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ROBUST A POSTERIORI ERROR ESTIMATION FOR

PARAMETER-DEPENDENT LINEAR ELASTICITY EQUATIONS

ARBAZ KHAN, ALEX BESPALOV, CATHERINE E. POWELL, AND DAVID J. SILVESTER

Abstract. The focus of this work is a posteriori error estimation for stochastic
Galerkin approximations of parameter-dependent linear elasticity equations.
The starting point is a three-field partial differential equation model with the
Young modulus represented as an affine function of a countable set of parame-
ters. We introduce a weak formulation, establish its stability with respect to a
weighted norm and discuss its approximation using stochastic Galerkin mixed
finite element methods. We motivate an a posteriori error estimation scheme
and establish upper and lower bounds for the approximation error. The con-
stants in the bounds are independent of the Poisson ratio as well as the spatial
and parametric discretisation parameters. We also discuss proxies for the er-
ror reduction associated with enrichments of the approximation spaces and we
develop an adaptive algorithm that terminates when the estimated error falls
below a user-prescribed tolerance. The error reduction proxies are shown to
be reliable and efficient in the incompressible limit case. Numerical results are
presented to supplement the theory. All experiments were performed using
open source (IFISS) software that is available online.

1. Introduction

The motivation for this work is the need to develop accurate and efficient nu-
merical algorithms for solving linear elasticity problems in engineering applications
where Young’s modulus is spatially varying in an uncertain way. Of particular
interest is the nearly incompressible case, which poses a significant challenge for
numerical methods, even when all the model inputs are known exactly. An es-
tablished strategy for avoiding locking of finite element methods for standard elas-
ticity problems is to introduce an auxiliary pressure variable, obtain a coupled
system of partial differential equations (PDEs) and then to apply mixed finite el-
ement methods; see, for example, [18, 8, 21]. Error estimates for the resulting
locking-free formulation can be found in Houston et al. [20] and Kouhia & Sten-
berg [23]. Recently, in [22], Khan et al. introduced a three-field PDE model with a
parameter-dependent Young’s modulus which is amenable to discretisation by sto-
chastic Galerkin mixed finite element methods (SG-MFEMs). The focus in [22] is
on efficient linear algebra—error estimation is not considered. The three-field model
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is analysed in detail in this paper. Specifically we introduce an effective a poste-
riori error estimation strategy that is robust in the incompressible limit case. The
novel aspect of this work is the construction of an adaptive refinement algorithm
that automatically balances the spatial discretisation error with the parametric dis-
cretisation error. The adaptivity is driven by error reduction proxies that have a
rigorous underpinning.

While there has been little work to date on a posteriori error estimation and
adaptivity for stochastic Galerkin approximations of mixed formulations of linear
elasticity problems, the primal problem has been extensively studied in the litera-
ture. Specifically, stochastic finite element methods are discussed in [16, 27] and the
references therein. In [24], Matthies et al. provide an overview of how to incorporate
uncertainty into material parameters in linear elasticity problems. A framework for
residual-based a posteriori error estimation and adaptive stochastic Galerkin ap-
proximation for second order linear elliptic PDEs is presented in [12]. Numerical
results are presented for planar linear elasticity problems but the incompressible
limit is not considered. The theoretical basis for automatic refinement algorithms
for parametric PDE problems has been established in the last decade. Building on
the pioneering work of Cohen et al., see [9], recent work by Bachmayr et al. [2] and
by Crowder et al. [11] opens up the possibility of designing optimal algorithms from
a best approximation perspective. A priori analysis for so-called best N -term ap-
proximations of standard mixed formulations of stochastic and multiscale elasticity
problems can be found in [30, 19]. Error estimation and adaptivity in a sparse grid
collocation context is discussed in [17].

The formal mathematical specification of the problem we consider is as follows.
Let D (the spatial domain) be a bounded Lipschitz polygon in R

2 (polyhedron in
R

3) with boundary ∂D = ∂DD∪∂DN , where ∂DD∩∂DN = ∅ and ∂DD, ∂DN 6= ∅.1
Next, we introduce a vector of countably many parameters y = (y1, y2, . . .) with
each yk ∈ Γk:=[−1, 1].We model Young’s modulus in the linear elasticity equations
as a parameter-dependent function of the form

E(x,y) := e0(x) +
∞∑

k=1

ek(x)yk, x ∈ D, y ∈ Γ.(1)

In (1), Γ:=Π∞
k=1Γk denotes the parameter domain and e0 typically represents the

mean of E. The parameters yk are images of mean zero random variables and these
encode our uncertainty about E. Picking a specific y ∈ Γ corresponds to generating
a realisation of E. Following [22], we consider the (three-field) parametric problem:
find u : D × Γ→ R

d (d = 2, 3) and p, p̃ : D × Γ→ R such that

−∇ · σ(x,y) = f(x), x ∈ D, y ∈ Γ,(2a)

∇ · u(x,y) + λ̃−1p̃(x,y) = 0, x ∈ D, y ∈ Γ,(2b)

λ̃−1p(x,y)− λ̃−1E(x,y)p̃(x,y) = 0, x ∈ D, y ∈ Γ,(2c)

u(x,y) = g(x), x ∈ ∂DD, y ∈ Γ,(2d)

σ(x,y)n = 0, x ∈ ∂DN , y ∈ Γ.(2e)

1Our analysis can be extended to cover the Dirichlet case ∂D = ∂DD by redefining the ap-
proximation spaces to ensure uniqueness of pressure in the incompressible limit.
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Here, σ : D × Γ → R
d×d is the stress tensor, f : D → R

d is the body force,
n denotes the outward unit normal vector to ∂DN , u is the displacement (the
solution field of main interest) and the auxiliary variables that we have introduced
are p := −λ∇ · u (the so-called Herrmann pressure [18]) and p̃ := p/E. Recall

that σ is related to the strain tensor ε : D × Γ → R
d×d through the identities

σ = 2µε− pI and ε = 1
2 (∇u+ (∇u)⊤). The Lamé coefficients are

µ(x,y) =
E(x,y)

2(1 + ν)
, λ(x,y) =

E(x,y)ν

(1 + ν)(1 − 2ν)

and we have also introduced the constant

λ̃ :=
λ(x,y)

E(x,y)
=

ν

(1 + ν)(1 − 2ν)
.

We assume that the Poisson ratio ν ∈ (0, 1/2) is a given fixed constant (and hence,

so is λ̃) and that 0 < µ1 < µ < µ2 <∞ and 0 < λ <∞ a.e. in D × Γ. In contrast
to other mixed formulations of the linear elasticity equations, the advantage of (2)
is that while E appears in the first and third equations, E−1 does not appear at
all. As a result, since E has the affine form (1), the discrete problem associated
with SG-MFEM approximations has a structure that is relatively easy to exploit.

In Section 2 we recall the weak formulation of (2) and discuss stability and
well-posedness. A key feature of our analysis is that we work with a ν-dependent
norm. In Section 3, we discuss SG-MFEM approximation and set up the associated
finite-dimensional weak problem. In Section 4 we extend the standard hierarchical
a posteriori error estimation strategy of Bank & Smith [3] to accommodate the
parametric components of the approximation. We then establish two-sided bounds
for the true error in terms of the proposed estimate. The constants in the bounds
are independent of the Poisson ratio, so that the error estimation is robust in the
incompressible limit ν → 1/2. In Section 5 we introduce proxies for the error
reductions that would be achieved by performing finite element mesh refinement,
or by enriching the parametric part of the approximation space. We establish two-
sided bounds, showing that these error reduction proxies are efficient and reliable.
The proxies are incorporated within an adaptive refinement procedure in Section 6
and the effectiveness of the adaptive algorithm is demonstrated computationally by
the numerical results reported in Section 7.

2. Weak formulation

Before stating the weak formulation of (2), we recall the conditions on the Young
modulus E that are required to establish well-posedness and define appropriate
solution spaces. Note that E takes the specific form (1) with yk ∈ [−1, 1].
Assumption 2.1. The random field E is an essentially bounded measurable func-
tion E ∈ L∞(D×Γ) that is uniformly bounded away from zero. That is, there exist
positive constants Emin and Emax such that

0 < Emin ≤ E(x,y) ≤ Emax <∞ a.e. inD × Γ.(3)

The lower bound in (3) is satisfied by making the further assumption that

(4) 0 < emin
0 ≤ e0(x) ≤ emax

0 <∞ a.e. in D and
1

emin
0

∞∑

k=1

‖ek‖L∞(D) < 1.
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Let π(y) be a product measure with π(y) := Π∞
k=1πk(yk), where πk is a measure

on (Γk,B(Γk)) and B(Γk) is the Borel σ-algebra on Γk = [−1, 1]. We will assume
that the parameters yk in (1) are images of independent uniform random variables
ξk ∼ U(−1, 1) and choose πk to be the associated probability measure. In this case,
πk has density ρk = 1/2 with respect to Lebesgue measure and

∫

Γk

yk dπk(yk) =

∫

Γk

yk(1/2)dyk = 0.

Now, given a normed linear space X(D) of real-valued functions on D (either vector
or scalar valued) with norm ‖ · ‖X , we can define the Bochner space (for example,
in the case of vector-valued functions) as follows:

L2
π(Γ, X(D)) :=

{
v(x,y) : D × Γ→ R

d; ‖v‖L2
π(Γ,X(D)) <∞

}
,

where

‖ · ‖L2
π(Γ,X(D)) :=

(∫

Γ

‖ · ‖2Xdπ(y)
)1/2

.(5)

In particular, we will need the spaces

V := L2
π(Γ,H

1
E0

(D)), W := L2
π(Γ, L

2(D)) and W := L2
π(Γ,L

2(D)),(6)

whereH1
E0

(D):={v ∈H1(D),v|∂DD
= 0} andH1(D), L2(D) are the usual vector-

valued Sobolev spaces. We denote the norms (5) associated with V, W and W by
‖ · ‖V , ‖ · ‖W and ‖ · ‖W , respectively.

Assume that the load function f ∈ L2(D) and the boundary data g = 0 on
∂DD. Then, the weak formulation of (2) is: find (u, p, p̃) ∈ V ×W ×W such that

a(u,v) + b(v, p) = f(v) ∀v ∈ V,(7a)

b(u, q)− c(p̃, q) = 0 ∀q ∈ W ,(7b)

−c(p, q̃) + d(p̃, q̃) = 0 ∀q̃ ∈ W ,(7c)

where we have

a(u,v) := α

∫

Γ

∫

D

E(x,y)ε(u(x,y)) : ε(v(x,y))dxdπ(y),(8)

b(v, p) := −
∫

Γ

∫

D

p(x,y)∇ · v(x,y)dxdπ(y),(9)

c(p, q) := (αβ)−1

∫

Γ

∫

D

p(x,y)q(x,y)dxdπ(y),(10)

d(p, q) := (αβ)−1

∫

Γ

∫

D

E(x,y)p(x,y)q(x,y)dxdπ(y),(11)

f(v) :=

∫

Γ

∫

D

f(x)v(x,y)dxdπ(y),(12)

and we define the constants

α :=
1

1 + ν
, β :=

ν

(1− 2ν)
.(13)

Note that αβ = λ̃. Furthermore, it is important to note that the constants α and
β depend only on the Poisson ratio ν which is assumed to be known. It will also
be useful to define the combined bilinear form

B(u, p, p̃;v, q, q̃) = a(u,v) + b(v, p) + b(u, q)− c(p̃, q)− c(p, q̃) + d(p̃, q̃),(14)
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so as to express (7) more compactly as: find (u, p, p̃) ∈ V ×W ×W such that

B(u, p, p̃;v, q, q̃) = f(v) ∀(v, q, q̃) ∈ V ×W ×W .(15)

In the limit ν → 1/2, observe that β → ∞ and so c(·, ·) and d(·, ·) disappear from
(7) and (15), yielding a standard Stokes-like system. See Section 6 for more details.

To analyse the error associated with a stochastic Galerkin approximation of the
weak solution, we will work with the ν-dependent norm ||| · ||| on V × W × W
introduced in [22] and defined by

|||(v, q, q̃)|||2 := α‖∇v‖2W + (α−1 + (αβ)−1)‖q‖2W + (αβ)−1‖q̃‖2W .(16)

The motivation for this specific choice of norm is the following stability result.

Lemma 2.1. [22, Lemma 2.3] If Assumption 2.1 holds, then for any (u, p, p̃) ∈
V×W×W, there exists a function triple (v, q, q̃) ∈ V×W×W with |||(v, q, q̃)||| ≤
C2 |||(u, p, p̃)|||, satisfying

B(u, p, p̃;v, q, q̃) ≥ EminC1 |||(u, p, p̃)|||2,(17)

with constants C1 = 1
2 min{CK ,

C2
D

E2
max

, 1
E2

max
} and C2 =

√
2(E2

max + C2
D + 1)/Emax,

where CK is the Korn constant and Emin, Emax are the upper and lower bounds for
the Young modulus. The inf–sup constant CD > 0 depends only on D and is given
by

sup
06=v∈V

b(v, q)

‖∇v‖W
≥ CD‖q‖W ∀q ∈ W .(18)

The well-posedness of (15) is thus guaranteed; see [22, Theorem 2.4].

3. Stochastic Galerkin mixed finite element approximation

To approximate solutions to (7), or equivalently (15), we begin by choosing
finite-dimensional subspaces of V and W . Our construction exploits the fact that
V ∼= H1

E0
(D) ⊗ L2

π(Γ) and W ∼= L2(D) ⊗ L2
π(Γ) (i.e., that the spaces are isomet-

rically isomorphic). First, we introduce a mesh Th on the physical domain D with
characteristic mesh size h and choose a pair of conforming finite element spaces

Vh:=span {φr(x)}nu

r=1 ⊂ H1
E0

(D), Wh:=span {ϕs(x)}np

s=1 ⊂ L2(D).

We then define Vh to be the space of vector-valued functions whose components
are in Vh. We need Vh and Wh to be compatible in the sense that they satisfy the
discrete (deterministic) inf–sup condition

sup
06=v∈Vh

∫
D
q∇ · v

‖∇v‖L2(D)
≥ γh‖q‖L2(D) ∀q ∈ Wh,(19)

with γh uniformly bounded away from zero (i.e., independent of h). Stable mixed
approximation pairs satisfying (19) are known as Stokes elements. Two popu-
lar examples of stable rectangular element approximations are Q2–Q1 (continuous
biquadratic approximation for the displacement and continuous bilinear approxi-
mation for the pressure) and Q2–P−1 (continuous biquadratic approximation for
the displacement and discontinuous linear approximation for the pressure). Both
approximation strategies are inf–sup stable in a two and three-dimensional setting.

Next, we consider the parametric discretisation. Let {ψi(yj), i = 0, 1, . . .} denote
the set of univariate Legendre polynomials on Γj = [−1, 1], where j ∈ N and ψi has
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degree i. We fix ψ0 = 1 and assume that the polynomials are normalised so that∫
Γj
ψi(yj)ψk(yj)dπj(yj) = δi,k. We define the set of finitely supported sequences

I := {α = (α1, α2, . . .) ∈ N
N
0 ; # suppα <∞}, where suppα := {m ∈ N; αm 6= 0}.

The set I and its subsets will be called ‘index sets’. Combining these ingredients,
we then define the countable set of multivariate tensor product polynomials

ψα(y) :=

∞∏

i=1

ψαi
(yi) ∀α ∈ I(20)

which forms an orthonormal basis for L2
π(Γ). Now, given any finite index set Λ ⊂ I,

we can define a finite-dimensional subspace of L2
π(Γ) as follows:

SΛ := span {ψα; α ∈ Λ} .(21)

Note that only a finite number of parameters yk play a role in the definition of SΛ.
Finally, we define the SG-MFEM approximation spaces

Vh,Λ := Vh ⊗ SΛ, Wh,Λ :=Wh ⊗ SΛ,

and consider the problem: find (uh,Λ, ph,Λ, p̃h,Λ) ∈ Vh,Λ ×Wh,Λ ×Wh,Λ such that

a(uh,Λ,v) + b(v, ph,Λ) = f(v) ∀v ∈ Vh,Λ,(22a)

b(uh,Λ, q)− c(p̃h,Λ, q) = 0 ∀q ∈ Wh,Λ,(22b)

−c(ph,Λ, q̃) + d(p̃h,Λ, q̃) = 0 ∀q̃ ∈ Wh,Λ.(22c)

The well-posedness of (22) is established using the following discrete stability result.

Lemma 3.1. If E satisfies Assumption 2.1, and Vh,Wh satisfy the inf–sup condi-
tion (19) with γh > 0, then for every (uh,Λ, ph,Λ, p̃h,Λ) ∈ Vh,Λ×Wh,Λ×Wh,Λ, there
exists (v, q, q̃) ∈ Vh,Λ ×Wh,Λ ×Wh,Λ with |||(v, q, q̃)||| ≤ C∗

2 |||(uh,Λ, ph,Λ, p̃h,Λ)|||,
satisfying

B(uh,Λ, ph,Λ, p̃h,Λ;v, q, q̃) ≥ EminC
∗
1 |||(uh,Λ, ph,Λ, p̃h,Λ)|||2,(23)

where C∗
1 := 1

2 min{CK ,
γ2
h

E2
max

, 1
E2

max

}, C∗
2 :=

√
2(E2

max + γ2h + 1)/Emax and CK is

the Korn constant.

Proof. The proof follows the same lines as that of Lemma 2.1, which is given in [22,
Lemma 2.3]. Note that the constants C∗

1 and C∗
2 depend on the discrete inf–sup

constant γh that is associated with the specific choice of finite element spaces Vh

and Wh. �

In the next section, we will outline and analyse a strategy for estimating the
SG-MFEM errors eu := u−uh,Λ, e

p := p− ph,Λ and ep̃ := p̃− p̃h,Λ. To do this, we
will follow the construction of Bank & Smith [3], and introduce hierarchical spaces
that are richer than the chosen Vh,Λ and Wh,Λ. Specifically, we let V ∗

h and W ∗
h be

an inf–sup stable pair of conforming mixed finite element spaces with Vh ⊂ V ∗
h and

Wh ⊂W ∗
h such that

V ∗
h = Vh ⊕ Ṽh and W ∗

h =Wh ⊕ W̃h,(24)

where Ṽh ⊂H1
E0

(D), W̃h ⊂ L2(D), and

Vh ∩ Ṽh = {0}, Wh ∩ W̃h = {0}.(25)
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We will refer to Ṽh and W̃h as the finite element detail spaces. For example, these
could be constructed from basis functions that would be introduced by performing
a uniform refinement of the mesh associated with Vh and Wh. Since H1

E0
(D)

and L2(D) are Hilbert spaces and (25) holds, then, by the strengthened Cauchy–
Schwarz inequality [1, 13, 10], there exist constants γ1, γ2 ∈ [0, 1) (known as CBS
constants) such that

∣∣∣
∫

D

∇v : ∇ṽ
∣∣∣ ≤ γ1 ‖∇v‖L2(D)‖∇ṽ‖L2(D) ∀v ∈ Vh, ∀ṽ ∈ Ṽh,(26a)

∣∣∣
∫

D

q q̃
∣∣∣ ≤ γ2 ‖q‖L2(D) ‖q̃‖L2(D) ∀q ∈ Wh, ∀q̃ ∈ W̃h.(26b)

Next, suppose we choose a new index set Q ⊂ I such that Λ ∩ Q = ∅ and define
Λ∗ := Λ ∪Q. We will refer to Q as the detail index set. On the parameter domain
Γ, we can then define an enriched polynomial space S∗

Λ := span {ψα; α ∈ Λ∗} ⊂
L2
π(Γ). Moreover, we have

S∗
Λ = SΛ ⊕ SQ, SΛ ∩ SQ = {0}.(27)

We can now construct enriched finite-dimensional subspaces of V and W using the

finite element detail spaces Ṽh, W̃h and the polynomial space SQ,

V ∗
h,Λ :=V h∗,Λ⊕V h,Q=V h,Λ⊕ Ṽ h,Λ⊕V h,Q = V h,Λ⊕

(
Ṽ h,Λ⊕V h,Q

)
,(28)

W ∗
h,Λ :=Wh∗,Λ⊕Wh,Q =Wh,Λ⊕ W̃h,Λ⊕Wh,Q =Wh,Λ⊕

(
W̃h,Λ⊕Wh,Q

)
,(29)

where Vh∗,Λ := V ∗
h ⊗ SΛ, Wh∗,Λ :=W ∗

h ⊗ SΛ, Ṽh,Λ := Ṽh ⊗ SΛ, W̃h,Λ := W̃h ⊗ SΛ,
Vh,Q:=Vh⊗SQ andWh,Q:=Wh⊗SQ. The separation of the spatial and parametric
detail spaces (the terms in brackets added to the current approximation spaces V h,Λ

and Wh,Λ) is the key idea underlying the error estimation strategy discussed in the
next section.

4. A posteriori error estimation

We now want to estimate the SG-MFEM errors eu = u − uh,Λ, e
p = p − ph,Λ

and ep̃ = p̃ − p̃h,Λ. To that end, we extend the residual approach described, e.g.,
in [26, Section 3] to our three-field formulation. We provide a detailed derivation
in order to show how the constants in the bounds depend on the discrete inf–
sup constant and on the variability in the Young modulus. Substituting u, p and
p̃ in (7) by uh,Λ + eu, ph,Λ + ep and p̃h,Λ + ep̃, respectively, we conclude that
(eu, ep, ep̃) ∈ V ×W ×W satisfies

a(eu,v) + b(v, ep) = Ru(v) ∀v ∈ V ,(30a)

b(eu, q)− c(ep̃, q) = Rp(q) ∀q ∈ W ,(30b)

−c(ep, q̃) + d(ep̃, q̃) = Rp̃(q̃) ∀q̃ ∈ W ,(30c)

where the linear functionals Ru : V → R and Rp,Rp̃ :W → R are defined as

Ru(v) := f(v)− a(uh,Λ,v)− b(v, ph,Λ) ∀v ∈ V ,(31a)

Rp(q) := −b(uh,Λ, q) + c(p̃h,Λ, q) ∀q ∈ W ,(31b)

Rp̃(q̃) := c(ph,Λ, q̃)− d(p̃h,Λ, q̃) ∀q̃ ∈ W .(31c)
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Clearly, these functionals represent the residuals associated with the current SG-
MFEM approximation. For each one, we define a weighted dual norm as follows

‖Ru‖∗ := sup
v∈V\{0}

|Ru(v)|
α1/2‖∇v‖W

,(32)

‖Rp‖∗ := sup
q∈W\{0}

|Rp(q)|
(α−1 + (αβ)−1)1/2‖q‖W

,(33)

‖Rp̃‖∗ := sup
q̃∈W\{0}

|Rp̃(q̃)|
(αβ)−1/2‖q̃‖W

.(34)

The next result establishes an equivalence between the norm of the SG-MFEM
approximation error and the sum of the dual norms of the three residuals.

Theorem 4.1. Let (eu, ep, ep̃) ∈ V ×W ×W be the error in the SG-MFEM ap-
proximation (uh,Λ, ph,Λ, p̃h,Λ) ∈ Vh,Λ ×Wh,Λ ×Wh,Λ of the solution to (15). Then

C3 (‖Ru‖∗ + ‖Rp‖∗ + ‖Rp̃‖∗) ≤ |||(eu, ep, ep̃)||| ≤ C4 (‖Ru‖∗ + ‖Rp‖∗ + ‖Rp̃‖∗),

where C3 :=
(√

3max
{
Emax +

√
d, 1 +

√
d
})−1

, C4 := C2/(C1Emin) and C1 and
C2 are the constants in Lemma 2.1.

Proof. Since (eu, ep, ep̃) ∈ V×W×W , then from Lemma 2.1 there exists a (v, q, q̃) ∈
V ×W ×W with |||(v, q, q̃)||| ≤ C2 |||(eu, ep, ep̃)||| such that

C1 Emin |||(eu, ep, ep̃)|||2 ≤ B(eu, ep, ep̃;v, q, q̃),(35)

where C1 and C2 depend on Emax, CK and CD. Hence, we have by (30)

C1Emin |||(eu, ep, ep̃)|||2 ≤ Ru(v) +Rp(q) +Rp̃(q̃).(36)

Moreover, using the definitions of the dual norms, we have

C1Emin|||(eu, ep, ep̃)|||2 ≤ (‖Ru‖∗ + ‖Rp‖∗ + ‖Rp̃‖∗)C2|||(eu, ep, ep̃)|||.(37)

This establishes the upper bound. To establish the lower bound, we use the defini-
tion

‖Ru‖∗ := sup
v∈V\{0}

|Ru(v)|
α1/2‖∇v‖W

= sup
v∈V\{0}

|a(eu,v) + b(v, ep)|
α1/2‖∇v‖W

,(38)

and simply bound the two bilinear forms separately

‖Ru‖∗ ≤ Emaxα
1/2‖∇eu‖W +

√
dα−1/2‖ep‖W .(39)

Similarly, noting that (α−1+(αβ)−1)−1/2 ≤ α1/2 and (αβ)−1(α−1+(αβ)−1)−1/2 ≤
(αβ)−1/2, we deduce that

‖Rp‖∗ ≤
√
dα1/2‖∇eu‖W + (αβ)−1/2‖ep̃‖W ,(40)

‖Rp̃‖∗ ≤ (αβ)−1/2‖ep‖W + Emax(αβ)
−1/2‖ep̃‖W .(41)

Combining (39), (40) and (41), and recalling the definition of the norm |||(·, ·, ·)|||
in (16) implies the stated result. �

Theorem 4.1 is our starting point for developing an a posteriori error estimation
strategy. We will estimate |||(eu, ep, ep̃)||| by estimating ‖Ru‖∗ + ‖Rp‖∗ + ‖Rp̃‖∗.
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4.1. Fast evaluation of the residuals. First, we give an alternative representa-
tion of each of ‖Ru‖∗, ‖Rp‖∗ and ‖Rp̃‖∗ and show that ‖Rp‖∗ can be evaluated
exactly. Since V and W are Hilbert spaces, the Riesz representation theorem tells

us that we can find a unique eu0 ∈ V, a unique ep0 ∈ W and a unique ep̃0 ∈ W such
that

ā0(e
u

0 ,v) = Ru(v) ∀v ∈ V,(42a)

c̄(ep0, q) = Rp(q) ∀q ∈ W ,(42b)

d̄0(e
p̃
0, q̃) = Rp̃(q̃) ∀q̃ ∈ W ,(42c)

where, for efficient computation (the complexity of the resulting linear algebra is
significantly reduced) we simply use the parameter-free inner products

ā0(u,v) := α

∫

Γ

∫

D

∇u(x,y) : ∇v(x,y) dx dπ(y),(43)

c̄(p, q) :=
(
α−1 + (αβ)−1

)∫

Γ

∫

D

p(x,y)q(x,y) dx dπ(y),(44)

d̄0(p, q) := (αβ)−1

∫

Γ

∫

D

p(x,y)q(x,y) dx dπ(y).(45)

Note that d̄0(·, ·) is identical to c(·, ·) in (10). We use the notation d̄0(·, ·) to empha-
sise that it is an approximation to the bilinear form d(·, ·) defined in (11). Similarly,
ā0(·, ·) represents a(·, ·) in (8) with the strain energy approximated by the Dirichlet
energy. We observe that

|eu0 |ā0
:=

√
ā0(eu0 , e

u

0 ) = ‖Ru‖∗,(46)

|ep0|c̄ :=
√
c̄(ep0, e

p
0) = ‖Rp‖∗,(47)

|ep̃0|d̄0
:=

√
d̄0(e

p̃
0, e

p̃
0) = ‖Rp̃‖∗.(48)

Note that

|||(v, p, p̃)|||2 = |v|2ā0
+ |p|2c̄ + |p̃|2d̄0

, |(v, p, p̃) ∈ V ×W ×W .

Now, from (42b) and the definition ofRp in (31b), c̄(ep0, q) = −b(uh,Λ, q)+c(p̃h,Λ, q)
for all q ∈ W , from which we conclude that

ep0 = (α−1 + (αβ)−1)−1(∇ · uh,Λ + (αβ)−1p̃h,Λ) a.e. in D × Γ.(49)

Hence, unlike ‖Ru‖∗ and ‖Rp̃‖∗, we can compute ‖Rp‖∗ = |ep0|c̄ directly. This is
due to the fact that Rp only involves the bilinear forms b(·, ·) and c(·, ·), neither of
which include the parametric Young’s modulus E.

4.2. Approximation of the residuals. We can now approximate the solutions

eu0 and ep̃0 to (42a) and (42c) by replacing the infinite-dimensional spaces V and W
with finite-dimensional ones. This will be done using the hierarchical construction
introduced in the previous section. Thus, recalling the definitions of the spaces
V ∗
h,Λ ⊂ V and W ∗

h,Λ ⊂ W in (28) and (29), we consider the problems: find e
u,∗
0 ∈

V ∗
h,Λ and ep̃,∗0 ∈W ∗

h,Λ such that

ā0(e
u,∗
0 ,v) = Ru(v) ∀v ∈ V ∗

h,Λ,(50a)

d̄0(e
p̃,∗
0 , q̃) = Rp̃(q̃) ∀q̃ ∈W ∗

h,Λ.(50b)
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From (42a) and (50a), we have

ā0(e
u

0 − e
u,∗
0 ,v) = 0 ∀v ∈ V ∗

h,Λ,

and similarly,

d̄0(e
p̃
0 − ep̃,∗0 , q̃) = 0 ∀q̃ ∈ W ∗

h,Λ.

Hence, eu,∗
0 is simply the orthogonal projection of eu0 onto the space V ∗

h,Λ with

respect to the inner product ā0(·, ·), and ep̃,∗0 is the orthogonal projection of ep̃0 onto
the space W ∗

h,Λ with respect to d̄0(·, ·). As a consequence of this, we have

|eu,∗
0 |2ā0

+ |eu0 − e
u,∗
0 |2ā0

= |eu0 |2ā0
, |ep̃,∗0 |2d̄0

+ |ep̃0 − ep̃,∗0 |2d̄0
= |ep̃0|2d̄0

,(51)

which gives

|eu0 − e
u,∗
0 |2ā0

≤ |eu0 |2ā0
, |ep̃0 − ep̃,∗0 |2d̄0

≤ |ep̃0|2d̄0
.(52)

From this point onwards we suppose that the rules Vh,Λ → V ∗
h,Λ and Wh,Λ →

W ∗
h,Λ are fixed. An adaptive refinement strategy will be presented later. The fol-

lowing saturation assumption will be needed if we want to ensure that the estimated
error will decrease at every step of the refinement process.

Assumption 4.1. There exists a constant Θ ∈ [0, 1) that is independent of h and
Λ such that

|eu0 − e
u,∗
0 |ā0

≤ Θ |eu0 |ā0
, |ep̃0 − ep̃,∗0 |d̄0

≤ Θ |ep̃0|d̄0
.(53)

Lemma 4.2. Let eu0 ∈ V and ep̃0 ∈ W satisfy (42a) and (42c) and let eu,∗
0 ∈ V ∗

h,Λ

and ep̃,∗0 ∈W ∗
h,Λ satisfy Assumption 4.1. Then,

|eu,∗
0 |ā0

≤ |eu0 |ā0
≤ 1√

1−Θ2
|eu,∗

0 |ā0
,(54a)

|ep̃,∗0 |d̄0
≤ |ep̃0|d̄0

≤ 1√
1−Θ2

|ep̃,∗0 |d̄0
,(54b)

where Θ is the constant in (53).

Proof. The left-hand-side inequalities in (54) follow directly from (51). Using (51)
and squaring both sides of the equations in (53) gives

|eu0 |2ā0
− |eu,∗

0 |2ā0
= |eu0 − e

u,∗
0 |2ā0

≤ Θ2|eu0 |2ā0
,(55a)

|ep̃0|2d̄0
− |ep̃,∗0 |2d̄0

= |ep̃0 − ep̃,∗0 |2d̄0
≤ Θ2|ep̃0|2d̄0

,(55b)

which proves the right-hand-side inequalities in (54). �

Although the estimates |eu,∗
0 |ā0

and |ep̃,∗0 |d̄0
are computable, the dimensions of

V ∗
h,Λ and W ∗

h,Λ may be much larger than those of Vh,Λ and Wh,Λ. Fortunately, we

can exploit the structure shown in (28) and (29) to obtain lower-dimensional prob-
lems, leading to estimates that are cheaper to compute. Specifically, instead of solv-

ing (50a) and (50b), we consider the detail space problems: find eu2 ∈ Ṽh,Λ ⊕ Vh,Q

and ep̃2 ∈ W̃h,Λ ⊕Wh,Q such that

ā0(e
u

2 ,v) = Ru(v) ∀v ∈ Ṽh,Λ ⊕ Vh,Q,(56a)

d̄0(e
p̃
2, q̃) = Rp̃(q̃) ∀q̃ ∈ W̃h,Λ ⊕Wh,Q.(56b)
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We also define the error estimates

η1 := |eu2 |ā0
, η2 := |ep0|c̄, η3 := |ep̃2|d̄0

,(57)

where we recall that ep0 is given directly by (49).
To compute these estimates, we introduce the decompositions

eu2 = ẽuh,Λ + euh,Q, ep̃2 = ẽp̃h,Λ + ep̃h,Q,(58)

where ẽuh,Λ ∈ Ṽh,Λ, e
u

h,Q ∈ Vh,Q, ẽp̃h,Λ ∈ W̃h,Λ, and ep̃h,Q ∈ Wh,Q. Choosing test

functions v ∈ Ṽh,Λ in (56a) and q̃ ∈ W̃h,Λ in (56b) and using the orthogonality of
the polynomials in SΛ and SQ with respect to the measure π gives

ā0(ẽ
u

h,Λ,v) = Ru(v) ∀v ∈ Ṽh,Λ,(59a)

d̄0(ẽ
p̃
h,Λ, q̃) = Rp̃(q̃) ∀q̃ ∈ W̃h,Λ.(59b)

We will refer to ẽuh,Λ and ẽp̃h,Λ as the spatial error estimators. Similarly, choosing

test functions v ∈ Vh,Q in (56a) and q̃ ∈ Wh,Q in (56b) gives

ā0(e
u

h,Q,v) = Ru(v) ∀v ∈ Vh,Q,(60a)

d̄0(e
p̃
h,Q, q̃) = Rp̃(q̃) ∀q̃ ∈ Wh,Q.(60b)

We will refer to euh,Q and ep̃h,Q as the parametric error estimators.

Since ā0(ẽ
u

h,Λ, e
u

h,Q) = 0 and d̄0(ẽ
p̃
h,Λ, e

p̃
h,Q) = 0, we can write η1 and η3 as

η1=|ẽuh,Λ + euh,Q|ā0
= (|ẽuh,Λ|2ā0

+ |euh,Q|2ā0
)1/2,(61)

η3=|ẽp̃h,Λ + ep̃h,Q|d̄0
= (|ẽp̃h,Λ|2d̄0

+ |ep̃h,Q|2d̄0
)1/2.(62)

Thus, in summary, to compute η1 and η3, we need to solve four decoupled detail
space problems (59a)–(60b). The following result characterises how well η1 and η3
approximate |eu,∗

0 |ā0
and |ep̃,∗0 |d̄0

, respectively.

Lemma 4.3. Let eu,∗
0 ∈ V ∗

h,Λ and ep̃,∗0 ∈ W ∗
h,Λ satisfy (50). Let the error estimates

η1 and η3 be as given in (61) and (62). Then,

η1 ≤ |eu,∗
0 |ā0

≤ 1√
1− γ21

η1, η3 ≤ |ep̃,∗0 |d̄0
≤ 1√

1− γ22
η3,(63)

where γ1 and γ2 are the CBS constants from (26a) and (26b) respectively.

Proof. This involves a standard argument. The construction can be found in the
proof of Lemma 2.1 in [7]. �

Combining the individual error estimates in (57) gives the total error estimate

η := (η21 + η22 + η23)
1/2.(64)

The equivalence between η and the true error is summarised in the following result.

Theorem 4.4. Let (eu, ep, ep̃) ∈ V × W ×W be the error in the approximation
(uh,Λ, ph,Λ, p̃h,Λ) ∈ Vh,Λ ×Wh,Λ ×Wh,Λ of the solution to (15) and suppose that
Assumption 4.1 holds. Then

C3 η ≤ |||(eu, ep, ep̃)||| ≤
C4√

1− γ2
√
1−Θ2

η,(65)

where C3 and C4 are defined in Theorem 4.1, γ ∈ [0, 1) is the larger of the two CBS
constants in (26), and Θ ∈ [0, 1) is the saturation constant in (53).
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Proof. Combining the bounds in Theorem 4.1, Lemma 4.2 and Lemma 4.3 leads to
the stated result. �

The following corollary will be useful in the numerical results section.

Corollary 4.5. Let (eu, ep, ep̃) ∈ V ×W ×W be the error in the approximation
(uh,Λ, ph,Λ, p̃h,Λ) ∈ Vh,Λ ×Wh,Λ ×Wh,Λ of the solution to (15). Then

E ≤ C4√
1− γ2

√
1−Θ2

η,(66)

where

E :=
√
α‖E(∇eu)‖2L2(D)+(α−1 + (αβ)−1)‖E(ep)‖2L2(D)+(αβ)−1‖E(ep̃)‖2L2(D)

defines a surrogate energy norm that is much easier to compute.

Proof. The proof directly follows from Theorem 4.4, using Jensen’s inequality and
the definition of the norm ||| · ||| in (16). �

4.3. The incompressible limit case. If ν = 1
2 , then our three-field formulation

(2) reduces to the following two-field formulation representing the Stokes problem:
find u : D × Γ→ R

d and p : D × Γ→ R such that

−∇ · σ(x,y) = f(x), x ∈ D, y ∈ Γ,(67a)

∇ · u(x,y) = 0, x ∈ D, y ∈ Γ,(67b)

u(x,y) = g(x), x ∈ ∂DD, y ∈ Γ,(67c)

σ(x,y)n = 0, x ∈ ∂DN , y ∈ Γ.(67d)

Assuming that f ∈ L2(D) and g = 0 on ∂DD, the weak formulation of (67) and
the associated SG-MFEM formulation follow from (7) and (22), respectively, by
formally setting the bilinear forms c(·, ·) and d(·, ·) to zero and omitting the third
components of the weak and Galerkin solutions. In the incompressible limit, the
error estimate η defined in (64) becomes η = (η21+η

2
2)

1/2, where η1 and η2 are given
in (57) (with η2 = α1/2‖∇ · uh,Λ‖W). The following error bound is an immediate
consequence of Theorem 4.4.

Theorem 4.6. Let (eu, ep) be the error in the Galerkin approximation of the so-
lution to the Stokes problem (67) and suppose that Assumption 4.1 holds. Then

C3 η ≤ |||(eu, ep)|||S ≤
C4√

1− γ2
√
1−Θ2

η,(68)

where |||(v, q)|||2S := α‖∇v‖2
W

+ α−1‖q‖2W , C3 :=
(√

2(Emax +
√
d)
)−1

with con-
stants C4, γ and Θ given in Theorem 4.4.

5. Proxies for the potential error reduction in an adaptive setting

Recall that the spatial error estimators ẽuh,Λ ∈ Ṽh,Λ and ẽp̃h,Λ ∈ W̃h,Λ contributing

to η1 and η3 satisfy (59a) and (59b), respectively, and that the parametric error

estimators euh,Q ∈ Vh,Q and ep̃h,Q ∈Wh,Q satisfy (60a) and (60b). Let us also define

a third spatial error estimator ẽph,Λ ∈ W̃h,Λ that satisfies

c̄(ẽph,Λ, q) = Rp(q) ∀q ∈ W̃h,Λ.(69)
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Combining the three spatial error estimators and the two parametric error estima-
tors gives

ηh∗,Λ :=
(
|ẽuh,Λ|2ā0

+ |ẽph,Λ|2c̄ + |ẽ
p̃
h,Λ|2d̄0

)1/2
,(70a)

ηh,Q :=
(
|euh,Q|2ā0

+ |ep̃h,Q|2d̄0

)1/2
.(70b)

We will use these as error reduction proxies within an adaptive refinement scheme.
To simplify notation, let U := (u, p, p̃) ∈ V × W ×W denote the exact solu-

tion to (15) and let Uh,Λ := (uh,Λ, ph,Λ, p̃h,Λ) ∈ Vh,Λ ×Wh,Λ ×Wh,Λ denote the
SG-MFEM approximation. Similarly, let Uh∗,Λ := (uh∗,Λ, ph∗,Λ, p̃h∗,Λ) ∈ Vh∗,Λ ×
Wh∗,Λ ×Wh∗,Λ (resp., Uh,Λ∗ := (uh,Λ∗ , ph,Λ∗ , p̃h,Λ∗) ∈ Vh,Λ∗ ×Wh,Λ∗ ×Wh,Λ∗) de-
note the enhanced SG-MFEM approximation corresponding to the pair V ∗

h –W ∗
h of

enriched finite element spaces (resp., the enriched polynomial space S∗
Λ). From the

triangle inequality we have

|||U − Uh,Λ||| − |||U − Uh∗,Λ||| ≤ |||Uh∗,Λ − Uh,Λ|||.
Thus, we can quantify the potential reduction in the ||| · |||-norm of the error that
would be achieved by enriching the finite element spaces, by estimating the quantity
|||Uh∗,Λ − Uh,Λ|||. Similarly, we can quantify the potential reduction that would be
achieved by enriching the polynomial space for the parametric part, by estimating
|||Uh,Λ∗ − Uh,Λ|||. The next result shows that ηh∗,Λ and ηh,Q provide reliable and
efficient proxies for |||Uh∗,Λ − Uh,Λ||| and |||Uh,Λ∗ − Uh,Λ|||, respectively.
Theorem 5.1. Let Uh,Λ ∈ Vh,Λ×Wh,Λ×Wh,Λ be the approximation of the solution
to (15) and let Uh∗,Λ ∈ Vh∗,Λ×Wh∗,Λ×Wh∗,Λ and Uh,Λ∗ ∈ Vh,Λ∗ ×Wh,Λ∗ ×Wh,Λ∗

denote the SG-MFEM approximations as defined above. Then,

C3 ηh∗,Λ ≤ |||Uh∗,Λ − Uh,Λ||| ≤
Ĉ4√
1− γ2

ηh∗,Λ,(71)

C3 ηh,Q ≤ |||Uh,Λ∗ − Uh,Λ||| ≤ Ĉ4 ηh,Q,(72)

where Ĉ4 := Ĉ2

Ĉ1Emin

. The constants Ĉ1 and Ĉ2 are defined similarly to C∗
1 and C∗

2

in Lemma 3.1, with γh replaced by the inf–sup constant associated with the finite
element spaces V ∗

h and W ∗
h . The constant C3 is given in Theorem 4.1 and γ ∈ [0, 1)

is the CBS constant in Theorem 4.4.

Proof. Let us prove (71), the proof of (72) proceeds in the same way. The enhanced
approximation Uh∗,Λ = (uh∗,Λ, ph∗,Λ, p̃h∗,Λ) satisfies

a(uh∗,Λ,v) + b(v, ph∗,Λ) = f(v) ∀v ∈ Vh∗,Λ,(73a)

b(uh∗,Λ, q)− c(p̃h∗,Λ, q) = 0 ∀q ∈ Wh∗,Λ,(73b)

−c(ph∗,Λ, r) + d(p̃h∗,Λ, r) = 0 ∀r ∈Wh∗,Λ.(73c)

Recalling the definitions of the residual functionals in (31) and combining (59), (69)
and (73) implies

ā0(ẽ
u

h,Λ,v) = a(uh∗,Λ − uh,Λ,v) + b(v, ph∗,Λ − ph,Λ) ∀v ∈ Ṽh,Λ,(74a)

c̄(ẽph,Λ, q) = b(uh∗,Λ − uh,Λ, q)− c(p̃h∗,Λ − p̃h,Λ, q) ∀q ∈ W̃h,Λ,(74b)

d̄0(ẽ
p̃
h,Λ, r) = −c(ph∗,Λ − ph,Λ, r) + d(p̃h∗,Λ − p̃h,Λ, r) ∀r ∈ W̃h,Λ.(74c)
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Substituting v= ẽuh,Λ, q= ẽph,Λ and r= ẽp̃h,Λ into (74) and bounding the terms sep-
arately leads to

|ẽuh,Λ|2ā0
≤

(
Emax |uh∗,Λ − uh,Λ|ā0

+
√
d |ph∗,Λ − ph,Λ|c̄

)
|ẽuh,Λ|ā0

,(75a)

|ẽph,Λ|2c̄ ≤
(√

d |uh∗,Λ − uh,Λ|ā0
+ |p̃h∗,Λ − p̃h,Λ|d̄0

)
|ẽph,Λ|c̄,(75b)

|ẽp̃h,Λ|2d̄0
≤

(
|ph∗,Λ − ph,Λ|c̄ + Emax |p̃h∗,Λ − p̃h,Λ|d̄0

)
|ẽp̃h,Λ|d̄0

.(75c)

Combining all three estimates in (75) leads to the left-hand inequality in (71).
In order to prove the right-hand inequality in (71), we need to use a discrete

stability result which is analogous to the one given in Lemma 3.1. Since Uh∗,Λ −
Uh,Λ ∈ Vh∗,Λ ×Wh∗,Λ ×Wh∗,Λ, there exists V := (v, q, r) ∈ Vh∗,Λ ×Wh∗,Λ ×Wh∗,Λ

with

(76) |||V|||=
(
|v|2ā0

+ |q|2c̄ + |r|2d̄0

)1/2 ≤ Ĉ2 |||Uh∗,Λ − Uh,Λ|||
satisfying

(77) Emin Ĉ1 |||Uh∗,Λ − Uh,Λ|||2 ≤ B(Uh∗,Λ − Uh,Λ;V),
where Ĉ1 and Ĉ2 are defined analogously to the constants C∗

1 and C∗
2 in Lemma 3.1

but with γh replaced by the inf–sup constant γ∗h associated with the spaces V ∗
h

and W ∗
h . Recalling the definitions of Vh∗,Λ and Wh∗,Λ and the associated de-

compositions in (28) and (29), we may decompose V ∈ Vh∗,Λ × Wh∗,Λ × Wh∗,Λ

as V = Vh,Λ + Ṽh,Λ, where Vh,Λ := (vh,Λ, qh,Λ, rh,Λ) ∈ Vh,Λ ×Wh,Λ ×Wh,Λ and

Ṽh,Λ := (ṽh,Λ, q̃h,Λ, r̃h,Λ) ∈ Ṽh,Λ × W̃h,Λ × W̃h,Λ. Since B(Uh∗,Λ − Uh,Λ;Vh,Λ) = 0,
we use equations (74) and the Cauchy–Schwarz inequality to give

Emin Ĉ1 |||Uh∗,Λ − Uh,Λ|||2 ≤ B(Uh∗,Λ − Uh,Λ; Ṽh,Λ)
(74)
= ā0(ẽ

u

h,Λ, ṽh,Λ) + c̄(ẽph,Λ, q̃h,Λ) + d̄0(ẽ
p̃
h,Λ, r̃h,Λ)

≤ |ẽuh,Λ|ā0
|ṽh,Λ|ā0

+ |ẽph,Λ|c̄|q̃h,Λ|c̄ + |ẽ
p̃
h,Λ|d̄0

|r̃h,Λ|d̄0
.(78)

We will now estimate |ṽh,Λ|ā0
, |q̃h,Λ|c̄, and |r̃h,Λ|d̄0

. Using the strengthened Cauchy–
Schwarz inequality in (26a), we have

|ṽh,Λ|2ā0
= |v|2ā0

− 2ā0(vh,Λ, ṽh,Λ)− |vh,Λ|2ā0
≤ |v|2ā0

+ 2γ1|vh,Λ|ā0
|ṽh,Λ|ā0

− |vh,Λ|2ā0

≤ |v|2ā0
+ |vh,Λ|2ā0

+ γ21 |ṽh,Λ|2ā0
− |vh,Λ|2ā0

= |v|2ā0
+ γ21 |ṽh,Λ|2ā0

,

which yields

(79a) |ṽh,Λ|ā0
≤ (1− γ21)−1/2|v|ā0

.

In the same way, using (26b), we obtain

(79b) |q̃h,Λ|c̄ ≤ (1− γ22)−1/2|q|c̄, |r̃h,Λ|d̄0
≤ (1− γ22)−1/2|r|d̄0

.

Combining (78) and (79), using (76) and recalling the definition of ηh∗,Λ in (70a),
establishes the right-hand inequality in (71) with γ = max{γ1, γ2}. �

Instead of computing the projection of the error by solving problem (69), we
could have simply used |ep0|c̄ directly in the definition (70) of ηh∗,Λ. This would
lead to a small saving in the computational overhead. The reason we did not do
this is the fact that a saturation constant would then need to be included in order
to establish the upper bound corresponding to (71).
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6. Balanced error reduction using adaptive refinement

Following convention, our adaptive strategy is to solve the SG-MFEM prob-
lem (22) and estimate the energy error. The approximation is then refined by
adaptively enriching the underlying approximation spaces, until η < tol, where
tol is a user-prescribed tolerance. What is distinctive about our proposed refine-
ment strategy is the separation of the component contributions of the spatial error
from individual contributions of the parametric error.

6.1. The parametric error estimators. We discuss the key features of the para-
metric error estimators euh,Q and ep̃h,Q in this section. Recall that these contribute
to η1 and η3 and hence the total error estimate η as well as the error reduction
proxy ηh,Q. Let Q be any finite detail index set, i.e., let Q⊂{α ∈ I; α /∈ Λ}.
Since the subspaces Vh ⊗ span{ψα} with α ∈ Q are pairwise orthogonal with re-
spect to the inner product ā0(·, ·), the parametric error estimator euh,Q defined in

(60a) can be decomposed into separate contributions associated with the individual
multi-indices α ∈ Q as follows:

(80) euh,Q =
∑

α∈Q

euh,α with |euh,Q|2ā0
=

∑

α∈Q

|euh,α|2ā0
,

where, for each α ∈ Q, the estimator euh,α ∈ Vh ⊗ span{ψα} satisfies
(81) ā0(e

u

h,α,vhψα) = Ru(vhψα) ∀vh ∈ Vh.

Hence to compute |euh,Q|2ā0
we simply solve a set of decoupled Poisson problems

associated with the finite element space Vh. A similar decomposition holds for the
parametric error estimator ep̃h,Q defined in (60b) and we will denote the individual

estimators associated with each multi-index α∈Q by ep̃h,α ∈Wh⊗ span{ψα}. Next,
thanks to Theorem 5.1, we see that the quantity ηh,α :=

(
|euh,α|2ā0

+ |ep̃h,α|2d̄0

)1/2

(cf. (70b)) can be used to estimate the error reduction that would be achieved by
adding only one multi-index α ∈ I \ Λ to the current index set Λ and computing
the corresponding enhanced approximation Uh,Λ∗ with Λ∗ = Λ ∪ {α}.

An important aspect of our error estimation strategy (and a key ingredient of
the adaptive algorithm presented below) is the choice of the detail index set Q. Let

t(n) = (t
(n)
1 , t

(n)
2 , . . .) ∈ I be the Kronecker delta index for the coordinate n ∈ N,

i.e., t
(n)
j = δjn for any j ∈ N. Next, for any finite index set Λ, we define Λ∗

∞ as the
infinite index set given by Λ∗

∞ = Λ ∪Q∞, where

(82) Q∞ := {α ∈ I \ Λ; α = τ ± t(n) for some τ ∈ Λ and some n > 0}
denotes the boundary of Λ. The following result follows immediately from Corol-
lary 4.1 in [6].

Lemma 6.1. Suppose that Q is a finite subset of the index set I \ Λ∗
∞. Then the

parametric error estimators euh,Q and ep̃h,Q are identically equal to zero.

Hence, nonzero contributions to euh,Q and ep̃h,Q are associated only with the
indices from the boundary index set Q∞. This has two consequences. First, for the
error estimation to be effective, Q should be chosen as a sufficiently large (finite)
subset of Q∞. Second, for the adaptive algorithm to be efficient, the index set Λ
should only be enriched at each step with multi-indices from the index set Q∞.



16 ARBAZ KHAN, ALEX BESPALOV, CATHERINE E. POWELL, AND DAVID J. SILVESTER

6.2. An adaptive algorithm. Let us first focus on the computation of η = (η1 +
η2+η3)

1/2, where η1, η2, η3 are defined in (57). Recall that η2 is calculated directly
using (49). To compute the spatial and parametric error estimators that contribute

to η1, η3 (see (61), (62)), one needs to specify the detail finite element spaces Ṽh,

W̃h and the detail polynomial space SQ on the parameter domain Γ. Working

in our IFISS software environment [14], [28], Ṽh and W̃h will span local bubble
functions, for which we have two alternatives: (option I) piecewise polynomials of
the same order as Vh and Wh, respectively on a uniformly refined mesh Th/2; and
(option II) piecewise polynomials of a higher order on the mesh Th. In both cases,

the computation of the spatial estimators ẽuh,Λ and ẽp̃h,Λ is broken down over the

elements K ∈ Th using the standard element residual technique (see, e.g., [1]).
The construction of the detail index set Q (that defines SQ) is motivated by

Lemma 6.1. Specifically, we will use the following finite subset of the index set Q∞

defined in (82):
(83)

Q := {α ∈ I \ Λ; α = τ ± t(n) for some τ ∈ Λ and some n = 1, . . . ,MΛ + 1},

where MΛ ∈ N (the number of active parameters) is defined as

MΛ :=

{
0 if Λ = {(0, 0, . . . )},
max

{
max(supp(α)); α ∈ Λ \ {(0, 0, . . . )}

}
otherwise.

Given the index set Q in (83), the parametric error estimators euh,Q and ep̃h,Q con-
tributing to η1, η3 are computed from the corresponding individual error estimators
euh,α and ep̃h,α for each α ∈ Q as explained in Section 6.1 (see, e.g., (80)–(81)).

Let us now describe the refinement procedure. The emphasis is on simplicity.
If the estimated error η is too large then, in order to compute a more accurate
approximation, one needs to enrich the finite-dimensional subspaces Vh,Λ = Vh⊗SΛ

and Wh,Λ =Wh ⊗ SΛ. Recall that the quantities (see (70))

(84) ηh∗,Λ=
(
|ẽuh,Λ|2ā0

+ |ẽph,Λ|2c̄ + |ẽ
p̃
h,Λ|2d̄0

)1/2
and ηh,α=

(
|euh,α|2ā0

+ |ep̃h,α|2d̄0

)1/2

(for α ∈ Q) provide proxies for the potential error reductions associated with
spatial and parametric enrichment, respectively (in the latter case, the enrichment
is associated with adding a single index α ∈ Q); see Theorem 5.1. We use the
dominant proxy to guide the enrichment of Vh,Λ and Wh,Λ. More precisely, if
ηh∗,Λ ≥ τ ηh,Q with a refinement weighting factor τ ≥ 1, then the finite element
spaces Vh andWh are enriched by refining the finite element mesh on D; otherwise,
the polynomial space SΛ on Γ is enriched by adding at least one new index to the
set Λ. In the latter case, we enrich Λ with indices α that are generated from a
(Dörfler) bulk marking procedure. This builds a subset of indices µ(Q) of minimum
cardinality such that

∑
αi∈µ(Q) η

2
h,i ≥ θη2h,Q with marking parameter θ = 1/2.

Our adaptive strategy is presented in Algorithm 6.1. Starting with an inf–sup
stable pair Vh0

–Wh0
of finite element spaces on a coarse mesh Th0

and with an initial
index set Λ0 (typically, Λ = {(0, 0, 0, . . .)} or Λ = {(0, 0, 0, . . .), (1, 0, 0, . . .)}), the
algorithm generates two sequences of finite element spaces

Vh0
⊆ Vh1

⊆ . . . ⊆ VhK
⊂H1

E0
(D) and Wh0

⊆Wh1
⊆ . . . ⊆WhK

⊂ L2(D),



A posteriori error estimation for parameter-dependent linear elasticity equations 17

a sequence of index sets Λ0 ⊆ Λ1 ⊆ Λ2 . . . ⊆ ΛK ⊂ I, as well as a sequence of
SG-MFEM approximations (uk, pk, p̃k) ∈ Vhk,Λk

×Whk,Λk
×Whk,Λk

and the corre-

sponding error estimates η(k) (k=0, 1, . . . ,K). The refinement weighting factor is

chosen to be τ =
√
2, and the algorithm is terminated when the estimated error is

sufficiently small.

Algorithm 6.1. Adaptive SG-MFEM
[
tol,B, f, h0,Λ0

]
→

[
(uK , pK , p̃K), η(K)

]

for k = 0, 1, 2, . . . do

(uk, pk, p̃k)← Solve
[
B, f,Vhk

,Whk
,Λk

]

[δh, ηh∗,Λ] ← Error Estimate 1
[
B, f,uk, pk, p̃k, Ṽhk

, W̃hk

]

Qk ← Detail Index Set
[
Λk

]

for i = 1, 2, . . . ,#(Qk) do

ηh,i ← Error Estimate 2
[
B, f,uk, pk, p̃k,αi

]

end

ηh,Q :=
(∑#(Qk)

i=1 η2h,i

)1/2

η(k) :=
(
δ2h + η2h,Q

)1/2

if η(k) < tol then K := k, break

if ηh∗,Λ ≥
√
2 ηh,Q then

Vhk+1
:= Vh∗

k
, Whk+1

:=Wh∗

k
, Λk+1 := Λk

else Vhk+1
:= Vhk

, Whk+1
:=Whk

, Λk+1 := Λk ∪
{
αi ∈ µ(Qk)

}

end

The algorithm has four functional building blocks:

• Solve
[
B, f,Vh,Wh,Λ

]
: a subroutine that generates the SG-MFEM approx-

imation (uh,Λ, ph,Λ, p̃h,Λ) ∈ Vh,Λ ×Wh,Λ ×Wh,Λ satisfying (22);
• Detail Index Set

[
Λ
]
: a subroutine that generates the detail index set Q

for the given index set Λ (see (83));

• Error Estimate 1
[
B, f,uh,Λ, ph,Λ, p̃h,Λ, Ṽh, W̃h

]
: a subroutine that com-

putes δh := (|ẽuh,Λ|2ā0
+ |ep0|2c̄ + |ẽp̃h,Λ|2d̄0

)1/2, the contribution to η associated

with spatial enrichment, and the spatial error reduction proxy ηh∗,Λ in (84);
• Error Estimate 2

[
B, f,uh,Λ, ph,Λ, p̃h,Λ,α

]
: a subroutine that computes

the parametric error reduction proxy associated with a single index α ∈ Q

(see (84)).

The IFISS software environment that we use to test the efficiency of our method-
ology is limited to two-dimensional spatial approximation. It provides two alterna-
tive choices for the spatial refinement step in Algorithm 6.1 that is taken whenever
the spatial refinement proxy ηh∗,Λ dominates the parametric refinement proxy ηh,Q.
In cases where the solution is spatially smooth, a natural option is to define h∗k by
taking a uniform refinement of the current grid. In the computational experiments
discussed later, this refinement option is associated with a rectangular subdivision
of the spatial domain.2 On the other hand, when solving spatially singular prob-
lems, it is more natural to define h∗k by a local refinement strategy in combination

2Specifically, we always use uniform refinement in combination with the inf–sup stable approx-
imation pairs that are built into the S-IFISS toolbox [29].
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with triangular approximation. In our T-IFISS toolbox implementation [28] this is
done using a standard iterative refinement loop

Solve→ Estimate→ Mark→ Refine

combined with a bulk parameter marking procedure with the same marking param-
eter θ = 1/2 as used for the parametric enrichment. The local mesh refinement is
performed using a longest edge bisection strategy, which is a variant of the newest
vertex bisection (NVB) method. Further details are given in [4].

The attractive feature of NVB refinement strategies is that they lead to nested
finite element spaces [25, p.179]. This is a key ingredient in the proof of the con-
traction property for adaptive finite element approximations. A comprehensive
numerical study of the alternative refinement and marking strategies that are built
into T-IFISS can be found in [5]. The sparse (Galerkin) high-dimensional system of
linear equations that is generated at each step of the adaptive algorithm is solved
using a bespoke MINRES solver (EST MINRES) in combination with the efficient
preconditioning strategy presented in [22].

7. Computational results

In this section, we present two numerical examples that support the theoretical
results. In the first experiment, we consider a simple test problem with an exact
solution and investigate the accuracy of the a posteriori error estimate η. In the
second, we consider a problem where the Young modulus depends on a countably
infinite set of parameters and illustrate the effectiveness of the adaptive algorithm.

7.1. Exact solution, Dirichlet boundary condition. To define a problem of
the form (2) with an exact solution, we choose the spatial domain D = (0, 1)2 and
impose a Dirichlet condition on the displacement u on the whole boundary. Hence,
∂DD = ∂D and ∂DN = ∅. (Thus the discretised problem is singular when ν = 1/2.
This does not impinge on the convergence of the iterative solver for the values of
ν that we consider.) The uncertain Young modulus is modelled as E := e0 + 0.1y1
where y1 ∈ [−1, 1] is the image of a mean zero uniform random variable. Hence, E
is spatially constant and e0 = 1 is the mean. The body force

f =

{
f1 = −2απ3 cos(πx2) sin(πx2)(2 cos(2πx1)− 1),

f2 = 2απ3 cos(πx1) sin(πx1)(2 cos(2πx2)− 1),
(85)

is chosen so that the exact displacement is

u =

{
u1 = π cos(πx2) sin(πx2) sin

2(πx1)/E,

u2 = −π cos(πx1) sin(πx1) sin2(πx2)/E,
(86)

and the exact pressure is p = p̃ = 0. For the spatial discretisation we use Q2–
P−1–P−1 approximation on uniform grids of square elements.3 To compute the
SG-MFEM solution, we choose SΛ to be the space of polynomials of degree less
than or equal to k in y1 on Γ = [−1, 1]. To assess the quality of the error estimate
we will examine

Effectivity index :=
η

E ,

3The combination Q2–P−1 is one of the most effective inf–sup stable approximation pairs in
a two-dimensional uniform refinement setting; see [15, Sect. 3.3.1].
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where E is the error defined in Corollary 4.5, as we vary the SG-MFEM discretisa-
tion parameters h and k. Results for five representative values of the Poisson ratio
ν are presented in Tables 1 and 2. To compute the error estimate η, we consider
two types of finite element detail spaces based on local bubble functions (option I,
option II), as explained in Section 6.2. Since we have only one parameter y1, the
polynomial space SQ is chosen to be the set of polynomials of degree equal to k+1.

Table 1. Test problem 1: Effectivity indices for fixed polynomial
degree k = 3 with two different types of hierarchical basis func-
tions.

h ν = .4 ν = .49 ν = .499 ν = .4999 ν = .49999
option I

2−3 0.8992 0.9361 0.9405 0.9409 0.9409
2−4 0.9196 0.9580 0.9625 0.9630 0.9630
2−5 0.9251 0.9639 0.9684 0.9689 0.9690
2−6 0.9267 0.9656 0.9701 0.9706 0.9706

option II
2−3 1.3311 1.3561 1.3591 1.3594 1.3594
2−4 1.3435 1.3701 1.3732 1.3735 1.3736
2−5 1.3468 1.3737 1.3769 1.3773 1.3773
2−6 1.3477 1.3748 1.3780 1.3783 1.3783

The results confirm that our a posteriori error estimate is robust with respect to
the Poisson ratio (in the incompressible limit), the finite element mesh size h and
the polynomial degree k associated with the parametric approximation.

Table 2. Test problem 1: Effectivity indices for fixed finite ele-
ment mesh size h = 2−6 with two different types of hierarchical
basis functions.

k ν = .4 ν = .49 ν = .499 ν = .4999 ν = .49999
option I

2 0.9923 1.0287 1.0330 1.0334 1.0335
3 0.9266 0.9656 0.9701 0.9706 0.9706
4 0.9265 0.9654 0.9700 0.9704 0.9705
5 0.9265 0.9654 0.9700 0.9704 0.9705

option II
2 1.3937 1.4198 1.4229 1.4233 1.4233
3 1.3477 1.3748 1.3780 1.3783 1.3783
4 1.3476 1.3747 1.3779 1.3782 1.3782
5 1.3476 1.3747 1.3779 1.3782 1.3782

7.2. Singular problem, mixed boundary conditions. To test our error es-
timation strategy in a more realistic setting we next consider a problem with a
mixed boundary condition (so that ∂DN 6= ∅). Specifically, we take the unit
square domain with a homogeneous Neumann boundary condition on the right
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edge ∂DN = {1} × (0, 1) and a zero Dirichlet boundary condition for the displace-
ment on ∂DD = ∂D \ ∂DN . The uncertain Young modulus has mean value one
and is given by the representation4

E(x,y) = 1 +

∞∑

m=1

αm cos(2πβ1(m)x1) cos(2πβ2(m)x2)ym, x ∈ D,y ∈ Γ,(87)

where Γ = Π∞
m=1Γm and ym ∈ Γm := [−1, 1]. For each m ∈ N,

β1(m) = m− k(m)(k(m) + 1)/2 and β2(m) = k(m)− β1(m)(88)

where k(m) = −1/2 +
√
1/4 + 2m and αm = ᾱm−σ̃ for fixed σ̃ > 1 and 0 < ᾱ <

1/ζ(σ̃), where ζ is the Riemann zeta function.
We present results for the case of a horizontal body force f = (0.1, 0)⊤. This

generates an exact displacement solution that is symmetric about the line y = 1/2.
The problem has limited regularity in the compressible case: for ν = 0.4 there
are strong singularities at the two corners where the boundary condition changes
from essential to natural. The singularities become progressively weaker in the
incompressible limit and their effect on the solution is imperceptible when ν =
0.49999.

To ensure a reasonable level of accuracy in the singular cases we used P2–P1–P1

triangular approximation5 in combination with spatial adaptivity. The number of
displacement degrees of freedom in the initial mesh Th0

was 162. The adaptive
algorithm was terminated when the estimated error was reduced by two orders
of magnitude. We checked the convergence of Algorithm 6.1 for two choices of
coefficient αm in (87): σ̃ = 2 (slow decay) and σ̃ = 4 (fast decay). Results for the
slow decay case are shown in Figures 1–3.

We make the following observations.

• The rate of convergence is O(n−1/2) (where n is the total number of degrees
of freedom) and is independent of the Poisson ratio.
• The plateaus in the parametric error proxy ηh,Q correspond to spatial re-
finement steps. The error estimate η is initially dominated by the spatial
error proxy ηh∗,Λ in the compressible case, that is when ν = 0.4. In con-
trast, the parametric error contribution dominates the initial steps of the
adaptive algorithm in the nearly incompressible case.
• Looking at Figure 2 the number of adaptive steps taken to reach the error
tolerance is very similar. We can also see that three times as many indices
are activated in the nearly incompressible case.
• The number of displacement degrees of freedom in the mesh when the al-
gorithm terminated was 95, 004 when ν = 0.4 and 17, 610 in the nearly
incompressible case. These meshes are shown in Figure 3 and clearly illus-
trate the influence of the spatial singularities in the compressible case.

Analogous results obtained in the fast decay case are shown in Figures 4–5. We
make two final observations.

• Once again, the rate of convergence is O(n−1/2) (where n is the total num-
ber of degrees of freedom) and is independent of the Poisson ratio.

4This parametric representation is commonly used in the literature (see, for example, [12]). It
characterises one of several test problems that are built into the S-IFISS toolbox [29].

5The (Taylor–Hood) combination P2–P1 is the best known inf–sup stable approximation pair;
see [15, Sect. 3.3.3].
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Figure 1. Test problem 2 (slow decay, σ̃ = 2): Estimated error
at each step of Algorithm 6.1 for ν = .4 (left); ν = 0.49999 (right).
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Figure 2. Test problem 2 (slow decay, σ̃ = 2): The number of
active multi-indices α and active random variables ym at each step
of the Algorithm 6.1 for ν = .4 (left); ν = 0.49999 (right).
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Figure 3. Test problem 2 (slow decay, σ̃ = 2): triangular mesh at
the step when the target number of degrees of freedom was reached
for ν = .4 (left); ν = 0.49999 (right).

• Comparing Figure 2 with Figure 5 we see that the number of parameters
(and indices) that are activated in the fast decay case is much less than the
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Figure 4. Test problem 2 (fast decay, σ̃ = 4): Estimated error at
each step of Algorithm 6.1 for ν = .4 (left); ν = 0.49999 (right).
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Figure 5. Test problem 2 (fast decay, σ̃ = 4): The number of
active multi-indices α and active random variables ym at each step
of the Algorithm 6.1 for ν = .4 (left); ν = 0.49999 (right).

number that were activated in the slow decay case for a similar number of
degrees of freedom.

8. Summary

Efficient adaptive algorithms hold the key to effective computational solution of
PDEs of elliptic type with uncertain material coefficients. This paper has two im-
portant contributions, building on earlier work for scalar diffusion problems. First,
we have shown that mixed formulations of elasticity equations with parametric un-
certainty can be solved in a black-box fashion within a Galerkin framework as long
as (i) the inner-products associated with the evaluation of the functional residuals
are suitably chosen and (ii) the detail spaces are chosen in a way that fully ex-
ploits the underlying orthogonality of the parametric basis functions. We believe
that this development opens the door to practical engineering analysis of structures
with uncertain material coefficients. Second, in contrast to other work in this area,
which typically estimates a posteriori errors by taking norms of residuals, our ap-
proach can give accurate proxies of potential error reductions that would occur if
different refinement strategies were pursued. Extensive numerical testing confirms
that effectivity indices close to unity can be maintained throughout the refinement
process if these proxies are used used to drive the adaptive algorithm.
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