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Short-term traffic prediction is a key component of Intelligent Transportation Systems. It uses historical data to construct models
for reliably predicting traffic state at specific locations in road networks in the near future. Despite being a mature field, short-term
traffic prediction still poses some open problems related to the choice of optimal data resolution, prediction of nonrecurring
congestion, and the modelling of relevant spatiotemporal dependencies. As a step towards addressing these problems, this paper
investigates the ability of Artificial Neural Networks, Random Forests, and Support Vector Regression algorithms to reliably
model traffic flow at different data resolutions and respond to unexpected traffic incidents. We also explore different feature
selection methods to identify and better understand the spatiotemporal attributes that most influence the reliability of these
models. Experimental results indicate that data aggregation does not necessarily achieve good performance for multivariate
spatiotemporal machine learning models. +e models learned using high-resolution 30-second input data outperformed the
corresponding baseline ARIMAmodels by 8%. Furthermore, feature selection based on Recursive Feature Elimination resulted in
models that outperformed those based on linear correlation-based feature selection.

1. Introduction

Traffic congestion results in significant monetary losses in
countries around the world, with the cost of traffic congestion
in 2014 estimated to be $160 billion in the US alone [1]. A
significant amount of effort has been put into reducing con-
gestion in cities. In many cities, it is becoming impractical to
build new roads or to expand existing roads, and it is becoming
all more important to make the best use of the available re-
sources. Intelligent Transportation Systems, Advanced Traffic
Management Systems, and route guidance systems use real-
time data of traffic flow gathered from various sensors. In such
systems, short-term traffic prediction, which helps make de-
cisions based on predictions of traffic in the near future, ismore
useful than just using the real-time data of traffic conditions.
+e field of short-term traffic prediction is over 30 years old
with early work utilizing Box-Jenkins ARIMA methods [2].

Recent approaches still use variations of the original ARIMA
models, for example, seasonal ARIMA [3, 4], but there has been
a shift towards using machine learning algorithms to address
the traffic prediction challenges [5]. Although such models
based on machine learning algorithms have been shown to be
more reliable than the traditional ARIMAmodels, there are still
many open problems [6]. +ese include building responsive
algorithms that are able to predict nonrecurring congestion,
determining the optimum data resolution, and identifying and
modelling the important spatiotemporal dependencies in
traffic data. +e study described in this paper is a step towards
addressing these challenges. We make the following key
contributions:

(i) Explore the effect of the resolution of multivariate
spatiotemporal input data on the accuracy of short-
term traffic predictions models; we specifically
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consider models built using Artificial Neural Net-
works, Support Vector Regression, and Random
Forests.

(ii) Evaluate the responsiveness of these predictive
models to nonrecurring congestion events. Specif-
ically, we study the reliability of the predictions
provided by these models in the presence of un-
expected events such as accidents.

(iii) Identify the spatiotemporal traffic attributes that
most influence the performance of these models and
their ability to model the complex dependencies in
traffic data.

We illustrate these contributions using historical data of
volume and occupancy measurements on a highway in
Auckland (New Zealand). We first motivate the need for the
proposed study by discussing related work in Section 2.
Next, Section 3 describes the dataset and methodology used
to build and evaluate the predictive models, and Section 4
describes the machine learning algorithms used to build
these models. Section 5 describes the hypotheses and
measures used for experimental evaluation, and Section 6
analyzes the corresponding experimental results. Finally,
Section 7 discusses the conclusions and directions for future
work.

2. Background

Many algorithms have been developed for short-term traffic
prediction, which is a complex problem influenced by a
variety of factors such as the resolution (i.e., the aggregation
level) of the input and output data, and spatiotemporal
dynamics. We review some of the related work in this
section.

Although studies in the existing literature predomi-
nantly use data aggregated over 5min and 15min intervals,
some prior studies have investigated the effect of data res-
olution on the reliability of the predictions provided by the
corresponding models; the results have, however, been in-
conclusive. For instance, Park et al. [7] investigated the effect
of aggregation on travel time prediction and considered
aggregation levels from 2min to 60min in the context of an
ARIMA model. +ey concluded that higher levels of ag-
gregation were required to forecast route travel time than
when forecasting link travel times. Dougherty and Cobbett
[8] constructed a neural network model for making pre-
dictions and found that data aggregated over 5min intervals
gives better results than data aggregated over 1min intervals.
Vlahogianni and Karlaftis [9] looked at aggregation levels
and although they found that temporal aggregation may
distort critical traffic flow information, they also concluded
that further research was necessary to determine the opti-
mum aggregation level(s).

+e use of high-resolution data is challenging for multiple
reasons. First, for some statistical models used for short-term
traffic state prediction, it is necessary to ensure that the input
data and the output data have the same aggregation level, but
this constraint can be relaxed when machine learning algo-
rithms are used to build predictive models. Second, while

research shows that the high-resolution data (as expected)
includes more accurate measurements; for example, Martin
et al. [10] state that inductive loops are “one of the most
accurate count and presence detectors;” it also makes the
noise in sensor measurements more distinct. Although data
from these inductive loops can represent individual vehicles
in the network, computational models developed to capture
the flow of vehicles between segments or links in the network
need to be robust to such noise and be able to capture
spatiotemporal dynamics in order to exploit the information
encoded in high-resolution data. Studies based on univariate
time-series methods often perform aggregation to smooth out
the variability in higher-resolution data [9]; however, these
data smoothing techniques result in loss of information (and
sensitivity) andmake it difficult for the corresponding models
to capture the spatiotemporal dynamics of traffic flow. In the
study reported in this paper, we fixed the resolution of the
output data (i.e., for the predictions being made) and ex-
amined the effect of different input data aggregation levels on
the prediction accuracy.

+ere has been considerable research on analyzing the
effects of spatiotemporal dynamics. For instance, Kamar-
ianakis and Prastacos [11] used a Spatiotemporal Autore-
gressive Moving Average (STARIMA) model to incorporate
data from links upstream to the link of interest in their
prediction model, and Chandra and Al-Deek [12] found that
vector autoregressive models that incorporate data from
links neighbouring the link of interest perform better than
ARIMA models that do not consider the data from the
neighbouring links. Yang et al. [13] found that a sparse
selection of neighbours chosen based on the level of cor-
relation with the link of interest improves performance. Min
and Wynter [14] showed that a multivariate spatiotemporal
model with templates was able to provide very good pre-
diction accuracy. However, these models depend on fixed
correlations matrices that are modified infrequently. As a
result, it is difficult for these models to track changes or to
capture sudden (or significant) changes between congested
and free-flowing traffic conditions.

In addition to the approaches that build on the ARIMA
models [2–4, 11, 14], models based on machine learning and
probabilistic estimation algorithms have also been explored
because they are well-suited to model the complex spatio-
temporal relationships in data. Popular approaches include
Artificial Neural Networks (ANN) [15–19], Support Vector
Machines (SVM) [20–24], k-Nearest Neighbours (kNN)
[25–29], Kalman Filters [30–32], Bayesian Networks [33–35],
and Random Forests [36, 37]. For instance, existing work has
explored various ANN configurations. Wang et al. [19] de-
veloped a space-time delay neural network (STDNN) that
included 22 links in central London and showed that this
model outperforms a STARIMAmodel. Hodge et al. [38] used
a binary neural network that incorporates spatiotemporal data
for traffic prediction. Vlahogianni et al. [18] used a neural
network model optimized with genetic algorithms and found
that incorporating spatial and temporal data was helpful for
multistep predictions.More recently, there have been efforts to
use deep neural network architectures, including deep belief
networks [39, 40] and stacked autoencoders [41].
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+ere is no agreement in the literature regarding the
number of upstream and downstream links (neighbouring
any link of interest) that should be considered while building
the predictive models. While some algorithms consider just
one upstream or downstream link [24, 29], others consider a
variable number of upstream and downstream links [38].
For an extensive review of spatiotemporal forecasting, please
see Ermagun and Levinson [42]. As noted in Vlahogianni
et al. [6], capturing spatial attributes in traffic data from a
freeway is still an open problem.

Most existing work on short-term traffic prediction fo-
cuses on typical conditions [21]. Traffic is (on average) in-
herently periodic with daily or weekly patterns, and many
studies exploit this periodicity in their algorithms. However,
accurate predictions are arguably more useful in situations of
nonrecurring congestion such as accidents where periodic
patterns do not hold. Of the studies that do not leave out
nonrecurring congestion in their input data, a common
approach is to create multiple models to deal with different
conditions. For example, Dunne and Ghosh [43] used a
model with nonlinear preprocessing in cases of congestion.
Fusco et al. [44] reported good performance during nonre-
curring congestion with a SARMA model, while a Bayesian
Network performed better during recurring congestion. An
online-SVR-based model was found to predict nonrecurring
congestion accurately by Castro-Neto et al. [21]. Pan et al. [45]
also highlight some of the challenges in capturing moving
bottlenecks and nonrecurring congestion. See Vlahogianni
et al. [6], Ermagun and Levinson [42], Oh et al. [46], and Oh
et al. [47] for a more comprehensive overview of the existing
literature in short-term traffic prediction.

In this study, we explore three machine learning algo-
rithms that have demonstrated the ability to incorporate
spatiotemporal data in predictive models built for intelligent
transportation and other applications. Specifically, we ex-
plore (1) Artificial Neural Networks (ANN), (2) Support
Vector Regression (SVR), and (3) Random Forests (RF). We
chose ANN and SVR because they are the most widely used
machine learning algorithms used to build predictive models
in the literature. We chose Random Forests since it is an
ensemble learning algorithm that requires a small number of
parameters to be tuned. Please note that the primary ob-
jective of our study was not to introduce new algorithms.
Instead, we make three key contributions. First, we examine
how the predictive accuracy of models based on these al-
gorithms changes as a function of the aggregation level of the
input data. Second, we explore the ability of these models to
respond accurately to nonrecurring congestion conditions.
+ird, we identify the spatiotemporal attributes that most
influence the predictive accuracy of these models and their
ability to model the complex dependencies in traffic data.

3. Methodology

+is section introduces the study area and data and provides
a mathematical formulation of the short-term traffic pre-
diction problem (Section 3.1). +is is followed by a de-
scription of the data preprocessing steps used in the
proposed study (Section 3.2).

3.1. Study Area and Mathematical Formulation. +is study
was carried out in a 30 km section of State Highway 1 (SH1)
in Auckland, New Zealand. We considered data from 45
segments along SH1 from the suburb of Papakura towards
Auckland City (see Figure 1). On average, there are three
lanes of roadway in each direction, and we only considered
lanes going northbound in this study.+e average length of a
segment was 674m, with the length varying between 52m
and 2252m.

Traffic can be measured in different ways. +e most
common sensor used to collect traffic data is the Inductive
Loop Detector, which comes in different forms. Dual loop
detectors, which have two inductive loops placed a short
distance apart, are able to accurately capture the speed of a
vehicle going over them, the volume (i.e., count of vehicles
passing the detector), and occupancy (i.e., the amount of
time a vehicle was over the detector). However, most of the
loops in many cities (including Auckland) are single loop
detectors, which can measure volume and occupancy but
can only estimate vehicle speed as a function of these
measured values and the average effective vehicle length.
Research shows that measuring speed with a constant ef-
fective vehicle length can lead to errors of up to 50% [48].
Using these derived speed estimates for making decisions
can lead to misleading results—we thus did not use speed
data in this study.

+e fundamental model of traffic flow established by
traffic engineers considers the relationship between three
key traffic variables: (1) flow (volume), (2) density, and (3)
speed. Since density is difficult to measure directly, occu-
pancy is frequently used as a substitute [49]. It is not possible
to accurately and comprehensively describe the current state
of traffic using only information about flow. For example, if
200 vehicles pass over a detector during a 5min interval, this
could correspond to free-flow conditions during early
mornings and evenings, but it could also correspond to
highly congested conditions due to an accident during peak
hours. +e combination of both volume and occupancy
uniquely defines the current state of traffic. Unlike many
existing studies that have only considered flow when making
predictions, which does not define the traffic state uniquely,
we consider both volume and occupancy because they each
provide useful information. Together they help eliminate
ambiguities, such as those described above.

For each predictive model, the input vector X(s, t) is of
the form:

X(s, t) �

V1
t−T O1

t−T · · · Vs
t−T Os

t−T · · · VS
t−T OS

t−T

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

V1
t−1 O1

t−1 · · · Vs
t−1 Os

t−1 · · · VS
t−1 OS

t−1

V1
t O1

t · · · Vs
t Os

t · · · VS
t OS

t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1)

where Vs
t and Os

t denote volume and occupancy (respec-
tively) of segment s at time-step t, S is the total number of
segments, and T is the total number of historical time-steps
considered. +e output of each such model is the volume or
occupancy aggregated over the subsequent five-minute
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interval for each specific segment s of interest. +is output is
a function of the input vector; for example, if traffic volume
is to be predicted, the output of the models is
Vs

t+5min � f(X(s, t)). +e goal of each machine learning
algorithm is to build a model of this functional relationship
between the inputs and outputs. +e learned model can then
be used to predict the output for any given input.

3.2. Data Processing. Data from 30 days of April 2016 was
collected for 45 segments (S � 45) on the motorway. In
order to get segment level data from loop detectors, indi-
vidual values were aggregated across the lanes (volume data
was summed, and occupancy was averaged) for each seg-
ment and at each point in time. We use the volume and
occupancy values of all segments in the past 20 time-steps
(T � 20), resulting in an input vector with 1800 attributes.
To ensure that each segment has data from a reasonable
number of upstream and downstream segments, predictions
are only made for segments 20−25 on the motorway (see
Figure 1). Recall that volume and occupancy readings were
reported every 30 seconds, which correspond to 86400 time-
steps. A naive aggregation would have resulted in smaller
datasets of 8640 samples and 2880 samples for 5min and
15min aggregation, respectively. To minimize the imbalance
in the size of the datasets, a sliding window approach was
used, resulting in a new sample being generated every 30
seconds for all the aggregation levels. +e final size of the
input dataset, with 20 time-steps included in each input
sample, was thus 86370 samples for 30 s resolution, 86190 for
5min, and 85790 for 15min aggregation. Also, to ensure a
fair comparison, the output is aggregated over the same time

period for each model for all input time resolutions, that is,
the amount of time represented in the input depends on the
resolution of the data, whereas in the output, all models will
consider the aggregated values over the interval from when
the final input reading was taken to five minutes past this
time.

+e dataset was preprocessed to remove some extreme
values that were highly unlikely. First, we used winsorization
[50] to set the upper bound of the values in the dataset.
Winsorization, a common approach for dealing with out-
liers, replaces all values above and below a certain percentile
with the value of that percentile. In this paper, we set the
upper percentile to 99.97% so that all values above this
percentile are replaced by the value of this percentile. If a
standard normal distribution is assumed, this choice of
upper bound corresponds to clipping values that are ≥ 3.5
standard deviations from the mean. Figure 2 shows volume
values from segment 23 before and after winsorization.

Second, we scaled each attribute in the input data to lie
∈ [0, 1]; this scaling was especially crucial for producing
stable results with Support Vector Regression and Artificial
Neural Networks. Scaling was performed using the training
data, and the corresponding scaling constants were applied
to the test data. +e occupancy values always stayed between
0% and 100% in the input and output, and no additional
processing was needed to constrain the data to this range.
Nonstationary time-series data is typically transformed into
stationary data before applying time-series models. How-
ever, traffic data is considered to be cyclostationary and we
model short-term traffic prediction as a multivariate pattern
recognition problem with all data assumed to arise from the
same underlying distribution. +us, we did not perform any

Figure 1: Study area with 45 road segments spread over 30 km of State Highway 1 (SH1) in Auckland. Volume and occupancy values from
these road segments over a period of 30 days were used in this study.
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transformations to make the data stationary. Also, although
the periodic nature of traffic can be exploited to improve the
prediction accuracy of the learned models, doing so will
make it difficult to reliably and efficiently identify and re-
spond to nonrecurring congestion conditions (also see
Section 4.2).

Training of the models was accomplished using data
from the first 20 days (57,600 samples), and data corre-
sponding to the remaining ten days was used for testing.+e
parameters of each model were tuned using the training
dataset. Next, we briefly discuss the algorithms that we used
to build the models for short-term traffic prediction.

4. Machine Learning Algorithms

In this section, we describe the three machine learning al-
gorithms used to build the predictive models explored in this
paper: Artificial Neural Networks (Section 4.1), Support
Vector Regression (Section 4.2), and Random Forests
(Section 4.3).

4.1. Artificial Neural Network. Feedforward neural networks
or multilayer perceptrons are the most common Artificial
Neural Network (ANN) models. A neural network is
composed of neurons arranged in layers with each layer
containing one or more neurons. Each neuron is connected
to all the neurons in its adjacent layers, and neurons within a
layer are not connected. Each neuron takes a linear weighted
sum of all its inputs x (from the layer before it) and passes it
through a nonlinear activation function σ to produce the
output y:

y � σ 
N

i�1
wi · xi( ⎛⎝ ⎞⎠. (2)

Each such output y is then used as an input to the next
layer of neurons until the final (i.e., output) layer is reached.

+e weights associated with each neuron may be initialized
randomly to enable each neuron to potentially learn a
different function of its inputs.

+e weights wi associated with each neuron are the
parameters defining the neural network model, and these
parameters are estimated by minimizing a loss function that
measures the difference between the output values estimated
by the network and the ground-truth values included in the
training data. For regression problems, the squared error
between the estimated and ground-truth output values is
generally used as the loss function. +e backpropagation
algorithm is then used to calculate the gradient of this error
and to propagate this gradient back through the network
(towards the input layer) to update the weights of each
neuron by gradient descent. Stochastic gradient descent
algorithms are used widely to update the weights, and we
used a stochastic gradient-based optimizer called Adam that
is computationally efficient and is known to scale well to
larger datasets [51]. All parameters of this optimizer were set
to their default values.

Although the nonlinear activation function in a neural
network has traditionally been the sigmoid function, em-
pirical results have indicated that the rectified linear unit
(ReLU) activation function improves the ability to model
complex relationships and reduces the time taken to train
the model [52]. We thus used the ReLU activation function
in a network with three hidden layers, each with 150 neu-
rons. We performed 400 iterations of learning with mini-
batches of data with 200 samples (each).

4.2. SupportVector Regression. For classification problems, a
Support Vector Machine computes a decision boundary that
maximizes themargin between this boundary and the closest
data sample. Support Vector Regression (SVR) uses a similar
approach for regression problems—errors corresponding to
estimated values within an ε distance from the ground-truth
values are ignored. More specifically, given a set of training
data, the objective is to find a function f(x) that produces at
most ε deviation from the actual target values yi for the
training data and is as flat as possible [53]. For instance, a
linear function f(x) � wTx + b is flat if it has a small w—this
can be accomplished by minimizing ‖w‖2. Since a function
that satisfies all the required constraints C may not exist,
some slack variables (ξ, ξ∗) are introduced to allow for some
errors. We then obtain the following formulation for SVR:

minimize
1
2
‖w‖

2
+ C 

l

i�1
ξ + ξ∗( 

⎧⎨

⎩

⎫⎬

⎭

subject to

yi − wTxi − b≤ ε + ξi

wTxi + b − yi ≤ ε + ξ ∗i

ξi, ξ
∗
i ≥ 0.

(3)

We can also incorporate nonlinear kernel functions to
extend SVR to nonlinear problems. Popular kernels include
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Figure 2: Volume values from segment 23 of study area before and
after winsorization.
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linear kernel and the Radial Basis Function (RBF) kernel,
which transform the input sample into a higher dimensional
space that results in better separation (for classification) or
estimation of values (for regression). We experimentally
chose to use a linear kernel for SVR because it provided
better results.

4.3. Random Forest. Random Forest (RF) [54] is an en-
semble method for building classification or regression
models. Ensemble methods combine predictions from
multiple models to improve accuracy. In an RF, the en-
semble is a set of decision trees trained on B subsets of the
full dataset. Each subset is selected by a technique known as
bagging or bootstrap aggregation. If the training set is de-
fined as input vectors X � x1, x2, x3 . . . and the corre-
sponding (target) output values Y � y1, y2, y3 . . ., decision
trees will be created as follows:

for b in 1. . .B do
Pick N training samples randomly with replacement;
call this subset Xb, Yb 

Train a decision tree Θb using Xb, Yb  where each split
in a decision tree is based on a random subset of the
attributes
end for

In other words, each subset created by sampling from the
training set with replacement results in a decision tree. +e
prediction for any test input x is then the average of the
predictions from each decision tree:

y �
1
B



B

i�1
Θb(x). (4)

+is approach ensures that individual trees are not
highly correlated because of a small number of strong
predictors. RF methods are popular because they provide
some robustness to noisy data with outliers. +ey are also
able to focus on attributes most useful to the regression or
classification task under consideration and ignore attributes
that are less relevant. In our study, we used a RF with 100
trees.

5. Hypotheses and Measures

We experimentally evaluated the following hypotheses re-
garding the predictive models learning using the machine
learning algorithms:

(1) +e learned models are able to disregard the am-
plification of noise and variations in high-resolution
data and provide higher accuracy than models that
do not use high-resolution data

(2) +e learned models are responsive to nonrecurring
congestion events such as accidents, and this ability
improves with the increase in the resolution of data

(3) +e learned models are able to capture the complex
spatiotemporal evolution of traffic by assigning
higher importance to volume and occupancy

attributes extracted from segments near the segment
of interest

As baselines for comparison, wherever appropriate, we
used two established methods for volume prediction in
existing literature (ARIMA, historical average). To experi-
mentally evaluate the hypotheses, we used three measures:
accuracy, root mean square error (RMSE), and mean ab-
solute error (MAE), defined as follows:

accuracy � 1 −
1
N



N

i�1

yi − yi

yi




,

RMSE �

�������������

1
N



N

i�1
yi − yi( 

2




,

MAE �
1
N



N

i�1
yi − yi


,

(5)

where yi is the predicted value and yi is the ground-truth
value of the ith data sample.

To quantify responsiveness to nonrecurring conditions,
we computed these measures over samples that were rep-
resentative of nonrecurring conditions. Specifically, a sample
(xi, yi) was considered if the difference between its output
value and the weekly seasonal mean of the predicted variable
was more than two standard deviations away from the mean
of the distribution of output values:

yi − μi


>(2∗ std)

std �

������������


N
i�1 yi − μi( 

2

N − 1



,

(6)

where std is the standard deviation and μi is the mean of the
values of the predicted variable during the corresponding
time period for that day of the week.

6. Experimental Results

+is section discusses the results of experimentally evalu-
ating the three hypotheses listed in Section 5. We summarize
the results in Sections 6.1, 6.2, and 6.4 and examine the
computational efficiency of the proposed models in Section
6.3. Unlike results reported in many papers, our predictive
models considered different traffic conditions such as peak
and off-peak traffic at different times of the week, including
weekends and public holidays. Recall that we explore dif-
ferent aggregation levels ranging from 30 sec to 15min for
the input data, but the output of each model is the volume or
occupancy of vehicles (in a particular segment in the
highway) aggregated over a period of five minutes—see
Section 3.1 for more details.

6.1.UsingHigh-ResolutionData. As stated in Section 3.1, the
predictive models were constructed using the training set
and evaluated on the test set. We repeated the trials to check
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that the performance of the models was stable using different
random initializations.

+e results summarized in Table 1 show that all three
machine learning algorithms performed better with 30 sec
aggregation level for input data in comparison with the
5min and 15min aggregation levels. While the increase in
prediction accuracy with resolution may not be surprising, it
is important to note that the increase in resolution also
amplifies the noise and minor variations in the data. As
baselines for comparison, we considered two established
methods for volume prediction in the existing literature
(ARIMA, historical average). For the ARIMA models, we
applied a square-root transformation in addition to the first-
order difference and verified their stationarity. To compare
the outputs from these methods with the outputs from the
learned models, we evaluated all models at the same output
resolution of 5min. For instance, for the 30 sec aggregation
level, the 5min aggregated output value was obtained by
iterating and aggregating the output over ten one-step-ahead
predictions. Also, results for the 15min input aggregation
level were obtained by first applying the Stram-Wei temporal
disaggregation [55] to extract 5min aggregated values from
the 15min aggregated data. ARIMA (2, 1, 2) models were
used for predicting volume at the 5min and 15min input
aggregation levels, ARIMA (2, 1, 1) models were used for
predicting occupancy at the 5min and 15min aggregation
levels, and ARIMA (4, 1, 0) models were used for the 30 sec
input aggregation level. +ese models were selected exper-
imentally using the Box-Jenkins method.

+e results in Table 1 indicate that the models corre-
sponding to the 30 sec input aggregation level provide an
average accuracy improvement of 8.1% over the ARIMA
approach and an average 12.5% improvement over the
historical average baseline. Note that these results include
both recurring and nonrecurring congestion events; we
examine the nonrecurring events in more detail in Section
6.2. To confirm the significance of these results, we con-
ducted Diebold–Mariano (DM) tests for predictive accuracy
[56].+e DM test compares the forecast accuracy of a pair of
forecast methods. +e test’s null hypothesis is that the two
forecasts have the same accuracy. +e null hypothesis will be
rejected if the computed DM statistic falls outside the re-
quired significance level under a standard normal distri-
bution; for example, for a significance of 99%, the null
hypothesis is rejected if the DM statistic ∉ [−2.58, 2.58]. We
used MSE as the error metric. Table 2 shows the DM test
statistic for each pair of models. Except for the 5min SVR
and 15min RF models, all other models have significantly
different levels of accuracy.

Table 3, which summarizes the results of predicting
occupancy, indicates similar trends. Although all three
predictive models based on machine learning algorithms
performed well, the model based on the Random Forest
algorithm (Section 4.3) provided the highest accuracy.

Next, the average accuracy andMAE at different times of
the day, for the three different data aggregation levels, are
shown in Figure 3. For each algorithm, the accuracy in-
creases with the resolution. Overall, we observe that the
performance of the learned predictive models improves

significantly with the increase in resolution despite the as-
sociated amplification of noise and minor variations in data.

+e results discussed so far support the first hypothesis
that predictive models based on machine learning algo-
rithms are able to disregard the amplification of noise in
high-resolution data and provide higher accuracy than
models that do not use the high-resolution data. +e lower
accuracy values during overnight hours can be explained by
the accuracy being represented as a percentage of vehicles
and the average number of vehicles overnight being sig-
nificantly lower; this is confirmed by the lower MAE values
for the same period.

6.2.NonrecurringCongestion. Next, we evaluated the second
hypothesis by examining the responsiveness of the predic-
tive models to nonrecurring congestion events. We did so by
only evaluating the trained predictive models on a subset of
the test set comprising samples that were significantly dif-
ferent from historical average values. +e results are sum-
marized in Tables 4 and 5. We observe that the models built
using input data at the 30 sec aggregation level outperform
the models use input data at the 5min and 15min aggre-
gation levels. Among the learned models, the model based
on the ANN algorithm provides marginally better perfor-
mance than that based on the RF algorithm for volume
predictions while the converse is true for occupancy pre-
dictions. Furthermore, we observe that the learned pre-
dictive models provide better performance than the models
based on historical average and ARIMA, which are estab-
lished methods for short-term traffic prediction.

To further explore the responsiveness of the learned
models, we examined a known (i.e., reported) breakdown
along the motorway in more detail. Figure 4(a) compares the
average volume of traffic on segment 23 of SH1 on+ursday
with the traffic volume on a specific+ursday, April 21, 2016.
+e data corresponding to this date was in the test dataset,
that is, not used to train the predictive models. Figure 4(a)
shows that there was a significant deviation from the average
traffic around 6.40 am on April 21, 2016. As reported on the
social media site, Twitter, there was a breakdown near SH1 at
≈ 6.30 am that day (see Figure 4(b)). More specifically, the
Ellerslie on-ramp mentioned in the tweet is near segment 27
of SH1, which is ≈ 4 km from segment 23 on SH1.

Figures 5(a)–5(c) show how the learned predictive
models are able to track the traffic volume corresponding to
this event, with each of the three different input data ag-
gregation levels. For comparison, the figures also include the
performance of the ARIMA approach. We observe in
Figure 5(a) that using the high-resolution 30 sec input data
aggregation level enabled the learned models to predict the
change in traffic volume at almost the same time-step when
the nonrecurring event occurred, whereas there is a lag when
the other two aggregation levels are used; the performance is
significantly worse with the baseline ARIMA model.

For additional examples of how the models predicted
during nonrecurring congestion, see Figure 6. +ese plots
indicate that the ANN model at the 30 sec input aggregation
level responds very quickly to nonrecurring congestion. +e
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SVR-based models and the coarser-resolution models tend
to smooth out shocks to traffic and are better at smoothing
out the noise in typical congestion conditions. +e RF-based
learned models tend to provide good overall performance
that lies in between that provided by the ANN-based and
SVR models.

Figure 7 shows that an ANN-based learned model at the
30 sec input data aggregation level accurately predicts traffic
volume on a public holiday. Recall that this model had no
information about the day of the week and the seasonal
mean. Overall, these results support the second hypothesis
that the models based on machine learning algorithms and
high-resolution data are more responsive to nonrecurring
congestion.

6.3. Computational Efficiency and Practical Scalability.
Table 6 summarizes the training time and testing time of the
proposed models, when they are built and evaluated on an
Intel Core i73.4GHz desktop with 8GB of RAM. +e time

taken to generate a forecast was under 0.1 seconds for all
models. +e training time, even in the most extreme case,
was under 20 minutes. Since the training process can easily
be parallelized to create models for all segments on a net-
work and this can be done in an initial offline phase, we
believe these methods can be easily implemented for fore-
casts over the entire traffic network.

We did not optimize our algorithms—performance
could have been improved by using fewer training samples
or tuning the algorithms’ parameters, for example, by using a
smaller number of trees in the Random Forest or a smaller
neural network. +e different algorithms take different
amounts of time for training and testing; for example,
models based on the (linear) SVR algorithm have the lowest
training time and testing time—the nonlinear SVR models
have a much longer training time ( ≈ one hour for one
model) but they did not perform as well as the linear model.
+e ANN-based models take longer to train but are fast
during testing, whereas the RF-based ensemble models take
longer to train and test.

Table 2: Diebold–Mariano test statistic for each pair of models for predicting volume.

0.5min 5min 15min
ANN RF SVR ANN RF SVR ANN RF SVR

0.5min
ANN — 36.88 12.69 −54.59 23.10 −19.35 −71.81 −17.20 −38.30
RF −36.88 — −27.87 −69.47 −11.95 −50.30 −94.20 −44.32 −63.09
SVR −12.69 27.87 — −65.29 14.55 −52.00 −92.40 −31.63 −62.36

5min
ANN 54.59 69.47 65.29 — 71.18 48.64 −11.23 43.96 25.76
RF −23.10 11.95 −14.55 −71.18 — −50.28 −100.1 −45.49 −66.02
SVR 19.35 50.30 52.00 −48.64 50.28 — −79.88 0.49 −57.11

15min
ANN 71.81 94.20 92.40 11.23 100.1 79.88 — 68.62 51.22
RF 17.20 44.32 31.63 −43.96 45.49 −0.49 −68.62 — −29.18
SVR 38.30 63.09 62.36 −25.76 66.02 57.11 −51.22 29.18 —

Critical value: |2.58|; numbers in boldface indicate pairs of models that are not significantly different.

Table 3: Traffic occupancy prediction under all conditions.

Model
Input resolution (minutes)

0.5 5 15
Accuracy RMSE MAE Accuracy RMSE MAE Accuracy RMSE MAE

ANN 0.859 (0.02) 1.98 (0.64) 1.00 (0.37) 0.838 (0.01) 2.59 (0.74) 1.27 (0.44) 0.780 (0.03) 3.51 (0.89) 1.70 (0.57)
RF 0.872 (0.01) 1.83 (0.48) 0.90 (0.30) 0.850 (0.01) 2.17 (0.55) 1.07 (0.35) 0.80 (0.03) 2.80 (0.70) 1.43 (0.47)
SVR 0.858 (0.01) 1.88 (0.46) 0.95 (0.30) 0.829 (0.01) 2.13 (0.52) 1.12 (0.33) 0.732 (0.04) 2.54 (0.59) 1.45 (0.34)
Historical avg. 0.433 (0.02) 7.49 (4.50) 3.56 (1.02) 0.433 (0.02) 7.49 (4.50) 3.56 (1.02) 0.433 (0.02) 7.49 (4.50) 3.56 (1.02)
ARIMA 0.689 (0.04) 20.5 (4.71) 10.1 (2.65) 0.833 (0.02) 2.37 (0.70) 1.17 (0.41) 0.834 (0.02) 2.59 (0.80) 1.22 (0.43)
Standard deviations across segments are reported in parentheses and numbers in boldface show the best results.

Table 1: Traffic volume prediction under all conditions.

Model
Input resolution (minutes)

0.5 5 15
Accuracy RMSE MAE Accuracy RMSE MAE Accuracy RMSE MAE

ANN 0.906 (0.01) 34.5 (11.7) 23.8 (8.6) 0.889 (0.01) 44.5 (16.9) 30.1 (11.5) 0.865 (0.013) 53.6 (24.8) 37.3 (16.9)
RF 0.910 (0.01) 31.2 (11.7) 22.2 (8.5) 0.904 (0.01) 34.0 (11.2) 23.8 (8.5) 0.890 (0.013) 39.9 (13.3) 28.1 (9.7)
SVR 0.905 (0.01) 34.7 (12.2) 24.4 (8.8) 0.894 (0.01) 39.5 (14.5) 27.9 (10.6) 0.882 (0.007) 43.7 (16.3) 30.9 (11.9)
Historical avg. 0.806 (0.01) 79.7 (35.7) 43.5 (17.4) 0.806 (0.01) 79.7 (35.7) 43.5 (17.4) 0.806 (0.01) 79.7 (35.7) 43.5 (17.4)
ARIMA 0.839 (0.02) 54.6 (18.3) 39.1 (13.2) 0.879 (0.01) 43.8 (15.6) 30.6 (11.4) 0.881 (0.01) 44.3 (16.3) 30.1 (11.4)
Standard deviations across segments are reported in parentheses and numbers in boldface show the best results.
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Figure 3: Accuracy and MAE at different times of the day. Shaded areas are the 95% confidence intervals across days in the test set.
(a) Volume predictions. (b) Occupancy predictions.

Table 4: Traffic volume prediction under nonrecurring congestion conditions.

Model
Input resolution (minutes)

0.5 5 15
Accuracy RMSE MAE Accuracy RMSE MAE Accuracy RMSE MAE

ANN 0.913 (0.01) 46.9 (16.4) 33.2 (12.1) 0.880 (0.02) 66.5 (24.4) 46.2 (17.0) 0.840 (0.03) 80.2 (29.7) 59.3 (22.8)
RF 0.900 (0.01) 50.1 (17.4) 37.4 (13.2) 0.890 (0.01) 57.3 (19.6) 42.0 (15.2) 0.860 (0.02) 66.6 (21.1) 50.9 (16.0)
SVR 0.892 (0.02) 56.0 (18.9) 41.0 (14.1) 0.870 (0.02) 67.2 (21.4) 49.7 (16.1) 0.850 (0.03) 76.1 (22.9) 56.4 (17.0)
Historical avg. 0.139 (0.08) 232 (109) 192 (83.6) 0.139 (0.08) 232 (109) 192 (83.6) 0.139 (0.08) 232 (109) 192 (83.6)
ARIMA 0.851 (0.02) 73.8 (20.5) 54.2 (15.5) 0.670 (0.02) 176 (157) 126 (48) 0.860 (0.02) 77.7 (30.4) 51.6 (19.7)
Standard deviations across segments are reported in parentheses and numbers in boldface show the best results.

Table 5: Traffic occupancy prediction under nonrecurring congestion conditions.

Model
Input resolution (minutes)

0.5 5 15
Accuracy RMSE MAE Accuracy RMSE MAE Accuracy RMSE MAE

ANN 0.869 (0.01) 1.93 (1.27) 0.94 (0.29) 0.837 (0.01) 2.77 (1.72) 1.32 (0.34) 0.80 (0.02) 3.50 (2.19) 1.63 (0.48)
RF 0.873 (0.01) 1.88 (1.22) 0.91 (0.27) 0.850 (0.01) 2.21 (1.42) 1.07 (0.32) 0.796 (0.02) 2.85 (1.83) 1.42 (0.43)
SVR 0.858 (0.01) 1.92 (1.20) 0.95 (0.23) 0.828 (0.01) 2.18 (1.38) 1.13 (0.28) 0.73 (0.03) 2.58 (1.60) 1.44 (0.31)
Historical avg. −1.57 (0.83) 18.0 (7.92) 16.4 (1.76) −1.57 (0.83) 18.0 (7.92) 16.4 (1.76) −1.57 (0.83) 18.0 (7.92) 16.4 (1.76)
Standard deviations across segments are reported in parentheses, and numbers in boldface show the best results.
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Overall, we believe that models based on these machine
learning methods will scale to large road networks. +e
retraining of the models can be undertaken as new data
comes in over several weeks or months, enabling the system
to adapt to changes in the road network.

6.4. Attribute Selection. Next, we evaluate the third hy-
pothesis regarding the ability to model the complex spa-
tiotemporal evolution of traffic. To do so, we first identify the
attributes that most influence the performance of the learned
predictive models.

One common approach for identifying informative at-
tributes is to compute the Pearson correlation coefficient
between the target variable and each of the input attributes
[42]. However, the Pearson correlation coefficient is not able
to capture nonlinear relationships that may exist between
the input attributes and thetarget variable . We, therefore,
used the Recursive Feature Elimination (RFE) approach to
select the most relevant (i.e., informative) attributes [58, 59].
RFE works by iteratively considering an increasingly smaller
subset of attributes, dropping (in each iteration) the attri-
butes considered to be the least relevant. In each iteration,
we removed 10 attributes ranked the lowest in terms of
importance.

+ere are different ways to characterize the impor-
tance of attributes in RF-based models. Since any RF is a
collection of decision trees, the gini importance of each
attribute in all decision trees can be averaged, for in-
stance, to arrive at the importance of the attribute. In the
case of an ANN, the weights of the first layer of an ANN-
based model can provide insight into the attributes that

contributed significantly to making the predictions. In a
similar manner, the weights assigned to each attribute of
a linear SVM can be used to identify the relative im-
portance of the attributes [60].

Figures 8(a), 9, and 10 visualize the relative ranking of
each of the 1800 input attributes considered by the models
for traffic prediction at a particular segment (segment 23 in
these figures). +e darker shades represent the more in-
formative attributes. For each figure, the plot on the left
visualizes the volume attributes and the plot on the right
visualizes the occupancy attributes. In each of these plots, the
columns going from left to right along the x-axis represent
the segments in spatial order along the motorway from the
south to the north. Along the y-axis, the first row is the most
recent time-step, and the top row is the oldest time-step, for
example, for the 30 sec aggregation level for input data, row
20 corresponds to the data from 10 minutes before the
current time-step. Overall, we observed that all three models
provide a higher rank to neighbouring segments over a few
time-steps.

A more careful examination of the results indicated
that the predictive models based on SVR and RF assign
higher importance to volume attributes than occupancy
attributes when making decisions. Also, the same set of
attributes do not contribute significantly to the perfor-
mance of all three models. For all three models, the at-
tributes that are considered important change when the
resolution of the input data changes. For instance, for the
models based on the 30 sec aggregation level (i.e., highest
resolution), the set of attributes considered to be im-
portant for decision-making mostly included values (of
volume and occupancy) from nearby spatial locations and
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Figure 4: (a) Traffic volume in segment 23 on April 21, 2016, (+ursday) compared with the historical weekly average and (b) tweets from
NZTA accessed from [57] on April 21, 2016.
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time-steps. +e number of attributes corresponding to
downstream segments that are nearby is high for the
higher-resolution models, especially when predicting
nonrecurring congestion events. For the models based on
the 5min and 15min aggregation levels, on the other
hand, the set of attributes considered to be important
also included values from more distant segments. +ese
results add to the current knowledge about representing
information for short-term traffic prediction. For in-
stance, some recent research found that having more
than one time-step of data from neighbouring locations
only provides minor improvements in performance [13].
Our results, on the other hand, indicate that volume and
occupancy values from multiple neighbouring locations
and time-steps may be important for accurate prediction
of traffic depending on the resolution of the input data.

To further analyze the importance of the attributes, we
considered the relative importance of different subsets of
these ranked attributes. We observed that the performance,
specifically accuracy, flattens out after including ≈ 100 at-
tributes. Figure 11 shows the performance of the three
models for the 30 sec aggregation level, as a function of the
number of attributes considered, with the attributes ordered
in decreasing order of importance. A similar result was
observed for the other two aggregation levels.

Finally, we compared the performance of the RFE ap-
proach for ranking attributes with the more common cor-
relation-based approach and an approach that chose
important attributes randomly; we considered the perfor-
mance of the corresponding models under normal condi-
tions and in the presence of nonrecurring congestion events.
Tables 7 and 8 as well as Figures 12 and 13 indicate that the

06:28 06:48 07:08 07:28
Time on 21st April 2016

200

300

400

500

600

Vo
lu

m
e (

ve
hi

cle
s/

5m
in

)

Actual traffic
Seasonal average
ANN model

RF model
SVR model
ARIMA model

(a)

Actual traffic
Seasonal average
ANN model

RF model
SVR model
ARIMA model

06:28 06:48 07:08 07:28
Time on 21st April 2016

200

300

400

500

600

Vo
lu

m
e (

ve
hi

cle
s/

5m
in

)

(b)

Actual traffic
Seasonal average
ANN model

RF model
SVR model
ARIMA model

06:28 06:48 07:08 07:28
Time on 21st April 2016

200

300

400

500

600

Vo
lu

m
e (

ve
hi

cle
s/

5m
in

)

(c)

Figure 5: Traffic volume predictions in response to a nonrecurring congestion event for different input data aggregation levels (30 sec,
5min, and 15min); models using higher-resolution data respond better. (a) 30 sec aggregation level. (b) 5min aggregation level. (c) 15min
aggregation level.
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Figure 6: Additional examples of nonrecurring congestion events. Predictive models based on machine learning methods provide good
tracking performance, especially at the high-resolution (30 sec) input data aggregation level.
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Table 6: Training and testing time for each of the three learned models for short-term traffic prediction. Results indicate that these learned
models will scale well for short-term predictions in large road networks.

Average training time for 57600 samples (seconds) Average prediction time for one input sample (milliseconds)
ANN 283.8 0.16
RF 1154 82.08
SVR 4.743 0.0223
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Figure 7: Traffic volume prediction on April 25, 2016, a public holiday in New Zealand (ANZAC day).
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Figure 8: Continued.
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Figure 8: Ranking of attributes in terms of their relative importance to the performance of ANNmodels, for each of the three different input
data aggregation levels (segment 23). +e plots for the volume features are on the left and those for the occupancy features are on the right.
(a) 30 sec aggregation level. (b) 5min aggregation level. (c) 15min aggregation level.
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Figure 9: Ranking of attributes in terms of their relative importance to the performance of SVR models, for three different input data
aggregation levels (segment 23). +e plots for the volume features are on the left and those for the occupancy features are on the right. (a)
30 sec aggregation level. (b) 5min aggregation level. (c) 15min aggregation level.
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RFE approach outperforms the other two approaches for
ranking attributes. In fact, in the case of nonrecurring
congestion, the prediction accuracy using correlation-based
attribute selection is similar to that with a random selection
of the important attributes. One explanation for the poor
performance provided by correlation-based feature selection
is that the features that are most likely to be highly correlated
to the output correspond to the road segments closest to the
segment under consideration. However, in most cases, these
features give redundant information. Segments further away
may contain information about situations such as queues

building up or a spike in traffic that is not necessarily
correlated with the output but are quite informative for
predictions. +e RFE provides an opportunity to identify
these dependencies, and the experimental results show that
it is a much better choice for accurate traffic prediction,
especially with nonrecurring congestion events. +e ex-
perimental results also support the hypothesis that the
predictive models based on the machine learning algorithms
capture the complex spatiotemporal evolution of traffic by
assigning higher importance to the attributes that are more
relevant to the prediction task.
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Figure 10: Ranking of attributes in terms of their relative importance to the performance of RF models, for three different input data
aggregation levels (segment 23). +e plots for the volume features are on the left and those for the occupancy features are on the right. (a)
30 sec aggregation level. (b) 5min aggregation level. (c) 15min aggregation level.
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Figure 11: Accuracy of each of the three models for the 30 sec input data aggregation level, as a function of the number of attributes
considered; attributes ranked in decreasing order of importance using RFE approach.

Table 7: Comparison of feature selection methods; traffic volume predictions under all conditions with 30 sec input data; given a
constrained number of features, in most cases, the RFE method achieves better performance compared to random and correlation-based
feature selection.

Model Features
Accuracy RMSE MAE

Correlation Random RFE Correlation Random RFE Correlation Random RFE

ANN

10 0.864 0.853 0.863 40.5 47.0 42.2 27.9 32.7 29.1
20 0.880 0.850 0.878 37.7 46.2 34.7 25.7 32.9 24.8
40 0.891 0.866 0.896 35.4 39.5 31.2 24.3 28.0 21.7
60 0.893 0.877 0.900 35.5 36.9 29.0 23.8 26.5 20.8
80 0.893 0.881 0.905 35.2 36.6 26.9 23.7 25.5 19.3
100 0.894 0.896 0.905 34.9 30.8 27.5 23.5 21.9 19.6
120 0.894 0.885 0.904 34.6 33.8 29.0 23.3 23.9 20.4
140 0.889 0.889 0.900 35.4 33.1 28.7 23.8 23.6 20.3
160 0.897 0.879 0.902 33.1 37.6 29.6 22.5 26.3 20.5
180 0.898 0.884 0.896 32.7 34.3 31.4 22.3 24.4 21.7

RF

10 0.871 0.841 0.886 39.9 49.6 34.6 27.5 34.5 24.2
20 0.880 0.847 0.897 37.5 45.0 30.4 25.9 32.6 21.5
40 0.886 0.875 0.902 36.1 36.2 28.3 24.7 25.9 20.1
60 0.891 0.882 0.903 35.1 35.0 28.3 23.7 24.9 20.1
80 0.892 0.866 0.904 35.0 36.0 28.0 23.5 25.5 19.9
100 0.893 0.886 0.905 34.8 33.7 27.7 23.3 24.2 19.7
120 0.894 0.885 0.905 34.7 34.6 27.8 23.2 24.5 19.8
140 0.894 0.890 0.905 34.7 32.8 27.7 23.2 23.3 19.7
160 0.894 0.883 0.905 34.7 33.7 27.7 23.2 24.2 19.7
180 0.895 0.890 0.905 34.6 32.9 27.7 23.1 23.4 19.7

SVR

10 0.859 0.758 0.867 41.6 76.2 38.3 29.2 51.3 27.5
20 0.870 0.843 0.882 40.1 55.5 33.7 27.8 36.4 24.4
40 0.877 0.850 0.895 38.4 47.8 30.9 26.5 33.1 22.2
60 0.881 0.854 0.895 37.8 49.7 32.1 25.7 34.2 22.7
80 0.885 0.879 0.897 37.5 38.2 31.5 25.2 26.5 22.3
100 0.886 0.876 0.896 37.4 38.2 32.1 24.9 26.9 22.6
120 0.887 0.869 0.896 37.6 42.4 31.8 25.1 29.6 22.4
140 0.887 0.878 0.897 37.7 38.9 31.6 25.1 26.9 22.3
160 0.887 0.878 0.896 37.7 38.7 31.7 25.1 27.0 22.3
180 0.887 0.878 0.897 37.8 38.8 31.4 25.1 27.1 22.1
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Table 8: Comparison of feature selection methods.

Model Features
Accuracy RMSE MAE

Correlation Random RFE Correlation Random RFE Correlation Random RFE

ANN

10 0.833 0.800 0.855 70.1 80.7 58.3 49.8 59.1 43.4
20 0.845 0.822 0.880 66.1 69.4 47.8 46.5 53.6 35.8
40 0.861 0.843 0.891 60.2 63.8 45.5 42.6 47.6 33.3
60 0.857 0.864 0.901 62.8 55.6 41.1 43.8 41.6 30.1
80 0.861 0.857 0.906 61.4 60.6 39.8 42.9 43.5 28.7
100 0.862 0.892 0.906 60.4 45.3 39.0 42.3 32.8 28.3
120 0.861 0.883 0.907 61.1 49.5 40.0 42.7 35.9 28.8
140 0.856 0.886 0.907 63.5 48.2 40.0 44.1 35.0 28.4
160 0.874 0.875 0.905 55.6 54.0 40.0 39.1 38.4 29.0
180 0.868 0.876 0.902 57.2 52.1 43.9 40.2 38.0 31.0

RF

10 0.832 0.797 0.875 69.2 81.1 52.4 50.3 61.1 38.5
20 0.842 0.836 0.886 65.9 62.9 48.0 47.8 48.9 34.7
40 0.847 0.858 0.894 64.0 55.5 43.9 46.0 42.1 32.2
60 0.852 0.856 0.892 63.7 58.7 44.6 45.1 43.7 32.8
80 0.851 0.865 0.893 64.0 57.2 44.5 45.2 41.1 32.6
100 0.852 0.868 0.893 63.8 54.2 44.2 45.0 40.4 32.5
120 0.851 0.860 0.893 64.0 57.6 44.2 45.2 42.3 32.5
140 0.852 0.868 0.893 63.8 54.0 44.0 45.0 40.4 32.4
160 0.851 0.867 0.894 64.0 53.9 43.9 45.1 40.2 32.4
180 0.852 0.872 0.893 63.9 52.5 44.1 44.9 38.7 32.4

SVR

10 0.825 0.722 0.850 72.6 114.1 59.3 53.0 84.4 45.2
20 0.822 0.751 0.880 73.5 100.8 47.2 53.4 73.1 36.5
40 0.834 0.796 0.874 69.4 81.6 50.0 50.1 60.4 37.7
60 0.834 0.816 0.878 70.2 76.3 50.0 50.0 55.2 37.2
80 0.832 0.838 0.879 71.5 66.0 49.9 50.5 48.7 36.9
100 0.832 0.842 0.879 72.0 63.8 50.3 50.5 47.5 37.1
120 0.829 0.828 0.877 72.7 70.0 50.8 51.2 51.8 37.5
140 0.830 0.832 0.876 72.6 69.3 51.3 51.1 50.7 37.8
160 0.829 0.839 0.875 72.7 65.9 51.7 51.1 48.3 38.0
180 0.830 0.835 0.876 72.6 66.9 51.3 51.1 49.5 37.7

Traffic volume predictions under nonrecurring conditions with 30 sec input data; given a constrained number of features, in most cases, the RFE method
achieves better performance compared to random and correlation-based feature selection.
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Figure 12: Performance comparison of RFE, correlation-based and random-selection approaches for selecting important attributes; results
correspond to an ANN model for the 30 sec input data aggregation level.
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7. Conclusions

Traffic congestion results in significant monetary losses in
countries around the world. Short-term traffic prediction
helps make decisions based on predictions of traffic in the
near-future and is more useful than just using the real-time
data of traffic conditions. Despite being a mature field, short-
term traffic prediction poses many open problems such as the
(a) choice of the optimal input data resolution; (b) reliable
prediction and efficient tracking of nonrecurring congestion
events; and (b) accurate modelling of the complex spatio-
temporal dependencies influencing traffic estimation. We
have explored the construction and use of predictive models
based on three established machine learning algorithms for
addressing the aforementioned problems. Specifically, we
investigated the use of Artificial Neural Network (ANN),
Support Vector Regression (SVR), and Random Forest (RF)
and evaluated the predictive performance of these models for
three different input data aggregation levels, 30 sec, 5min, and
15min. For each learned model, the output was a prediction
(of volume or occupancy) over a 5min period, although the
same methodology can be used to provide predictions over
10min or 15min intervals as well. Our experiments indicate
the following.

(i) Aggregation of high-resolution data to a lower
resolution is not required for accurate forecasting
withmachine learning algorithms. Aggregationmay
actually have a negative effect on accuracy for these
multivariate models. Our results indicate that ma-
chine learning algorithms are able to extract useful
information from high-resolution data despite the
corresponding amplification of noise and variability
in the sensor measurements.

(ii) By not explicitly exploiting the periodic charac-
teristics in traffic, the machine learning models
studied here perform equally well under both re-
curring and nonrecurring congestion without re-
quiring any special changes to the models. +e
corresponding experimental results also indicate
that these learned models are able to capture the
underlying complex, spatiotemporal evolution of
traffic.

(iii) Recursive Feature Elimination provides a good
ranking of attributes for short-term traffic predic-
tion. +e more commonly used linear Pearson
correlation coefficient-based feature selection [42]
provides poor prediction accuracy similar to that
with a random selection of features in the presence
of nonrecurring congestion. Furthermore, feature
selection enables us to visualize and better under-
stand the spatiotemporal patterns modeled by the
machine learning models.

+ese results open up multiple directions for further
research. First, we will incorporate these findings in more
sophisticated machine learning algorithms for short-term
traffic prediction. For instance, the complex, nonlinear re-
lationships influencing traffic flow may be modeled well
using deep network architectures, especially when high-
resolution input data is considered. We will also consider
other datasets in order to generalize the findings reported in
this paper based on data from a single highway. Second, we
will build on the indicated ability to track nonrecurring
congestion events in order to consider both accidents and
weather conditions. +is will require the underlying algo-
rithms to model additional variables and their effect on
traffic flow. Furthermore, we will explore network-wide
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Figure 13: Performance comparison of RFE, correlation-based, and random-selection approaches for selecting important attributes; results
correspond to an SVR model for the 30 sec aggregation level. RFE provides the highest accuracy.
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traffic predictions towards the long-term objective of ef-
fective use of resources for the smooth flow of traffic under a
wide range of circumstances.

Data Availability

+e terms of use of the data used in this study do not allow the
authors to distribute or publish the data directly. However,
these data can be obtained directly from NZTA through APIs
on the following web page: https://www.nzta.govt.nz/traffic-
and-travel-information/infoconnect-section-page/.
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