechanics) which suggests considering the distribution
with maximum entropy† subject to the constraints of our problem, as defined in the following
lemma (the proof is easy and appears in Lemma 2.6 in Section 2).

†The entropy of a distribution μ defined on a finite set X is H(μ) =
∑

x∈X −μ(x) log2 μ(x).
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Lemma 1.18. Suppose V = (vi
j) is an (n, J)-array in Z

D and w ∈ Z
D. Let MV

w be the set of

probability measures μ on Jn such that V(μ) = w. Then, provided MV
w is non-empty, there is

a unique distribution μV
w ∈ MV

w with H(μV
w) = maxμ∈MV

w
H(μ), and μV

w is a product measure

μpV
w

on Jn, where
∑

i∈[n],j∈J(pVw)ijv
i
j = w.

We will show that μV
w is equivalent to the uniform measure on (Jn)Vw, in the sense of

exponential contiguity, defined as follows. (It is reminiscent of, but distinct from, the more
well-known theory of contiguity, see [17, Section 9.6].)

Definition 1.19. Let μ = (μn)n∈N and μ′ = (μ′
n)n∈N, where μn and μ′

n are probability
measures on a finite set Ωn for all n ∈ N. Let F = (Fn)n∈N where each Fn is a set of subsets
of Ωn.

We say that μ′ exponentially dominates μ relative to F , and write μ �F μ′, if for n−1 �
δ � ε � 1 and An ∈ Fn with μn(An) > (1 − δ)n we have μ′

n(An) > (1 − ε)n. We say that μ
and μ′ are exponentially contiguous relative to F , and write μ ≈F μ′ if μ �F μ′ and μ′ �F μ.

If Δ = (Δn)n∈N with each Δn ⊂ Ωn then we write μ �Δ μ′ if μ �F μ′, where Fn is the set
of all subsets of Δn; we define μ ≈Δ μ′ similarly.

Note that �F is a partial order and ≈F is an equivalence relation.
The following result establishes the required equivalence of measures under the same

hypotheses as in the previous subsection. It can be regarded as a large deviation principle
for conditioning x ∈ Jn on the event V(x) = w (see [8] for an overview of this area).

Theorem 1.20. Let 0 < n−1 � γ, κ, k−1, D−1, C−1 < 1 and R ∈ R
D with maxd Rd < nC .

Suppose V = (vi
j) is an R-bounded γ-robustly (R, k)-generating (n, J)-array in Z

D, and w ∈
Z
D such that μpV

w
is κ-bounded. Let ν be the uniform distribution on Δn := (Jn)Vw. Then

μpV
w
≈Δ ν.

To apply Theorem 1.20 under combinatorial conditions, we will use the following lemma
which shows that μpV

w
is κ-bounded under our general position condition on V. (See also

Section 4 for a more general result based on VC-dimension that applies to larger alphabets.)

Lemma 1.21. Let 0 < n−1 � κ � γ, γ′ � α,D−1. Suppose V = (vi) is an R-bounded
γ′-robustly (γ,R)-generic (n, {0, 1})-array in Z

D and |({0, 1}n)Vw| � (1 + α)n. Then μV
w is

κ-bounded.

Alexander Barvinok remarked (personal communication) that similar results to Theo-
rem 1.20 and Lemma 1.21 were obtained by Barvinok and Hartigan in [3]. Theorem 3 of
[3] gives stronger bounds on |({0, 1}n)Vw| where applicable, but their assumptions are very
different to ours (they assume bounds for quadratic forms of certain inertia tensors), and they
also require that the vectors all operate at the ‘same scale’, so their results do not apply to
the Kalai vectors. Although our bounds are weaker, our proofs are considerably shorter, and
furthermore, stronger bounds here would not give any improvements elsewhere in our paper,
as they account for a term subexponential in n, while our working tolerance is up to a term
exponential in n.

1.4. Supersaturation

We now give a brief overview of the strategy for combining the results of the previous two
subsections to prove supersaturation, and also indicate the conditions that determine which
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case of Theorem 1.11 holds. Under the set-up of Theorem 1.11, a telegraphic summary of the
argument is

|A| � (1 − δ)n|X | Theorem 1.20⇒ μpV
z
(A) � (1 − δ′)n Theorem 1.17⇒ μq((A×A)V∩

w ) � (1 − ε)n,

where μq is chosen to optimise the lower bound on |(A×A)V∩
w | implied by the final inequality.

The best possible supersaturation bound (case i of Theorem 1.11) arises when Theorem 1.17
is applicable with μq equal to the maximum entropy measure μq̃ that represents (X × X )V∩

w :
this case holds when μq̃ is κ-bounded and has marginals μp̃ close to μp := μpV

z
.

Case (ii) of Theorem 1.11 holds if μq̃ is κ-bounded but μp̃ is not close to μp: then μp̃ is
concentrated on a small subset Bfull of X , which is responsible for almost all w-intersections
in X .

Lastly, case (iii) of Theorem 1.11 holds if μq̃ is not κ-bounded. The key to understanding
this case is the well-known [31] Vapnik–Chervonenkis dimension, defined as follows.

Definition 1.22. We say that A ⊂ Jn shatters X ⊂ [n] if for any (jx : x ∈ X) ∈ JX there
is a ∈ A with ax = jx for all x ∈ X. The VC-dimension dimV C(A) of A is the largest size of a
subset of [n] shattered by A.

To see why it is natural to consider the VC-dimension, consider the problem of finding an
intersection of size n/3 among subsets of [n] of size 2n/3. The conditions of the Frankl–Rödl
theorem are not satisfied with these parameters, and indeed the conclusion that every family
from

(
[n]

2n/3

)
of density (1 − o(1))n contains an n/3 intersection is not true: take A = {A ∈(

[n]
2n/3

)
: 1 /∈ A}. Considering

(
[n]

2n/3

)×n/3

(
[n]

2n/3

)
as a subset of ({0, 1} × {0, 1})n, we see that no

coordinate can take the value (0,0), so there is not even a shattered set of size 1! Modifying
this example in the obvious way we see that it is natural to assume a bound that is linear in n.
We also note that this example shows that the ‘Frankl–Rödl analogue’ of Conjecture 1.2 is not
true (that is, although

(
[n]
k

)×t

(
[n]
k

)
is exponentially large, there are exponentially dense subsets

of
(
[n]
k

)
with no t intersections) and hints towards a counterexample for Kalai’s conjecture.

More generally, we will prove that κ-boundedness of μq is roughly equivalent to the VC-
dimension of (X × X )V∩

w being large as a subset of ({0, 1} × {0, 1})n (see Lemma 4.8). Case
(iii) of Theorem 1.11 will apply when (X × X )V∩

w has low VC-dimension.
The above outline also gives some indication of how the values in Theorem 1.3 arise.

As described above, the supersaturation conclusion desired by Conjecture 1.2 (case i of
Theorem 1.11) needs μq̃ to have marginals μp̃ close to μp := μpV

z
. We can describe μq̃ and

μp explicitly using Lagrange multipliers: they are Boltzmann distributions (see Lemma 10.1).
In general, it is not possible for one Boltzmann distribution to be a marginal of another, which
explains why Conjecture 1.2 is generally false. An analysis of the special conditions under which
it is possible gives rise to the characterisation of Γ in Theorem 1.3.

The outline also suggests a possible characterisation of the optimal level of supersaturation
in all cases (that is, including those for which Kalai’s conjecture fails). Any choice of μq

satisfying the hypotheses of Theorem 1.17 with marginal distributions μV
z gives a lower bound

on |(A×A)V∩
w |, and the optimal such lower bound is obtained by taking such a measure with

maximum entropy. Is this essentially tight? We will give a positive answer to this question by
proving a matching upper bound in Section 11.

Finally, we remark that our method allows different vectors defining the sizes of intersections
from those defining the sizes of sets in the family, that is, V ′-intersections in ({0, 1}n)Vz ; in
Section 6.3 we show such an application to give a new proof of a theorem of Frankl and Rödl
[11, Theorem 1.15] on intersection patterns in sequence spaces.
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1.5. Organisation of the paper

In the next section we collect some probabilistic methods that will be used throughout the
paper. We prove the large deviation principle (Theorem 1.20) in Section 3. In Section 4 we
establish the connection between VC-dimension and boundedness of maximum entropy mea-
sures. Section 5 is expository: we give two concrete counterexamples to Kalai’s Conjecture 1.2.
As mentioned above, the reader may wish to first read this section and then return to fill in the
details. Next we introduce a more general setting in Section 6, state our most general result
(Theorem 6.3), and show that it implies our probabilistic intersection theorem (Theorem 1.17).
In Section 7 we prove a correlation inequality needed for the proof of Theorem 6.3; as far
as we are aware, the inequality is quite unlike other such inequalities in the literature. We
prove Theorem 6.3 in Section 8, and then deduce our main theorem (1.11) in Section 9. Our
corrected form of Kalai’s conjecture (Theorem 1.3) is proved in Section 10; we also show here
in much more generality that supersaturation of the form conjectured by Kalai is rare. In
Section 11 we give a complete characterisation of the optimal level of supersaturation in terms
of a certain optimisation problem for measures. Lastly, in Section 12 we recast our results in
terms of ‘exponential continuity’: a notion that arises naturally when comparing distributions
according to exponential contiguity, and may be interpreted in terms of robust statistics for
social choice: this point and several potential directions for future research are addressed in
the concluding remarks.

1.6. Notation

We identify subsets of a set with their characteristic vectors: A ⊂ X corresponds to a ∈ {0, 1}X ,
where ai = 1 ⇔ i ∈ A. The Hamming distance between vectors a and a′ in a product space
Jn is d(a,a′) = |{i ∈ [n] : ai �= a′i}|. Given a set X, we write

(
X
k

)
= {A ⊂ X : |A| = k}. We

write δ � ε to mean for any ε > 0 there exists δ0 > 0 such that for any δ � δ0 the following
statement holds. Statements with more constants are defined similarly. We write a = b± c to
mean b− c � a � b + c. Throughout the paper we omit floor and ceiling symbols where they
do not affect the argument. All vectors appear in boldface.

2. Probabilistic methods

In this section we gather several probabilistic methods that will be used throughout
the paper: concentration inequalities, entropy, an application of dependent random choice
to the independence number of product graphs and an alternative characterisation of
exponential contiguity.

2.1. Concentration inequalities

We start with the well-known Chernoff bound (see, for example, [1, Appendix A]).

Lemma 2.1 (Chernoff’s inequality). Suppose t � 0 and X :=
∑

i∈[n] Xi, where X1, . . . , Xn

are independent random variables with |Xi − EXi| � ai for all i ∈ [n]. Then P(|X − EX| �
t) � 2e−t2/(2

∑n
i=1 a2

i ).

An easy consequence is the following concentration inequality for random sums of vectors.

Lemma 2.2. Suppose μp is a product measure on Jn, and V = (vi
j) is an R-bounded (n, J)-

array in Z
D. Let X = V(a) with a ∼ μp and t � 0. Then P(‖X − EX‖R � t) � 2De−t2/8n.
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Proof. For each d ∈ D, we have Xd =
∑

i∈[n] Xd,i, where Xd,i(a) = viai,d
are independent

random variables with |Xd,i| � Rd for all i ∈ [n]. By Chernoff’s inequality we have P(|Xd −
EXd| � tRd) � 2e−t2/8n, so the lemma follows from a union bound. �

We will also use the following consequence of Azuma’s martingale concentration inequality
(see, for example, [25]). We say that f : Jn → R is b-Lipschitz if for any a,a′ ∈ Jn differing
only in a single coordinate we have |f(a) − f(a′)| � b.

Lemma 2.3. Suppose Z = (Z1, . . . , Zn) is a sequence of independent random variables, and

X = f(Z), where f is b-Lipschitz. Then P(|X − EX| > a) � 2e−a2/2nb2 .

2.2. Entropy

In this subsection we record some basic properties of entropy (see [7] for an introduction
to information theory). The entropy of a probability distribution p = (p1, . . . , pn) is H(p) =
−∑

i∈[n] pi log2 pi. The entropy of a random variable X taking values in a finite set S is H(X) =
H(p), where p = (ps : s ∈ S) is the law of X, that is, ps = P(X = s). When p = (p, 1 − p) takes
only two values we write H(p) = H(p) = −p log2 p− (1 − p) log2(1 − p).

Entropy is subadditive: if X = (X1, . . . , Xn) then H(X) �
∑n

i=1 H(Xi), with equality if and
only if the Xi are independent. An equivalent reformulation is the following lemma.

Lemma 2.4. Suppose μ is a probability measure on
∏

s∈[S] Js with marginals (μs : s ∈ [S]).
Then H(μ) �

∑
s∈[S] H(μs), with equality if and only if μ =

∏
s∈[S] μs.

It is easy to deduce Lemma 1.18 from Lemma 2.4. Indeed, consider μ ∈ MV
w with maximum

entropy. Let pij = Px∼μ(xi = j). Then w = V(μ) =
∑

i∈[n],j∈J pijv
i
j , so the product measure

μp is in MV
w, and H(μ) � H(μp), with equality if and only if μ = μp. As MV

w is convex,
uniqueness follows from strict concavity of the entropy function, which we will now prove in a
stronger form (see Lemma 2.6). It is often convenient to use the notation H(p) =

∑
i∈[n] L(pi),

where L(p) = −p log2 p = −p log p
log 2 . Note that L′(p) = − 1+log p

log 2 and L′′(p) = − 1
p log 2 < 0, so

L is strictly concave. The following lemma is immediate from these formulae and the
mean value form of Taylor’s theorem: f(a + t) = f(a) + f ′(a)t + f ′′(a + t′)t2/2 for some
0 < t′ < t.

Lemma 2.5. If |t| < min(p, 1 − p) then

(i) L(p + t) − L(p) = −( 1+log p
log 2 )t± (p− |t|)−1t2;

(ii) L(p + t) + L(p− t) − 2L(p) � − t2

log 2 .

We deduce the following ‘stability version’ of the uniqueness of the maximum entropy
measure, which quantifies the decrease in entropy in terms of distance from the maximiser.

Lemma 2.6. Suppose μp = μV
z and μp̃ ∈ MV

z . If ‖p − p̃‖1 > δn then H(p̃) < H(p) − δ2n.

Proof. Let p′ = (p + p̃)/2 and note that μp′ ∈ MV
z . By definition of μV

z we have
H(μp′) � H(μp), so H(μp) −H(μp̃) � 2H(μp′) −H(μp) −H(μp̃) �

∑
i∈[n](pi − p̃i)2 � δ2n,

by Lemma 2.5(ii) and then Cauchy–Schwarz. �

We conclude this subsection with a perturbation lemma.
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Lemma 2.7. Suppose μ is a probability distribution on X and − log2 μ(x) > H(μ) for some
x ∈ X. Then there is t > 0 such that ν = (1 − t)μ + t1x has H(ν) > H(μ).

Proof. For μ(x) �= 0, for small enough t by Lemma 2.5(i) we have

L(ν(x)) − L(μ(x)) = (ν(x) − μ(x))L′(μ(x)) ± 2μ(x)−1(ν(x) − μ(x))2

= −
(

1 + log2 μ(x)
2

)
(1 − μ(x))t−O(t2).

If y �= x and μ(y) = 0 then L(ν(y)) − L(μ(y)) = 0. Therefore, by Lemma 2.5(i), for all y �= x
we have

L(ν(y)) − L(μ(y)) =
(

1 + log2 μ(y)
2

)
μ(y)t−O(t2). (3)

All combined, this gives

H(ν) −H(μ) =
∑
y∈X

L(ν(y)) − L(μ(y))

=
∑
y∈X

(
1 + log2 μ(y)

2

)
μ(y)t−

(
1 + log2 μ(x)

2

)
t−O(t2)

= t

(
− log2 μ(x)

2
− H(μ)

2
−O(t)

)
> 0,

for small t > 0. The case μ(x) = 0 is similar, using L(ν(x)) − L(μ(x)) = −t log2 t with (3). �

2.3. Dependent random choice

We will use the following version of dependent random choice (see [23, Lemma 11] for a
proof and [10] for a comprehensive survey of the method). We write NG(u, u′) := {v ∈ V (G) :
uv, u′v ∈ E(G)} for the set of common neighbours of u and u′ in a graph G.

Lemma 2.8. Let t ∈ N and G = (V1, V2, E) be a bipartite graph with |Vi| = Ni and |E| =
αN1N2. Then there is U ⊂ V1 with |U | � αtN1/2 such that |NG(u, u′)| � αN

−1/t
1 N2 for all

u, u′ ∈ U .

The following is an immediate consequence of Lemma 2.8, applied with t = �2/cε�.

Lemma 2.9. Let 0 < N−1 � δ � ε, c < 1. Suppose G = (V1, V2, E) is a bipartite graph with

each |Vi| = Ni, where N � N c
1 � N2 � N

1/c
1 and e(G) > (N1N2)1−δ. Then there is U ⊂ V1 with

|U | > N1−ε
1 such that |NG(u, u′)| > N1−ε

2 for all u, u′ ∈ U .

We say that S ⊂ V (G) is independent if it contains no edges of G. The independence number
α(G) of G is the maximum size of an independent set in G. Given graphs G1, . . . , Gk, we write
G1 × · · · ×Gk for the graph on vertex set V (G1) × · · · × V (Gk), in which vertices (u1, · · · , uk)
and (v1, · · · , vk) are joined by an edge if uivi ∈ E(Gi) for all i ∈ [k].

Lemma 2.10. Let 0 < N−1 � δ � ε, c < 1 and N � N c
1 � N2 � N

1/c
1 . Suppose for i = 1, 2

we have graphs Gi on Vi with |Vi| = Ni and α(Gi) � N1−ε
i . Then α(G1 ×G2) � (N1N2)1−δ.

Proof. Suppose E ⊂ V1 × V2 with |E| > (N1N2)1−δ. Consider the bipartite graph G =
(V1, V2, E). Let U be as in Lemma 2.9. As |U | > α(G1), there is an edge u1u2 of G1 in U .
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As |NG(u1, u2)| > α(G2), there is an edge v1v2 of G2 in NG(u1, u2). Then (u1, v1)(u2, v2) ∈ E,
so E is not independent in G1 ×G2. �

By repeated application of the previous lemma, we obtain the following corollary.

Lemma 2.11. Let 0 < N−1 � δ � ε, c, k−1 < 1 and N1, . . . , Nk ∈ N with N � N c
i � Nj �

N
1/c
i for all i, j ∈ [k]. Suppose for i ∈ [k] we have graphs Gi on Vi with |Vi| = Ni and α(Gi) �

N1−ε
i . Then α(G1 × · · · ×Gk) � (N1 · · ·Nk)1−δ.

2.4. Exponential contiguity

We conclude this section with an alternative characterisation of exponential contiguity.

Lemma 2.12. μ �Δ μ′ if and only if for n−1 � δ � ε � 1 and Bn = {x ∈ Δn : μ′
n(x) <

(1 − ε)nμn(x)} we have μn(Bn) � (1 − δ)n.

Proof. Let n−1 � δ � ε � 1. Suppose first that if An ⊂ Δn with μn(An) > (1 − δ)n then
μ′
n(An) > (1 − ε)n. As μ′

n(Bn) � (1 − ε)nμn(Bn) � (1 − ε)n, we cannot have μn(Bn) > (1 −
δ)n, so we have μn(Bn) � (1 − δ)n. Conversely, suppose μn(Bn) � (1 − δ)n and An ⊂ Δn with
μn(An) > (1 − δ/2)n. Then μ′

n(An) � μ′
n(An \Bn) � (1 − ε)nμn(An \Bn) > (1 − 2ε)n. �

3. Large deviations of fixed sums

In this section we prove Theorem 1.20. Our first lemma will be used to show that the maximum
entropy measure is exponentially dominated by the uniform measure.

Lemma 3.1. Let 0 < n−1 � η � κ, |J |−1 � 1. Suppose μp is a κ-bounded product measure
on Jn. Let B = {x ∈ Jn : log2 μp(x) /∈ −H(μp) ± ηn}. Then μp(B) � (1 − η3)n.

Proof. Consider x ∼ μp and X := log2 μp(x) =
∑

i∈[n] Xi, where Xi =
∑

j∈J 1xi=j log2(pij).
As μp is κ-bounded, the Xi satisfy |Xi − E(Xi)| � log2(κ−1) for all i ∈ [n]. As these random
variables are independent and EX = −H(μp), the bound on μp(B) follows from Chernoff’s
inequality. �

Our next lemma gives a lower bound for point probabilities of maximum entropy measures,
which implies an upper bound on the number of solutions of V(x) = w.

Lemma 3.2. Suppose V = (vi
j) is an (n, J)-array in Z

D and w ∈ Z
D and μp = μpV

w
. Then

for all x ∈ (Jn)Vw we have − log2 μp(x) � H(μp). In particular, log2 |(Jn)Vw| � H(μp).

Proof. If some x ∈ (Jn)Vw satisfies − log2 μp(x) > H(μp) then Lemma 2.7(i) shows that
ν = (1 − t)μp + t1x satisfies H(ν) > H(μp) for some t > 0. However as ν ∈ MV

w this would
contradict the choice of pV

w. The second statement now follows as |(Jn)Vw|2−H(μp) �∑
x μp(x) � 1. �

Our final lemma will give an approximate formula for the number of solutions of V(x) =
w (as mentioned in the introduction, [3, Theorem 3] gives stronger bounds under different
hypotheses). First we require a small set that efficiently generates Z

D, as described by the
following definition and associated lemma, which shows that such a set exists under the mild
assumption of polynomial growth for the coordinate scale vector R (this will also be used later
in Theorem 6.3).
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Definition 3.3. We say that U ⊂ Z
D is (k,B,R)-generating if for any v ∈ Z

D we have
v =

∑
u∈U cuu, with each cu ∈ Z with |cu| � k‖v‖R + B.

Lemma 3.4. If n−1 � β,C−1, D−1 and maxd Rd < nC then there is a (1, βn,R)-generating
R-bounded U ⊂ Z

D with |U| � D(C + 2).

Proof. Let U be the set of all u = (u1, . . . , uD) such that for some d ∈ [D] we have ud′ = 0
for all d′ �= d and ud = Rd or ud = �βn�ad ∈ [Rd] for some integer ad � 0. �

Lemma 3.5. Let 0 < n−1 � λ � δ � γ, κ, k−1, D−1, C−1 < 1 and R ∈ R
D with

maxd Rd < nC .
Suppose

(i) V = (vi
j) is an R-bounded γ-robustly (R, k)-generating (n, J)-array in Z

D;

(ii) μp is a κ-bounded product measure on Jn with ‖EV(x) − w‖R � λn, where w ∈ Z
D.

Then log2 |(Jn)Vw| � H(μp) − δn; in particular, (Jn)Vw �= ∅.
Thus, if the maximum entropy measure μpV

w
is κ-bounded then log2 |(Jn)Vw| = H(μpV

w
) ± δn.

Proof. We first note that the final statement of the lemma follows from the first: the
latter gives the lower bound, as EV(x) = w when x ∼ μpV

w
, and the upper bound follows from

Lemma 3.2.
It remains to prove the first statement of the lemma. Let F be the set of x ∈ Jn such that

there is x′ ∈ (Jn)Vw with Hamming distance d(x,x′) < δ2n. We claim that μp(F) > 1/2.
First we assume the claim and deduce the lower bound. Given x ∈ F there is x′ ∈

(Jn)Vw with Hamming distance d(x,x′) < δ2n and so |F| � |{(x,x′) ∈ Jn × (Jn)Vw : d(x,x′) <
δ2n}| � |(Jn)Vw|( n

δ2n

)|J |δ2n, and as |J | � κ−1 � δ−1 this gives log2 |(Jn)Vw| � log2 |F| − δ3/2n.
Now let B = {x ∈ Jn : log2 μp(x) > −H(μp) + δ2n}. We have μp(B) � 1/4 by Lemma 3.1,
so μp(F \ B) � μp(F) − μp(B) � 1/4 by the claim. The definition of B gives log2 |F \
B| −H(μp) + δ2n � log2 μp(F \ B) � −2, so log2 |(Jn)Vw| � log2 |F| − δ3/2n � log2 |F \ B| −
δ3/2n � H(μp) − δn, as required.

To prove the claim, we consider x ∼ μp and show that with probability at least 1/2 there
is x′ ∈ (Jn)Vw with d(x,x′) < δ2n. Let B1 be the event that ‖V(x) − w‖R � δ3n. If B1 holds,
by the triangle inequality ‖V(x) − EV(x)‖R � δ3n− λn � δ3n/2 and so P(B1) � 2De−δ6n/27

by Lemma 2.2. Next, by Lemma 3.4 we can fix some (1, δ2n,R)-generating R-bounded U =
{u1, . . . ,uM} ⊂ Z

D with M � D(C + 2). Since V is γ-robustly (R, k)-generating, by repeatedly
applying Definition 1.9, we can choose pairwise disjoint Smt ⊂ [n] for each m ∈ [M ] and t ∈
[γn/kM ] with each |Smj | � k and ji, j

′
i ∈ J for all i ∈ Smt such that um =

∑
i∈Smt

(vi
ji
− vi

j′i
).

Let B2 be the event that for some m we have |{t : xi = ji ∀i ∈ Smt}| < κkγn/2kM or |{t : xi =
j′i ∀i ∈ Smt}| < κkγn/2kM . Then P(B2) < e−δn by Chernoff’s inequality.

Thus with probability at least 1 − e−δ7n > 1/2 neither B1 or B2 holds for x. As U is
(1, δ3n,R)-generating and ‖V(x) − w‖R < δ3n, we have V(x) − w =

∑
m∈[M ] cmum, with each

cm ∈ Z with |cm| � 1 · ‖V(x) − w‖R + δ3n � 2δ3n. Now we modify x to obtain x′, where for
each m ∈ [M ], if cm > 0 we fix cm values of t such that xi = ji for all i ∈ Smt and let x′

i = j′i
for all such i, and if cm < 0 we fix cm values of t such that xi = j′i for all i ∈ Smt and let x′

i = ji
for all such i. Then V(x′) = w, that is, x′ ∈ (Jn)Vw, and d(x,x′) < k

∑
m∈[M ] |cm| < δ2n. This

completes the proof of the claim, and so of the lemma. �

We deduce Theorem 1.20, which states that under the hypotheses of the above lemmas, we
have μp ≈Δ ν, where μp = μpV

w
, and ν is the uniform distribution on Δn := (Jn)Vw.
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Proof of Theorem 1.20. Let 0 < n−1 � δ � ε � γ, κ, k−1, D−1, C−1 < 1. Note that ν(x) =
|(Jn)Vw|−1 for all x ∈ (Jn)Vw, and log2 |(Jn)Vw| = H(μp) ± δn by Lemma 3.5.

Consider C = {x ∈ Δn : μp(x) < (1 − ε)nν(x)}. If there is x ∈ C then log2 μp(x) <
− log2 |(Jn)Vw| − εn < H(μp), which contradicts Lemma 3.2, so C = ∅. Thus ν �Δ μp by
Lemma 2.12.

Now consider C′ = {x ∈ Δn : ν(x) < (1 − ε)nμp(x)}. For any x ∈ C′ we have log2 μp(x) >
− log2 |(Jn)Vw| + εn, so log2 μp(C′) < −ε3n < −δn by Lemma 3.1, that is, μp �Δ ν. �

4. Boundedness, feasibility and universal VC-dimension

In this section we will give several combinatorial characterisations of the boundedness
condition on maximum entropy measures required in our probabilistic intersection theorem.
The characterisations hold under the following ‘multiscale general position’ assumption, which
extends Definition 1.10 to all finite alphabets (by ‘multiscale’ we mean that the parameter γ
can be arbitrary, which is true of the Kalai vectors).

Definition 4.1 (Robustly generic). Suppose V = (vi
j) is an (n, J)-array in Z

D. Let I ∈ (
[n]
D

)
and c = (ci : i ∈ I) with ci ∈ R

J and
∑

j∈J cij = 0 for all i ∈ I.
We say that (I, c) is (γ,R)-generic for V if all |cij | � γ−1, and writing wi =

∑
j∈J cijv

i
j and

W = (wi
d : i ∈ I, d ∈ [D]), we have |det(W )| � γ

∏
d∈[D] Rd.

We say that V is γ′-robustly (γ,R)-generic if for any X ⊂ [n] with |X| > γ′n there is some
(I, c) with I ⊂ X that is (γ,R)-generic for V.

We say that a sequence (Vn,Rn) of (n, J)-arrays and scalings is robustly generic if Vn is
γ′-robustly (γ,Rn)-generic whenever n−1 � γ � γ′.

It will also be convenient to use the following sequence formulation of Definition 1.9.

Definition 4.2. We say that (Vn,Rn) is robustly generating if there are γ > 0 and k, n0 ∈ N

such that Vn is γ-robustly (Rn, k)-generating for all n > n0.

Next we will define the combinatorial conditions that appear in our characterisation. We
recall the definition of VC-dimension and also define a universal variant that will be important
in the proof of Theorem 1.11 in Section 9.

Definition 4.3. We say that A ⊂ Jn shatters X ⊂ [n] if for any (jx : x ∈ X) ∈ JX there
is a ∈ A with ax = jx for all x ∈ X.

The VC-dimension dimV C(A) of A is the largest natural k such that A shatters some subset
of [n] of size k.

The universal VC-dimension dimUV C(A) of A is the largest natural k such that A shatters
every subset of [n] of size k.

Next we give a feasibility condition, which can be informally understood as saying that we
can solve any small perturbation of the equation Vn(x) = zn.

Definition 4.4. Let (Vn,Rn, zn) be a sequence of (n, J)-arrays, scalings and vectors in
Z
D. We say (Vn,Rn, zn) is λ-feasible if there is n0 such that for any n > n0, any z′n ∈ Z

D

with ‖z′n − zn‖Rn
� λn, and any (n′, J)-array V ′

n′ obtained from Vn by deleting at most λn

co-ordinates, we have (Jn′
)V

′
n′

z′
n

�= 0.

Our final property appears to be a substantial weakening of our κ-boundedness condition,
so it is quite surprising that it also gives a characterisation.
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Definition 4.5. Suppose μp is a product measure on Jn. We say that μp is κ-dense if there
are at least κn coordinates i ∈ [n] such that pij � κ for all j ∈ J .

Now we can state the main theorem of this section. The sense of the equivalences in the
statement is that the implied constants are bounded away from zero together. For example,
the implication ii ⇒ i means that for any δ > 0 there is ε > 0 such that if μVn

zn
is δ-dense then

μVn
zn

is ε-bounded.

Theorem 4.6. Let (Vn,Rn) be a robustly generic and robustly generating sequence of
(n, J)-arrays and scalings in Z

D, and (zn) a sequence of vectors in Z
D. The following are

equivalent:

(i) μVn
zn

is Ω(1)-bounded;
(ii) μVn

zn
is Ω(1)-dense;

(iii) dimV C((Jn)Vn
zn

) = Ω(n);
(iv) dimUV C((Jn)Vn

zn
) = Ω(n);

(v) (Vn,Rn, zn) is Ω(1)-feasible.

The main step in the proof of Theorem 4.6 is Lemma 4.8, which provides the implication
iii ⇒ i. It also implies Lemma 1.21, as for binary vectors the following coarse version
of the Sauer–Shelah theorem shows that linear VC-dimension is equivalent to exponential
growth.

Lemma 4.7 [27, 29]. For A ⊂ {0, 1}n we have dimV C(A) = Ω(n) ⇔ log2 |A| = Ω(n).

Lemma 4.8. Let 0 < n−1 � κ � γ, γ′ � λ � D−1, |J |−1. Suppose V = (vi
j) is an

R-bounded γ′-robustly (γ,R)-generic (n, J)-array in Z
D. If dimV C((Jn)Vw) � λn then μV

w is
κ-bounded.

The proof of Lemma 4.8 is immediate from the next two lemmas, which give the implications
iii ⇒ ii and ii ⇒ i of Theorem 4.6.

Lemma 4.9. Let 0 < n−1 � κ � λ � D−1, |J |−1. Suppose V is an (n, J)-array in Z
D. Let

w ∈ Z
D and p = pV

w. If dimV C((Jn)Vw) � λn then μp is κ-dense.

Proof. Fix Z with |Z| > λn such that (Jn)Vw shatters Z. Suppose for a contradiction that
μp is not κ-dense. Then we have Y ⊂ Z with |Y | � |Z|/2 and (j′y : y ∈ Y ) ∈ JY such that
pyj′y < κ for all y ∈ Y . As (Jn)Vw shatters Z, we can choose j ∈ (Jn)Vw with jy = j′y for all

y ∈ Y . Note that μp(j) � κ|Y | � κλn/2, so − log2 μp(j) � −(log κ)λn/2 > |J |n > H(μp). By
Lemma 2.7 we can find ν = (1 − t)μp + t1j ∈ MV

w with H(ν) > H(μp). This contradicts the
definition of μV

w. �

Lemma 4.10. Let 0 < n−1 � κ � γ, γ′ � λ � D−1, |J |−1. Suppose V = (vi
j) is an R-

bounded γ′-robustly (γ,R)-generic (n, J)-array in Z
D. Let p = pV

w. If μp is λ-dense then μp

is κ-bounded.

Proof. As μp is λ-dense, we can fix Y ⊂ [n] with |Y | � λn such that pij � λ for all i ∈ Y
and j ∈ J . As V is γ′-robustly (γ,R)-generic, we can fix (I, c) with I ⊂ Y that is (γ,R)-
generic for V, that is, all |cij | � γ−1,

∑
j∈J cij = 0 for all i ∈ I, and writing wi =

∑
j∈J cijv

i
j

and W = (wi
d : i ∈ I, d ∈ [D]), we have |det(W )| � γ

∏
d∈[D] Rd.
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Now we show that μp is κ-bounded. For suppose on the contrary that pi
′
j′ < κ for some i′ ∈ [n]

and j′ ∈ J . Fix j′′ ∈ J such that pi
′
j′′ � |J |−1. As (wi : i ∈ I) are linearly independent, we can

write vi′
j′′ − vi′

j′ =
∑

i∈I biw
i. By Cramer’s rule we have bi = det(W )−1 det(Wi), where Wi is

the matrix obtained from W by replacing wi with vi′
j′′ − vi′

j′ . As V is R-bounded, we can write
det(Wi) = det(Ai)

∏
d∈D Rd, where all entries of Ai have modulus at most 1, so |det(Ai)| � D!

(or DD/2 by Hadamard’s inequality). Therefore |bi| � D!γ−1 for all i ∈ I.
Consider a product measure μp′ where for some t > 0 we have p′ij = pij + tbic

i
j for all i ∈ I

and j ∈ J , p′i
′
j′ = pi

′
j′ + t, p′i

′
j′′ = pi

′
j′′ − t, and p′ij = pij otherwise. Note that Ex∼μp′

∑
i∈[n] v

i
xi

=
Ex∼μp

∑
i∈[n] v

i
xi

+ t
∑

i∈I,j∈J bic
i
jv

i
j + tvi′

j′ − tvi′
j′′ = Ex∼μp

∑
i∈[n] v

i
xi

= w, so μp′ ∈ MV
w.

We claim that we can choose t > 0 such that H(μp′) > H(μp). This will contradict the
definition of μV

w, showing that μp is κ-bounded. To see this, note that H(μp′) −H(μp) =∑
i∈I∪{i′}(H(p′i) −H(pi)) and H(p′i) −H(pi) = −∑

j∈J [p′ij log2(p′ij ) − pij log2(pij)] for each
i ∈ [n]. Also, by Lemma 2.5 i, we have −(p + t) log2(p + t) + p log2 p = −( 1+log p

log 2 )t± (p−
|t|)−1t2 = log2(p−1)t± 4t provided |t| < 1

2 min(p, 1 − p). If pi
′
j′ > 0 then for t < 1

2 min(pi
′
j′ , 1 −

pi
′
j′ , (2|J |)−1) this gives

H(p′i
′
) −H(pi

′
) � −t log2 κ− 4t− 3t log2 |J | − 2|J |t2,

using pi
′
j′ < κ, pi

′
j′′ � |J |−1 and |J | � 2. If instead pi

′
j′ = 0 then for t < min(κ, (2|J |)−1) we have

H(p′i
′
) −H(pi

′
) � −t log2 κ− 3t log2 |J | − 2|J |t2,

Lastly, we have

H(p′i) −H(pi) � 2|J |D!γ−2t log λ− 2λ−1|J |(tD!γ−2)2

for i ∈ I, as all |bicij | � D!γ−2 and pij ∈ (λ, 1 − λ). Thus the dominant term in H(μp′) −H(μp)
as t → 0 is −t log2 κ, and so we can choose t > 0 so that H(μp′) −H(μp) > 0, as required. �

Proof of Theorem 4.6. It remains to prove the implications i ⇒ v and v ⇒ iv (note that
iv ⇒ iii is trivial).

For i ⇒ v, let n−1 � λ � κ � γ, k−1, suppose Vn is γ-robustly (Rn, k)-generating, μVn
zn

is κ-
bounded, z′n ∈ Z

D with ‖z′n − zn‖Rn
� λn, and V ′ is obtained from Vn by deleting S ⊂ [n] with

|S| � λn. Then V ′ is Rn-bounded and (γ/2)-robustly (Rn, k)-generating. Also, the restriction
μp′ of μVn

zn
to J [n]\S is κ-bounded, and Ex∼μp′V ′(x) = z∗, where ‖z∗ − z′n‖Rn

� 2λn. Therefore

(J [n]\S)V
′
n′

z′
n

�= ∅ by Lemma 3.5, as required.
For v ⇒ iv, let n−1 � κ, and suppose (Vn,Rn, zn) is κ-feasible. Fix S ⊂ [n] with |S| = κn

and y ∈ JS . We need to show that there is x ∈ (Jn)Vn
zn

with x|S = y. Let V ′, V0 be obtained
from Vn by respectively deleting, retaining the coordinates of S. Let z′n = zn − V0(y). Then

‖z′n − zn‖Rn
� κn, so by definition of κ-feasibility we can find x′ ∈ (J [n]\S)V

′
n′

z′
n

. Then x =
(x′,y) is as required. �

We conclude this section by noting the following lemma which is immediate from the
preceding proof and Lemma 4.8.

Lemma 4.11. Let 0 < n−1 � λ � γ, γ′ � α,D−1, J−1. Suppose V = (vi
j) is an R-bounded,

γ-robustly (R, k)-generating, γ′-robustly (γ,R)-generic (n, J)-array in Z
D.

Let w ∈ Z
D with dimV C((Jn)Vw) � αn. Then dimUV C((Jn)Vw) � λn.



718 PETER KEEVASH AND EOIN LONG

5. Counterexamples to Conjecture 1.2

Theorem 1.3 will precisely describe the conditions under which the conclusion of Conjecture 1.2
is valid, and so show the existence of counterexamples in most cases. However, our proof
is not constructive, so for expository purposes, in this section we will present two concrete
counterexamples, each illustrating a different ‘breaking point’ of Theorem 1.11. The first will
illustrate case (ii) by showing that we may have [n]k,s ×(t,w) [n]k,s large, but very few sets in
[n]k,s are involved in any (t, w)-intersection. The second will illustrate case (iii) by showing that
we may have almost all sets in [n]k,s involved in some (t, w)-intersection, but a large subset of
[n]k,s containing no (t, w)-intersections. The first example also shows that cases (ii) and (iii)
can hold simultaneously.

Counterexample 1: Set α1 = 1/2 and α2 = 7/16 and β1 = 1/4 and β2 = 1/16 + ζ, where
ζ > 0 is small to be selected. Given n ∈ N, take k, s, t and w as in Conjecture 1.2. We will show
that |[n]k,s ×(t,w) [n]k,s| > (1 + c)n for some constant c > 0 but that there is a set A ⊂ [n]k,s
with |A| � (1 − o(1))|[n]k,s| satisfying A×(t,w) A = ∅.

First we show that |[n]k,s ×(t,w) [n]k,s| is large. To see this, we start by finding C ⊂
[(1/4 + ζ1/2)n] with (|C|,∑(C)) = (t, w). Let C0 = [t] and note that

∑
(C0) =

(
t+1
2

)
< w. By a

sequence of moves, each removing some i and adding i + 1, we can obtain C1 = [(1/4 + ζ1/2)n−
t + 1, (1/4 + ζ1/2)n], with

∑
(C1) > w. Clearly some intermediate set has (C,

∑
(C)) = (t, w).

A similar argument gives a set S ⊂ [(1/4 + ζ1/2)n + 1, n] with (|S|,∑(S)) = 2(k − t, s− w).
Next we note that the maximum entropy measure μp̃ on {0, 1}S with

∑
i∈S p̃i(1, i) = (k − t, s−

w) is the constant vector (1/2)i∈S . By Theorem 1.20 we deduce |{D ⊂ S : (|D|,∑(D)) = (k −
t, s− w)}| = 2(1−o(1))|S| = 2(1/2−o(1))n. However, for any D ⊂ S with (D,

∑
(D)) = (k − t, s−

w) we have (E,
∑

(E)) = (k − t, s− w), where E = S \D. Taking A = C ∪D and B = C ∪ E
we find (A,B) ∈ [n]k,s ×(t,w) [n]k,s. We have at least as many (t, w)-intersections as choices of
D, so |[n]k,s ×(t,w) [n]k,s| � 2(1/2−o(1))n.

Next we show that sets in [n]k,s involved in any (t, w)-intersection are very restricted. Let
A,B ∈ [n]k,s with (|A|,∑(A)) = (|B|,∑(B)) = (α1n, α2

(
n
2

)
) = (n/2, 7

16

(
n
2

)
). Suppose A and

B are (t, w)-intersecting. Let � := |A ∩B ∩ [n/4]|. Then(
1
16

+ ζ

)(
n

2

)
= w =

∑
i∈A∩B

i =
∑

i∈A∩B:
i<n/4

i +
∑

i∈A∩B:
i�n/4

i �
(
� + 1

2

)
+
(n

4
− �

)n
4
.

Rearranging gives (�− n/4)2 − ζn2 + (1/16 + ζ)n + � � 0, so � � n/4 −√
ζn. In particular,

|A ∩ [n/4]| � n/4 −√
ζn.

We now show that almost all elements of [n]k,s do not have this restricted form. Fix constants
δ2 � δ1 � κ � 1. Let μp be the maximum entropy measure with

∑
pi(1, i) = (k, s). Then

μp is κ-bounded by Lemma 1.21. Let E := {A ⊂ [n] : |A ∩ [n4 ]| � (1 − κ
2 )n4 }. Then μp(E) �

(1 − δ1)n by Chernoff’s inequality, so |[n]k,s ∩ E| � (1 − δ2)n|[n]k,s| by Theorem 1.20. Choosing
ζ < (κ/2)2, all (t, w)-intersecting pairs from [n]k,s lie within E , which illustrates case (ii) of
Theorem 1.11. Furthermore, [n]k,s \ E is a set of size (1 − o(1))|[n]k,s| containing no (t, w)-
intersections, which illustrates case (iii) of Theorem 1.11.

Counterexample 2: This counterexample is a modification of the family in Section 1.4, related
to VC-dimension. Let α1 = α2 = 2/3 and β1 = β2 = 1/3 + ζ, where ζ > 0 is small. Let n,
k, s, t and w be as in Conjecture 1.2. It is not hard to see that |[n]k,s ×(t,w) [n]k,s| = (1 −
oζ(1))n

(
n

t,k−t,k−t,n−2k+t

)
= (1 − oζ(1))n3n and almost all elements of [n]k,s are involved in a

(t, w)-intersection. However, for any set U ⊂ [n] with |U | = 2ζn + 1, taking AU = {A ∈ [n]k,s :
A ∩ U = ∅}, we have |A ∩B| � t + 1 for all A,B ∈ AU and so AU ×(t,w) AU = ∅. On the other
hand, if we select such a set U uniformly at random we find EU (|AU |) � (1 − oζ(1))n|[n]k,s|.
Thus for some U we have |AU | � (1 − oζ(1))n|[n]k,s| and AU ×(t,w) AU = ∅.
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6. The general setting

In this section we state our most general result, Theorem 6.3; we will defer the proof to
Section 8. This is in fact the main result of the paper in some sense, as we will show in this
section that it implies Theorem 1.17 (in a more general cross-intersection form). However, the
hypothesis of ‘transfers’ in Theorem 6.3 appears to be quite strong at first sight, and it will
take some work to show that it follows from the hypotheses of Theorem 1.17 (it is here that the
idea of enlarging the alphabet comes into play). We state our result in the next subsection and
then deduce Theorem 1.17 in the following subsection. A second application of Theorem 6.3 is
given in Section 6.3, where we use it to give a short proof of a theorem of Frankl and Rödl on
forbidden intersection patterns.

6.1. Statement of the general theorem

Before stating our theorem, we require the following definition, which describes a situation
when for any vector u in some specific set (which will be given by the following definition),
there are many ways of choosing a coordinate and two particular alterations of its value: one
does not change the associated vector, and the other changes it by u.

Definition 6.1. Suppose V = (vi
j,�) is an (n, J × L)-array in Z

D. We say that u is an i-
transfer in V (via (j, j′) and (�, �′)) if there are j, j′ in J and �, �′ in L with vi

j,� − vi
j′,� = u and

vi
j′,�′ = vi

j,�′ .
Let U = {u1, . . . ,uM} ⊂ Z

D and P = (Pm : m ∈ [M ]) for some disjoint subsets Pm of [n].
We say that V has transfers for (P, U) if um is an i-transfer in V for each m ∈ M and i ∈ Pm.

We say that V has γ-robust transfers for U if it has transfers for (P, U) for some P such
that |Pm| � γn for all m ∈ [M ].

Remark 6.2. We note that an (n,
∏

s∈S Js)-array in Z
D has transfers for (P, U) if it has

them as an (n, J × L)-array, where J =
∏

s∈S′ Js and L =
∏

s∈S\S′ Js for some S′ ⊂ S.

We can now state our general theorem. (Recall that U exists by Lemma 3.4.)

Theorem 6.3. Let 0 < n−1 � δ � ζ � ε, κ, γ � D−1,M−1, k−1, C−1. Let S and
(Js : s ∈ S) be sets of size at most C, and R = (R1, . . . , RD) with maxd Rd < nC . Suppose

(i) μq is a κ-bounded product measure on (
∏

s∈S Js)n with marginals (μps
: s ∈ S);

(ii) V = (vi
j1,...,jS

) is an R-bounded (n,
∏

s∈S Js)-array in Z
D;

(iii) U = {u1, . . . ,uM} ⊂ Z
D is R-bounded and (k, kζn,R)-generating;

(iv) V has γ-robust transfers for U ;
(v) w ∈ Z

D with ‖w − V(μq)‖R < ζn.

Suppose As ⊂ Jn
s for s ∈ S with

∏
s∈S μps

(As) > (1 − δ)n. Then μq((
∏

s∈S As)Vw) >
(1 − ε)n.

6.2. Proof of Theorem 1.17

Now we assume Theorem 6.3 and prove Theorem 1.17; in fact we prove the more general cross-
intersection theorem. The strategy is to fuse together suitable co-ordinates and enlarge the
alphabet.

Theorem 6.4. Let 0 < n−1, δ � ζ � κ, γ, ε � D−1, C−1, k−1 and R = (R1, . . . , RD) with
maxd Rd < nC . Suppose
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(i) μq is a κ-bounded product measure on ({0, 1} × {0, 1})n with marginals (μp1 , μp2);
(ii) V = (vi : i ∈ [n]) is R-bounded and γ-robustly (R, k)-generating in Z

D;
(iii) w ∈ Z

D with ‖w − V∩(μq)‖R < ζn.

Then any A1,A2 ⊂ {0, 1}n with μp1(A1)μp2(A2) > (1 − δ)n satisfy μq((A1 ×A2)V∩
w ) >

(1 − ε)n.

Proof. By Lemma 3.4 we can fix some (1, ζn,R)-generating R-bounded
U = {u1, . . . ,uM} ⊂ Z

D with M � D(C + 2). By repeatedly applying Definition 1.9, we
can choose pairwise disjoint Smj , S

′
mj ⊂ [n] for each m ∈ [M ] and j ∈ [γn/kM ] with each

|Smj | + |S′
mj | � k and um =

∑
i∈Smj

vi −
∑

i∈S′
mj

vi. We let N = �n/k� and partition [n] into
sets T1, . . . , TN each of size k and a remainder set R with 0 � |R| � k − 1, such that each
Smj ∪ S′

mj is contained in some Ti. We let P = (Pm : m ∈ [M ]), where each Pm is the set of
i ∈ [N ] such that Ti contains some Smj ∪ S′

mj .
We start by reducing to the case R = ∅ and k|n. For Rs ⊂ R we let ARs

s = {A ∈ As : A ∩R =
Rs} for s = 1, 2. By the pigeonhole principle we can fix (R1, R2) so that μp1(AR1

1 )μp2(AR2
2 ) >

2−2K(1 − δ)n > (1 − 2δ)n. Let A′
s = {As \Rs : A ∈ ARs

s } and V ′ = (vi : i ∈ [n] \R′). Note
that for As ∈ A′

s we have As ∪Rs ∈ As with V∩(A1 ∪R1, A2 ∪R2) = V ′
∩(A1, A2) + v′, where

v′ =
∑

i∈R1∩R2
vi. Writing w′ = w − v′, we have μq((A1 ×A2)V∩

w ) > κkμq((A′
1 ×A′

2)
V′

∩
w′ ), so

to prove the theorem it suffices to show μq((A′
1 ×A′

2)
V′

∩
w′ ) > (1 − ε/2)n.

We can naturally identify {0, 1}n with ({0, 1}k)N , where A ∈ {0, 1}n corresponds to (A ∩ Ti :
i ∈ [N ]) according to some fixed bijection of Ti with [k]. We will apply Theorem 6.3 with N
in place of n, with S = {1, 2} and J1 = J2 = {0, 1}k, and A′

s (naturally identified) in place
of As. We let W = (wi

J1,J2
) be the (N, {0, 1}k × {0, 1}k)-array in Z

D defined by wi
J1,J2

=∑
j∈J1∩J2

vj for J1, J2 ⊂ Ti. Note that V∩(x,y) = W(x,y) for all x,y in {0, 1}n (naturally
identified).

We also note that W has transfers for (U ,P). To see this, consider i ∈ Pm with Smj ∪
S′
mj ⊂ Ti. Let J = Smj , J ′ = S′

mj , L = Smj ∪ S′
mj and L′ = ∅. Then wi

J,L′ = wi
J ′,L′ = 0 and

wi
J,L − wi

J ′,L =
∑

i∈S vi −
∑

i∈S′ vi = um.
We let μq′ be the corresponding product measure on ({0, 1}k × {0, 1}k)N , defined by q′ij1,j2 =∏
i′∈Ti

qi
′
j1
i′ ,j

2
i′

for j1 and j2 in {0, 1}k, noting that μq′ is κk-bounded, and let (μp′
1
, μp′

2
) be its

marginals on ({0, 1}k)N . By construction we have μp′
s
(x) = μps

(x) and μq′(x,y) = μq(x,y)
for all x,y in {0, 1}n (naturally identified).

To summarise, after the above reductions, we have μp′
1
(A′

1)μp′
2
(A′

2) > (1 − 2δ)n, and it
suffices to show μq′((A′

1 ×A′
2)

W
w′) > (1 − ε/2)n. For r ∼ μq′ we have ‖w′ − EW(r′)‖R �

‖w − EV∩(r)‖R + 2|R| < 2ζn, so the theorem follows from Theorem 6.3. �

6.3. Application to a theorem of Frankl and Rödl

In this subsection we give another application of Theorem 6.3, which illustrates an additional
flexibility, namely that our method allows different vectors defining the sizes of intersections
from those defining the sizes of sets in the family. We will give a new proof of a theorem of
Frankl and Rödl [11, Theorem 1.15] on intersection patterns in sequence spaces. (To align with
notation from the rest of the paper, our notation differs from that of [11].)

Given non-negative integers l1, . . . , ls with
∑

i li = n, let
(

[n]
l1,...,ls

)
denote the set of elements

x ∈ [s]n with |{i ∈ [n] : xi = j}| = lj for all j ∈ [s]. Given x ∈ (
[n]

l1,...,ls

)
and y ∈ (

[n]
k1,...,kt

)
, the

intersection pattern of x and y is given by an s times t matrix M , with Mj1,j2 = |{i ∈ [n] :
xi = j1, yi = j2}| for (j1, j2) ∈ [s] × [t]. For A1 ⊂ (

[n]
l1,...,ls

)
and A2 ⊂ (

[n]
k1,...,kt

)
we let A1 ×M A2

denote the set of pairs (x,y) ∈ A1 ×A2 with intersection pattern M .
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We say that M is an intersection pattern for (l1, . . . , ls) and (k1, . . . , kt) if each∑
j2∈[t] Mj1,j2 = kj1 , each

∑
j1∈[s] Mj1,j2 = lj2 , and

∑
(j1,j2)∈[s]×[t] Mj1,j2 = n. The following

result of Frankl and Rödl is the analogue of Theorem 1.1 for intersection patterns.

Theorem 6.5 (Frankl–Rödl). Given ε, κ > 0 and s, t ∈ N there is δ > 0 such that the
following holds. Suppose that M is an intersection pattern for (l1, . . . , ls) and (k1, . . . , kt)
with all Mj1,j2 � κn. Let A1 ⊂ (

[n]
l1,...,ls

)
with |A1| � (1 − δ)n

(
n

l1,...,ls

)
and A2 ⊂ (

[n]
k1,...,kt

)
with

|A2| � (1 − δ)n
(

n
k1,...,kt

)
. Then |A1 ×M A2| � (1 − ε)n|( n

l1,...,ls

)×M

(
n

k1,...,kt

)|.
Proof. Fix 0 < δ � δ′ � ε′ � ε, κ, and let J1 = [s]. Let e1, . . . , es denote the standard

basis for Z
s, and let V1 = (vi

j) denote the (n, J1)-array, where each vi
j = ej . We can naturally

identify
(

[n]
l1,...,ls

)
with (Jn

1 )V1
z1

, where z1 = (l1, . . . , ls) ∈ Z
s. The maximum entropy measure

μp1 = μV1
z1

on Jn
1 is then given by (p1)ij = lj/n for all i ∈ [n] and j ∈ J1. Indeed, as vi

j is
independent of i ∈ [n], by strict concavity of entropy (Lemma 2.5) so is (p1)ij = p1,j , and
n(p1,1, . . . , p1,s) = EV1(x) = (l1, . . . , ls). As μp1 is κ-bounded we can apply Theorem 1.20 to
find μp1 ≈�1 ν1, where ν1 is uniform measure on (Jn

1 )V1
z1

=
(

[n]
l1,...,ls

)
. Similarly, taking J2 = [t],

we have a κ-bounded product measure μp2 on Jn
2 , with μp2 ≈�2 ν2, where ν2 is uniform

measure on
(

[n]
k1,...,kt

)
. Therefore μpi

(Ai) � (1 − δ′)n for i = 1, 2.
Similarly, we let e1,1, . . . , es−1,t−1 denote the standard basis for Z

(s−1)(t−1), and let V =
(vi

j1,j2
) denote the (n, J1 × J2)-array, where vi

j1,j2
= ej1,j2 if (j1, j2) ∈ [s− 1] × [t− 1] and 0

otherwise. We also let w =
∑

(j1,j2)∈[s−1]×[t−1] Mj1,j2ej1,j2 . Note that for x ∈ (
n

l1,...,ls

)
and y ∈(

n
k1,...,kt

)
, we have V(x,y) = w if and only if x and y have intersection pattern M . Therefore

(A1 ×A2)Vw = A1 ×M A2.
We will apply Theorem 6.3 to estimate (A1 ×A2)Vw under the product measure μq on

(J1 × J2)n defined by qij1,j2 = Mj1,j2/n. By hypothesis, μq is κ-bounded, with marginals
μp1 and μp2 , and E(x,y)∼μq

V(x,y) = w. Taking R to be the constant 1 vector in
Z

(s−1)(t−1) we see that V is R-bounded, and U = {ej1,j2} is (st, 0,R)-generating. Lastly,
V has 1-robust transfers for U , as for any (j1, j2) ∈ [s− 1] × [t− 1] we have vi

j1,j2
−

vi
s,j2

= ej1,j2 and vi
j1,t

− vi
s,t = 0. As μpi

(Ai) � (1 − δ′)n for i = 1, 2, Theorem 6.3 gives
μq((A1 ×A2)Vw) = μq(A1 ×M A2) � (1 − ε′)n. The theorem follows from a final application of
Theorem 1.20. �

We wish to emphasise two aspects of the above proof. Firstly, it is crucial that the arrays
V1,V2 and V can differ. Secondly, the arrays Vi are not |Ji|−1-robustly (γ,R)-generic for any
γ > 0 for i = 1, 2, so we cannot apply Lemma 4.8, but we were able to see directly that μp1

and μp2 are κ-bounded. Thus Theorem 6.3 has useful consequences even for arrays that are
not robustly generic.

7. Correlation on product sets

In this section we will prove the following correlation inequality which will be used in the
proof of Theorem 6.3; it can also be interpreted as an exponential contiguity result for product
measures (see Theorem 7.2).

Theorem 7.1. Let 0 < n−1, δ � κ, ε < 1 and μq be a κ-bounded product measure on
(
∏

s∈S Js)n with marginals (μps
: s ∈ S). Suppose As ⊂ Jn

s for s ∈ S with
∏

s∈S μps
(As) >

(1 − δ)n. Then μq(
∏

s∈S As) > (1 − ε)n.
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Proof of Theorem 7.1. We first consider the case S = {1, 2}. Define f : (J1)n → R by

f(x1) = loge (μp1(x1)) − loge (μq({x1} × A2)).

As μp1 is a marginal of μq, we have μp1(x1) � μq({x1} × A2) for all x1 ∈ (J1)n, and so f(x1) �
0 for all x1 ∈ (J1)n. Note also that f is 2 log(κ−1)-Lipschitz, as μq is κ-bounded.

Let M = Eμq(f). We claim that M � (2δ + α)n � 2αn. To see this, we apply a well-known
concentration argument. For I ⊂ R, let

BI = {x1 ∈ (J1)n : f(x1) ∈ I}.

By Lemma 2.3, letting α = 4δ1/2 log κ−1, we have μp1(B[M−αn,M+αn]) � 1 −
2e−α2n/(8 log2(κ−1)) > 1 − (1 − δ)n/2. Now let

C = {x1 : μq({x1} × A2) � (1 − δ)nμp1(x1)/2}.

Then f(x1) � 2δn for x1 ∈ C, so C ⊂ B[0,2δn]. However, (1 − δ)n � μp2(A2) = μq((J1)n ×
A2) � μp1(Cc)(1 − δ)n/2 + μp1(C), and so μp1(B[0,2δn]) � μp1(C) � (1 − δ)n/2. Thus B[0,2δn] ∩
B[M−αn,M+αn] �= ∅, which gives M � (2δ + α)n � 2αn, as claimed.

Now set B=A1 ∩B[0,3αn]. As μp1(A1)� (1 − δ)n and μp1(B[0,3αn])�μp1(B[M−αn,M+αn])�
1 − (1 − δ)n/2 we have μp1(B) � (1 − δ)n/2. Therefore

μq(A1 ×A2) �
∑
x1∈B

μq({x1} × A2) =
∑
x1∈B

μp1(x1)e−f(x1) � μp1(B)e−3αn � (1 − ε)n.

This completes the proof in this case.
Now we deduce the general case by induction on |S|. Suppose the theorem is known for

|S| = k − 1 and we wish to prove it for |S| = k. Fix s ∈ S and let S′ = S \ {s}. We view
(
∏

s∈S Js)n as (Js × J ′)n, where J ′ =
∏

s′∈S′ Js′ . Let μp′ be the product measure on J ′n defined
by μpS′ (x′) = μq((J1)n × {x′}). Then μp′ is κ-bounded and has marginals (μps′ )s′∈S′ , so by
induction hypothesis, as

∏
s′∈S′ μps′ (As′) � (1 − δ)n we have μpS′ (

∏
s′∈S′ As′) � (1 − δ′)n,

where δ � δ′ � ε.
Also, we can view μq as a product measure on (Js × J ′)n, with marginals μps

and μp′ . Since
μps

(As)μp′(
∏

s′∈S′ As′) � (1 − δ)n(1 − δ′)n � (1 − 2δ′)n, from the |S| = 2 case of the theorem
we obtain μq(

∏
s∈S As) � (1 − ε)n, as required. �

Theorem 1.16 is easily deduced from Theorem 7.1.

Proof of Theorem 1.16. Given ζ > 0, taking D = {r : ‖V(r) − EV‖R � ζn} ⊂ ({0, 1} ×
{0, 1})n, by Lemma 2.2 we have μq(D) � 2De−ζ2n/8 � e−ζ2n/16. However, provided δ, n−1 �
ζ, ε, κ, by Theorem 7.1 any A ⊂ {0, 1}n with μp(A) � (1 − δ)n satisfies μq(A×A) �
e−ζ2n/16 + (1 − ε)n. Since (A×A) ∩ Dc = (A×A)V∩

L the result follows. �

To conclude this section we give a second application of Theorem 7.1 which will be useful
in Section 12; Theorem 7.1 shows the exponential contiguity of μq and

∏
s∈S μps

, defined by
(
∏

s∈S μps
)(xs : s ∈ S) =

∏
s∈S μps

(xs). Here the subscript Π indicates exponential contiguity
relative to product sets, that is, we apply Definition 1.19 in the case Ωn = (

∏
s∈S Js)

n and
F = Π = (Πn)n∈N, where Πn = {(An,s : s ∈ S) : all An,s ∈ Jn

s }.

Theorem 7.2. Let 0 < n−1 � κ � 1 and μq be a κ-bounded product measure on
(
∏

s∈S Js)n with marginals (μps
: s ∈ S). Then μq ≈Π

∏
s∈S μps

.
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Proof. As in the proof of Theorem 7.1, it suffices to consider the case S = [2]. By Theorem 7.1
we have μp1 × μp2 �Π μq. Conversely, consider As ⊂ Jn

s for s ∈ [2]. By the Cauchy–Schwarz
inequality, writing

∑
for

∑
x1∈Jn

1 ,x2∈Jn
2
, we have

μq(A1 ×A2)2 =

⎛⎝∑
μq(x1,x2)

∏
s∈[2]

1xs∈As

⎞⎠2

�
∏
s∈[2]

∑
μq(x1,x2)1xs∈As

=
∏
s∈[2]

μps
(As),

so μq �Π μp1 × μp2 . �

8. Proof of the general theorem

In this section we prove Theorem 6.3. We start by reducing to the case |S| = 2.

Lemma 8.1. Theorem 6.3 follows from the case |S| = 2.

Proof. First note that if V has γ-robust transfers for U then it has them as an (n,L1 ×
L2)-array, where each Lj =

∏
s∈Sj

Js for some partition (S1, S2) of S.
Now let μpS1

denote the product measure on Ln
1 defined by μpS1

(x1) = μq({x1} × Ln
2 ); then

μpS1
is κ-bounded. Similarly, we obtain μpS2

on Ln
2 that is κ-bounded.

Let ASj
=

∏
s∈Sj

As for j = 1, 2. As
∏

s∈Sj
μps

(As) � (1 − δ)n and δ � δ′, by Theorem 7.1
each μpSj

(ASj
) � (1 − δ′)n, so the case S = {1, 2} of Theorem 6.3 applies to (AS1 ,AS2). �

Now we will prove a succession of special cases of Theorem 6.3, where the proof of each case
builds on the previous cases, culminating in the proof of the general case. The last of these,
Lemma 8.4, shows that Theorem 6.3 holds assuming |S| = 2, J1 = J2 = {0, 1}, and qij1,j2 = 1/4
for all i ∈ [n] and j1, j2 ∈ {0, 1}; we refer to these assumptions as the uniform binary setting.

Lemma 8.2. Suppose the assumptions of Theorem 6.3 hold in the uniform binary setting and
V has transfers for (P, U), where P = (Pm : m ∈ [M ]) is a partition of [n]. Then (A×A)Vw �= ∅.

Proof. The idea of the proof is to reduce the required statement to finding two sets A and
B in A with prescribed values of |A ∩B ∩ Pm| for all m ∈ [M ], where we identify {0, 1}n with
subsets of [n]; this will be achieved by the Frankl–Rödl theorem and dependent random choice.

We start by noting that, as um is an i-transfer for each i ∈ Pm, we can assume that vi
1,0 −

vi
0,0 = um and vi

1,1 = vi
0,1; indeed, this can be achieved by relabelling elements of J1 = J2 =

{0, 1} for each i, which preserves our hypotheses (as we are in the uniform binary setting).
Next we introduce some notation. We denote the marginals of μq by μp = μp1 = μp2 , that

is, we have pi0 = pi1 = 1
2 for all i ∈ [n]. For K = (Km : m ∈ [M ]) we let BK denote the set of

all a ∈ {0, 1}n such that
∑

i∈Pm
ai = Km for all m ∈ [M ].

We claim that we can fix K with Km = (1
2 ± κ

4 )|Pm| for all m ∈ [M ] such that μp(A ∩ BK) >
(1 − δ)n. Indeed, by assumption we have μp(A) > (1 − δ)n/2. Also, for a ∼ μp and Xm =∑

i∈Pm
ai we have EXm = 1

2 |Pm|, so by Chernoff’s inequality P(|Xm − EXm| > κ|Pm|/4) �
2e−(κ|Pm|/4)2/2|Pm| � 2e−κ2γn/32. There are at most nM choices of K, so by a union bound and
the pigeonhole principle there is some K with all Km = (1

2 ± κ
4 )|Pm| such that μp(A ∩ BK) >

n−M ((1 − δ)n/2 − 2Me−κ2γn/32) > (1 − δ)n, as claimed.
Now for z = (zm : m ∈ [M ]) with all zm ∈ Z

D we let BK,z denote the set of all a ∈ BK

with
∑

i∈Pm
vi
ai,ai

= zm for all m ∈ [M ]. As all ‖vi
j0,j1

‖R � 1 and maxd Rd < nC , there are at
most (2nC+1)DM possible values of z, and so by the pigeonhole principle there is z so that
μp(A ∩ BK,z) � (1 − δ)n/(2nC+1)DM > (1 − 2δ)n.
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We now note for any a and a′ in BK,z that V(a,a′) is determined by the values tm =∑
i∈Pm

aia
′
i. Indeed, as vi

1,0 − vi
0,0 = um and vi

1,1 = vi
0,1 we find that

V(a,a′) =
∑

m∈[M ]

∑
i∈Pm

vi
ai,a′

i
=

∑
m∈[M ]

⎛⎝ ∑
i∈Pm:a′

i=0

vi
ai,a′

i
+

∑
i∈Pm:a′

i=1

vi
ai,a′

i

⎞⎠

=
∑

m∈[M ]

⎛⎝ ∑
i∈Pm:a′

i=0

(vi
a′
i,a

′
i
+ 1ai=1um) +

∑
i∈Pm:a′

i=1

vi
a′
i,a

′
i

⎞⎠
=

∑
m∈[M ]

(zm + (Km − tm)um).

Next we consider X = V(r) with r = (b,b′) ∼ μq. We claim that there are b,b′ ∈ BK,z

such that v∗ = V(b,b′) and ṽ = EV(r) satisfy ‖v∗ − ṽ‖R < ζn, and v∗ =
∑

m∈[M ](zm +
cmum), where cm ∈ Z with cm = (1

4 ± κ
2 )|Pm| for all m ∈ [M ]. Indeed P(‖X − EX‖R � ζn) �

2De−ζ2n/2 by Lemma 2.2 and Ym =
∑

i∈Pm
bib

′
i satisfies EYm = 1

4 |Pm| and P(|Ym − EYm| >
κ|Pm|/4) < 2e−κ2γn/128 by Chernoff’s inequality. As μp(BK,z) � μp(A ∩ BK,z) > (1 − 2δ)n, by
Theorem 7.1 we have μq(BK,z × BK,z) > (1 − δ′)n, where δ � δ′ � ζ, so we can choose b and
b′ as claimed.

Now we can determine values tm for m ∈ [M ] such that for any a and a′ in A ∩ BK,z with∑
i∈Pm

aia
′
i = tm for all m ∈ [M ] we have V(a,a′) = w. Indeed, ‖w − v∗‖R � ‖w − ṽ‖R +

‖v∗ − ṽ‖R < 2ζn, so as U is (k, kζn,R)-generating, we have w − v∗ =
∑

m∈[M ] emum, with
each em ∈ Z and |em| � 3kζn. Thus w =

∑
m∈[M ](zm + (cm + em)um), so we take tm = Km −

(cm + em) for all m ∈ [M ]. Note that our above bounds give tm = (1
4 ± κ)|Pm| ± 3kζn.

It remains to show that we can find such a and a′. We consider the graph G = G1 × · · · ×
GM on BK , where each Gm is the graph on

(
Pm

Km

)
with AmA′

m ∈ E(Gm) ⇔ |Am ∩A′
m| = tm.

Recalling that Km = (1
2 ± κ

4 )|Pm| we have

max(2Km − |Pm|, 0) + κ|Pm| � tm = (1/4 ± κ)|Pm| ± 3kζn � Km − κ|Pm|,

and so α(Gm) < (1 − δ′)n|V (Gm)| by Theorem 1.1. As |V (Gm)| � (
γn

κγn/2

)
� |V (Gm′)|γκ for

all m′ ∈ [M ], by Lemma 2.11 we have α(G) < (1 − 2δ)n|V (G)|. But |A ∩ BK,z|/|BK | = μp(A ∩
BK,z)/μp(BK) > (1 − 2δ)n, so A ∩ BK,z contains an edge of G, as required. �

Lemma 8.3. Theorem 6.3 holds in the uniform binary setting when A1 = A2 = A.

Proof. Let P = (Pm : m ∈ [M ]) with |Pm| = γ0n for all m ∈ [M ] be such that V has transfers
for (P, U), where ζ � γ0 � ε. Let B2 = ∪m∈[M ]Pm and B1 = [n] \B2. Write FK1,K2 for the
set of all a ∈ {0, 1}n such that

∑
i∈Bj

ai = Kj for j = 1, 2. As in the proof of Lemma 8.2, we
write μp = μp1 = μp2 , note that pi0 = pi1 = 1/2, and fix Kj = (1/2 ± κ/4)|Bj | for j = 1, 2 such
that μp(A ∩ FK1,K2) > (1 − δ)n.

Consider the bipartite graph G with parts (
(
B1
K1

)
,
(
B2
K2

)
) where (b1,b2) ∈ E(G) ⇔ b1b2 ∈ A.

By Lemma 2.9 there is B ⊂ (
B1
K1

)
with |B| > (1 − δ′)n|(B1

K1

)|, where δ � δ′ � ζ, such that for
any b1,b′

1 in B we have |NG(b1,b′
1)| > (1 − δ′)n|(B2

K2

)|.
We will now find F ⊂ B × B with μq(F) > (1 − ε/2)n (also writing μq for its restriction

to ({0, 1} × {0, 1})B1) such that for any (b1,b′
1) ∈ F there are b2 and b′

2 in NG(b1,b′
1),

such that V(b1b2,b′
1b

′
2) = w. This will suffice to prove the lemma, as then μq((A×A)Vw) �

(1/4)|B2|μq(F) > (1 − ε)n, using γ0 � ε.
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Let Vj = {vi
j1,j2

: i ∈ Bj} for j = 1, 2 and ṽj = EVj(r), where r ∼ μq, so ṽ1 + ṽ2 = ṽ =
EV(r). Let E be the set of (b1,b′

1) ∈ ({0, 1} × {0, 1})B1 such that ‖V1(b1,b′
1) − ṽ1‖R > ζn.

Then μq(E) < 2De−ζ2n/2 by Lemma 2.2. We choose F = (B × B) \ E . By Theorem 7.1 we have
μq(B × B) > (1 − δ′′)|B1| with δ′ � δ′′ � ζ � ε, so μq(F) > (1 − ε/2)n.

It remains to show for fixed (b1,b′
1) ∈ F that there is b2 and b′

2 in NG(b1,b′
1) such

that V2(b2,b′
2) = w′ := w − V1(b1,b′

1). To see this, it suffices to verify the hypotheses of
Lemma 8.2, applied with NG(b1,b′

1) in place of A, restricting μq to ({0, 1} × {0, 1})B2 , and
with V2 in place of V. We note that V2 has transfers for the same (P, U), and P = (Pm : m ∈
[M ]) is a partition of B2. As ‖w′ − ṽ2‖R � ‖w − ṽ‖R + ‖V1(b1,b′

1) − ṽ1‖R � 2ζn, replacing
ζ by 2ζ we see that all hypotheses hold, so the proof of the lemma is complete. �

Lemma 8.4. Theorem 6.3 holds in the uniform binary setting.

Proof. Let A′
1 be the set of a1 ∈ A1 such that there is some a2 = a2(a1) ∈ A2 with Hamming

distance d(a1,a2) � 2δ′n, where δ � δ′ � ζ. We claim that μp1(A′
1) > (1 − 2δ)n. This follows

from the same concentration argument used in the proof of Theorem 7.1. Indeed, consider
r1 ∼ μp1 and X = d(r1,A2) = mina2∈A2 d(r1,a2). As X is 1-Lipschitz, by Lemma 2.3 we
have P(|X − EX| > δ′n) < e−(δ′n)2/2n. This implies EX � δ′n, as otherwise since X(r) = 0
for all r ∈ A2 we have P(|X − EX| > δ′n) � P(X = 0) = μp1(A2) = μp2(A2) > (1 − δ)n �
e−(δ′n)2/2n, a contradiction. Therefore P(X > 2δ′n) < e−(δ′n)2/2n, so the claim holds.

By the pigeonhole principle, we can fix T ⊂ [n] with |T | � 2δ′n, a partition T = T0,1 ∪ T1,0

and A′′
1 ⊂ A′

1 with μp1(A′′
1) > (1 − 3δ)n such that for every a1 ∈ A′′

1 we have T1,0 = {i ∈ [n] :
(a1i, a2(a1)i) = (1, 0)} and T0,1 = {i ∈ [n] : (a1i, a2(a1)i) = (0, 1)}.

Now let w′ =
∑

i∈T0,1
(vi

0,1 − vi
0,0) +

∑
i∈T1,0

(vi
1,0 − vi

1,1) and note that for any a1 and a′
1 in

A′′
1 with V(a1,a′

1) = w + w′ we have V(a1,a2(a′
1)) = w. Note also that ‖w′‖R � |T | � 2δ′n, so

‖w + w′ − EV(r)‖ � ‖w′‖ + ‖w − EV(r)‖ < 2ζn. Then μq((A′′
1 ×A′′

1)Vw+w′) > (1 − ε/2)n by
Lemma 8.3, so μq((A1 ×A2)Vw) � (1/4)|T |μq((A′′

1 ×A′′
1)Vw+w′) > (1 − ε)n, as required. �

Proof of Theorem 6.3. As noted earlier, we may assume S = {1, 2}. By relabelling, we can
also assume {0, 1} ⊂ J1, J2. As V has γ-robust transfers for U , there are disjoint subsets Pm of
[n], with |Pm| � γn, so that um is an i-transfer for all i ∈ Pm. By relabelling, we can assume
vi

1,1 − vi
0,1 = um and vi

1,0 = vi
0,0 for all i ∈ Pm.

Next we describe an alternative method to select elements from (
∏

s∈S Js)n according to
μq. To begin, we select a random partition [n] = S ∪ T , where each i ∈ [n] appears in S
independently with probability κ. Secondly, we randomly select r′ = (r′1, r

′
2) ∈ (J1)T × (J2)T =

(J1 × J2)T according to a product measure μq′ on (J1 × J2)T , where q′ will be defined below.
Lastly, we select s = (s1, s2) ∈ {0, 1}S × {0, 1}S = ({0, 1} × {0, 1})S , according to the uniform
measure ν on ({0, 1} × {0, 1})S . (We will also write ν for the uniform measure on {0, 1}S .)
We obtain a random element r = r′ ◦ s ∈ (J1 × J2)n, which defines a product measure μq′′

on (J1 × J2)n, as r1, . . . , rn are independent. Now we select q′ above so that q′′ = q. To
determine q′, note that if j, j′ ∈ {0, 1} then (q′′)ij,j′ = κ/4 + (1 − κ)(q′)ij,j′ , and otherwise
(q′′)ij,j′ = (1 − κ)(q′)ij,j′ . Thus we can obtain q′′ = q by setting (q′)ij,j′ = (qij,j′ − κ/4)/(1 − κ)
for i ∈ [n], j, j′ ∈ {0, 1} and (q′)ij,j′ = (q)ij,j′/(1 − κ) otherwise. (Note that κ-boundedness of q
ensures q′ij,j′ ∈ [0, 1].)

We will analyse this alternative construction of μq in two steps, where in the first step we
fix a pair π = (S, r′) selected above and consider the additional random choice of s = (s1, s2).
For j = 1, 2 we let

Fπ
j = {sj ∈ {0, 1}S : r′ ◦ sj ∈ Aj} and

Fπ
w = {s ∈ Fπ

1 ×Fπ
2 : V(r′ ◦ s) = w}.
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Since q′′ = q, we have μpj
(Aj) = Eπ(ν(Fπ

j )) for j = 1, 2 and μq((A×A)Vw) = Eπ(ν(Fπ
w)).

In the remainder of the proof we will show that Pπ(ν(Fπ
w) > (1 − ε/2)n) > (1 − δ′)n,

where δ � δ′ � ζ. This will imply the Theorem, as then μq((A1 ×A2)Vw) = Eπ(ν(Fπ
w)) >

(1 − δ′)n(1 − ε/2)n > (1 − ε)n. To achieve this, we will show that for ‘good’ π we can apply
Lemma 8.4 to Fπ

1 and Fπ
2 , with uniform product measure and the array X π := (vi

j,j′ : i ∈
S, j, j′ ∈ {0, 1}). As V(r) = X π(s) + Yπ(r′), we have

Fπ
w = (Fπ

1 ×Fπ
2 )X

π

w′ ,

where w′ := w − Yπ(r′) with Yπ = (vi
j,j′ : i ∈ T, j ∈ J1, j

′ ∈ J2).
First we define some bad events for π and show that they are unlikely. Let vπ = E[X π(s) |

π] and B1 be the event that ‖vπ − Evπ‖R > ζn. Then P(B1) � 2De−ζ2n/8 by Lemma 2.2.
Similarly, the bad event B2 that ‖Yπ(r′) − EYπ(r′)‖R > ζn has P(B2) � 2De−ζ2n/8. Note that
if B1 ∪ B2 does not hold, as ‖w − EV(r)‖R � ζn, we have ‖vπ − w′‖R � 3ζn.

The last bad event is that we do not have robust transfers. Let Pπ = (Pπ
m : m ∈ [M ]), where

Pπ
m is the set of i ∈ Pm such that um is an i-transfer in X π. Recalling that um is an i-transfer

in V via (0,1) and (0,1) for all i ∈ Pm, we have i ∈ Pπ
m whenever i ∈ S, so E|Pπ

m| � κγn. By
Chernoff’s inequality, the bad event B3 that some |Pπ

m| < κγn/2 satisfies P(B3) < 2Me−κ2γ2n/8.
Now let G be the good event for π that ν(Fπ

1 )ν(Fπ
2 ) > (1 − δ′)n. By Cauchy–Schwarz and

Theorem 7.1 we have

Eπν(Fπ
1 )ν(Fπ

2 ) � (Eπν(Fπ
1 ×Fπ

2 ))2 = μq(A1 ×A2)2 > (1 − δ′/4)2n,

so (1 − P(G))(1 − δ′)n + P(G) � (1 − δ′/2)n, giving P(G) > (1 − δ′/2)n/2. Thus with proba-
bility at least (1 − δ′)n the event G \ ∪3

i=1Bi holds, so we can apply Lemma 8.4 to obtain
ν(Fπ

w) = ν((Fπ
1 ×Fπ

2 )X
π

w′ ) > (1 − ε/2)n, as required to prove the theorem. �

9. Proof of Theorem 1.11

In this section we will prove Theorem 1.11. Let X = ({0, 1}n)Vz , as in the statement of
Theorem 1.11. The proof will split naturally into two pieces according to the VC-dimension
of (X × X )V∩

w . The next subsection shows that for high VC-dimension case (i) or (ii) of
Theorem 1.11 hold; the following subsection shows that case (iii) holds in the case of
small VC-dimension.

9.1. Large VC-dimension

Here we implement the strategy discussed in subsection 1.4: we consider the maximum entropy
measure μq̃ that represents (X × X )V∩

w , and distinguish case (i) or (ii) from Theorem 1.11
according to whether its marginals μp̃ are close to μp := μpV

z
.

We will study w-intersections between elements in X = ({0, 1}n)Vz via a new collection of
vectors defined in Z

3D, motivated by the observation that for any a,a′ ∈ {0, 1}n we have
a,a′ ∈ X and V∩(a,a′) = w if and only if∑

i∈[n]

[aia′i(vi,vi,vi) + ai(1 − a′i)(vi,0,0) + (1 − ai)a′i(0,vi,0)] = (z, z,w).

With this in mind, we adopt the following notation throughout this subsection.

Definition 9.1. Let J = {0, 1} × {0, 1} and let Ṽ = (ṽi
j) denote the (n, J)-array in Z

3D

with
ṽi

1,1 = (vi,vi,vi), ṽi
1,0 = (vi,0,0),

ṽi
0,1 = (0,vi,0), ṽi

0,0 = (0,0,0) ∈ Z
3D,

where 0 denotes the zero vector in Z
D. Let z,w ∈ Z

D and X = ({0, 1}n)Vz .
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We identify (X × X )V∩
w with (Jn)Ṽx̃ , where x̃ := (z, z,w). We define

μq̃ := μṼ
x̃ and μp := μV

z .

We denote the marginals of μq̃ by μp̃ (both marginals are equal).

Next we show κ-boundedness of the above measures under our usual assumptions on V (and
justify the final statement of the above definition).

Lemma 9.2. Let 0 < n−1 � κ � γ, γ′ � λ � ε,D−1, C−1, k−1. Let R ∈ R
D with

maxd Rd � nC . and R̃ = (R,R,R) ∈ Z
3D. Suppose V = (vi : i ∈ [n]) is an R-bounded,

γ′-robustly (γ,R)-generic γ-robustly (R, k)-generating array in Z
D. Then Ṽ is R̃-bounded,

(γ′/2)-robustly (γ3, R̃)-generic and (γ/2)-robustly (R̃, 3k)-generating. Suppose also that
dimV C((X × X )V∩

w ) � λn. Then μp and μq̃ are κ-bounded, both marginals of μq̃ are μp̃, and
μp̃ ∈ MV

z .

Proof. The proof of the first statement is ‘definition chasing’ so we omit it. The last
statement follows from symmetry and strict concavity of L(p) (see Lemma 2.5(ii)). For κ-
boundedness of μp and μq̃ we apply Lemma 4.8. For μp this is valid as dimV C(X ) � λn

and V is γ-robustly (γ,R)-generic. For μq̃ this is valid as dimV C((X × X )V∩
w ) � λn and Ṽ is

(γ′/2)-robustly (γ3, R̃)-generic. �

Now we prove the main lemma of this subsection, which distinguishes cases (i) and (ii)
according to ‖p − p̃‖1 :=

∑
i∈[n],j∈J |pij − p̃ij |.

Lemma 9.3. Let 0 < n−1 � δ � δ1 � γ, γ′ � λ � ε,D−1, C−1, k−1 and let R ∈ R
D

with maxd Rd � nC . Suppose V = (vi : i ∈ [n]) is an R-bounded, γ′-robustly (γ,R)-generic
γ-robustly (R, k)-generating array in Z

D. Fix notation as in Definition 9.1 and suppose
dimV C((X × X )V∩

w ) � λn.

(i) Suppose ‖p − p̃‖1 � δ1n. If A ⊂ X with |A| � (1 − δ)n|X | then |(A×A)V∩
w | �

(1 − ε)n|(X × X )V∩
w |.

(ii) Suppose ‖p − p̃‖1 � δ1n. Then there is Bfull ⊂ X with |Bfull| � (1 − δ)n|X | and

|(X × X )V∩
w \ (Bfull × Bfull)V∩

w | � (1 − δ)n|(X × X )V∩
w |.

Furthermore, if B ⊂ Bfull with |B| � (1 − δ)n|Bfull| then |(B × B)V∩
w | � (1 − ε)n|(X × X )V∩

w |.

Proof. By Lemma 9.2, μp and μq̃ (and so μp̃) are κ-bounded, where κ � γ, γ′. Then by
Theorem 1.20, μp ≈� ν, where ν is the uniform distribution on �n = ({0, 1}n)Vz = X . Also by
Theorem 1.20, μq̃ ≈�′ ν′, where ν′ is the uniform distribution on �′

n = (Jn)Ṽx̃ = (X × X )V∩
w .

Fix constants δ � δ0 � δ1 � δ2 � ε1 � κ.
Case (i): ‖p − p̃‖1 � δ1n.
Given A ⊂ X with |A| � (1 − δ)n|X |, we have μp(A) � (1 − δ1)n by Theorem 1.20. As both

p and p̃ are κ-bounded, and ‖p − p̃‖1 � δ1n, we have μp̃(A) � (1 − δ1)n(κ)δ1n � (1 − δ2)n.
As the hypotheses of Theorem 1.17 hold, we find μq̃((A×A)V∩

w ) � (1 − ε1)n. Theorem 1.20
applied once again for μq̃ gives |(A×A)V∩

w | � (1 − ε)n|(Jn)Ṽx̃ | = (1 − ε)n|(X × X )V∩
w |.

Case (ii): ‖p − p̃‖1 � δ1n.
In this case, we let

Bfull =
{
x ∈ X : − log2 μp̃(x) = H(μp̃) ± δ2

1n/2
}
.
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Note that H(μp̃) � H(μp) − δ2
1n by Lemma 2.6, which gives |Bfull| � 2H(μp)−δ2

1n/2 � (1 −
δ)n|X |, where we use Lemma 3.5 in the second inequality.

Next we show that almost all w-intersections in X are contained in Bfull. We require an upper
bound on the size of Y := (X × X )V∩

w \ (Bfull × Bfull)V∩
w . Note that Y ⊂ (X × (X \ Bfull))V∩

w ∪
((X \ Bfull) ×X )V∩

w . As μp̃ is a marginal of μq̃, this gives μq̃(Y) � 2μq̃((X × (X \ Bfull))V∩
w ) �

2μp̃(X \ Bfull). However, μp̃ is κ-bounded, so Lemma 3.1 gives μq̃(Y) � 2μp̃(X \ Bfull) � (1 −
δ0)n. As μq̃ ≈Δ′ ν′ by Theorem 1.20, this gives |Y| � (1 − δ)n|(X × X )V∩

w |, as required.
It remains to show supersaturation relative to Bfull; the proof is similar to that of

case i. As μp̃ is κ-bounded, Lemma 3.5 gives log2 |Bfull| � H(μp̃) − δ1n. Suppose B ⊂ Bfull

with |B| � (1 − δ)n|Bfull|. Then μp̃(B) � |B|2−H(μp̃)−δ2
1n/2 � (1 − δ1)n. Theorem 6.3 gives

μq̃((B × B)V∩
w ) � (1 − ε1)n. A final application of Theorem 1.20 gives |(B × B)V∩

w | � (1 −
ε)n|(X × X )V∩

w |. �

9.2. Small VC-dimension

To complete the proof of Theorem 1.11, it remains to show the negative result in the case
that (X × X )V∩

w has small VC-dimension, that is, that there is a large subset of X with no
w-intersection.

First we use universal VC-dimension (see Definition 4.3) to give a criterion for (X × X )V∩
w to

have large VC-dimension (which will be used in contrapositive form). We require the following
notation. Given x ∈ X , j ∈ {0, 1}, α > 0 let

Sj(x) = {i ∈ [n] : xi = j}, Vj
x = (vi : i ∈ Sj(x)),

N1
w(x) = ({0, 1}S1(x))V

1
x

w , N0
z−w(x) = ({0, 1}S0(x))V

0
x

z−w,

Xα
w = {x ∈ X : |N0

z−w(x)| � (1 + α)n and |N1
w(x)| � (1 + α)n}.

An important observation is

(x′ ∈ X and V∩(x,x′) = w) ⇔ (
x′ = y0 ◦ y1 with y0 ∈ N0

z−w(x) and y1 ∈ N1
w(x)

)
.

Lemma 9.4. Let n−1 � λ � γ, γ′ � α � ε,D−1, C−1, k−1 and let R ∈ R
D with maxd Rd �

nC . Suppose V = (vi : i ∈ [n]) where each vi ∈ Z
D is R-bounded and V is γ′-robustly (γ,R)-

generic and γ-robustly (R, k)-generating. Suppose |X | � (1 + ε)n and |Xα
w| � |X |/2. Then

dimV C((X × X )V∩
w ) � λn.

Proof. The strategy of the proof is to find a large set S that is shattered by a subset X ′

of X , such that if x ∈ X ′ then dimUV C(N0
z−w(x)) and dimUV C(N1

w(x)) are large. Then the
definition of universal VC-dimension will imply that S is shattered by (X × X )V∩

w , as N0
z−w(x)

shatters S0(x) and N1
w(x) shatters S1(x). First we note by Lemma 1.21 that μp is κ-bounded,

where α � κ � ε.
Let X ′ be the set of x ∈ Xα

w such that V1
x and V0

x are (κkγ/2k)-robustly (R, k)-generating.
We claim that |X ′| � |X |/4. To see this, note that for any w ∈ Z

D with ‖w‖R � 1, as V is γ-
robustly (R, k)-generating, there are L � γn/k disjoint sets S1, . . . , SL, with |S�| � k for all � ∈
[L], such that for all � ∈ [L] there is a partition S� = S1

� ∪ S0
� with

∑
i∈S1

�
vi −

∑
i∈S0

�
vi = w.

Given x ∈ {0, 1}n and j ∈ {0, 1}, let Lj
w(x) = {� ∈ [L] : S� ⊂ Sj(x)}. As μp is κ-bounded, each

Ex∼μp(|Lj
w(x)|) � κkL. Let Bw be the event that either |L0

w(x)| � κkL/2 or |L1
w(x)| � κkL/2.

Also let B be the union of Bw over all w ∈ Z
D with ‖w‖R � 1. There are at most (2n + 1)CD

choices of w, so by Chernoff’s inequality and a union bound Px∼μp(B) = (1 − cκ)n for some
cκ > 0. By Theorem 1.20, we deduce |Xα

w \ B| � |X |/4. As Xα
w \ B ⊂ X ′ this proves the claim.
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Next we claim that if x ∈ X ′ then dimUV C(N0
z−w(x)) � λn in {0, 1}S0(x) and

dimUV C(N1
w(x)) � λn in {0, 1}S1(x). Indeed, as x ∈ Xα

w we have |S1(x)|, |S0(x)| � log2(1 +
α)n, so V0

x and V1
x are (γ′/ log2(1 + α))-robustly (γ,R)-generic, and by Lemma 4.7 both

N0
z−w(x) and N1

w(x) have VC-dimension at least α′n, where γ, γ′ � α′ � α. Both V0
x and

V1
x are also clearly R-bounded, and by definition of X ′ these vectors are (κkγ/2k)-robustly

(R, k)-generating, so the claim follows from Lemma 4.11.
Now we can implement the strategy outlined at the start of the proof. As |X ′| � |X |/4 �

(1 + ε)n/4, we have dimV C(X ′) � λn by Lemma 4.7. Let S ⊂ [n] with |S| � λn be shattered by
X ′. We will show that S is also shattered by (X × X )V∩

w ⊂ ({0, 1} × {0, 1})n. Indeed, suppose
that we are given a partition ∪j1,j2∈{0,1}Sj1,j2 of S, and wish to find sets x,x′ ∈ X such
that V∩(x,x′) = w and {i ∈ S : xi = j1, x

′
i = j2} = Sj1,j2 . As X ′ shatters S, there is x ∈ X ′

with {i ∈ S : xi = 1} = S1,0 ∪ S1,1. Furthermore, using the universal VC-dimension of N1
w(x)

and N0
z−w(x), we have y1 ∈ N1

w(x) with {i ∈ S1,0 ∪ S1,1 : (y1)i = 1} = S1,1 and y0 ∈ N0
z−w(x)

with {i ∈ S0,0 ∪ S0,1 : (y2)i = 1} = S0,1. Now x′ = y0 ◦ y1 ∈ X with V∩(x,x′) = w and {i ∈
S : xi = j1, x

′
i = j2} = Sj1,j2 for all j1, j2 ∈ {0, 1}. Thus S is shattered by (X × X )V∩

w , and so
dimV C((X × X )V∩

w ) � λn, as required. �

We conclude with the main result of this subsection, that there is a large subset of X with
no w-intersection.

Lemma 9.5. Let n−1 � λ � γ, γ′ � ε,D−1, C−1, k−1 and let R ∈ R
D with maxd Rd � nC .

Suppose V = (vi : i ∈ [n]) where each vi ∈ Z
D is R-bounded and V is γ′-robustly (γ,R)-generic

and γ-robustly (R, k)-generating. Suppose z �= w and dimV C((X × X )V∩
w ) � λn. Then there is

Bempty ⊂ X with |Bempty| � �(1 − ε)n|X |� and (Bempty × Bempty)V∩
w = ∅.

Proof. We may assume |X | � (1 + ε)n as otherwise we can take Bempty = ∅. Take α and
ξ such that γ, γ′ � α � ξ � ε,D−1, C−1, k−1. Let X0 = {x ∈ X : |N0

z−w(x)| � (1 + α)n} and
X1 = {x ∈ X : |N1

w(x)| � (1 + α)n}. Then |X0 ∪ X1| � |X |/2 by Lemma 9.4. The remainder of
the proof splits into two similar cases according to which Xj is large; we will give full details
for the case j = 1 and then indicate the necessary modifications for j = 0.

Suppose |X1| � |X |/4. By the pigeonhole principle, we can fix X ′ ⊂ X1 and t ∈ [n] such that
|X ′| � |X |/4n and |S1(x)| = t for all x ∈ X ′. As

(
n
t

)
� |X ′| � (1 + ε)n/4n we have ξn � t � n−

ξn. Next we can pass to a subset X ′′ ⊂ X ′ with |X ′′| � |X ′|/2( n
2ξn

)
� (1 − ξ1/2)n|X | that is ‘well

separated’, in that the Hamming distance d(x,x′) � 2ξn for all distinct x,x′ ∈ X ′′. Indeed, we
can select X ′′ greedily, noting that each element of X ′′ forbids at most

∑
i∈[0,2ξn]

(
n
i

)
� 2

(
n

2ξn

)
elements from X ′′. As |S1(x)| = |S1(x′)| = t, this gives |S1(x) \ S1(x′)| � ξn for all distinct
x,x′ ∈ X ′′.

Next we will define Bempty. We randomly select S ⊂ [n] with |S| = ξn, and let C = {x ∈
X ′′ : S ⊂ S1(x)}. We say that x ∈ C is isolated if there is no x′ ∈ C with V∩(x,x′) = w. We let
Bempty be the set of isolated x ∈ C. Then by definition we have (Bempty × Bempty)V∩

w = ∅.
Now we will show that E|Bempty| � (1 − ε)n|X |. As E(|C|) =

(
t
ξn

)(
n
ξn

)−1|X ′′|, |X ′′| � (1 −
ξ1/2)n|X | and ξ � ε, it suffices to show P(x is isolated | x ∈ C) � 1/2 for all x ∈ X ′. To see
this, we condition on x ∈ C and note that S is equally likely to be any subset of S1(x) of
size ξn. Consider any x′ ∈ X ′′ with V∩(x,x′) = w. Note that x �= x′ since V(x,x′) = z �= w,
and so S1(x) �= S1(x′) as both sets have size t. Furthermore y := x′|S1(x) ∈ N1

w(x), we have
|S1(x) \ S1(y)| � ξn by definition of X ′′, and x′ ∈ C ⇔ S ⊂ S1(y). For fixed y we have P(S ⊂
S1(y)) �

(
t−ξn
ξn

)(
t
ξn

)−1 � (1 − ξ)ξn. By definition of X1 we have a union bound over at most
(1 + α)n choices of y ∈ N1

w(x), so as α � ξ, the probability that x is not isolated given x ∈ C
is o(1), so at most 1/2, as required.
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Similarly, if |X0| � |X |/4, we define X ′ and X ′′ in the same way for X0, and let C = {x ∈
X ′′ : S ⊂ S0(x)}. We use the same definition of Bempty as before, and bound the probability
that x is not isolated given x ∈ C by taking a union bound over at most (1 + α)n choices of
y := x′|S0(x) ∈ N0

z−w(x). The remaining details of this case are the same, so we omit them. �

9.3. Proof of Theorem 1.11

Proof of Theorem 1.11. Take λ with γ1, γ
′
1 � λ � γ2, γ

′
2. If dimV C((X × X )V∩

w ) � λn, then
we can apply Lemma 9.3 with γ = γ1 and γ′ = γ′

1 to obtain case (i) or (ii) of Theorem 1.11.
On the other hand, if dimV C((X × X )V∩

w ) � λn then we apply Lemma 9.5 with γ = γ2 and
γ′ = γ′

2 to obtain case (iii) of Theorem 1.11. �

10. Solution of Kalai’s conjecture

In this section we prove Theorem 1.3, which is our solution to Kalai’s Conjecture 1.2. We give
the proof in the first subsection, then generalise it in the following subsection to show that
supersaturation of the type conjectured by Kalai is quite rare.

10.1. Proof of Theorem 1.3

As described in Section 1.4, the supersaturation conclusion desired by Conjecture 1.2 (case (i)
of Theorem 1.11) needs the maximum entropy measure μq̃ that represents (X × X )V∩

w to have
marginals μp̃ close to μp := μpV

z
. Recall that in Definition 9.1 we constructed μq̃ as μṼ

x̃ , where Ṽ
is a certain (n, {0, 1} × {0, 1})-array in Z

3D and x̃ := (z, z,w). In this subsection we work with
the Kalai vectors V = (vi)i∈[n] with vi = (1, i), so D = 2. In the notation of Conjecture 1.2 we
have z = (k, s) and w = (t, w). Sometimes we will indicate the dependence on n as a subscript
in our notation, for example, writing zn = (kn, sn) = (�α1n�, �α2

(
n
2

)�). Our proof will use the
following concrete description of the maximum entropy measures as Boltzmann distributions.

Lemma 10.1. Let V = (vi
j) be an (n, J)-array in Z

D and z ∈ Z
D. Suppose p = pV

z has all

pij �= 0. Then there is λ ∈ (RD)J such that all pij = Z−1
i eλj ·vi

j , where Zi =
∑

j∈J eλj ·vi
j .

Proof. By the theory of Lagrange multipliers, p is a stationary point of

L(p,λ,λ′) = H(p) log 2 +
∑
d∈[D]

∑
j∈J

λj,d

⎛⎝∑
i∈[n]

pij(v
i
j)d − zd

⎞⎠ +
∑
i∈[n]

λ′
i

⎛⎝1 −
∑
j∈J

pij

⎞⎠.

Thus 0 = −1 − λ′
i − log(pij) +

∑
d∈[D] λj,d(vij)d for each i and j, which gives the stated

formula. �

When p = pV
z and μq̃ = μṼ

x̃ are κ-bounded we can describe them explicitly using Lemma 10.1.
For p we obtain λ = (λ1, λ2) ∈ R

2 such that p = pV
z is given by pi1 = eλ1+λ2(i/n)(1 +

eλ1+λ2(i/n))−1 (it is convenient to rescale, using λ2/n in place of λ2). To determine whether p
is close to p̃, it will be more convenient to pass to a limit problem in which closeness is replaced
by equality. With this in mind, we write

pi1 = (p(n)
λ )i1 := fλ(i/n), where fλ(x) = eλ1+λ2x(1 + eλ1+λ2x)−1. (4)
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Similarly, Lemma 10.1 gives π = (π1, π
′
1, π2, π

′
2) ∈ R

4 (using the symmetry between (0,1) and
(1,0)) such that μq̃ = μṼ

x̃ is given by q̃ij,j′ = (q(n)
π )ij,j′ := gπj,j′(i/n), where

gπ0,0(x) = Zπ(x)−1, gπ0,1(x) = gπ1,0(x) = eπ1+π2xZπ(x)−1,

gπ1,1(x) = eπ
′
1+π′

2xZπ(x)−1, with Zπ(x) = 1 + 2eπ1+π2x + eπ
′
1+π′

2x. (5)

The limit marginal problem is to characterise λ and π such that fλ(x) = gπ0,1(x) + gπ1,1(x).
Next we formulate the constraints on λ and π defined by the parameters α1, α2, β1, β2 of

Conjecture 1.2, namely
∑

i∈[n] p
i
1(1, i) = (k, s) = (α1n, α2

(
n
2

)
) and

∑
i∈[n] q̃

i
1,1(1, i) = (t, w) =

(β1n, β2

(
n
2

)
). The limit versions of these constraints are h(λ) = α = (α1, α2) and h∗(π) = β =

(β1, β2), where

h(λ) =
∫ 1

0

(1, 2x)fλ(x)dx and h∗(π) =
∫ 1

0

(1, 2x)gπ1,1(x)dx. (6)

The following lemma shows that we can think of λ as a reparameterisation of α, and that large
finite instances of [n]k,s are well approximated by the limit. Recall that a homeomorphism is
a continuous bijection with a continuous inverse.

Lemma 10.2. (i) h is a homeomorphism between R
2 and Λ.

(ii) For α ∈ Λ and large n we have μVn
zn

= μp, for some p = p(n)

λ(n) where λ(n) → λ = h−1(α).

Proof. We start by noting that h is continuous. Next we claim that h(λ) ∈ Λ for all λ ∈
R

2. To see this, note that 0 � fλ(x) � 1 for all x ∈ [0, 1]. Then given α1 =
∫ 1

0
fλ(x)dx, we

can bound α2 =
∫ 1

0
2xfλ(x)dx below by

∫ 1

0
2x1[0,α1]dx = α2

1 and above by
∫ 1

0
2x1[1−α1,1]dx =

2α1 − α2
1, so (α1, α2) ∈ Λ, as claimed.

Next we claim that the principal minors of the Jacobian of h are positive; this gives injectivity
of h by the Gale–Nikaido theorem [14], and also continuity of h−1 by the inverse function
theorem. The Jacobian of h is(

I(1) 2I(x)
I(x) 2I(x2)

)
, where I(g) =

∫ 1

0

g(x)
(

fλ(x)
1 + eλ1+λ2x

)
dx.

All entries are positive as fλ(x) is positive. The determinant 2(I(1)I(x2) − I(x)2) is positive
by the Cauchy–Schwarz inequality. Thus the claim holds.

It remains to prove statement (ii) of the lemma. Fix (α1, α2) ∈ Λ. We claim that |[n]kn,sn | �
(1 + γ)n for n−1 � γ � α1, α2. To see this, we fix γ � ζ � θ � α1, α2 and construct a θ-
bounded measure μp on {0, 1}S for some S ⊂ [n] such that

∑
i∈S pi(1, i) = (kn, sn) ± ζ(n, n2);

the claim then follows by Lemma 3.5. We let S = [a− θkn, a + kn + θkn], for some a ∈ [n]
such that

∑a+kn

i=a+1 i = sn ± n; as α2
1 < α2 < 2α1 − α2

1 we have S ⊂ [n] for small θ. Note that
α2n

2 = 2sn + O(n) = kn(a + kn/2) + O(n). We let pi = (1 + 2θ)−1 for i ∈ S. Then
∑

i∈S pi =
kn + O(1) and

∑
i∈S pii = sn + O(n), as required to prove the claim.

Now by Lemma 1.21, pVn
zn

is κ-bounded, where n−1 � κ � γ, so Lemma 10.1 gives pVn
zn

=

p(n)

λ(n) . for some λ(n). By κ-boundedness, κ/2 � (pVn
zn

)i1/(p
Vn
zn

)i0 = eλ
(n)
1 +λ

(n)
2 (i/n) � 2κ−1 for all

i ∈ [n], so λ(n) ∈ [−C,C]2, where n−1 � C−1 � κ. Then (λ(n)) has a convergent subsequence
by compactness of [−C,C]2. Furthermore, any convergent subsequence of λ(n) has a limit λ
that satisfies h(λ) = α, so is uniquely determined by injectivity of h. �

Next we show a limit theorem for the maximum entropy measures for (t, w)-intersections
which is somewhat analogous that in Lemma 10.2(ii) for the maximum entropy measures for
[n]k,s.
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Lemma 10.3. Suppose that g = (α1, α2, β1, β2) ∈ [0, 1]4 with (α1, α2) ∈ Λ. Write μq̃(n) =

μṼn

x̃n
. Then either

(i) there is (j, j′) ∈ {0, 1}2 such that mini∈[n](q̃(n))ij,j′ → 0, or

(ii) for large n we have q̃(n) = q(n)

π(n) , where π(n) converges to some π ∈ R
4.

Furthermore, the following are equivalent to case ii:

(i) there is κ > 0 such that μq̃(n) is κ-bounded for large n,
(ii) there is λ > 0 such that dimV C([n]k,s ×(t,w) [n]k,s) > λn for large n.

Proof. We will suppose that case (i) does not apply and show that case (ii) holds. As (i)
does not hold there is κ′ > 0 and a subsequence (nm)m such that each μq̃(nm) is κ′-bounded. By
Lemma 10.1, we have π(nm) ∈ R

4 so that q̃(nm) = q(nm)

π(nm) and by κ′-boundedness each π(nm) ∈
[−C,C]4 for some C = C(κ′) > 0. We can pass to a convergent subsequence by compactness
and so we can assume π(nm) → π ∈ R

4, relabelling if necessary.
Next we make some observations on the functions gπj,j′(x) defined in (5). We note for each

j, j′ ∈ {0, 1} that (π′, x) �→ gπ
′

j,j′(x) defines a function on [−C,C]4 × [0, 1] that is continuous,

and so uniformly continuous. As π(nm) → π we deduce that gπ
(nm)

j,j′ converges uniformly to gπj,j′

on [0,1], and so (q(n))ij,j′ = (q(n)
π )ij,j′ = gπj,j′(i/n) satisfies

max
i∈[nm]

∣∣∣(q̃(nm))ij,j′ − (q(nm))ij,j′
∣∣∣ → 0 as m → ∞. (7)

Also, as q̃(nm)

π(nm) is κ′-bounded,

κ′ �
(
q̃
(nm)

π(nm)

)	xnm


j,j′
= gπ

(nm)

j,j′ (x) + o(1) → gπj,j′(x) as m → ∞,

using continuity and π(nm) → π, so gπj,j′(x) � κ′ for all x ∈ [0, 1]. We also claim that∫ 1

0

(1, 2x)gπ1,1dx = (β1, β2) and
∫ 1

0

(1, 2x)gπ1,0dx = (α1 − β1, α2 − β2) =
∫ 1

0

(1, 2x)gπ0,1dx.

(8)

To see this, we use Ṽn(μq̃(n)) = x̃n = (α1n, α2

(
n
2

)
, α1n, α2

(
n
2

)
, β1n, β2

(
n
2

)
) ± 1. For example,

for the first coordinate in (8), as
∑

i(q̃
(nm))i1,1 = β1n± 1, by (7) we have β1 + o(1) =

1
n

∑
i g

π
1,1(i/n) =

∫ 1

0
gπ1,1(x)dx + o(1). The other coordinates are similar, so (8) holds.

Now we claim that μq̃(n) is κ-bounded with n−1 � κ � κ′. To see this, take n−1 � λ �
κ so that ‖Ṽn(μq(n)) − x̃n‖R̃n

� λn; this is possible by the calculations in the proof of
(8). By Lemma 9.2 and properties (1) and (2) of the Kalai vectors, Ṽn is (0.05)-robustly
(R̃n, 21)-generating and γ/2-robustly (γ3/8, R̃n)-generic for any γ > 0. To prove the claim,
by Theorem 4.6 (implication v⇒i) it suffices to show that (Ṽn, R̃n, x̃n) is λ-feasible. To see
this, consider any x′

n ∈ Z
D with ‖x′

n − x̃n‖R̃n
� λn and V ′

n′ obtained from Ṽn by deleting

at most λn co-ordinates. Then (Jn′
)V

′
n′

x′
n

�= 0, by Lemma 3.5 applied to the R̃n-bounded

0.04-robustly (R̃n, 21)-generating array V ′
n′ and the (κ′-bounded) restriction μ′ of μq(n) , as

‖V ′
n′(μ′) − x′

n‖R̃ � 2λn. This proves the claim.
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Our next claim is that n−1H(μq̃(n)) converges to H∗(π). To see this, first note that as gπ
(nm)

j,j′

converges uniformly to gπj,j′ on [0,1], as m → ∞ we have

n−1
m H(μq̃(nm)) = Ei∈[nm]

∑
j,j′∈{0,1}

−gπ
(nm)

j,j′ (i/nm) log2 g
π(nm)

j,j′ (i/nm)

→ H∗(π) :=
∑

j,j′∈{0,1}
−
∫ 1

0

gπj,j′(x) log2 g
π
j,j′(x)dx.

By the same calculation with π in place of π(nm) we deduce limn n
−1H(μq(n)) =

limm n−1
m H(μq(nm)) = limm n−1

m H(μq̃(nm)) = H∗(π). On the other hand, Lemma 3.5 gives

H(μq̃(n)) ± o(n) = |(Jn)Ṽn

x̃n
| � H(μq(n)) − o(n), so lim infn n−1H(μq̃(n)) � H∗(π). This esti-

mate applies to any accumulation point π of {π(n)}n. Considering any subse-
quence (nm) with n−1

m H(μq̃(nm)) → lim supn n
−1H(μq̃(n)) we obtain lim infn n−1H(μq̃(n)) �

lim supn n
−1H(μq̃(n)), so the claim holds.

Now we will prove π(n) → π, using stability of maximum entropy measures. Suppose for
contradiction that there are subsequences π(nm) → π and π(sm) → π′ with π �= π′. By the
previous claim, H∗(π) = H∗(π′). Take m−1 � λ3 � λ2 � λ1 � ‖π − π′‖1 so that the non-
zero continuous functions gπj,j′ − gπ

′
j,j′ satisfy ‖gπj,j′ − gπ

′
j,j′‖1 � λ1 for all j, j′ ∈ {0, 1}. As m is

large, this gives ‖q(sm) − q̃(sm)‖1 � λ1sm/2. Since n−1‖Ṽn(μq(n)) − x̃n‖R̃n
→ 0 as n → ∞, we

also have Ṽsm(μq(sm)) = x̃sm ± λ3R̃sm . As in the proof of Lemma 4.10, we can modify q(sm) to
obtain q∗ with Ṽsm(μq∗) = x̃sm , ‖qsm − q∗‖1 < λ2sm, and (sm)−1H(μq∗) > H∗(π) − λ2/2 =

H∗(π′) − λ2/2 � (sm)−1H(μq̃(sm)) − λ2. But then q̃(sm),q∗ ∈ MṼsm

x̃sm
, which gives the required

contradiction by Lemma 2.6, since μq̃(n) = μṼn

x̃n
for all n, ‖q̃(sm) − q∗‖1 � λ1sm/4 and H(q∗) �

H(q̃(sm)) − λ2sm.
Lastly the first equivalence is immediate from our proof, and the second from Theo-

rem 4.6. �

Our next lemma explains the characterisation of the set Γ that appears in Theorem 1.3: it
is the set of g = (α1, α2, β1, β2) with (α1, α2) ∈ Λ such that the limit marginal problem has a
solution. First we complete the definition of Γ by defining the functions β1, β2 : Λ → R that
appear in the definition of Γ1, using the definitions of h in (6) and fλ in (4). Suppose α ∈ Λ
with α1 �= α2 and let λ = h−1(α). We define

(β1(α1, α2), β2(α1, α2)) =
∫ 1

0

(1, 2x)fλ(x)2dx. (9)

Lemma 10.4. Suppose g = (α1, α2, β1, β2) ∈ [0, 1]4 with α = (α1, α2) ∈ Λ. Let λ = h−1(α).
Then g ∈ Γ if and only if there is π = (π1, π

′
1, π2, π

′
2) ∈ R

4 with h∗(π) = (β1, β2) and fλ(x) =
gπ0,1(x) + gπ1,1(x). Furthermore, if g ∈ Γ there is a unique such π, which we denote πλ, and

log2 |[n]k,s ×(t,w) [n]k,s| = H(μq′) + o(n), where q′ = q(n)

πλ .

Proof. First suppose that there is π with h∗(π) = (β1, β2) and fλ(x) = gπ0,1(x) + gπ1,1(x).
Then we also have 1 − fλ(x) = gπ0,0(x) + gπ1,0(x). Setting y = ex and rearranging, we find the
polynomial equality

eπ1yπ2 + eπ
′
1yπ

′
2 = eλ1yλ2 + eλ1+π1yλ2+π2 (10)

for all y ∈ [1, e]. Thus one of the following two conditions holds:
(a) π2 = λ2 and π′

2 = λ2 + π2, (b) λ2 = π′
2 = 0.
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Suppose that λ2 �= 0 and so case (a) holds, giving π2 = λ2 and π′
2 = 2λ2. Equating

coefficients in (10) gives λ1 = π1 and π′
1 = 2λ1, so π = πλ = (λ1, 2λ1, λ2, 2λ2). Then gπ1,1(x) =

(eπ1+π2x)2(1 + eπ1+π2x)−2 = fλ(x)2, so q′i
1,1 = gπ1,1(i/n) = fλ(i/n)2 = ((p(n)

λ )i1)
2, that is, μq′

is the product of its two marginals μ
p

(n)
λ

. Note that α1 �= α2, as h is injective and h(λ1, 0) =
(α1, α1). Thus g ∈ Γ1.

Now suppose that λ2 = π2 = 0. Then the right-hand side of (10) is constant, so π′
2 =

0, and so eπ1 + eπ
′
1 = eλ1 + eλ1+π1 . Thus α1 = α2 = fλ(x) = eλ1(1 + eλ1)−1, and β1 = β2 =

gπ1,1(x) = eπ
′
1(1 + 2eπ1 + eπ

′
1)−1. Furthermore, β1 = gπ1,1(x) < gπ1,1(x) + gπ0,1(x) = α1 and 2α1 −

1 = 2(eπ1 + eπ
′
1)(1 + 2eπ1 + eπ

′
1)−1 − 1 < eπ

′
1(1 + 2eπ1 + eπ

′
1)−1 = β1. Thus g ∈ Γ2.

It remains to consider λ2 = 0 and π2 �= 0. Then case (b) must hold, so π′
2 = 0. Equating coef-

ficients in (10) gives λ1 = π′
1 and λ1 + π1 = π1, so λ1 = π′

1 = 0. Then α1 = α2 = fλ(x) = 1/2.
We also have gπ1,1(x) = eπ1+π2x(2 + 2eπ1+π2x)−1 = fπ̃(x)/2, where π̃ = (π1, π2). We deduce
(β1, β2) = h∗(π) =

∫ 1

0
(1, 2x)gπ1,1(x)dx = 1

2

∫ 1

0
(1, 2x)fπ̃(x)dx = h(π̃)/2, so 2(β1, β2) ∈ Λ. Thus

g ∈ Γ3.
We conclude that if h∗(π) = (β1, β2) and fλ(x) = gπ0,1(x) + gπ1,1(x) then g ∈ Γ. Conversely,

if g ∈ Γ then the analysis of each case above exhibits the unique π = πλ satisfying these
conditions. Indeed, if g ∈ Γ1 we have π = (λ1, 2λ1, λ2, 2λ2), if g ∈ Γ2 we have π = (π1, π

′
1, 0, 0)

where gπ1,1 = β1 and gπ0,1(x) = α1 − β1 (when α1 �= β1 this gives two linear equations for eπ1

and eπ
′
1 that have a unique solution), and if g ∈ Γ3 we have π = (π1, 0, π2, 0), where (π1, π2) =

h−1(2β1, 2β2)
Finally, let q′ = q(n)

πλ , and note that μq′ ∈ MṼ
x̃ , so H(μq′) � H(μṼ

x̃ ) � log2 |[n]k,s ×(t,w)

[n]k,s| + o(n) by Lemma 3.5. For the inequality in the other direction we consider each
Γi separately.

If g ∈ Γ1 we let p′ = p(n)
λ , note that H(μq′) = 2H(μp′) and log2 |[n]k,s| = H(μp′) + o(n) by

Lemma 3.5. Then log2 |[n]k,s ×(t,w) [n]k,s| � 2 log2 |[n]k,s| = H(μq′) + o(n).
If g ∈ Γ2 we have |[n]k,s ×(t,w) [n]k,s| � |([n]

k

)×t

(
[n]
k

)| =
(

n
t,k−t,k−t,n−2k+t

)
= 2H(μq′ )+o(n).

If g ∈ Γ3 we note that if (A,B) ∈ [n]k,s ×(t,w) [n]k,s, where k = � 1
2n�, s = � 1

2

(
n
2

)�, t =
�β1n� and w = �β2

(
n
2

)�, then C := (A ∩B) ∪ (A ∩B) ∈ [n]k′,s′ , where k′ = 2β1n + O(1) and
s′ = 2β2

(
n
2

)
+ O(n). By Lemma 3.5, log2 |[n]k′,s′ | = H(μp′′) + o(n), where p′′ = p(n)

λ̃
with

λ̃ = h−1(2β1, 2β2). By the form of π calculated above we have (q′)i1,1 = (q′)i0,0 = 1
2 (p′′)i1 and

(q′)i1,0 = (q′)i0,1 = 1
2 (p′′)i0, so

H(μq′) = 2
∑
j=0,1

− 1
2 (p′′)ij log2

1
2 (p′′)ij =

∑
j=0,1

(
(p′′)ij − (p′′)ij log2(p

′′)ij
)

= n + H(μp′′).

Given C, there are at most 2n choices for (A,B), so log2 |[n]k,s ×(t,w) [n]k,s| � n +
log2 |[n]k′,s′ | = H(μq′) + o(n). Thus in all cases we have the required bound. �

We conclude this subsection with the solution to Kalai’s conjecture.

Proof of Theorem 1.3. We first fix parameters n−1 � λ � δ � δ1 � δ2 � δ3 � ε � θ �
C−1 � ε′, κ � g. Suppose g = (α1, α2, β1, β2) ∈ [0, 1]4 with α = (α1, α2) ∈ Λ and let λ =
h−1(α). By Lemma 10.2(ii), the maximum entropy measure μp for [n]k,s is given by p = p(n)

λ(n) ,
where ‖λ− λ(n)‖1 � δ. In particular, p is κ-bounded, since κ � (α1, α2).

First we consider case i, that is, we suppose d(g,Γ) � δ and prove that g is (n, δ, ε)-Kalai.
Consider A ⊂ [n]k,s with |A| � (1 − δ)n|[n]k,s|. Then μp(A) � (1 − δ1)n by Theorem 1.20,
so setting p′ = p(n)

λ we have μp′(A) � (1 − 2δ1)n as ‖λ− λ(n)‖1 � δ. Next we fix g′ ∈ Γ
with ‖g′ − g‖1 < d(g,Γ) + δ < 2δ, apply Lemma 10.4 to obtain πλ ∈ R

4, and let q′ = q(n)

πλ .
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Note that μq′ is κ-bounded as κ � g, that μq′ has marginals μp′ and E(A,B)∼μq′ (|A ∩
B|,∑(A ∩B)) = (t, w) ± 4δ(n, n2), as ‖g′ − g‖1 < 2δ. As μp′(A) � (1 − 2δ1)n, Theorem 1.17
gives μq′(A×(t,w) A) � (1 − δ2)n. Lemma 3.1 then gives |A ×(t,w) A| � (1 − δ3)n2H(q′) � (1 −
ε)n|[n]k,s ×(t,w) [n]k,s| by the final part of Lemma 10.4. Thus g is (n, δ, ε)-Kalai, completing
the proof of i.

We now consider case (ii), that is, we suppose d(g,Γ) � ε′ and |[n]k,s ×(t,w) [n]k,s| � (1 −
ε)−n, and prove that g is not (n, δ, ε)-Kalai. We adopt the running notation μq̃ = μq̃(n) = μṼn

x̃n

introduced at the beginning of the section. By the equivalences in Lemma 10.3, for large n
we either have (a) q̃(n) is κ-bounded, or (b) dimV C([n]k,s ×(t,w) [n]k,s) � λn. We can assume
that (b) does not hold, as here Lemma 9.5 gives A ⊂ [n]k,s with |A| � (1 − δ)n|[n]k,s| and
A×(t,w) A = ∅, and so |A ×(t,w) A| < 1 � �(1 − ε)n[n]k,s ×(t,w) [n]k,s�. Thus g is not (n, δ, ε)-
Kalai if (b) holds, so we can assume that (a) holds, that is, μq̃ is κ-bounded for large n.
By Lemma 10.1 there is π ∈ R

4 such that q̃ = q(n)
π , where as μq̃ is κ-bounded we have π ∈

[−C,C]4.
We will now prove that μp is not close to the marginal distribution of μq̃ and conclude by

applying Lemma 9.5. Consider the continuous function φ : [−C,C]4 → R, where

φ(σ) := ‖(β1, β2) − h∗(σ)‖1 +
∫ 1

0

∣∣fλ(x) − gσ1,0(x) − gσ1,1(x)
∣∣dx.

As ‖g − g′‖1 � ε′ for all g′ ∈ Γ, by Lemma 10.4, the continuity of φ and the compactness of
[−C,C]4 we have φ(σ) � θ > 0 for all σ ∈ [−C,C]4; in particular, this holds for σ = π. As
E(A,B)∼μq̃

(|A ∩B|,∑(A ∩B)) = (β1, β2

(
n
2

)
) ± (1, 1), we have ‖(β1, β2) − h∗(π)‖1 � θ/2 for

large n, so
∫ 1

0
|fλ(x) − gπ1,0(x) − gπ1,1(x)|dx � θ/2.

We now translate from the limit setting back to the finite setting. For large n, the previous
inequality implies

θn/4 �
n∑

i=1

|fλ(i/n) − gπ1,0(i/n) − gπ1,1(i/n)| =
n∑

i=1

|(p′)i1 − p̃i1|,

where p′ = p(n)
λ and q̃ = q(n)

π has marginals μp̃. As p = p(n)

λ(n) and ‖λ− λ(n)‖1 � δ, we deduce
‖p − p̃‖1 � θn/8. Finally, we apply Lemma 9.3(ii) (with δ1 = θ/2 and δ = ε) to find Bfull ⊂
[n]k,s so that A = [n]k,s \ Bfull satisfies |A| � (1 − o(1))|[n]k,s| > (1 − δ)n|[n]k,s| and |A ×(t,w)

A| < (1 − ε)n|[n]k,s ×(t,w) [n]k,s|. Thus g is not (n, δ, ε)-Kalai, which completes the proof. �

10.2. Uniqueness in higher dimensions

In this subsection we illustrate how the method used to prove Theorem 1.3 can be applied in
a broader context. Throughout this subsection we work with the following setting.

• Fix α = (αd)d∈[D] and β = (βd)d∈[D] in (0, 1)D.
For all n ∈ N let zn = (�αdn

2�)d∈[D] and wn = (�αdn
2�)d∈[D].

• Suppose Vn = (v(n)
i )i∈[n] are (n, {0, 1})-arrays in [n]D such that (Vn, zn) is robustly

generating and robustly generic.
• Write Xn = ({0, 1}n)Vn

zn
) and suppose that |Xn| > (1 + η)n, where η = η(α) > 0 is fixed.

• The arrays Vn have a ‘scaling limit’: there is a positive measurable function p : [0, 1]D → R

with
∫
[0,1]D

p(x)dx = 1 such that for any measurable set B ⊂ [0, 1]D we have

lim
n→∞n−1

∣∣{i ∈ [n] : n−1v(n)
i ∈ B}∣∣ =

∫
B

p(x)dx.

The assumption that (Vn, zn) is robustly generic is in fact redundant, as it can be shown to
follow from the scaling limit assumption, but for the sake of brevity we omit this deduction.



736 PETER KEEVASH AND EOIN LONG

We say that (α,β) is (n, δ, ε)-good if the corresponding Vn-intersection problem exhibits
‘full supersaturation’ analogous to that in Conjecture 1.2, that is, any A ⊂ Xn with |A| �
(1 − δ)n|Xn| satisfies |(A×A)(Vn)∩

wn | � (1 − ε)n|(Xn ×Xn)(Vn)∩
wn |. We will outline the proof of

the following analogue of Theorem 1.3, which shows that if we exclude the case of ‘uniformly
random sets’ (that is, α �= (1/2)d∈[D]) then ‘full supersaturation’ only occurs for one specific
value of β.

Theorem 10.5. In the above setting, if α �= (1/2)d∈[D] then there is β∗ = β∗(α) ∈ (0, 1)D

such that for n−1 � δ � ε � ε′ � α,

(i) if ‖β − β∗‖1 � δ then (α,β) is (n, δ, ε)-good, and

(ii) if ‖β − β∗‖1 � ε′ and |(Xn ×Xn)(Vn)∩
wn | � (1 − ε)−n then (α,β) is not (n, δ, ε)-good.

Similar to the previous subsection, we wish to determine when μq̃ = μṼ
x̃ (with Ṽ and x̃ as in

Definition 9.1) has marginals close to μp = μV
z (here we are omitting the subscript n from our

notation). If these measures are κ-bounded, Lemma 10.1 gives λ ∈ R
D such that

pi1 = (p(n)
λ )i1 := fλ(v(n)

i /n), where fλ(x) = eλ·x(1 + eλ·x)−1,

and π1,π2 ∈ R
D such that q̃ij,j′ = (q(n)

π1,π2)ij,j′ := gπ1,π2
j,j′ (v(n)

i /n), where

gπ1,π2
0,0 (x) = Zπ1,π2(x)−1, gπ1,π2

0,1 (x) = gπ1,π2
1,0 (x) = eπ1·xZπ1,π2(x)−1,

gπ1,π2
1,1 (x) = eπ2·xZπ1,π2(x)−1, with Zπ1,π2(x) = 1 + 2eπ1·x + eπ2·x.

Again we study the marginal problem for μq̃ and μp via the limit marginal problem of
characterising λ and π such that fλ(x) = gπ1,π2

0,1 (x) + gπ1,π2
1,1 (x). The constraints are zn =∑

i∈[n] p
i
1v

(n)
i and wn =

∑
i∈[n] q̃

i
1,1v

(n)
i . The limit versions are h(λ) = α and h∗(π1,π2) = β,

where

h(λ) =
∫

[0,1]D
xfλ(x)p(x)dx and h∗(π1,π2) =

∫
[0,1]D

xgπ1,π2
1,1 (x)p(x)dx.

Our next lemma is analogous to Lemma 10.2.

Lemma 10.6. (i) h is a homeomorphism between R
D and h(RD).

(ii) For large n we have μVn
zn

= μp, for some p = p(n)

λ(n) where λ(n) → λ = h−1(α).

We omit the proof of Lemma 10.6, as it is the same as that of Lemma 10.2, except in one
detail which we will now check, namely that the principal minors of the Jacobian of h are
positive. To see this, note that the Jacobian J has entries

Ji,j =
∫
x∈[0,1]D

xixj

(
fλ(x)

1 + eλ.x

)
p(x)dx.

For any y ∈ R
D we have yTJy =

∫
x∈[0,1]D

|〈x,y〉|2fλ(x)(1 + eλ.x)−1p(x)dx. As fλ and p are
positive, we have yTJy > 0 whenever y �= 0, as required. We also have the following analogue
of Lemma 10.3; again, we omit the similar proof.

Lemma 10.7. Write μq̃(n) = μṼn

x̃n
. Then either

(i) there is (j, j′) ∈ {0, 1}2 such that mini∈[n](q̃(n))ij,j′ → 0, or



FORBIDDEN VECTOR-VALUED INTERSECTIONS 737

(ii) for large n we have q̃(n) = q(n)

π
(n)
1 ,π

(n)
2

, where (π(n)
1 ,π

(n)
2 ) converges to some (π1,π2) ∈

R
2D.

Furthermore, the following are equivalent to case (ii):

(i) there is κ > 0 such that μq̃(n) is κ-bounded for large n;

(ii) there is λ > 0 such that dimV C((Xn ×Xn)(Vn)∩
wn ) > λn for large n.

The uniqueness in Theorem 10.5 is explained by the following lemma which solves the limit
marginal problem.

Lemma 10.8. Suppose h(λ) = α �= (1/2)d∈[D]. Then there is unique β∗ ∈ [0, 1]D such
that there is (π1,π2) ∈ R

D × R
D with h∗(π1,π2) = β∗ and fλ(x) = gπ1,π2

0,1 (x) + gπ1,π2
1,1 (x).

Furthermore, (π1,π2) is unique, and log2 |(Xn ×Xn)(Vn)∩
wn | = H(μq′) + o(n), where q′ =

q(n)
π1,π2 .

Proof. As h is injective and h(0) = (1/2)d∈[D] �= α, we have λ �= 0. Rearranging 1 − fλ(x) =
gπ1,π2
0,0 (x) + gπ1,π2

0,1 (x) gives eπ1·x + eπ2·x = eλ·x + e(π1+λ)·x, so (a) π1 = λ and π2 = π1 + λ,
or (b) π1 = π1 + λ and λ = π2. However, (b) cannot hold, as λ �= 0. Thus π1 = λ and π2 =
2π1, so gπ1,π2

1,1 (x) = fλ(x)2 and β∗ =
∫
x∈[0,1]D

xfλ(x)2p(x)dx. Uniqueness of (π1,π2) is clear,
and the final estimate follows in the same way as the case g ∈ Γ1 of Lemma 10.4. �

Given the above lemmas, the proof of Theorem 10.5 is very similar to that of Theorem 1.3,
so we omit the details.

11. Optimal supersaturation

In this section we characterise the optimal level of supersaturation for V-intersections in terms
of a certain optimisation problem; as outlined in Section 1.4, this corresponds to the optimal
choice of measure satisfying the hypotheses of Theorem 1.17, that is, determining Hmax in the
following setting, which we adopt throughout this section.

• Let 0 < n−1, δ � κ � γ1, γ
′
1 � γ2, γ

′
2 � ε � α,D−1, C−1, k−1.

• Suppose V = (vi : i ∈ [n]) and each vi ∈ Z
D is R-bounded, where R ∈ R

D with maxd Rd <
nC .
• Suppose V is γ′

i-robustly (γi,R)-generic and γi-robustly (R, k)-generating for i = 1, 2.
• Let z ∈ Z

D and X = ({0, 1}n)Vz with |X | � (1 + α)n. Write μp := μV
z .

• Let w ∈ Z
D and let Q denote the set of q such that μq is a κ-bounded product measure

on ({0, 1} × {0, 1})n with both marginals μp and V∩(μq) = w.
• Let Hmax = maxq∈Q H(μq) if Q �= ∅ or Hmax = 0 if Q = ∅.
The main result of this section is as follows.

Theorem 11.1. In the above setting,

(i) if A ⊂ X with |A| > (1 − δ)n|X | then |(A×A)V∩
w | � �(1 − ε)n2Hmax�.

(ii) there is A ⊂ X with |A| > (1 − ε)n|X | and |(A×A)V∩
w | � (1 + ε)n2Hmax .

We start by giving the short deduction of statement i from Theorem 1.17. The hypotheses of
the latter hold by Lemma 1.21, and Theorem 1.20 gives μp(A) > (1 − δ′)n, where δ � δ′ � κ.
We can assume Q �= ∅, and Theorem 1.17 applied to q ∈ Q gives μq((A×A)V∩

w ) > (1 − ε/2)n.
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Also, by Lemma 3.1, B := {x ∈ ({0, 1} × {0, 1})n : log2 μq(x) /∈ −Hmax ± δn} has μq(B) �
(1 − δ3)n, so |(A×A)V∩

w | � 2Hmax−δnμq((A×A)V∩
w \ B) � (1 − ε)n2Hmax , as required.

The remainder of the section will be occupied with the proof of statement (ii). A key idea
is the use of ‘empirical measures’, which we will now introduce. First we note by Lemma 1.21
that p is κ′-bounded, where

γ1, γ
′
1 � κ′ � γ2, γ

′
2.

We fix a partition of [n] into sets S1, . . . , SM so that

|pi − pj | � κ and ‖vi − vj‖R � κ if i, j ∈ Sm for some m ∈ [M ].

This can be achieved with M � (2κ−1 + 2)D+1. We define the type of A ⊂ [n] as k(A) =
(|A ∩ S1|, . . . , |A ∩ SM |). We let k = (k1, . . . , kM ) be the most common type of sets in X ,
write

B = {A ∈ X : k(A) = k},
and define the empirical measure μp′ by

(p′)i1 = km/|Sm| for all m ∈ [M ], i ∈ Sm.

Note that |B| � |X |/nM . The following lemma shows that μp′ is a good approximation to the
maximum entropy measure μp.

Lemma 11.2. ‖p − p′‖1 � κn.

Proof. Let E be the set of A ⊂ [n] such that some ||A ∩ Sm| −∑
i∈Sm

pi| > κn
2M . Let κ �

κ1 � κ2 � κ′. Then μp(E) � (1 − κ1)n by Chernoff’s inequality, so |E ∩ X | < (1 − κ2)n|X | <
|B| by Theorem 1.20. We deduce |km −∑

i∈Sm
pi| � κn/2M for all m ∈ [M ], so

∑
m∈[M ] |km −∑

i∈Sm
pi| � κn/2; the lemma follows. �

We use a similar construction of an empirical measure that represents w-intersections. Let
G be the graph with V (G) = B where AB ∈ E(G) if |A ∩B|V = w. We define the type of
AB ∈ E(G) as tAB = (t1, . . . , tM ), where tm = |A ∩B ∩ Sm| for m ∈ [M ]. A type t gives rise
to a measure μq(t), where for i ∈ Sm we define

q(t)i1,1 = tm/|Sm|, q(t)i1,0 = q(t)i0,1 = (km − tm)/|Sm| and q(t)i0,0 = (|Sm| − 2km + tm)/|Sm|.
Note that each μq(t) has both marginals μp′ and ‖V∩(μq(t)) − w‖R � ‖p − p′‖1 � κn.

We can assume

H(μq) < log2 |E(G)| − εn/2 for all q ∈ Q, (11)

otherwise the proof is complete. We fix a type t̃ occurring at least e(G)/n2M times and set
q̃ = q(t̃). Then H(μq̃) � log2(e(G)/n2M ), so q̃ /∈ Q by (11). The following lemma will show
that all empirical measures associated to edges of G are close to q̃; we will then use this and
q̃ /∈ Q in Lemma 11.5 to find a large independent set in G, which will complete the proof of
Theorem 11.1.

We fix λ with γ1, γ
′
1 � λ � κ′.

Lemma 11.3. Suppose CD ∈ E(G) has type t′. Then ‖q̃ − q(t′)‖1 < λn.

For the proof we require the following bound analogous to (11) for a wider class of measures.

Lemma 11.4. Let μq′ be a λ-dense product measure on ({0, 1} × {0, 1})n with marginals
μp′ and V∩(μq′) = w′ with ‖w − w′‖R � κn. Then H(μq′) < log2 |E(G)| − εn/3.
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Proof. We will obtain the required bound from (11) a measure in Q close to μq′ . Recall
that p′ is κ′-bounded and ‖p − p′‖1 � κn Consider q′′ that minimises ‖q′′ − q′‖1 subject to
μq being κ-bounded and having marginals μp. For each i we can construct {(q′′)ij,j′} from
{(q′)ij,j′} by moving probability mass |pi − p′i| to create the correct marginals, and moving a
further mass of at most 2κ while maintaining the same marginals to ensure κ-boundedness.
Therefore ‖q′′ − q′‖1 � 6κn.

Now we will perturb q′′ to obtain q ∈ Q, that is, we maintain κ-boundedness and the same
marginals μp, and obtain V∩(μq) = w.

As μq′ is λ-dense and κ � λ there is S ⊂ [n] with |S| � λn/2 such that (q′′)ij,j′ � λ/2 for
all i ∈ S and j, j′ ∈ {0, 1}. As V is γ′

1-robustly (γ1,R)-generic, and λ � γ′
1 we can find M �

|S|/2D � λn/4D disjoint sets I1, . . . , IM ⊂ S, with |Im| = D and |det(VIm)| � γ1R1 · · ·RD for
all m ∈ [M ].

Write V∩(μq′′) = w′′, and note that ‖w′′ − w‖R � ‖q′′ − q′‖1 � 6κn. Then u = (w −
w′′)/M has ‖u‖R � 24Dκλ−1 <

√
κ. Applying Cramer’s rule as in Lemma 4.8, for each

m ∈ [M ] we find coefficients bi with
∑

i∈Im
bivi = u and |bi| �

√
κD!γ−1

1 .
Now we obtain q from q′′ where for each i ∈ ∪m∈[M ]Im we let qi1,1 = (q′′)i1,1 + bi, qi0,1 =

qi1,0 = (q′′)i1,0 − bi and qi1,1 = (q′′)i1,1 + bi, and qij,j′ = (q′′)ij,j′ otherwise. By construction q ∈ Q
and ‖q′ − q‖1 � ‖q′ − q′′‖1 + ‖q′′ − q‖1 < κ1/3n. The lemma now follows from (11). �

Proof of Lemma 11.3. Suppose for a contradiction that ‖q̃ − q(t′)‖1 � λn. Consider the
interpolation q′ = λq(t′) + (1 − λ)q̃. Recall that any μq(t) has marginals μp′ and satisfies
‖V∩(μq(t)) − w‖R � κn, so μq′ has the same properties. Also, as H(μq̃) � log2(e(G)/n2M )
we have H(μq′) > log2 |E(G)| − εn/3.

As ‖q̃ − q(t′)‖1 � λn we can find S ⊂ [n] with |S| � λn/2 such that
∑

j,j′∈{0,1} |q̃ij,j′ −
q(t′)ij,j′ | � λ/2 for all i ∈ S. As q̃ and q(t′) have the same marginals μp′ we have |q̃ij,j′ −
q(t′)ij,j′ | � λ/8 for all i ∈ S and j, j′ ∈ {0, 1}. For each such i, j, j′ we deduce (q′)ij,j′ � λ2/8.
However, this contradicts Lemma 11.4 (with λ2/8 in place of λ). �

The following lemma completes the proof of Theorem 11.1.

Lemma 11.5. There is A ⊂ X with |A| � (1 − ε)n|X | and (A×A)V∩
w = ∅.

Proof. We can assume e(G) � (1 + ε/2)n|B|, as otherwise by Turán’s theorem ([30], see
also [5, IV.2]) G contains an independent set A of order (1 + ε/2)−n|B|/2 � (1 − ε)n|X |.
As log2 |X | � H(μp) − κn by Lemma 3.5 and ‖p − p′‖1 � κn by Lemma 11.2 we deduce
H(μq̃) � log2(e(G)/n2M ) � H(μp′) + εn/4. We have H(μq̃) =

∑
i∈[n] H(q̃i) and H(μp′) =∑

i∈[n] H(p′i), where each H(q̃i) � log2 4 = 2, so there is T ⊂ [n] with |T | � εn/16 such that
H(q̃i) � H(p′i) + ε/16. As μq̃ has marginals μp′ we deduce q̃i

0,1 = q̃i
1,0 > ε2 for all i ∈ T . Let

T1 = {i ∈ T : q̃i1,1 < λ} and T0 = {i ∈ T : q̃i0,0 < λ}. By Lemma 11.4 we have |T1| � |T |/4 or
|T0| � |T |/4.

Case 1: |T1| � |T |/4.
Let B∗ = {B ∈ B : |B ∩ T1| � κ′|T1|/2}. As p is κ′-bounded and |T1| � εn/64 we have

μp(B \ B∗) � (1 − cκ′)n, which by Theorem 1.20 gives |B∗| � |B|/2. Let G∗ = G[B∗] denote
the induced subgraph of G with vertex set B∗.

We claim that for all AB ∈ E(G∗) we have |A ∩B ∩ T1| < 4λ1/2n. Indeed, suppose for a con-
tradiction that |A ∩B ∩ T1| � 4λ1/2n. Let J be the set of m ∈ [M ] with |T1 ∩ Sm| � 2λ1/2|Sm|.
Then

∑
m∈J |Sm| � 2λ1/2n. For all i ∈ ⋃

m∈J Sm we have q(tAB)i1,1 − q̃i1,1 � 2λ1/2 − λ > λ1/2,
by definition of J and T1. But then ‖q̃ − q(tAB)‖1 � λ1/2

∑
m∈J |Sm| > λn. This contradicts

Lemma 11.3, so the claim holds.
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Therefore, for any U ⊂ T1 of size u = �4λ1/2n�, the family AU := {B ∈ B∗ : U ⊂ B} forms an
independent set in G∗. Consider a uniformly random choice of such U . For any B ∈ B∗, as |B ∩
T1| � κ′|T1|/2 we have P(B ∈ AU ) � (κ′/4)u � (1 − λ1/3)n, as λ � κ′. Therefore EU |AU | =∑

B∈B∗ P(B ∈ AU ) � (1 − ε)n|X |. Thus for some U we obtain an independent set AU of at
least this size, which completes the proof of Case 1.

Case 2: |T0| � |T |/4.
The proof of this case is similar to that of Case 1, so we just outline the differences. Now we

let G∗ = G[B∗], where B∗ = {B ∈ B : |T0 \B| � κ′|T0|/2}. Similar to Case 1, we have |B∗| �
|B|/2, and there is no edge AB ∈ E(G∗) with |T0 \ (A ∪B)| � 4λ1/2n. Thus for any U ⊂ T0

with |U | = u, the family AU := {B ∈ B∗ : U ∩B = ∅} is an independent set in G∗. Consider
a uniformly random choice of such U . For any B ∈ B∗, as |T0 \B| � κ′|T0|/2 we have P(B ∈
AU ) � (κ′/4)u � (1 − λ1/3)n, as λ � κ′. Therefore for some U we obtain an independent set
AU with size at least the expectation, which is at least (1 − ε)n|X |. �

12. Exponential continuity

In this section we recast our results using the following notion of continuity that arises naturally
when comparing distributions according to exponential contiguity.

Definition 12.1. Let Ω = (Ωn)n∈N and μ = (μn)n∈N, where each μn is a probability
measure on Ωn. Let F = (Fn)n∈N where each Fn is a set of measurable subsets of Ωn. We
say that B = (Ω,F) is an exponential probability space and write M(B) = M(Ω) for the set
of such μ. We write ν ≈ μ when ν ≈F μ. Given exponential probability spaces B = (Ω,F),
B′ = (Ω′,F ′) we say that f : M(Ω) → M(Ω′) is exponentially continuous at μ ∈ M(Ω) if
μ′ ≈ μ ⇒ f(μ′) ≈ f(μ).

Theorem 12.2. Let 0 < n−1 � ζ � κ, γ � D−1,M−1, C−1, k−1. Suppose

(i) Bs = (Ωs,Fs) are exponential probability spaces with Ωs,n = Jn
s for s ∈ S;

(ii) μq is κ-bounded product measure on Ωn;
(iii) V = (vi

j1,...,jS
) is an (n,

∏
s∈S Js)-array in Z

D;

(iv) all ‖vi
j1,...,jS

‖R � 1, where R = (R1, . . . , RD) with maxd Rd < nC ;

(v) U = {u1, . . . ,uM} ⊂ Z
D is R-bounded and (k, kζn,R)-generating;

(vi) V has γ-robust transfers for U ;
(vii) w ∈ Z

D with ‖w − V(μq)‖R < ζn.

Let B = (Ω,F) =
∏

s∈S Bs and B′ = (Ω′,F ′), where Ω′
n = (Ωn)Vw and F ′

n = {A ∩ Ω′
n : A ∈

F}. Let f be restriction of measure from M(Ω) to M(Ω′). Then f is exponentially continuous
at μq.

Proof. Let μq have marginals (μps
: s ∈ S) and suppose μq′ ≈ μq with marginals

(μp′
s

: s ∈ S). Suppose n−1 � δ � ζ � ε � κ, γ. We want to show for A =
∏

s∈S As ∈ F ′
n

that f(μq)(A) > (1 − δ)n ⇒ f(μq′)(A) > (1 − ε)n and f(μq′)(A) > (1 − δ)n ⇒ f(μq)(A) >
(1 − ε)n. As f(μq)(A) = μq(A)/μq(Ω′

n) and f(μq′)(A) = μq′(A)/μq′(Ω′
n), it suffices to show

that μq(Ω′
n), μq′(Ω′

n) > (1 − ε′)n with ε′ � ε. This holds for μq(Ω′
n) by Theorem 6.3, and so

for μq′ by exponential contiguity. �

Remark 12.3. In the setting of the above theorem, if μq has marginals (μps
: s ∈ S) μq′ has

marginals (μp′
s

: s ∈ S), and each Fs,n is the set of subsets of some Δs,n ⊂ Ωs,n, then we have
μq ≈ μq′ precisely when each μps

≈ μp′
s
: this holds by Theorem 7.2 and the following lemma.
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Lemma 12.4. Suppose μ = (μn)n∈N and ν = (νn)n∈N where each μn and νn is a probability
measure on Ωn. Suppose also μ′ = (μ′

n)n∈N and ν′ = (ν′n)n∈N where each μ′
n and ν′n is a

probability measure on Ω′
n. Let Δ = (Δn)n∈N with each Δn ⊂ Ωn and Δ′ = (Δ′

n)n∈N with
each Δ′

n ⊂ Ω′
n. Then μ× μ′ ≈Δ×Δ′ ν × ν′ if and only if μ ≈Δ ν and μ′ ≈Δ′ ν′.

Proof. Let n−1 � δ � ε. Suppose first that μ× μ′ ≈Δ×Δ′ ν × ν′. Consider A1
n ⊂ Δn

with μn(A1
n) > (1 − δ)n. Let An = A1

n × Δ′
n. Then (μn × μ′

n)(An) = μn(A1
n) > (1 − δ)n, so

νn(A1
n) = (νn × ν′n)(An) > (1 − ε)n by assumption, that is, μ �Δ ν. Similarly ν �Δ μ, so μ ≈Δ

ν, and similarly μ′ ≈Δ′ ν′. Now suppose μ ≈Δ ν and μ′ ≈Δ′ ν′. Let Bn = {(x,y) ∈ Δn × Δ′
n :

(νn × ν′n)(x,y) < (1 − ε)n(μn × μ′
n)(x,y)}. We have Bn ⊂ (B1

n × Δ′
n) ∪ (Δn ×B2

n), where
B1

n = {x ∈ Δn : νn(x) < (1 − ε)n/2μn(x)} and B2
n = {y ∈ Δ′

n : ν′n(y) < (1 − ε)n/2μ′
n(y)}. By

assumption, μn(B1
n) � (1 − 2δ)n and μ′

n(B2
n) � (1 − 2δ)n. Therefore (μn × μ′

n)(Bn) � 2(1 −
2δ)n < (1 − δ)n, that is, μ× μ′ �Δ×Δ′ ν × ν′. Similarly, ν × ν′ �Δ×Δ′ μ× μ′, so μ× μ′ ≈Δ×Δ′

ν × ν′. �

13. Concluding remarks

There are several natural directions in which potential generalisations of our results can be
explored: instead of associating vectors in Z

D to each coordinate we may consider values in
another (abelian) group G, and we may consider more general functions of the coordinate
values, for example, a (low degree) polynomial (for example, a quadratic for application to
the Borsuk conjecture) rather than a linear function. (Is there a ‘local’ version of Kim-Vu
[24] polynomial concentration?) Even for linear functions in one dimension, our setting seems
somewhat related to some open problems in additive combinatorics, such as the independence
number of Paley graphs, but here our assumptions seem too restrictive (one cannot use
transfers). We may also ask when better bounds hold, for example, for G = Z/6Z we recall an
open problem of Grolmusz [15]: is there a subexponential bound for set systems where the size
of each set is divisible by 6 but each pairwise intersection is not divisible by 6?

Our results may interpreted as giving robust statistics in the theory of social choice. Suppose
that we represent a voter by an opinion vector x ∈ Jn, where each xi represents an opinion on
the ith issue, for example, when |J | = 2 each issue could be a question with a yes/no answer.
Then we can represent a population of voters by a probability measure μ on Jn, where μ(x) is
the proportion of a voters with opinion x. Now suppose that we want to compare two (or more)
voters. One natural measure of comparison is to assign a score to each opinion and calculate
the total score on opinions where they agree. If this is too simplistic, then we could assign
score vectors in some R

D, where D is small enough to give a genuine compression of the data,
but large enough to capture the varied nature of the issues: we compare x and x′ according
to V∩(x,x′). Taking the perspective of robust statistics (see [16]), it is natural to ask whether
this statistic is sensitive to our uncertainty in the probability measure that represents the
population as a whole: Theorem 12.2 (with the remark following it) gives one possible answer.

Acknowledgements. The authors would like to thank the referees for a careful reading of
the paper and many helpful comments.
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