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Abstract:We initiate the study of a new class of polynomials which we call quasi-subfield polynomials. First,
we show that this class of polynomials could lead to more efficient attacks for the elliptic curve discrete log-
arithm problem via the index calculus approach. Specifically, we use these polynomials to construct factor
bases for the index calculus approach and we provide explicit complexity bounds. Next, we investigate the
existence of quasi-subfield polynomials.
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1 Introduction
The hardness of the discrete logarithm problem (DLP) in cyclic groups has been one of the key mathematical
problems underlyingmany public key cryptosystems in use today. In its most general form, given a generator
g of a cyclic group G = ⟨g⟩ of order N, and an arbitrary element h ∈ G, DLP seeks for the smallest integer
k such that h = gk (or h = kg in the additive notation). For the purposes of cryptographic applications, the
most common cyclic groups used are multiplicative subgroups of finite fields as well as subgroups of rational
points on elliptic curves over finite fields.

The discrete logarithmproblem inmultiplicative groups of finite fieldswas the basis for one of the earliest
public-key protocols, namely the Diffie-Hellman key exchange protocol [5]. Since then, remarkable progress
has been made to improve the complexity of solving this problem. First, in [1], index calculus methods were
proposed to solve DLP over finite fields in sub-exponential time. More impressive results were obtained in
recent years with heuristic quasi-polynomial time bounds in the case of finite field of small characteristics
[2].

By contrast, the elliptic curve discrete logarithm problem (ECDLP) has so far been more resistant to ef-
ficient attacks and the best attacks for groups of N rational points are generic algorithms such as Pollard’s
rho and Baby-Step-Giant-Step algorithms with a number of group operations proportional to

√
N. In this pa-

per, we refer to the complexity bounds from these generic algorithms as generic bounds. In 2004, Semaev
proposed an index calculus approach to solve ECDLP [23]. This inspired several subsequent works leading to
sub-exponential attacks for some families of elliptic curves [4].
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Essentially, the index calculus method seeks for a good factor basis that gives rise to an efficient relation
search. Semaev’swork converts this relation search into a problemof solvingpolynomial equations over finite
fields. Factor bases that have been proposed include sets of elliptic curve points with the x-coordinates from
finite subfields [4, 14] or more generally, vector spaces [11, 21]. The corresponding polynomial systems are
typically solved via Weil descent, that is, transformed into polynomial systems over the base field and then
solved using one of the existing polynomial solving methods such as Rojas’ algorithm [22], Gröbner basis
algorithms [8, 9] or resultants. Thus far, this approach works well for finite fields Fqn with q being large. For q
small and n a prime, heuristic sub-exponential results were proposed in [21]. However, experimental results
in [16] gave some evidence against the heuristic assumption used. In other words, the best proven attack for
the important class of elliptic curves over F2n for n prime are the generic attacks.

One therefore wonders if there exist factor bases that directly give rise to a more efficient polynomial
solving technique. In this paper, we propose factor bases constructed from roots of polynomials of the form
Xq

n′

− λ(X) which split completely in Fqn . When deg(λ) is small enough, we call Xq
n′

− λ(X) a quasi-subfield
polynomial, by extension of the subfield case which has λ(X) = X. Using these polynomials, we construct a
polynomial system over the field Fqn such that the zero set gives a relation for the index calculus method. By
employing Rojas’s algorithm to solve this polynomial system, we give precise complexity results for our index
calculus algorithm.

The next interesting question is to ask for the existence of the quasi-subfield polynomials. Apart from the
abovementioned links to efficient attacks on the elliptic curve discrete logarithm problem, this problem is an
interesting mathematical problem in its own right. What we are able to prove so far is that there exists a class
of quasi-subfield polynomials such that our algorithm yields a time complexity that beats exhaustive search
(exhaustive search runs in O(N) steps). In addition, we investigate this problem by considering additive and
multiplicative subgroups of fields. Statistical arguments suggest that for arbitrary q and n in general these
groups are unlikely to give rise to quasi-subfield polynomials to achieve a time complexity better than generic
bounds for ECDLP over Fqn . An interesting question is whether special families of {q, n} can be identified
where these groups do give rise to quasi-subfield polynomials. The search of quasi-subfield polynomials in
general remains an open problem.

In Section 2 we recall previous ECDLP algorithms for elliptic curves defined over extension fields. In Sec-
tion 3 we describe our new algorithm and we analyze its complexity depending on its various parameters. In
Section 4 we discuss the existence of suitable parameters for our approach. We finally conclude the paper in
Section 5.

2 Index Calculus Algorithms for ECDLP over Extension Fields
For the remainder of this paper, let q be a prime, K = Fqn be a finite field with qn elements, and let E be an
elliptic curve defined over K. Let P be a rational point on E, and let Q be randomly chosen in the subgroup
generated by P. As this is standard in cryptographic contexts, we assume that P generates a subgroup of
large prime order N. We are interested in algorithms to compute the discrete logarithm of Q with respect to
P, namely an integer s such that Q = [s]P. We are particularly interested in the case where q is a very small
prime.

2.1 Existing Algorithms

Here we focus on algorithms specific to elliptic curves, and particularly index calculus algorithms [4, 11, 14,
21, 23].

Given q, n, E, P, Q, we first choose parameters m, n′ and a vector space V of dimension n′ over Fq. We
then define a factor basis

F := {(x, y) ∈ E(K) | x ∈ V}.
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Following standard index calculus algorithms for the discrete logarithm problem over finite fields, we then
collect sufficiently many relations of the form

aiP + biQ =
m∑︁
j=1

Pij

with ai , bi randomly chosen and Pij ∈ F.
Finally, we perform linear algebra operations modulo N on the relations to obtain a new relation of the

form aP + bQ = 0 from which one (almost always) deduces the discrete logarithm value s = −a/b mod N.
In this algorithm, for every index i, we need to solve an instance of the following problem:

Problem 1 (Point Decomposition Problem). Fix a positive integer m. Given a point R ∈ E(K), find, if any, m
points P1, ..., Pm ∈ F, such that R = P1 + ... + Pm.

This is typically done using Semaev’s summation polynomials [23], aWeil descent strategy, and an algorithm
to solve systems of multivariate polynomial equations.

For every index r ≥ 2, the summation polynomial Sr ∈ K[X1, X2, . . . , Xr] is a polynomial depending on E
such that Sr(x1, x2, . . . , xr) = 0 if and only if there exist yi ∈ K and (xi , yi) ∈ E(K) with (x1, y1) + (x2, y2) +
. . . + (xr , yr) = 0 on E(K). This is a symmetric polynomial with degree 2r−2 in each variable.

In order to solve the point decomposition problem above, we can solve

Sm+1(x1, x2, . . . , xm , xR) = 0, xi ∈ V , (1)

where xR is the X coordinate of R, and for each of these solutions x1, . . . , xm, one checks whether all the yi
are in K.

This problem is further reduced to a polynomial system as follows. We fix a basis {θ1, . . . , θn} of K over
Fq and a basis {v1, . . . , vn′} of V over Fq. We then introduce mn′ variables xij over Fq, with 1 ≤ i ≤ m
and 1 ≤ j ≤ n′ such that xi =

∑︀n′
j=1 xijvj. Substituting in Equation 1 and projecting the equation over each

component of the basis {θ1, . . . , θn} of K over Fq, we obtain a system of n equations in the mn′ variables xij.
When q is reasonably large compared to n, one can take V := Fq. The system is then solved using resul-

tants or a Groebner basis algorithm [4, 14]. On the other hand when q is small, one adds the so-called field
equations xqij − xij = 0 to the system, and solves it using a Groebner basis algorithm [11, 21].

2.2 Complexity Analysis

The analysis of these algorithms has so far required several heuristic assumptions.
Fix a positive integer m. Heuristically, one can expect that roughly half of the values in V are the x-

coordinates of exactly two points on the curve, and hence we approximate |F| ≈ qn
′
. Moreover, assuming

that most (unordered) tuples of m points in F produce a distinct sum, the probability that the randomly cho-
sen point Ri := aiP + biQ can be split as a sum of m points in F is heuristically estimated by

|F|m

m! · qn ≈
qn

′m−n

m! .

Theseheuristic assumptions appear reasonable, and they are common in the literature. Furthermore,weneed
about |F| decompositions to solve the discrete logarithm problem.

Ifwe let C(q, n,m, n′) be the expected cost of SolvingProblem 1, the relation searchphase of the algorithm
then has an expected cost of

qn
′ m!
qn′m−n C(q, n,m, n

′) = m! · qn−n
′m+n′C(q, n,m, n′).

In practicemwill be small compared to qn
′
, so a sparse linear algebra algorithmwill be used for the linear

algebra phase of the algorithm [25]. The expected cost of this phase can therefore be approximated by mq2n
′
.

We then have:
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Theorem 2.1. Under plausible heuristic assumptions, the total cost of solving a discrete logarithm problem for
a curve defined over K can be approximated by

m! · qn−n
′m+n′C(q, n,m, n′) + mq2n

′

where C is as above.

Evaluating the cost C(q, n,m, n′) of solving Problem 1 has proven to be very difficult. The polynomial systems
obtained after theWeil descent procedure are solvedwith Groebner basis ormultivariate resultant algorithms.
These algorithms reduce polynomial system solving to linear algebra. The main issue in estimating the cost
of Problem 1 is estimating the size of this linear algebra problem.

Existing upper bounds seem to provide a good approximation for the cost of solving generic systems of
polynomial equations, but have often been of little value for systems with special structure, and in particular
those coming from cryptography [10, 16, 19].

For some ranges of the parameters n and q, these bounds suffice to show that the algorithm above with
V = Fq outperforms generic algorithms [4, 14] and in the best case the algorithm has subexponential com-
plexity. In the important case q = 2 and n prime, the bounds lead to an overall cost above the cost of generic
algorithms [11], but studies of the polynomial systems suggest that the actual complexity of solving themmay
be lower [12, 17, 21, 24]. In [21] it was shown that under the first fall degree assumption, a heuristic previously
used in other cryptanalysis work [6, 7, 10, 15], the overall cost of ECDLP over characteristic 2 fields would
be subexponential. Since then Huang et al. [16] have provided some evidence against the first fall degree
assumption, and the actual cost of the algorithm remains unknown.

2.3 Current Challenges

There are two main challenges related to the family of index calculus algorithm sketched in this section:

– Complexity estimates: the complexity of these algorithms is hard to analyze.
– Practical efficiency: solving ECDLP for curves used in cryptography is still very hard in practice.

This is in contrast to the particular case V = Fq where for some range of parameters, improvements over
generic algorithms have been demonstrated both in theory and in practice [4, 14].

3 A new ECDLP Algorithm
The particular vector space V = Fq can be equivalently described as the set of elements x ∈ K such that xq = x.
Let m := n in this case. From the problem

Sn+1(x1, x2, . . . , xn , xR) = 0, xi ∈ V ,

we easily derive n equations

S(i)(X1, X2, . . . , Xn) := Sq
i

n+1 (X1, X2, . . . , Xn , xR) mod Xq1 − X1, . . . , X
q
n − Xn .

Clearly, all the equations above can be chosen to have the same degree. We thus have a system of n equa-
tions (letting i = 0, 1, . . . , n − 1) in n variables. The system can be solved using resultants or Groebner basis
algorithms, leading to the good complexity results mentioned above.

Motivated by these ideas, we consider factor bases whose elements are roots of some “nice” polynomials.
Concretely, our main idea in this paper is to replace the vector space V by the set of points satisfying an
equation of the form xq

n′

= λ(x) where λ is a polynomial of small degree.
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3.1 Our Algorithm

Let q, n, E, P, Q as above, and suppose we want to solve the corresponding discrete logarithm problem. Fur-
thermore, fix λ(x) ∈ K[X] and positive integers n′ and m.

Let M be the set of monomials in K[X1, . . . , Xm]. For a positive integer i and f =
∑︀

M∈M aMM ∈

K[X1, . . . , Xm], we define the polynomial F i(f ) as the polynomial F i(f ) =
∑︀

M a
qi
MM, that is, we raise the

coefficients of f to the power qi. Let

φ : K[X1, . . . , Xm] →K[X1, . . . , Xm]

f (X1, . . . , Xm) →Fn
′
(f )(λ(X1), . . . , λ(Xm)).

Observe that we have
f q

n′

≡ φ(f ) (mod Xq
n′

1 − λ(X1), . . . , Xq
n′

m − λ(Xm)).

Our algorithm has three steps:

1. Choice of a “factor basis”: Set

V :=
{︂
x ∈ K |xq

n′

− λ(x) = 0
}︂

and a “factor basis”
F := {(x, y) ∈ E(K) | x ∈ V}.

2. Relation search: let ∆ be a small integer. For i = 1, 2, . . . , |F| + ∆, we generate random ai , bi ∈
{0, . . . , N−1}andwecomputeRi := aiP+biQ.We let S(0)(X1, X2, . . . , Xm) := Sm+1(X1, X2, . . . , Xm , xRi )
and for k = 1, . . . ,m − 1, we let

S(k)(X1, X2, . . . , Xm) := φ
(︁
S(k−1)(X1, X2, . . . , Xm)

)︁
.

We solve the polynomial system S = {S(k)}m−1k=0 using Rojas’ sparse resultant algorithm [22] and a uni-
variate polynomial root finding algorithm. Given a solution (x1, . . . , xm), we check whether all the x
values correspond to points in the factor basis in two steps:

– Check if for each j = 1, 2, . . . ,m, xj ∈ V, that is, xq
n′

j = λ(xj).
– Check if for each j = 1, 2, . . . ,m there exists yj ∈ K such that (xj , yj) ∈ E(K).

We then find signs such that the relation Ri =
∑︀m

j=1 ±(xj , yj) holds.
Once a solution is found, we store the corresponding relation.

3. Linear algebra: as in previous algorithms, we perform linear algebra operations on the relations to
derive a relation of the form aP + bQ = 0, from which we deduce the discrete logarithm value.

Our goal in the relation search step is to solve the equation Sm+1(x1, . . . , xm , xR) = 0 with xi ∈ V,
i = 1, . . . ,m. This is equivalent to finding the zeros of the system T = {Sm+1(X1, . . . , Xm , xR), Xq

n′

1 −
λ(X1), . . . , Xq

n′

m − λ(Xm)}. In this paper we consider the system S, which might have more solutions than
the system T. We make the assumption that S is zero-dimensional. We refer to Appendix B for an argument
in support of this assumption.

We observe that a randomly chosen polynomial λ with small degree will usually result in a very small
factor basis F (and in an impractically large m), while a randomly chosen set of around qn

′
elements from

K will lead to a polynomial λ of large degree. The existence and construction of suitable parameters will be
further discussed in Section 4.

3.2 Complexity Analysis

The next lemma (proved in Appendix A.1) evaluates the cost of Rojas’ algorithm:
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Lemma 3.1. Let d = deg(λ). Consider the set S = {S(k) : k = 0, 1, . . . ,m − 1}. Suppose that S is zero-
dimensional. ByapplyingRojas’smethod [22], one can construct univariate polynomials h(X), h1(X), . . . , hm(X) ∈
K[X] such that the zero set of S on (K*)m is given by {(h1(θ), h2(θ), . . . , hm(θ)) ∈ (K*)m | h(θ) = 0}. Moreover,
these polynomials can be found in Õ(m5.188 · (3d)4.876m

2
) arithmetic steps over (a small degree extension of)

K.

As in previous algorithms, we heuristically approximate |F| ≈ |V| and we assume |V| ≈ qn
′
.

Under the assumptions recalled above, we can therefore evaluate the cost of our algorithm as follows:

Theorem 3.2. Let d := deg λ. Under the assumptions listed in this section, the complexity of our algorithm is

m! · qn−n
′m+n′ · Õ

(︁
m5.188 · (3d)4.876m

2)︁
+ mq2n

′

arithmetic operations.

An ideal polynomial λ in our attack will have a small degree d. The case V = Fq is used in Diem and Gaudry’s
algorithms [4, 14], and it corresponds to d = n′ = 1. Concretely, we havem = n and |V| = q. Theorem 3.2 gives
the time complexity of n! · q · Õ

(︁
n5.18834.876n

2
)︁
+ nq2 arithmetic steps. By letting n and q vary in a particular

way, one can get a sub-exponential complexity (see [4]).

Remark 3.1. Recall that generic algorithms use O(qn/2) group operations, whereas brute force ap-
proaches require O(qn) group operations.

– Assume d > q0.102
n
m2 . ThenTheorem3.2 has a termwhich is at least O(qn/2), suggesting that our algorithm

does not beat generic algoritms.
– Fix an integer m and real number α with 0 < α < 1. Assume that m ≈ αn/n′ and furthermore that
d ≈ qn

′2/n. Then our complexity reduces to

Õ
(︁
qn−n

′m+n′ · d4.876m
2
+ q2n

′)︁
= Õ

(︁
qn(1−α+4.876α

2)+αn/m + q2αn/m
)︁

For m large enough this gives a complexity of approximately Õ
(︁
qn(1−α+4.876α

2+ϵ)
)︁
. The minimum value of

1 − α + 4.876α2 is approximately 0.95. Hence when α is chosen properly (for example α = 0.1), the com-
plexity is Õ(q0.95n)which beats brute force algorithms. Note that one can get better complexity estimates
if d ≈ qβn

′2/n where β < 1.

Definition 3.1. In view of Remark 3.1, we call polynomials Xq
n′

− λ(X) ∈ K[X] dividing Xq
n
− X with logq(d) =

logq(deg(λ)) < n′2/n quasi-subfield polynomials.

4 Finding Suitable Parameters and constructions
We now discuss the existence and computation of suitable parameters for our attack. We first give a general
existential result. Then we focus on the case of additive subgroups of the finite field. We give a probabilistic
argument in that context, followed by an explicit construction. In Appendix C we further study additive sub-
groups for Mersenne prime extensions of characteristic 2 fields, and we investigate multiplicative subgroups
of the finite field.

4.1 Lower Bounds on deg λ

Let q, n, n′,m, d and λ be as above, and suppose that deg λ > 1. Assume that L(X) = Xq
n′

− λ(X) splits over K,
so that |V| = qn

′
. The following lemma (proved in Appendix A.2) shows that deg λ cannot be too small.
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Lemma 4.1. Suppose that L(X) = Xq
n′

− λ(X) ∈ K[X] divides Xq
n
− X and that ℓ := logq d = logq deg λ > 0.

Then we have ⌊︁ n
n′
⌋︁
ℓ + (n mod n′) ≥ n′.

One can prove a similar result when L(X) splits almost completely over K (see Lemma C.2). Remark that the
above lemma does not apply when λ is linear.

The above constraints on ℓ = logq deg λ are more strict when n mod n′ is smaller. When n mod n′ is too
small, we see that our algorithm is often worse than generic algorithms by Remark 3.1.

We remark that random polynomials dividing Xq
n
− X are unlikely to be such that ℓ is small. On the

other hand, a random polynomial of the shape of L with ℓ small is unlikely to have many roots in K. We will
therefore need ad hoc constructions to build these polynomials. Perhaps, the most natural constructions are
to consider additive and multiplicative subgroups of K. In what follows, we argue that these constructions
may not provide us with the sparse polynomials we seek.

4.2 Additive Subgroups

In the remaining of this section we focus on polynomials L such that the corresponding set V :=
{︁
x ∈ K |xq

n′

= λ(x)
}︀
is a vector space over Fq. The factor bases considered are therefore a subset of the factor bases con-

sidered in [11, 21] and follow-up works, though of course our algorithm computes relations in a different way.
We recall that for any vector space V over Fq, the associated polynomial L(X) =

∏︀
α∈V (X − α) is a monic

linearizedpolynomial, namely its only non-zero coefficients are coefficients of power of q terms [3, Ch. 11]. Any
two distinct vector spaces correspond to distinct linearized polynomials, but not every linearized polynomial
corresponds to a vector space. In fact, as shown in Appendix A.3, we have:

Lemma 4.2. Let N(q, n, n′) be the number of distinct vector spaces over Fq of dimension n′ that are contained
in K. Assume n ≥ n′ ≥ 1. Then:

qn
′(n−n′) · (1 − n′q−(n−n

′+1)) ≤ N(q, n, n′) ≤ qn
′(n−n′+1).

If n is large in comparison to n′, the previous lemmaessentially tells us that there are about qn
′(n−n′) subspaces

of K of dimension n′. There are exactly qnn
′
monic linearized polynomials of degree qn

′
over K, and there are

qnℓ such polynomials with deg λ ≤ qℓ. Heuristically, wemay expect that linearized polynomials associated to
vector spaces are as likely to have small d than other polynomials.Wewould therefore expect that the number
of vector spaces of dimension n′ such that deg λ ≤ qℓ is about

qn
′(n−n′)qn(ℓ−n

′) = qnℓ−n
′2
.

In particular, we would expect no such polynomial to exist whenever ℓ << n′2
n .

On the other hand, as in Remark 3.1 parameters with ℓ > n′2
n will result in a time complexity worse than

brute force. Hence this approach might only work well for exceptional families of parameters. Indeed an
exceptional family where the heuristic analysis does fail is where n′|n and λ(x) = x, thus ℓ = 0 < n′2

n , and the
subspace is none other than the subfield of degree n′ over Fq. The work of Diem [4] shows that there is an
infinite family of such n and q where the ECDLP can be solved in subexponential time in that case.

In the next sectionwe provide an explicit infinite family of parameters giving quasi-subfield polynomials.
In Appendix C.1, we further study the case of parameters where n is a Mersenne prime.

4.3 A Particular Family

Let F be a field of characteristic p. We recall that to any polynomial f =
∑︀ℓ

i=0 fiX
i ∈ F[X], one can associate

a linearized polynomial Lf (X) =
∑︀ℓ

i=0 fiX
qi ∈ F[X]. Moreover this association is such that given any two
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polynomials f1, f2 ∈ F[x], we have
Lf1 f2 (X) = Lf1 ∘ Lf2 (X)

where ∘ denotes the polynomial composition [3, Ch. 11]. The polynomial f ∈ F[X] divides Xn − 1 if and only if
Lf (X) divides Xq

n
− X.

Lemma 4.3. Let q′ be powers of p. For l ≥ 0 let pi =
∑︀l

i=0 q
′i. Then in F[X], where F is any field of characteristic

p, one has for k ≥ 0:

(1 +
k∑︁
i=0

Xpi )|(Xpk+1 − 1) and hence (X +
k∑︁
i=0

Xq
pi )|(Xq

pk+1 − X).

Proof. One has pk+1 = q′pk + 1. Let f = 1 +
∑︀k

i=0 X
pi . Modulo f we find:

0 ≡ Xf q
′
= X +

k∑︁
i=0

X(Xpi )q
′
= Xp0 +

k∑︁
i=0

Xpi+1 = Xpk+1 + f − 1 ≡ Xpk+1 − 1.

We apply the construction in the above lemma to the case F = K = Fqn with n = pk+1. Note that deg(X +∑︀k
i=0 X

qpi ) = qpk and that n′ = pk. Furthermore, note that ℓ = pk−1 = logq(deg(λ)) where λ = −
∑︀k−1

i=0 X
qpi . Note

that

ℓ = pk−1 =
pk−1pk+1
pk+1

= pk−1(q
′pk + 1)
pk+1

= (q′pk−1 + 1)pk − (pk − pk−1)
pk+1

= p2k
pk+1

− (pk − pk−1)
pk+1

< n
′2

n .

Hence our construction gives rise to quasi-subfield polynomials. By picking the right parameters, Remark
3.1 implies that our algorithm will run faster than brute force search. Note that since n ≡ 1 (mod n′), we are
in the worst case scenario of Lemma 4.1. We hope that there are better constructions giving rise to better
complexity estimates.

5 Conclusion and Open Problems
In this paper we introduced quasi-subfield polynomials, which are polynomials over a finite field Fqn of the
form Xq

n′

− λ(X) which are nearly split and where λ has small degree. We showed that such polynomials
could lead to faster algorithms for the elliptic curve discrete logarithmproblem (ECDLP) over composite fields
when deg λ is small enough. Finally, we investigated the existence of these polynomials, and provided one
particular family leading to an ECDLP algorithm more efficient than exhaustive search.

It remains an open problem to find (or rule out) the existence of quasi-subfield polynomials where deg λ
is small enough to improve on the best (generic) algorithms for ECDLP. A question of particular interest is
whether the bound on deg λ provided by Lemma 4.1 is tight: in fact removing the term n mod n′ in this bound
would show that our approach cannot beat generic algorithms. Besides the construction of better families of
quasi-subfield polynomials, onemayhope to beat generic algorithms by generalizing our approach in various
directions: such generalizations could include using a rational function for λ, using an isogeny map for L (as
in [20]), or adapting various tricks also used in other index calculus algorithms such as double large prime,
unsymmetrized and unbalanced variations [12, 13, 18]. We hope that our paper will motivate further work in
these directions.
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A Omitted Proofs

A.1 Proof of Lemma 3.1

Proof. The polynomial system hasm equations S(k) = 0 inm variables. The summation polynomial Sm+1 has
degree 2m−1 in each variable, and each application of φ increases the degree by a factor d in each variable,
so the polynomial S(k) has degree dk−12m−1 in each variable.

We compute the quantities M(E), R(Ē) and S(Ē) in Theorem 2.1 of [22]. Following the notations of [22]
paper, Ek is the fundamental hypercube of dimension m and length dk−12m, and Em+1 = △ is the pyramid
whose edges are all fundamental vectors. For k = 1, . . . ,m, let λk = dk−12m−1, and let λm+1 = (m!)−1. We have

M(E) = Vol(E1, . . . , Em) =
m∏︁
k=1

λk = 2m(m−1)d
m(m−1)

2 .

We have

R(Ē) =
m+1∏︁
k=1

λk
m+1∑︁
k=1

λ−1k ≤M(E) + m
2m−1m!M(E) ≤ 2M(E) = 2m

2−m+1d
m(m−1)

2 .

We finally have

Mave
Ē =

(︃
1

m + 1

m+1∑︁
k=1

λk

)︃m
≤ λmm = (2d)m(m−1),

hence
S(Ē) = O

(︁√
mem(2d)m(m−1)

)︁
.

Applying [22, Theorem 2.1], we obtain that Rojas’ algorithm requires

Õ
(︁
m5.18827.376m

2−3.948m+2d4.876m
2−4.876m

)︁
= Õ

(︁
m5.188(3d)4.876m

2)︁
arithmetic steps.

The univariate polynomials produced by Rojas’ algorithm are of degree bounded byM(E). Over finite fields,
root-finding is quasi-linear in this degree, and its cost can be neglected in the overall complexity estimation.

A.2 Proof of Lemma 4.1

Proof. To simplify notations, let us assume that λ is defined overFq (the general proof follows the same lines).
One has

Xq
2n′

≡ (Xq
n′

)q
n′

≡ λ(X)q
n′

≡ λ(Xq
n′

) = λ(λ(X)) mod L(X).

Recursively, we have
Xq

n′k
≡ λ ∘ λ ∘ . . . ∘ λ(X) mod L(X)

where λ is composed k times with itself in this formula. We then have

Xq
n
≡ (λ ∘ λ ∘ . . . ∘ λ(X))q

n mod n′

mod L(X)

where λ is composed ⌊ nn′ ⌋ timeswith itself in this formula. Since Xq
n
≡ X mod L(X), we deduce the result.



Quasi-subfield Polynomials and the Elliptic Curve Discrete Logarithm Problem | 35

A.3 Proof of Lemma 4.2

Proof. We have N(q, n, n′) = N1(q,n,n′)
N2(q,n,n′) , where N1 is the number of choices of n′ elements over Fnq that are

linearly independent over Fq, and N2 is the number of such choices defining the same vector space. One has

N1 =
(︀
qn − 1

)︀ (︀
qn − q

)︀ (︁
qn − q2

)︁
. . .
(︁
qn − qn

′−1
)︁
≤ qnn

′
.

Also, one finds, using that for 0 ≤ ϵ ≤ 1 one has (1 − ϵ)n ≥ 1 − nϵ:

N1 ≥ qnn
′
(1 − qn

′−1−n)n
′
≥ qnn

′
· (1 − n′q(n

′−1)/n).

Furthermore, one finds

q(n
′−1)n′ ≤ N2 =

(︁
qn

′
− 1
)︁(︁
qn

′
− q
)︁(︁
qn

′
− q2

)︁
. . .
(︁
qn

′
− qn

′−1
)︁
< qn

′2
.

Since N = N1/N2, the result follows.

B On the dimension of our polynomial systems
Throughout this section we let K = Fqn , K the algebraic closure of K, and A = K[X1, . . . , Xm]. If S is a set of
polynomials in A, then Z(S) denotes the zero set {P ∈ Km|F(P) = 0 for all F ∈ S}. If I is an ideal of A, then
V(I) ⊂ SpecA denotes the set of all prime ideals which contain I. Note that Z(S) is finite if dim℘ = 0 for all
prime ideal ℘ ∈ V(I) where I is the ideal generated by S.

In our algorithm, finding a relation is reduced to solving a polynomial system S = {S(i), i = 0, . . . ,m −1}.
Here S(0)(X1, X2, . . . , Xm) = Sm+1(X1, X2, . . . , Xm , ξR) where ξR is the x-coordinate of a point R which is a
random linear combination of the points P and Q, and inductively S(i+1) = φ(S(i)) for i ≥ 0, where φ : A → A :
f (X1, X2, . . . , Xm) → Fn

′
(f )(λ(X1), λ(X2), . . . , λ(Xm)), which is a ringmorphism.Here F raises the coefficients

of a polynomial to the power q, and λ is a polynomial. In the main text we make the heuristic assumption
that for random R, Z(S) is likely finite. The goal of this section is to provide theoretical analysis in support of
this heuristic assumption.

If I be an ideal of A, then Iφ denotes the ideal generated by φ(I). Let I(0) = I and inductively I(i+1) =
(I(i))φ for i ≥ 0. Let Ji be the ideal generated by I(0) ∪ . . . ∪ I(i) for i ≥ 0. Our goal is to characterize when
dim Z(Jm−1) is 0. The situation considered in our algorithm is a special case where I is the ideal generated by
Sm+1(X1, X2, . . . , Xm , ξR).

For u, v ∈ SpecA, we write u φ→ v if dim u = dim v and vφ ⊂ u. We will show that for every u ∈ SpecA,
there is a unique v such that u φ→ v. In fact v = φ−1(u).

We say that a sequence of prime ideals u0, ..., ui in SpecA is a φ-chain of length i led by u0 if u0
φ→ u1

φ→
. . . φ→ ui. We will show that for i ≥ 0, V(Ji) is the set ℘ ∈ V(I) such that ℘ leads a φ-chain of length i in V(I).

There are only finitely many minimal primes in V(I). In general it is likely the case that there are no
minimal primes u and v in V(I) such that u φ→ v, in which case dim J1 < dim I. Inductively there are finitely
many minimal prime ideals in V(Ji), each leading a φ-chain of length i. It is likely that there are no minimal
primes u and v in V(Ji) such that u φ→ v, in which case no minimal prime in V(Ji) leads a φ-chain of length
i + 1, hence dim Ji+1 < dim Ji. Consequently Jm−1 is likely of dimension 0.

In our situation I is the ideal generated by Sm+1(X1, X2, . . . , Xm , ξR), and the heuristic assumption is
that for R being a random combination of P and Q the ideal I is likely in the good case hence Jm−1 is likely of
dimension 0.

The rest of this section is devoted to proving the above-mentioned property of φ-chains and characteri-
zation of Ji in terms of φ-chains in V(I).

It is easy to see that φ : A → A is an integral ring morphism, that is A is integral over φ(A). Therefore if
u ∈ SpecA, φ−1(u) ∈ SpecA and dim u = dimφ−1(u). Let v = φ−1(u). Then φ(v) ⊂ u, so vφ ⊂ u, so u φ→ v.

Let w ∈ SpecA. If dimw = dim u and wφ ⊂ u. Then φ(w) ⊂ u. So w ⊂ φ−1u = v. Since dimw = dim u =
dim v, we must have w = v. We have proved the following:
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Lemma B.1. Let u ∈ SpecA. Then there is a unique v ∈ SpecA such that u φ→ v. In fact v = φ−1(u).

Theorem B.2. Suppose I is an ideal of A. Let J be the ideal generated by I and Iφ. Then V(J) = {℘|℘ φ→ u and
℘, u ∈ V(I)}.

To prove the theorem, observe that for ℘ ∈ SpecA, ℘ ∈ V(J) if and only ℘ ∈ V(I) and ℘ ∈ V(Iφ).
It is straightforward to verify that for ℘ ∈ SpecA,

Iφ ⊂ ℘ ⇔ φ(I) ⊂ ℘ ⇔ I ⊂ φ−1(℘).

From Lemma B.1 it follows that

V(J) = {℘|℘ φ→ u and ℘, u ∈ V(I)}.

The theorem is proved.
The main result of this section is the next theorem.

Theorem B.3. The set V(Ji) consists of primes ℘ ∈ V(I) that leads a φ-chain of length i in V(I). In particular,
dim Jm−1 = 0 if and only if every φ-chain of length m − 1 in V(I) is of dimension 0.

Proof of Theorem B.3 The case i = 1 follows directly from Theorem B.2. For i > 1, since V(Ji) = V(Ji−1 ∪
(Ji−1)φ), Theorem B.2 implies that V(Ji) consists of primes ℘ ∈ V(Ji−1) such that ℘ φ→ u1 with u1 ∈ V(Ji−1).
By induction since u1 ∈ V(Ji−1), u1 leads a φ-chain of length i − 1 in V(I). That is, u1

φ→ u2 . . .
φ→ ui with

u2, . . . , ui ∈ V(I). So ℘
φ→ u1

φ→ u2 . . .
φ→ ui. That is ℘ leads a φ-chain of length i in V(I).

For the converse suppose ℘ leads a φ-chain of length i in V(I). Thus ℘
φ→ u1

φ→ u2 . . .
φ→ ui with

℘, u1, . . . , ui ∈ V(I). Applying induction to ℘, u1, ..., ui−1 we conclude that ℘ ∈ V(Ji−1). Similarly apply-
ing induction to u1, ..., ui we conclude that u1 ∈ V(Ji−1). Since ℘

φ→ u1, Theorem B.2 implies that ℘ ∈ V(Ji).
This completes the proof of the theorem.

C Further comments on the existence of quasi-subfield
polynomials

In this section we further develop our analysis of additive subgroups of Fqn , specializing to the case of
Mersenne prime degree extensions when q = 2.

We also investigate the case of multiplicative subgroups of F*qn .

C.1 Mersenne Prime Degree Extensions over F2

We first expand on the construction of Section 4.2.
A plausible attempt for finding good parameters is to seek for parameters such that the polynomial Xn −1

has many small degree factors over Fq. This polynomial is then a priori more likely to have a large number of
(non necessarily irreducible) factors of degree n′, maximizing the chance that one of these factors is sparse
enough. We would then take L as the linearized polynomial corresponding to that factor.

Mersenne prime degree extensions of F2 look particularly promising in that respect. Indeed when n =
2k − 1 is prime, the polynomial (Xn − 1)/(X − 1) has (n − 1)/k irreducible factors of degree k over F2.

In the following, let N(k, n′) be the number of distinct polynomials of degree n′ that divide Xn−1 ∈ F2[X].
We have:

Lemma C.1. Let k such that n = 2k −1 is prime. Then N(k, n′) =
(︀ ⌊n/k⌋
⌊n′/k⌋

)︀
if n′ mod k ∈ {0, 1}, and N(k, n′) = 0

otherwise.
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Note that we have

log
(︃
n/k
n′/k

)︃
≈ (n′/k) log(n/k) − (n′/k) log(n′/k) ≈ (n′/k) log(n/n′) ≈ (n′/k) logm.

The number of monic polynomials of degree n′ over F2 is 2n
′
, and there are 2ℓ such polynomials of the

form Xn
′
+ s(X) with s(X) of degree at most ℓ. Heuristically assuming that the density of “sparse enough”

polynomials is identical for factors of Xn − 1 and for random polynomials, we expect that the number of
polynomials of degree n′ that divide Xn − 1 and are sparse enough can be approximated by

N(k, n′)2ℓ−n
′
.

In particular, the existence of such polynomials a priori depends on whether ℓ is bigger or smaller than n′ −
(n′/k) logm.

To improve on generic algorithms, we want ℓ < 0.102 n
m2 as in Remark 3.1. Together with the above con-

straint on ℓ, this leads to a constraint

0.102n/m2 > n′ − (n′/k) logm.

Using mn′ ≈ n and k = log n, this inequality implies

log n′
n′ < 0.102log nn

but on the other hand we have log n/n < log n′/n′ since n′ < n. We conclude that this approach cannot lead
to interesting parameters for our attack, unless the above probabilistic argument fails significantly.

C.2 Multiplicative Subgroups

We now attempt to construct V as a multiplicative subgroup of K*. Such a subgroup can be characterized by
an equation of the form

Xr − 1 = 0

where r is a divisor of qn − 1. Let n′ ≥ logq r. The above equation implies

L(X) := Xq
n′

− Xa = 0

where a := qn
′
mod r. Note that the set V corresponding to this polynomial L contains the element 0 in

addition to the subgroup of order r.
In this context, we note the following generalization of Lemma 4.1:

Lemma C.2. Suppose that ℓ := logq d = logq deg λ > 0. Then we have⌊︁ n
n′
⌋︁
ℓ + (n mod n′) ≥ logq |V|.

Proof. There exists a polynomial a(X) of degree 2n
′
− |V| such that L(X) = Xq

n′

+ λ(X) divides (Xq
n
− X)a(X).

Following the same reasoning as for Lemma 4.1, we obtain an inequality

d
n
n′ q(n mod n′) + deg a ≥ qn

′

from which we deduce the result.

It is a priori a good idea to choose q and n such that qn − 1 has many distinct small prime factors, as this will
give more options for r. The number of choices for r is maximal when qn − 1 has n log q/ log(n log q) distinct
prime factors bounded by log(n log q). In that case there are approximately(︃

n log q/ log(n log q)
n′ log q/ log(n log q)

)︃
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options for r. In general, we expect far less options for r.
We observe the similarity of this formula with the value of N(k, n′) given by Lemma C.1 for the Mersenne

case. We similarly do not expect to improve on generic algorithms this way, except maybe for exceptional
parameters.
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