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EXPANSIVITY AND UNIQUE SHADOWING1

CHRIS GOOD, SERGIO MACÍAS, JONATHAN MEDDAUGH, JOEL MITCHELL,2

AND JOE THOMAS3

Abstract. Let f : X → X be a continuous function on a compact metric

space. We show that shadowing is equivalent to backwards shadowing and

two-sided shadowing when the map f is onto. Using this we go on to show that,
for expansive surjective maps the properties shadowing, two-sided shadowing,

s-limit shadowing and two-sided s-limit shadowing are equivalent. We show
that f is positively expansive and has shadowing if and only if it has unique

shadowing (i.e. each pseudo-orbit is shadowed by a unique point), extending

a result implicit in Walter’s proof that positively expansive maps with shad-
owing are topologically stable. We use the aforementioned result on two-sided

shadowing to find an equivalent characterisation of shadowing and expansivity

and extend these results to the notion of n-expansivity due to Morales.

1. Introduction4

Let f : X → X be a continuous function on a compact metric space X. A δ-5

pseudo-orbit is a sequence (xi)i∈N0
such that d(f(xi), xi+1) < δ. Pseudo-orbits6

are of importance when calculating an orbit numerically, as rounding errors mean7

a computed orbit will be a pseudo-orbit. The sequence (yi) from X is said to ε-8

shadow the sequence (xi) provided d(yi, xi) < ε for all i. We then say that the9

system has shadowing, or the pseudo-orbit tracing property, if pseudo-orbits are10

shadowed by true orbits (see below for precise definitions). Motivating this paper11

is Walters [48] result that if h is an expansive homeomorphism with shadowing,12

then for every ε > 0 there is a δ > 0 such that every δ-pseudo-orbit is ε-shadowed13

by a unique point from X. We show that the converse is true; a system is shadowing14

and expansive if and only if it has unique shadowing. We go on to obtain results15

of a similar flavour using the notion of n-expansivity due to Morales [37].16

Shadowing is important when modelling a system numerically (for example see17

[16, 41]). However, it is also important theoretically. For example, Bowen [6]18

used shadowing implicitly as a key step in his proof that the nonwandering set19

of an Axiom A diffeomorphism is a factor of a shift of finite type. Since then it20

has been studied extensively, in the setting of numerical analysis [16, 17, 41], as21

a key factor in stability theory [44, 46, 48], in understanding the structure of ω-22

limit sets and Julia sets, [1, 3, 4, 5, 7, 27, 35], and as a property in and of itself23

[18, 23, 26, 33, 38, 42, 44, 47].24

Many other notions of shadowing have been studied including, for example,25

ergodic, thick and Ramsey shadowing [8, 9, 10, 20, 22, 40], limit shadowing [2, 30,26

45], s-limit shadowing [2, 30, 33], orbital shadowing [25, 36, 43, 45], and inverse27
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shadowing [17, 28, 32]. In this paper we focus on shadowing, s-limit shadowing,1

h-shadowing and limit shadowing.2

In Section 3, we observe (Theorem 3.2) that if f is surjective then it has shad-3

owing if and only if for any ε > 0 there exists δ > 0 such that every backwards4

δ-pseudo orbit is ε-shadowed by some backwards orbit of a point: thus shadowing5

is equivalent to backwards shadowing. We additionally show that it is equivalent6

to two-sided shadowing (i.e. two-sided pseudo-orbits are shadowed by a two-sided7

trajectory of a point). We then strengthen a result in [3] (Corollary 3.7), by demon-8

strating that for expansive maps, the properties shadowing, two-sided shadowing,9

s-limit shadowing and two-sided s-limit shadowing are equivalent. In Section 4, we10

turn our attention to the notion of n-expansivity due to Morales [37]. We show11

(Theorem 4.3) that pseudo-orbits are shadowed by at most n points if and only12

if f has shadowing and is n-expansive. We then construct an example of a posi-13

tively n-expansive system with shadowing which is not positively (n−1)-expansive.14

We close by examining the consequences of uniqueness in three other shadowing15

properties, namely s-limit shadowing, limit shadowing and h-shadowing.16

2. Preliminaries17

This section serves to outline the preliminary background definitions and notions18

for the remainder of this paper and are standard across the literature. Throughout,19

we will assume that a discrete dynamical system is a pair (X, f) consisting of a20

compact metric space X and a continuous map f : X → X. Note that we do not21

assume, in general, that the map f is onto. However, since surjective dynamical22

systems are usually the more interesting from a dynamics viewpoint, we ensure that23

every example we construct in this paper is surjective (unless it is the property of24

surjectivity itself which is under examination). We say that the orbit of x under f25

is the set of points {x, f(x), f2(x), . . .}; we denote this set by Orbf (x). A (finite or26

infinite) sequence (xi)0≤i≤n for some n ∈ N ∪ {∞} is said to be a δ-pseudo-orbit27

for some δ > 0 if d(f(xi), xi+1) < δ for each i ≤ n. The infinite sequence (xi)i∈N0
28

is an asymptotic pseudo-orbit provided that limi→∞ d(f i(xi), xi+1) = 0 and we say29

that (xi)i∈N0
is an asymptotic δ-pseudo-orbit if it is both a δ-pseudo-orbit and an30

asymptotic pseudo-orbit. The point z ∈ X is said to ε-shadow (xi)0≤i≤n for some31

ε > 0 if d(xi, f
i(z)) < ε for each i ≤ n. It asymptotically shadows the sequence32

(xi)i∈N0 if limi→∞ d(xi, f
i(z)) = 0 and asymptotically ε-shadows the sequence if it33

both ε-shadows and asymptotically shadows it.34

The classical notion of shadowing states that (X, f) has shadowing provided for35

any ε > 0 there exists δ > 0 such that every (infinite) δ-pseudo-orbit is ε-shadowed.36

The system has limit shadowing, a property first introduced in [21] with reference37

to hyperbolic sets, if every asymptotic pseudo-orbit is asymptotically shadowed.38

The notion of limit shadowing was extended in [33] to a property the authors39

called s-limit shadowing to accommodate the fact that many systems exhibit limit40

shadowing but not shadowing [31, 44]. The system (X, f) has s-limit shadowing if,41

in addition to having shadowing1, for any ε > 0 there exists δ > 0 such that for42

any asymptotic δ-pseudo orbit (xi)i∈N0 there exists z ∈ X which asymptotically43

ε-shadows (xi)i∈N0 . Finally, the system (X, f) has h-shadowing, or shadowing with44

1We note that postulating shadowing as part of the definition of s-limit shadowing is actually
unnecessary when the phase space is compact (see by [29, Theorem 11.0.1]).
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exact hit, if for any ε > 0 there exists δ > 0 such that for any finite δ-pseudo orbit1

(x0, x1, . . . xm) there exists z ∈ X which ε-shadows it and for which fm(z) = xm.2

We remark that h-shadowing was introduced in [3] and was motivated by the3

fact that an important class of shift systems, called shifts of finite type, which4

are fundamental in the study of shadowing (see [26]) exhibit this stronger form of5

shadowing and that it coincide with the usual form for shift systems but is distinct6

in general (see [2, Example 6.4]). Moreover, it is known from results in [2] that7

h-shadowing implies s-limit shadowing which further implies limit shadowing.8

3. Two-sided shadowing9

We start with the following simple observation, which we nevertheless believe10

to be new for functions in general. The classical notion of shadowing states that11

(X, f) has shadowing provided for any ε > 0 there exists δ > 0 such that every12

δ-pseudo-orbit is ε-shadowed. It is a standard result in the theory of shadowing [44]13

that a compact dynamical system (X, f) has shadowing if and only if for any ε > 014

there is a δ > 0 such that every finite δ-pseudo orbit (x0, . . . , xn) is ε-shadowed by15

some x ∈ X. It is shown here that in a compact space, one obtains an equivalent16

notion of shadowing in terms of backwards and two-sided (pseudo-)orbits.17

Definition 3.1. Suppose that (X, f) is a dynamical system.18

(1) A backwards orbit of the point x ∈ X is a sequence (xi)i≤0 ⊆ X for which19

f(xi) = xi+1 for all i ≤ −1 and x0 = x.20

(2) A two-sided orbit of the point x ∈ X is a sequence (xi)i∈Z ⊆ X for which21

f(xi) = xi+1 for all i ∈ Z and x0 = x.22

(3) The sequence (xi)i≤0 ⊆ X is a backwards δ-pseudo-orbit if d(f(xi), xi+1) <23

δ for each i ≤ −1.24

(4) The sequence (xi)i∈Z ⊆ X is a two-sided δ-pseudo-orbit if d(f(xi), xi+1) < δ25

for each i ∈ Z.26

(5) (X, f) is said to have the backwards shadowing property if for any ε > 0,27

there exists δ > 0 for which every backwards δ-pseudo-orbit in X is ε-28

shadowed by some backwards orbit of a point in X.29

(6) (X, f) is said to have the two-sided shadowing property if for any ε > 0,30

there exists δ > 0 for which every two-sided δ-pseudo-orbit in X is ε-31

shadowed by some two-sided orbit of a point in X.32

Obviously if f is not a homeomorphism, backwards and two-sided orbits need33

not be unique.34

Theorem 3.2. Let (X, f) be a dynamical system with X compact. Then, of the35

following, (1) implies (2) which implies (3). Furthermore, if f is onto then (3)36

implies (1).37

(1) f has shadowing;38

(2) f has two-sided shadowing;39

(3) f has backwards shadowing.40

Proof. (1) =⇒ (2): Suppose that (X, f) has shadowing. Let ε > 0 and choose41

δ > 0 such that every δ-pseudo-orbit is ε/2-shadowed. Suppose that (xn)n∈Z is a42

two-sided δ-pseudo-orbit. For each n > 0, let y−n be a point which ε/2-shadows43

the δ-pseudo-orbit (x−n, x−n+1, x−n+2, . . .). There exists a point z0 ∈ X and an44

infinite subset N0 of N0 such that fn(y−n) → z0 as n → ∞ and n ∈ N0. Clearly45
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the forward orbit of z0 ε-shadows (x0, x1, x2, . . .). Given z−k and an infinite subset1

Nk of N0 such that fn−k(y−n)→ z−k as n→∞ and n ∈ Nk∩{k+1, k+2, . . .}, we2

can find a point z−k−1 and an infinite Nk+1 ⊆ Nk such that fn−k−1(y−n)→ z−k−13

as n→∞ and n ∈ Nk+1 ∩ {k + 2, k + 3, . . .}. Note that d(x−k, z−k) < ε and that,4

by continuity, f(z−k−1) = z−k for all k ≥ 0. Hence z0 has a two-sided orbit that5

ε-shadows (xn)n∈Z.6

It is clear that (2) implies (3). Finally (3) implies (1) because, given that every7

point has a pre-image, (3) implies that finite pseudo-orbits are shadowed, which is8

equivalent to shadowing in compact metric spaces (see [44, Lemma 1.1.1]). �9

One can also extend the notion of s-limit shadowing to the two-sided and back-10

ward varieties. For this, one requires the notions of two-sided asymptotic pseudo-11

orbits and backward asymptotic pseudo-orbits. These are defined analogously to12

the normal (forward) asymptotic pseudo-orbits but in the spirit of Definition 3.1.13

Definition 3.3. Suppose that (X, f) is a dynamical system.14

(1) A backwards asymptotic δ-pseudo-orbit is a backwards δ-pseudo orbit (xi)i≤015

which in addition satisfies d(f(xi), xi+1)→ 0 as i→∞.16

(2) A two-sided asymptotic δ-pseudo-orbit is a two-sided δ-pseudo orbit (xi)i∈Z17

which in addition satisfies d(f(xi), xi+1)→ 0 as i→ ±∞.18

(3) (X, f) is said to have the backwards s-limit shadowing property if it has the19

backwards shadowing property and for any ε > 0 there exists a δ > 0 such20

that every backwards asymptotic δ-pseudo-orbit in X is asymptotically ε-21

shadowed by some backwards orbit in X.22

(4) (X, f) is said to have the two-sided s-limit shadowing property if it has23

the two-sided shadowing property and for any ε > 0 there exists a δ > 024

such that every two-sided asymptotic δ-pseudo-orbit in X is asymptotically25

ε-shadowed by some two-sided orbit in X.26

We then obtain a connection between the different varieties of s-limit shadowing.27

Proposition 3.4. If f has two-sided s-limit shadowing then it has backward s-limit28

shadowing. If, in addition, f is a surjection then f has s-limit shadowing.29

Proof. Let ε > 0 be given and let δ > 0 correspond to this for two-sided s-limit30

shadowing.31

Let (xi)i≤0 be a backward asymptotic δ-pseudo-orbit. Extend this into a two-32

sided asymptotic δ-pseudo-orbit by letting xi = f i(x0) for all i > 0. By two-sided33

s-limit shadowing there exists z ∈ X which asymptotically ε-shadows (xi)i∈Z. In34

particular, z backwards asymptotically ε-shadows (xi)i≤0. This part of the result35

now follows by the fact that two-sided shadowing implies backward shadowing (see36

the proof of Theorem 3.2).37

Now let (xi)i≥0 be an asymptotic δ-pseudo-orbit and suppose f is onto: for each38

i < 0 let xi be such that f(xi) = xi+1. By two-sided s-limit shadowing there exists39

z ∈ X which asymptotically ε-shadows (xi)i∈Z. In particular, z asymptotically40

ε-shadows (xi)i≤0. It remains to note that f has shadowing by Theorem 3.2. �41

The following example shows the necessity of surjectivity in the previous result.42

Indeed, one can exhibit a non-surjective system with two-sided s-limit shadowing43

but not s-limit shadowing.44
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Example 3.5. Let X = {−1,−1/2, 0, 1/2n | n ∈ N0} with the induced metric from1

the real line. Let2

f(x) =

 x+ 1/2 if x ∈ {−1, 1/2},
x if x ∈ {0, 1},
1/2n−1 if x = 1/2n for n ≥ 1.

For any δ, we can construct a δ-pseudo-orbit starting from −1 and ending with a3

sequence of 1s. This cannot be, for example, 1/3-shadowed, thus the system does4

not have s-limit shadowing. However, for δ < 1/3 every backward asymptotic δ-5

pseudo orbit lies in [0, 1]. Similarly, every two-sided asymptotic δ-pseudo-orbit lies6

in [0, 1], and it is clear that the subsystem X ∩ [0, 1] has backward and two-sided7

s-limit shadowing.8

Recall that a system (X, f) is c-expansive if there exists some η > 0 such that9

for any x, y ∈ X and two-sided orbits (xi)i∈Z and (yi)i∈Z in X with x0 = x, y0 = y10

and d(xi, yi) < η for all i ∈ Z one has x = y. It is often seen that systems with11

expansivity properties guarantee that certain characteristic properties of shadowing12

varieties hold. For example, in [3] the first named author et al show that an13

expansive map has shadowing if and only if it has s-limit shadowing. The next14

result extends this further by providing an equivalence between s-limit shadowing15

and two-sided s-limit shadowing.16

Theorem 3.6. Let (X, f) be a dynamical system. If f is c-expansive then f has17

two-sided shadowing if and only if f has two-sided s-limit shadowing.18

Proof. If f has two-sided s-limit shadowing then it has two-sided shadowing by19

definition. Therefore, suppose that f has two-sided shadowing. Let η > 0 be the20

c-expansivity constant for f and take ε > 0 with ε < η/2: let δ > 0 correspond21

to this ε in the definition of two-sided shadowing (without loss of generality we22

assume δ < ε/2). Let (xi)i∈Z be a two-sided asymptotic δ-pseudo-orbit. By two-23

sided shadowing, there exists a full orbit (zi)i∈Z such that d(xi, zi) < ε for all i ∈ Z.24

The proof of Theorem 3.7 in [3] shows that under these conditions, d(zi, xi) → 025

as i → ∞ and thus it suffices to show that d(zi, xi) → 0 as i → −∞. This can be26

done by a similar argument to that of [3].27

Suppose that d(zi, xi) does not converge to 0 as i→ −∞. Then by compactness28

of X there exists a0, b0 ∈ X and an infinite set of negative integers, N0, such that29

i). limi→−∞,i∈N0
xi = a0,30

ii). limi→−∞,i∈N0
zi = b0;31

iii). d(a0, b0) = r > 0.32

Note that by the fact that (zi)i∈Z ε-shadows (xi)i∈Z, it follows that r = d(a0, b0) ≤33

ε. By continuity, for any k ∈ N, limi→−∞,i∈N0
zi+k = fk(b0) =: bk. Furthermore,34

since (xi)i∈Z is a two-sided asymptotic pseudo-orbit it is in particular a backward35

asymptotic pseudo-orbit when restricted to i ≤ 0. Thus, by continuity for any36

k ∈ N, limi→−∞,i∈N0 xi+k = fk(a0) =: ak. By shadowing, d(ak, bk) ≤ ε for all37

k ∈ N.38

By the compactness of X, there exist points a−1 and b−1 and an infinite subset39

N−1 ⊆ N0 such that40

i). limi→−∞,i∈N1
xi−1 = a−1,41

ii). limi→−∞,i∈N1
zi−1 = b−1.42
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By the continuity of f , combined with the fact that (xi)i∈Z is a backward asymptotic1

pseudo-orbit, we have f(a−1) = a0 and f(b−1) = b0. Notice that, once again,2

by shadowing d(a−1, b−1) ≤ ε. Continuing in this manner we can obtain two3

sequences of points, a0, a−1, a−2 . . ., and b0, b−1, b−2 . . . as well as a sequence of4

subsets N0 ⊇ N−1 ⊇ N−2 . . ., such that for any k ∈ N5

i). i− k ≤ 0 for all i ∈ N−k,6

ii). limi→−∞,i∈Nk xi−k = a−k and f(a−k) = a−k+1,7

iii). limi→−∞,i∈Nk zi−k = b−k and f(b−k) = b−k+1.8

Therefore we have full orbits (ai)i∈Z and (bi)i∈Z for which d(ai, bi) ≤ ε < η/2 (once9

again, using the fact that (zi)i∈Z ε-shadows (xi)i∈Z). But this is a contradiction; c-10

expansivity there exists k ∈ Z such that d(ak, bk) ≥ η. Thus our initial assumption11

was false: we have that d(zi, xi)→ 0 as i→ −∞. �12

The following is then immediate.13

Corollary 3.7. Let (X, f) be a dynamical system. If f is an expansive surjection14

then the following are equivalent:15

(1) f has shadowing;16

(2) f has two-sided shadowing;17

(3) f has s-limit shadowing;18

(4) f has two-sided s-limit shadowing.19

We note that the second property in the definition of two-sided s-limit shadowing20

(see Definition 3.3(4)), namely that for every ε > 0, there exists δ > 0 such that21

each asymptotic δ-pseudo-orbit in X is ε-shadowed by a two-sided orbit in X, has22

been previously studied in [14]. The authors of that work coined this property23

as the L-shadowing property and studied it in the context of dynamical systems24

whose mapping is a homeomorphism. We next show that under surjectivity, the25

L-shadowing property is sufficient to show two-sided shadowing. In other words,26

when the mapping is surjective, two-sided s-limit shadowing reduces simply to L-27

shadowing. This result is similar to that of the first, fourth and fifth named authors28

in [29] where it is shown that s-limit shadowing is equivalent to the second property29

in the definition of s-limit shadowing when the phase space is compact metric.30

Proposition 3.8. When (X, f) is a surjective dynamical system, then (X, f) has31

two-sided s-limit shadowing if and only if it has L-shadowing.32

Proof. By the proof of Proposition 3.4, as f is onto, (X, f) satisfies the first con-33

dition in s-limit shadowing (i.e. for any ε > 0 there exists δ > 0 such that for any34

asymptotic δ-pseudo orbit (xi)i∈N there exists a point z ∈ X which asymptotically35

ε-shadows (xi)i∈N). Therefore by the aforementioned result in [29], (X, f) has s-36

limit shadowing and, in particular, shadowing. The result now follows by applying37

Theorem 3.2. �38

4. Unique Shadowing39

In his study of shadowing and stability, Walters [48] proves that if h is an ex-40

pansive homeomorphism with shadowing, then for every ε > 0 there is a δ > 0 such41

that every δ-pseudo-orbit is ε-shadowed by a unique point from X. It turns out42

that the converse is true; a system is shadowing and expansive if and only if it has43

unique shadowing. By using a natural generalisation as seen in the work of Morales44
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[37] of the notions of expansivity and positive expansivity, one can obtain results1

of a similar flavour which we exhibit in this section.2

Definition 4.1. Let (X, f) be a dynamical system.3

(1) (X, f) is said to be positively n-expansive, for n ∈ N, if there exists r > 04

such that for any x ∈ X, the set5

Γ+(x, r) = {y ∈ X | ∀k ∈ N0 d(fk(x), fk(y)) < r},
contains at most n points.6

(2) (X, f) is said to be n-expansive, for n ∈ N, if there exists r > 0 such that7

for any x0 and any two-sided orbit (xn)n∈Z of x0 the set of y0 such that8

y0 has a two-sided orbit (yn)n∈Z with d(xi, yi) < r for all i ∈ Z contains at9

most n points.10

Hence, a system is (positively) 1-expansive precisely when it is (positively) ex-11

pansive.12

Definition 4.2. A dynamical system (X, f) is said to have (two-sided) n-shadowing13

if there exists η > 0 such that for any ε > 0 with ε < η there exists δ > 0 such that14

given any (two-sided) δ-pseudo-orbit there exists at least one point and at most n15

points which ε-shadow it.16

We refer to the property of 1-shadowing as unique shadowing. We first demon-17

strate a basic characterisation of these shadowing properties using the expansivity18

notions introduced above.19

Theorem 4.3. Let X be a metric space. For any n ∈ N, a dynamical system (X, f)20

(1) has n-shadowing if and only if it has shadowing and is positively n-expansive.21

(2) has two-sided n-shadowing if and only if it has two-sided shadowing and is22

n-expansive.23

Proof. Clearly if (X, f) has n-shadowing then it has shadowing. Suppose for a24

contradiction that it is not positively n-expansive. Let η > 0 be as in the definition25

of n-shadowing and suppose that ε > 0 is such that ε < η
2 . Then there exists δ > 026

(δ < ε) such that every δ-pseudo-orbit is ε-shadowed and by at most n points. Let27

x0 be a point such that Γ+(x0, ε) contains n+1 distinct points x0, x1, · · · , xn. Then28

d(fk(x0), fk(xj)) < ε for all k ≥ 0 and all 0 ≤ j ≤ n. Thus since {fk(x0)}k∈N0
is a29

δ-pseudo-orbit, and is ε-shadowed by every such xj , one obtains a contradiction to30

n-shadowing.31

Now suppose (X, f) has shadowing and is positively n-expansive. Let r > 0 be32

a constant of the positive n-expansivity. We claim that (X, f) has n-shadowing33

with η = r
2 . Pick ε < r

2 and let δ > 0 correspond to ε > 0 in the definition of34

shadowing. Suppose there exists a δ-pseudo-orbit (yi)i∈N0
which is ε-shadowed by35

n+1 distinct points x0, . . . , xn ∈ X. Then by the triangle inequality, for all n ∈ N036

and any i, j ∈ {0, . . . , n}, d(fn(xi), f
n(xj)) < 2ε < r, a contradiction.37

The proof of (2) can be argued similarly. �38

Corollary 4.4. If (X, f) has n-shadowing then it has two-sided n-shadowing.39

Proof. This follows immediately by combining Theorems 3.2 and 4.3. �40

The converse of this is not true in general. Indeed, on infinite spaces there are41

no positively expansive homeomorphisms [19] but there are expansive ones; the full42

shift on two symbols is such an example.43
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Remark 4.5. Since there are no positively expansive maps of the interval, no interval1

map has unique shadowing.2

Remark 4.6. Note that a positively n-expansive map on a compact metric is finite-3

to-one; if f−1(x) is infinite, then it has a limit point z so that for any r > 0, Γ+(z, r)4

is infinite.5

One can also investigate how these versions of shadowing and expansivity interact6

with the h-shadowing property. Recall that a system (X, f) has h-shadowing if for7

every ε > 0, there is a δ > 0 such that every finite δ-pseudo orbit (x0, . . . , xn)8

is ε-shadowed by a point z such that fn(z) = xn. It is known that h-shadowing9

implies s-limit shadowing which in turn implies limit shadowing [2]. In [2] it is10

also shown that a positively expansive map has shadowing if and only if it has h-11

shadowing. Carvalho and Cordiero [11] prove that an n-expansive homeomorphism12

with shadowing has limit shadowing. Using these results, together with Theorem13

3.6, the following is almost immediate. The proof of (3) follows directly from the14

proof of Theorem C in [11] given Remark 4.6 above.15

Corollary 4.7. Let f : X → X be a continuous map on the compact metric space16

X.17

(1) f has unique shadowing if and only if it has h-shadowing and is positively18

expansive.19

(2) f has two-sided unique shadowing if and only if it has two-sided s-limit20

shadowing and is expansive.21

(3) If f is a positively n-expansive surjection and has shadowing, then it has22

limit shadowing.23

One may question how distinct the different notions of n (positive) expansivity24

are for different values of n. This has been investigated previously in the context25

of homeomorphism systems. For example, Li and Zhang [34] construct homeomor-26

phisms that are (positively) n-expansive but not (positively) (n− 1)-expansive for27

any n ≥ 2. In [11], Carvalho and Cordiero show that for any n ≥ 2 there exists28

a homeomorphism with shadowing that is n-expansive but not (n − 1)-expansive.29

Here we provide an example of a surjective system with shadowing that is positively30

n-expansive but not positively (n − 1)-expansive on the forward orbits as per the31

definition above. When n = 2, our example does not have h-shadowing, meaning32

that this serves as a counterexample to the would-be natural generalisation of (1)33

in Corollary 4.7; that is, n-shadowing is not necessarily equivalent to h-shadowing34

and positive n-expansivity. We note, however, that the system does have two-sided35

s-limit shadowing.36

Example 4.8. Fix n ≥ 2. Firstly, we define a subset X0 of R2 recursively in the
following manner. Let Y0 = {(3, 0)}. Given sets Y0, . . . , Yk, one obtains Yk+1 by
considering the point (x, 0) ∈ Yk with the smallest first coordinate. Let Yk+1 consist
of the points (x− 2−k, 0) and (x− 2−k − 2−(k+1), 0) along with n− 2 points on the
straight line segment whose endpoints are (x−2−k, 0) and (x−2−k−2−(k+1), 0) such
that all n of the points are equidistant. Thus, each Yk for k ≥ 1 contains exactly
n points that are equally spaced along the x-axis. Moreover, by construction, all
points in each Yk have positive first coordinate and are distinct and in addition,

Yi ∩ Yj = ∅ for all i 6= j. Let X0 =
⋃∞
k=0 Yk =

⋃∞
k=0 Yk ∪ {(0, 0)}. One then defines

the sets Xi recursively. Given X0, . . . , Xk, let (p, q) ∈ Xk be the point such that p
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is maximal over the collection of all first coordinates of points in Xk (the second
coordinate will be the same for all points in Xk by construction). Then, define
Xk+1 as

Xk+1 = {(x, y) ∈ R2 | (x, y + 2−k) ∈ Xk \ {(p, q)}}.

One then defines X =
⋃∞
k=0Xk ∪ {(0,−2)} so that X is closed in R2. One may1

then endow X with the standard metric from R2 to form a metric space.2

Next, one defines a map f : X → X in the following manner. Let (0, 0), (3, 0)
and (0,−2) each be fixed points. For each k ≥ 1, let f map each point in Yk to the
point in Yk−1 with minimal first coordinate so that this defines f on the entirety of

X0. For each k ≥ 1, define f on Xk to map the point (x, y) ∈ Xk\{(0,−
∑k−1
i=0 2−i)}

to the point (z, y + 2−(k−1)) ∈ Xk−1 where

z = min{x′ | x < x′ and (x′, y + 2−(k−1)) ∈ Xk−1},

and then let f : (0,−
∑k−1
i=0 2−i) 7→ (0,−

∑k−2
i=0 2−i) for k ≥ 2, and f : (0,−1) 7→3

(0, 0) for k = 1. By construction, f is then a continuous surjection.4

Moreover, it is positively n-expansive. Indeed, take r = 1/4 and suppose firstly5

that x ∈ X is not one of the fixed points. By construction, the set Γ+(x, r) can6

contain no points from an Xk different to that containing x. Indeed, if x ∈ X07

this is clear since points in Xk for k ≥ 1 are at least a distance of 1 away from x.8

Moreover, if x ∈ Xk for some k ≥ 1 then there is an iterate of x that is in X1 and9

so the corresponding iterate of any point that began on Xj for some j 6= k will not10

be on X1 and hence must be at least a distance of 1/2 from the iterate of x. So,11

consider firstly the case when x ∈ X0. Suppose that j ≥ 1 is such that x ∈ Yj then12

by construction, no point in X0 that is not in Yj can be in Γ+(x, r) since there13

will be an iterate of x that is in Y1, and the corresponding iterate of the points not14

in Yj will not be in Y1 and hence will be at least a distance of 1/2 away. Thus,15

Γ+(x, r) ⊆ Yj and so since Yj consists of n points, |Γ+(x, r)| ≤ n. Suppose now16

then that x ∈ Xk for some k ≥ 1 then by construction, there exists an ` ∈ N0 such17

that all points in Γ+(x, r) map onto X0 for the first time under the `th iterate.18

Since f is injective on the points in X \ X0, each of these `th iterates must be19

distinct in X0 and so from the case described previously where x originated in X0,20

this means that there can be at most n points in Γ+(x, r). It remains to check the21

fixed points. If x = (3, 0), then there is no other point that lies within a distance22

of 1/4 from it so Γ+(x, r) = {x}. If x = (0, 0) or (0,−2), then every point that lies23

with a distance of 1/4 from it has some iterate that is equal to (3, 0) and hence has24

distance greater than 1/4 from it so that in these cases also, Γ+(x, r) = {x}. Thus,25

(X, f) is positively n-expansive.26

Conversely, (X, f) is not (n− 1)-expansive. Indeed, suppose there were such an27

r > 0 that exhibited this type of expansivity. Select k > 0 such that 2−k < r. Let28

x ∈ Yk, then note that by construction each point in Yk has distance less than r29

from x and has the same image under f . Thus Yk ⊆ Γ+(x, r), so that n ≤ Γ+(x, r)30

(in fact it is equal by n-expansivity). Hence, (X, f) is not (n− 1) expansive.31

Remark 4.9. It is known that if a system on a compact space has shadowing and32

is expansive then it is topologically stable (see [48]). By Theorem 4.3 it can be33

equivalently said that compact systems with unique shadowing are topologically34

stable.35
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Figure 1. The construction from Example 4.8 for a 2-expansive map

Clearly there is more to be said on uniqueness and how it modifies other forms1

of shadowing. For example, one may define suitably ‘unique’ variants of the other2

shadowing types mentioned in this paper, i.e. s-limit shadowing, h-shadowing and3

limit shadowing.4

Definition 4.10. Let (X, f) be a dynamical system. The map f has unique s-limit5

shadowing if6

(1) it has unique shadowing; and,7

(2) there exists η > 0 such that for any ε > 0 with ε < η there exists δ > 08

such that every asymptotic δ-pseudo-orbit is asymptotically ε-shadowed by9

a unique point.10

We note that postulating uniqueness in condition (2) is of course unnecessary11

in virtue of condition (1). On the other hand, unlike the situation for s-limit12

shadowing, it is not clear that condition (2) implies condition (1).13

Definition 4.11. Let (X, f) be a dynamical system. The map f has unique h-14

shadowing if there exists η > 0 such that for any ε > 0 there exists δ > 0 such that15

for any finite δ-pseudo-orbit (x0, . . . , xn) there exists a unique point z such that16

d(f i(z), xi) < ε for each i ∈ {0, . . . , n} and fn(z) = xn.17
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Definition 4.12. Let (X, f) be a dynamical system. The map f has unique limit1

shadowing if every asymptotic pseudo-orbit is asymptotically shadowed by a unique2

point.3

The proofs of Theorems 4.13, 4.14 and 4.16 come easily given our previous dis-4

cussions and are thereby omitted. It is worth remarking upon how ‘uniqueness’5

modifies the various properties: for example, on a compact space shadowing is6

strictly weaker than h-shadowing [2] but Theorem 4.14 and Example 4.15 together7

entail that unique shadowing is strictly stronger than unique h-shadowing.8

Theorem 4.13. Let (X, f) be a dynamical system. Then the map f has9

(1) unique shadowing if and only if it has unique s-limit shadowing.10

(2) two-sided unique shadowing if and only if it has two-sided unique s-limit11

shadowing.12

Theorem 4.14. Let (X, f) be a dynamical system. If f has unique shadowing then13

it has unique h-shadowing.14

Example 4.15 shows that the converse to Theorem 4.14 is false.15

Example 4.15. Consider X = {1/2n | n ∈ N0}∪{0} and let f be the identity map16

on X. Then f has unique h-shadowing but, by Corollary 4.7, not unique shadowing17

because it is not positively expansive.18

Theorem 4.16. Let (X, f) be a dynamical system. The map f has unique limit19

shadowing if and only if it has limit shadowing and no asymptotic pairs. Moreover,20

if f has unique shadowing, then f is injective.21

As with classical shadowing and s-limit shadowing, limit shadowing has a two-22

sided analogue: A system (X, f) has (unique) two-sided limit shadowing if for any23

two-sided asymptotic pseudo-orbit (xi)i∈Z there exists a (unique) two-sided orbit24

(zi)i∈Z which asymptotically shadows it (i.e. d(zi, xi)→ 0 as i→ ±∞). Two-sided25

limit shadowing has recently attracted an array of interest (e.g. [12, 13, 15, 39]).26

Of particular note, is its strength as a condition: it is among the strongest of27

the pseudo-orbit tracing properties. For homeomorphisms, it has been shown to28

imply shadowing, mixing and the specification property [15]. We close this paper29

by examining how uniqueness modifies two-sided limit shadowing. Since our map30

is not necessarily a homeomorphism, we first require some additional terminology.31

Given a continuous self-map f : X → X on a compact metric space X, the set32

Kf =
⋂
n∈N f

n(X), which might be termed the surjective core of f , is a nonempty33

set on which f is surjective (see, for example [24]). We may then define the induced34

core system (Kf , f �Kf ), which is easily seen to be a surjective dynamical system.35

We omit the proof of the following lemma.36

Lemma 4.17. If (X, f) has two-sided limit shadowing then the induced core system37

has two-sided limit shadowing.38

Recall that a system (X, f) is transitive if for any pair of nonempty open sets U39

and V there exists n ∈ N such that fn(U)∩V 6= ∅. It is mixing if for any such pair40

there exists N ∈ N such that fn(U)∩ V 6= ∅ for all n ≥ N . It is well-known that if41

f is a transitive surjection then the system (X, f) either consists of a single periodic42

orbit or X contains at least continuum many points (with none being isolated). In43

similar fashion, it is easily observed that if f is a mixing surjection then the system44
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(X, f) either consists of a single fixed point or X contains at least continuum many1

points (with none being isolated).2

Theorem 4.18. Let (X, f) be a dynamical system, where f is an injective map3

with two-sided shadowing. If f is mixing and X contains more than one point then4

it is not positively n-expansive for any n.5

Proof. Note first that a transitive system on a compact space is onto, so f is a6

homeomorphism. Let n > 1 be given. Since f is mixing and X consists of more7

than one point, X is infinite. Let A = {x0, . . . , xn, z} be a set of n + 2 distinct8

points in X. Let ε > 0 be such that the ε-balls around points in A are pairwise9

disjoint and let δ > 0 satisfy the shadowing condition for ε/2. Without loss of10

generality δ < ε/2. By mixing, there exists n−1 > 1 and, for each i ∈ {0, . . . , n},11

x
(−1)
i ∈ B δ

2
(xi) such that12

fn−1

(
x

(−1)
i

)
∈ B δ

2

(
xi+1 (mod n+1)

)
.

Recursively by mixing there exists, for each j < −1, nj > 1 and there exists, for13

each i ∈ {0, . . . , n}, x(j)
i ∈ B2jδ (xi) such that14

fnj
(
x

(j)
i

)
∈ B2jδ

(
xi+1 (mod n+1)

)
.

Finally, for each i ∈ {0, . . . , n} there exists x′i ∈ B δ
2
(xi) and m ∈ N such that

fm(x′i) ∈ Bδ(z). For each i ∈ {0, . . . , n} we now have a two-sided (asymptotic)
δ-pseudo orbit:(

. . . , x
(j)
i+j (mod n+1), f

(
x

(j)
i+j (mod n+1)

)
, f2

(
x

(j)
i+j (mod n+1)

)
, . . . ,

fnj−1
(
x

(j)
i+j (mod n+1)

)
, x

(j+1)
i+j+1 (mod n+1), f

(
x

(j+1)
i+j+1 (mod n+1)

)
, . . . ,

fnj+1−1
(
x

(j+1)
i+j+1 (mod n+1)

)
, x

(j+2)
i+j+2 (mod n+1), . . . ,

. . . , x
(−1)
i−1 (mod n+1), f

(
x

(−1)
i−1 (mod n+1)

)
, . . . , fn−1−1

(
x

(−1)
i−1 (mod n+1)

)
,

x′i, f (x′i) , f
2 (x′i) , . . . , f

m−1 (x′i) , z, f(z), f2(z), . . .

)
where the 0th term is given by x′i for each such i. Note that these pseudo-orbits are
distinct. By two-sided shadowing these pseudo-orbits are ε/2-shadowed. Notice
that each one is shadowed by a distinct point since, for each distinct pair i, j ∈
{0, . . . , n},

d(x′i, x
′
j) > d(xi, xj)− δ
> d(xi, xj)− ε/2
> 3ε/2.

Let yi ∈ X be a point which ε/2-shadows the pseudo-orbit through x′i (so that15

yi ∈ B ε
2
(x′i)). Since f is injective fk(yi) 6= fk(yj) for any k ∈ N and distinct i and16

j. It remains now to observe that for each k ≥ m and all i ∈ {0, . . . , n} we have17

fk(yi) ∈ B ε
2
(fk−m(z)). In particular fm(yi) ∈ Γ+(z, ε) for each i ∈ {0, . . . n} and18

so |Γ+(z, ε)| ≥ n+ 1. Since we could have chosen ε arbitrarily small it follows that19

(X, f) is not positively n-expansive for any n. �20
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Corollary 4.19. Let (X, f) be a dynamical system, where f is an injective map1

with two-sided limit shadowing. If the surjective core contains more than one point2

then f is not positively n-expansive for any n.3

Proof. By Lemma 4.17 the induced core system has two-sided limit shadowing and4

therefore, by [15, Theorem B], is mixing. By [15, Theorem A] the induced core5

system has two-sided shadowing. Therefore, by Theorem 4.18 the induced core6

system is not positively n-expansive for any n ∈ N. It immediately follows that7

neither is (X, f). �8

Corollary 4.20. An injective map with unique two-sided limit shadowing does not9

have n-shadowing for any n ∈ N. In particular, it does not have unique shadowing.10

We close this paper with a question suggested to us by an anonymous referee.11

A positively expansive map f on a compact metric space X has shadowing if, and12

only if, it is open (i.e. f(U) is open for every open set U) [47, Theorem 1]. With13

this in mind, the following question is natural. For each n ≥ 2 we ask:14

Question 4.21. Is a positively n-expansive map with shadowing necessarily open?15
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