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Circularized transcript isoforms due to back-splicing are increasingly being reported in

different tissues types and pathological states including cancer. Since these circular

RNAs (circRNAs) are more stable than linear messenger RNA their identification and

profiling in tumor tissue could aid in stratifying patients and may serve as biomarkers.

In this study, we have investigated the relationship between circRNA expression and

tumor grade in a cohort of 58, mostly non-muscle-invasive bladder cancer patients.

From 4571 circRNAs detected, we identified 157 that were significantly differentially

expressed between tumor grades relative to the linear transcript. We demonstrated

that such grade-related differences can be identified in an independent cohort, and

that a large fraction of circRNAs can be, in principle, detected in urine. The differentially

expressed circRNAs cluster into subgroups according to their co-expression, subgroups

which are enriched for DNA repair, cell cycle and intracellular signaling genes. Since

one proposed function of circRNAs is to interfere with gene-regulation by acting as

microRNA “sponges,” candidates which were differentially expressed between tumor

grades were investigated for potential miRNA target sites. By investigating the circRNAs

from bladder cancer related pathways we demonstrated that the expression of these

pathways, the circRNAs, and their parental genes are often decoupled and do not

correlate, yet that some circRNAs do not follow this tendency. The present study provides

the next step for the comprehensive evaluation of this novel class of RNAs in the context

of non-muscle-invasive bladder cancer. Intriguingly, despite their possible function as

microRNA sponges, they potentially affect host mRNA levels at the transcriptional

stage, as compared to post-transcriptional control by miRNAs. Our analysis indicates

differences of their activity between bladder cancer tumor stages, and their relative

expression levels may provide an additional layer of information for patient stratification.
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INTRODUCTION

Circular RNAs (circRNAs) are a class of single-stranded
closed RNA molecules, created by backsplicing events from
linear mRNA (1). They were first identified ∼20 years ago,
but were initially seen as artifacts of aberrant RNA splicing
(2). However, more recently, numerous potential functions
of circRNAs have been proposed, such as acting as miRNA
sponges, modulating transcription and interacting with RNA-
binding proteins (RBPs) (3). Additionally, several genome-wide
studies indicate that circRNAs are evolutionary conserved across
species (4). Furthermore, an increasing number of studies show
that circRNAs are strongly correlated with the proliferation,
apoptosis, invasion, and metastasis of human tumors, which
indicates the potential of circRNAs to act as novel therapeutic
targets and biomarkers (5). The use of circRNAs for the latter
is especially intriguing since they are more stable than linear
RNA forms, escaping degradation by those processes which are
dependent on the recognition of the ends of RNA molecules.

With the help of novel bioinformatics approaches and
appropriate sequencing methods, comprehensive studies of
circRNA species are possible (6), allowing investigation of
the landscape of circRNAs in healthy and cancerous tissues.
circRNAs are generally expressed at low levels and often exhibit
cell type specific and tissue specific patterns (7). Most circRNAs
originate from exons of protein-coding genes and can consist
of one or multiple exons; some circRNAs also arise from
introns, intergenic regions, non-coding RNA (ncRNA) loci, and
other portions of the genome (8). In eukaryotes, the lengths of
circRNAs are heterogeneous, ranging from ∼100 to 4000 base
pairs (9), and are estimated to account for as many as 0.1–10%
of molecules in the transcriptome (10).

Bladder cancer (BC) is the 12th most common cancer
worldwide (6th most common in males) with 430,000 new
cases reported in 2012 (11). Over three-quarters of new cases
are diagnosed as non-muscle-invasive bladder cancer (NMIBC:
stages Ta/T1/Tis), with the remainder demonstrating invasion
of tumor into the detrusor muscle (muscle-invasive bladder
cancer, MIBC: stages T2+) (12). MIBC is a life-threatening
disease requiring radical treatment and carrying a poor prognosis
(13). Although NMIBC is not immediately life-threatening,
recurrence after initial treatment is common and 10–15%
of cases will progress to MIBC, necessitating burdensome
and expensive long-term surveillance (14, 15). NMIBC is
thus a heterogeneous disease with regard to both clinical
outcomes (recurrence and progression) and underlying biology,
with considerable differences in chromosomal alterations and
mutational events between grades (low/high grade or grades 1–
3) and stages (Ta/T1/Tis) (16). Furthermore, expression analyses
derived from largescale RNA sequencing initiatives have tended
to classify NMIBCs into three subtypes: the Lund Group
describe urobasal A (UroA), genomically unstable (GU), and
infiltrated, overlapping with the UROMOL classification of
Class 1 (UroA, -progression signature, -CIS signature), Class
2 (GU, +progression signature, +CIS signature), and Class
3 (pronounced expression of lincRNAs, decreased expression
of genes associated with cell cycle and metabolic processes,

and increased expression of genes associate with histone
modifications and chromatin remodeling) (17).

More recently, the integration of chromosomal and expression
alterations with the mutational landscape has identified six
molecular subtypes of BC with different molecular features,
prognoses and distributions betweenNMIBC andMIBC (18): the
Neural-like subtype is prevalent in MIBC and characterized by
high WNT/β-catenin signaling; HER2-like is distributed evenly
across NMIBC and MIBC, with higher ERBB2 amplification
and signaling; Papillary-like is a NMIBC subtype enriched
in urothelial differentiation genes with a high frequency of
actionable FGFR3mutations, amplifications, and FGFR3-TACC3
fusion; Luminal-like is also predominantly NMIBC, has higher
MAPK signaling and more KRAS and KMT2C/D mutations
than other subtypes; Mesenchymal-like and Squamous-cell
carcinoma-like are predominant in MIBC. Importantly, about
20% of NMIBCs show MIBC subtype traits and a lower 5-yr OS
rate than Papillary-like NMIBC (81 vs. 96%) (18).

Genomic and epigenomic approaches may thus inform the
development of more accurate risk stratifiers and non-invasive
diagnostics (19), tools that are urgently required by healthcare
professionals and patients alike (20). CircRNAs also appear to
have a role to play in this already complex setting as a novel class
of prognostic biomarkers for NMIBC—in a pioneering study,
Okholm et al. (21) evaluated circRNAs in a large cohort (n= 457)
of NMIBCs and identified circRNAs that are differently expressed
between high and low risk tumors, highlighting two (circHIPK3
and circCDYL) as potential biomarkers (21).

In this study, we investigate circRNAs in a set of 58 tumors
and evaluate circRNAs, demonstrating that for a subset, their
relative expression is tumor grade dependent and may represent
an alternative or additional molecular classification. We also
provide an initial analysis of the overlap of the circRNAs detected
in our study with the results of Okholm et al. in order to
evaluate reproducibility between different tumor sample sets and
alternative computational pipelines.

MATERIALS AND METHODS

Samples and Library Preparation for
RNA-Sequencing
Fresh-frozen tumors were collected as part of theWest Midlands’
Bladder Cancer Prognosis Programme (BCPP). This study
was carried out in accordance with the recommendations of
the International Committee on Harmonization Good Clinical
Practice (ICH GCP) guidelines. The protocol was approved
by the NHS Health Research Authority East Midlands—Derby
Research Ethics Committee (ref: 06/MRE04/65). All participants
gave written informed consent for the donation of tissue
biospecimens and their subsequent utilization in biomedical
research. RNA sequencing was performed on RNA extracted
from 58 snap frozen incident bladder cancers (urothelial
carcinomas) using RNeasy mini kits (Qiagen). Sequencing
libraries were prepared from total RNA using Truseq Stranded
Total RNA kits with Ribo-zero Gold ribosomal RNA depletion
(Illumina) and paired-end sequenced using the Illumina NextSeq
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platform (2× 75 bp). On average, 48 million reads were obtained
per tumor sample.

QC and Alignment
Raw fastq files were first processed using FastQC which makes
diagnostic plots; subsequently, for each read, Trimmomatic
(version 0.32) (22) was used to trim two bases from the start
and clip where average phred score quality fell below 20. Quality-
checked fastq reads were then mapped to the human genome
(version GRCh37) and Ensembl gene annotation (release 87)
using STAR aligner (ver 2.5.2b) (23).

circRNA Prediction
Two different strategies were used to identify potential back-
splicing events in the transcriptome which predict circular RNAs
(circRNAs) to result in an in-silico reconstruction of circRNA
coordinates. The CircExplorer2 algorithm (24) was used on
the “chimeric.out.junction” file (from STAR aligner) containing
information on potential non-linear alignments obtained for
each sample. The secondmethod, the DCC algorithm (25), differs
from CircExplorer as it applies STAR separately on the R1 and
R2 from the paired-end fastq data. To retain a high confidence
data set, the output from each algorithm was filtered to select
only those cases which had≥4 reads supporting the back-splicing
event in at least one of the samples.

Of the 4,571 circRNA candidates predicted by DCC,
∼66% were also detected by CircExplorer2. Since DCC also
provides count data for circRNAs and counterpart linear RNAs
(host gene’s mRNA) to permit calculation of circular-to-linear
ratio, the output of the DCC algorithm was chosen for
downstream analyses.

Positional Bias of Exonic circRNAs
To identify any positional bias within the gene body, the
genomic coordinates corresponding to RefSeq genes and their
untranslated regions (UTRs) and coding sequences (CDS) were
retrieved fromUCSC Table Browser (hg19). In addition, bedtools
(ver. 2.27.1) was used to overlap the exonic circRNA coordinates
individually with the CDS, 5′ and 3′ UTR coordinates.

Differential Expression
For the back-splice junctions implicated, read counts were
resolved into circRNA and linear RNA (junction count)
components using DCC. To control for different library sizes,
circular-to-linear ratios were calculated after normalizing
for RNA-seq library size resulting in counts per million
(CPM); relative expression values were computed by log2
[(CPM(circularRNA)+1)/(CPM(linearRNA)+1)]. Circular-to-
linear ratios were used to performAnalysis of Variance (ANOVA)
using R (ver. 3.5.1) to identify tumor grade discriminating
circRNA candidates (at adjusted p-value 0.05).

Pathway Analysis
GO enrichment was carried out between a list of differentially
expressed genes and the background of all parental genes
of circRNAs using Gorilla (26). To compare sets of interests
against the complete human background, we used the functional
enrichment tool of the STRING database (version 11.0) (27). To

further explore the biological processes affected by differentially
expressed genes, we carried out pathway analyses using the
Enrichr online tool (28). Pathways were adjudged using the
KEGG (Kyoto Encyclopedia of Genes and Genomes) database
with a p-value threshold of <0.05.

In order to investigate whether the circRNAs showed different
behavior compared to host genes in selected pathways, we
selected previously-reported important bladder cancer pathways
(29, 30). These include the pathways “DNA repair,” ERBB
signaling, PI3K/AKT signaling, WNT signaling, EGFR signaling,
MAPK pathway, and “chromatin remodeling,” as defined in
the Signatures Database (MSigDB) (ver.7). In order to visualize
the relationship of circRNAs to their parental genes in these
pathways, we investigated if circRNA events were detected for
each pathway member; if not, genes were excluded from further
analysis. For the selected genes in the respective pathways,
gene expression counts and circRNA counts were tabulated in
two separate matrices. These matrices were then individually
processed for box plot using ggplot2. To further describe the
relationship of gene vs. circRNA expression, we calculated
Pearson correlation values between the expression levels of the
parental gene to the expression level of the circular RNAs (after
normalizing the read counts for the circRNAs by library size).
In order to assess potential correlations of circRNA expression
to the overall pathway activity, we computed pathway signature
scores (using geometricmean over the individual gene expression
values, adding a pseudo-count of the lowest expression value in
the set). These pathway signature scores were then correlated
to the expression of the individual circRNAs in the pathway
(Log2 CPM with initial pseudo-count one) and to the relative
expression (as used in the differential expression analysis).

microRNA Binding Site Prediction
To identify microRNA (miRNA) binding sites within the
predicted circRNAs, we first downloaded the predicted target
sites of conserved miRNA families from TargetScan (release
7.2) (31). Of the 122,607 total target sites in the dataset, there
were only 192 sites with length >8 bp and, hence, only sites
of length 7/8 bp (99.84% of total set) were taken forward for
further analysis. This filtered target dataset was then assessed for
coordinate level overlap within the circRNA coordinates using
bedtools (ver. 2.27.1).

Comparison to Other Datasets
The full set of circRNAs (supported by at least two reads in at
least two different samples) from the study of Okholm et al. was
kindly provided by the authors. CircRNAs detected in urine by
exome capture were downloaded from the supplement from Vo
et al. (32) If necessary, circle coordinates were lifted over using
a python script based on the python package pyliftover (version
0.4, https://pypi.org/project/pyliftover/) and slightly different
coordinate notions (as start coordinate given by either 0, or
+1) have been unified and entries mapped using an in-house
perl script. In order to compare if the differentially expressed
circRNAs identified show the same behavior between grades in
the Okholm et al. data, we computed their relative frequency
(occurrence in a grade grouping divided by the fraction of that
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FIGURE 1 | Work flow for identification of circular RNA candidates in context of non-muscle-invasive bladder cancer subtypes. Using 58 patient tumor tissue samples

across G1, G2, and G3 tumor grades for NMIBC and additionally 6 MIBC samples, total RNA-sequencing was performed using Illumina platform. Coordinate

boundaries for circular RNA candidates were in-silico reconstructed using DCC algorithm. For each circular RNA candidate, simultaneous evidence for back-spicing

and linear splicing (circular RNA count and linear RNA count, respectively) were quantified which were then used to calculate the circular-to-linear ratio for each

candidate. These ratios were then subjected to differential expression statistics using the limma BioConductor package. The differentially expressed circular RNAs

across the tumor grade subtypes were then used for pathway analysis based on the host gene name. Further the circular RNA sequence body was checked for

harboring potential miRNA target sites using TargetScan database.

grade in the dataset) in low-grade and high-grade samples from
Okholm et al. (removing the 7 papillary urothelial neoplasm
samples in the set). We computed the same frequencies in our
dataset by combining G1 and G2 into a “low/intermediate grade”
set, and keeping G3 as high grade. For both sets, circRNAs with
occurrence in at least three samples were selected for analysis.We
correlated these relative frequencies using Pearson correlation.

RESULTS

Clinical Phenotype of NMIBC Patient
Samples
Our study cohort includes 52 NMIBC samples (grade1/G1 n =

17, grade 2/G2 n = 5, and grade 3/G3 n = 30) and 6 MIBC

samples (all G3). The median age of the patients was 71 years
and the male:female ratio was 6:1. There was no statistically
significant difference in age distribution between the genders
(Mann-Whitney p-value 0.26).

Identification of Circular RNAs
For the total RNA sequencing of all 58 tumor samples, an average
of 48 million reads per sample was obtained. To comprehensively
identify circular RNA candidates and query the transcriptome
status we used two strategies—parallel evaluation of the linear
RNA and the circular RNA landscapes (Figure 1).

For the circular RNA landscape, two different algorithms,
CircExplorer2 and DCC, were used. While individually the two
algorithms detected 4,361 and 4,571 candidates, respectively,
there was significant overlap in the candidates identified
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FIGURE 2 | Genomic characterization of potential circular RNAs in Bladder cancer samples (A) Co-ordinate level overlap between circular RNA candidates detected

by CircExplorer2 and DCC, respectively. (B) Types of genomic origin for circular RNA candidates. X-axis is showing the genomic origin pair across the back-splicing

junction. Y-axis is the count of circular RNAs obtained from that pair type. (C) Within mRNA positional bias for circular RNA candidates. X-axis represents the three

classes of space within mature mRNA body. Y-axis is the percentage contribution of each space type to exonic circular RNA candidates. (D) Tumor-grade wise

distribution of circular RNA candidates. X-axis represents the 58 tumor samples categorized by the tumor grades of G1, G2, and G3, respectively. Y-axis represents

the number of circular RNAs detected with more than 4 back spliced reads in the tumor sample.

(Figure 2A). In addition to the junction count for back-splicing
events, the output from the DCC algorithm also provided the
paired count for the linear events which allowed comparative
evaluation; hence, for downstream analyses, results from the
DCC were carried forward.

Genomic Characterization of Circular
RNAs
When reconstructing the boundaries of the circRNA candidates,
the DCC algorithm annotates them on the basis of their
genomic context (exonic, intronic, and/or intergenic); amongst
all the circRNAs thus annotated, the exonic circRNAs were
predominant (∼94%) (Figure 2B). We then assessed positional
bias (within the mRNA body) of the exons involved in circRNA
formation. On further resolution of exonic circRNAs over the
mature RNA sections of either the untranslated region (UTR; 5′

or 3′) and coding sequence (CDS), 94.1% of the exonic circRNAs

were found to be within or overlapping the CDS; the values for
those within or overlapping 5′ and 3′ UTR were 30.5 and 14.1%,
respectively (Figure 2C). In addition to these, we looked at the
tumor grades for presence of more number of circular RNA
candidates in one grade vs. the other. We find that the median
number of circular RNAs detected when seen grade-wise are
444, 471, and 468.5 for G1, G2, and G3 respectively (Figure 2D).
Hence there didn’t appear to be any strong bias in the distribution
of circRNAs across the tumor grades.

Gene Expression Differences Delineating
NMIBC Tumor Grades
Gene level counts estimated from the total RNA-sequencing
of the 58 tumor samples were used to identify genes with
differentially expressed patterns between tumor grades. A total
of 1,071 genes were identified at p-value threshold of 0.05 (after
multiple-testing correction). Functional annotation of the gene
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FIGURE 3 | Heatmap representation of hierarchical clustering for 157 differentially expressed circular RNAs (Y-axis) by the 58 tumor samples across G1, G2, and G3

tumor grades (X-axis). Each cell value is the circular-to-linear ratio of an individual circRNA in a given tumor sample. The two main groups of samples branching out in

the cluster representation are discussed in the text are color coded in the x-axis (Group A and B), and the two main clusters of circRNAs (Cluster 1 and 2) on the

y-Axis. On the right, STRING sub-networks are pictured to illustrate functional connectivity between the parental genes of the circles. Individual functional enrichments

of these groups are listed in Supplementary Table 1.

set was performed and the pathways found to be significant were
predominantly DNA-repair and cell cycle related.

Identification of Dysregulated Circular RNA
Between Tumor Grades
Using the DCC algorithm at the confidence threshold of
≥4 supporting reads in at least one sample, 4,571 circRNA
candidates were detected. These candidates came from 2,430
unique genes with a ratio of 1.88 circRNAs per gene. The
ANOVA analysis, based on relative expression, identified 157
circRNA candidates from 107 unique host genes as having
significantly different levels of expression between the tumor
grades (set “differentially relative expression of circular RNAs,”
Supplementary Table 1). The parental gene list is functionally
enriched in processes such as cell-cycle, DNA-repair, and
cytokinesis when compared to the background of all parental
genes of circRNAs detected (as reported by a GO enrichment
analysis) (Supplementary Table 1). A heatmap based on these
discriminative circRNAs is shown in (Figure 3), indicating their
discriminative potential between tumor grades: the samples were

grouped by the clustering into two main subgroups (denoted
groups A and B in (Figure 3), separated by the initial branch,
at the top of the clustering tree, on the X-axis). The first
group comprises an inhomogeneous sub-cluster (A) with a
mix of different grades, whereas the second main group (B)
is homogenous for samples with grade 3. On the Y-axis, the
circular RNAs are grouped by the clustering into two main
clusters (Cluster 1 and 2). Both clusters exhibit sub-clusters
with distinct expression patterns. In Cluster 1, for example,
there are two sub-clusters with low expression of circRNAs
predominant in the Group B samples, but rather upregulated
in most of the Group A ones (mostly in the upper area of the
heatmap). The parental genes of these circRNAs are enriched
with functional processes relating to DNA replication, cell-
cycle, and DNA repair (Supplementary Table 1), and reveal a
highly connected module in terms of functional interactions
(right panel of STRING interactions in Figure 3). This pattern
is inverted in Cluster 2, for which Group B shows mostly high
expression. However, the parental genes of circRNAs in this
cluster do not exhibit a large amount of functional connectivity.
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GeneOntology enrichment (albeit not significant after correction
for multiple testing) for this cluster suggests involvement of
circRNAs in regulative processes including SMAD3 and 6
(indicating a potential connection to TGF-b and BMP signaling)
and Insulin-Like Growth Factor 1 Receptor, implying a potential
role of these circular RNAs in facilitating progression and
evasion of apoptosis (Supplementary Table 1), nevertheless, a
functional interpretation remains difficult. Compared with a
clustering based upon significantly differentially expressed genes
(Supplementary Figure 1), the clustering appears of similar if
not better discrimination between grades: as mentioned, Group B
comprises Grade 3 tumors only with a distinct expression pattern
of circRNAs. A separate but large fraction of Grade 3 tumors are
clustered together with Grade 1 and Grade 2 samples in Group A.
Grade 2 exhibits a tendency to cluster together in Group A which
shows high expression of a small sub-set of circular RNAs (with
parental genes TPM3, DEK, NASP, and TMPO) and which is low
for most members of Group B.

We also collected circRNA candidates whose parental genes
are affected by NMIBC grade as detected by differential
expression analysis on the gene level: the set of all genes
with any circRNA detected (n = 2,430) was overlapped
with the set of differentially expressed genes (n = 1,071;
Supplementary Figure 1). This resulted in an intersection of 143
host genes that are differentially expressed between tumor grades
and exhibit circularization (set “gene differentially expressed at
mRNA level,” Supplementary Table 1). Finally, genes where the
circRNAs are differentially expressed with little influence of the
host gene expression dynamic between the different grades were
identified by subtracting the “circles in differentially expressed
genes (n= 107)” set from the “differentially relative expression of
circular RNAs” set (n = 143): 24 such circRNAs were identified
(Supplementary Table 1). These 24 circRNAs did not exhibit
functional enrichment.

Pathway Analysis
Visual inspection of the expression levels of linear RNA and
circRNA (gene level summarized) for genes with circRNA in
bladder cancer relevant pathways (Supplementary Figure 2),
indicates non-regular patterns of circRNA expression which do
not follow obvious trends in relation to the linear form.Whereas,
for the linear RNA the spread of expression level per gene tended
to be more tightly bound, the circRNA spread was much more
variable across genes, samples and tumor grades. In concordance,
most circRNA expression levels show only poor correlation to
the expression of the parental gene (Supplementary Table 3).
In general, the expression of individual circRNAs within these
pathways does not correlate with the overall pathway activity
(Supplementary Table 2). This is also the case when correlating
the relative circular expression with the pathway activity.
However, more significantly correlated instances can be detected
in the latter analysis (at a P-value cut-off at 0.05: 66 for the relative
vs. 174 for the overall expression, Supplementary Table 2), for
example, a circRNA originating from FANCI, a gene involved in
DNA repair, shows a strong negative correlation with the DNA
repair process (R=−0.85, P <2.2−16).

Frequency of MicroRNA (miRNA) Binding
Sites Within circRNAs
Using the TargetScan dataset of predicted miRNA target sites,
a total of 132 circRNAs (hosted by 99 unique genes) were
found to harbor target sites for 141 miRNAs. Amongst the
host genes whose circRNAs harbor miRNA target sites, 4 were
differentially expressed (both at the mRNA and at circRNA level)
between the tumor grade subtypes: CDKL1, HP1BP3, MVB12B,
and TMPO. The circRNAs from these 4 host genes harbor
target sites for 11 different miRNAs: miR-7-5p, miR-30-5p, miR-
31-5p, miR-96-5p/1271-5p, miR-139-5p, miR-181-5p, miR-182-
5p, miR-433-3p, miR-489-3p, miR-493-5p, and miR-543. The 5
most recurrent miRNAs with target sites within circRNAs are
the miR-15/107 family, miR-101-3p, miR-204-5p/211-5p, and
miR-203a-3p. Many of these miRNAs have been reported to be
implicated in tumor biology and/or be predictive of response
to drug treatment (33–38). The results are summarized in
(Supplementary Table 1).

Comparison to Other Datasets
The comparison between our dataset and that of Okholm et al.
identified 3,361 overlapping circRNAs [77% from this study, 22%
of the 15,223 instances in the data of Okholm et al. (21)] (all
instances listed in Supplementary Table 4). For the circRNAs
significantly differentially expressed between grades, 108 could
be found in both datasets (69%). To each of these 108 circRNAs
we assigned their relative frequency to occur in the set of
low/medium and high-grade tumors, respectively, to describe
their tendency to be grade specific. We compared these between
the two datasets and found a strong correlation (R = 0.47, p =

2.3e−07; Supplementary Figure 3), indicating that their grade-
specific behavior can be detected independent of the cohort.
Notably, the identified grade-stratifying candidate circRNAs do
not include the two proposed progression biomarkers identified
by Okholm et al., circHIPK3 and circCDYL.

We identified 552 of our 4,116 circRNAs (12%) in the urine
dataset from 13 prostate cancer patients provided by Vo et al.
(32). This urine dataset comprises 1,092 circRNAs, resulting in a
50% recall of the urinary circRNAs in at least one of our samples.
Within the set of significant differentially expressed genes (n
= 157), 8% (13 circRNAs) can be found in the urine dataset
(Supplementary Table 4).

DISCUSSION

In this work we have investigated circRNAs from a cohort
of NMIBC patients. The general genomic properties of the
circRNAs are in keeping with earlier findings in other studies:
circRNAs are mostly connecting exons, and are mostly detected
within coding sequences. The total number detected varied
between tumors and was lowest in grade 2 tumors (although
only 5 grade 2 tumors were analyzed). However, detected number
of individual circRNAs was always >100 and up to >1,000,
providing a considerable dataset for further investigations.
Since our dataset is well-annotated by tumor grade (G1, G2,
and G3), we aimed to delineate a subset that stratified the
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dataset by grade using a supervised approach. This approach
selected 157 circRNAs, and cluster analysis resulted in distinct
subgroups of tumors (Figure 3). The clustering presented here is
a visualization of the results of the differential relative circular
expression analysis. The resulting heatmap might slightly vary
by choice of parameters and clustering algorithms; however, the
result implies the existence of molecular subtypes in terms of
circRNA expression, with varying tendencies of certain grades to
exhibit the subtype.

Gene expression differences among NMIBCs have been
reported previously, and pathways relevant to tumor biology
in bladder cancer are ERBB2, PI3K-AKT, cell cycle, MAPK,
and DNA-damage repair. One of the primary questions driving
investigation into any form of cis-regulatory RNA is how it
affects the expression level of the host gene. In this regard,
we investigated the comparative expression levels of the linear
and circular RNA for selected pathways. We observe that, for a
given pathway, the genes (linear RNA) retain a similar trend of
expression pattern between tumor grades, whereas the circRNA
levels aremuchmore variable. This could be an effect of increased
variability in the circRNA count data since the majority are
at low expression levels compared to linear RNA. Nonetheless,
for a particular grade group, we observe a discernible shift in
the expression pattern of some genes. In the ERBB2 pathway,
the ERBB2 gene is consistently the highest expressing linear
gene among all the three tumor grades but, for circRNA, SOS2
has the highest expression across the grades. Similarly, in the
PI3K-AKT pathway, ACTR3, SMAD2, STAT2, and ACACA are
most highly expressed in linear RNA, whereas for circRNA,
MAPK8 appears to have higher expression. These observations
indicate that within the same pathway there are likely different
regulatory processes acting on linear vs. circular RNA. This is also
indicated by the lack of correlation between the expression levels
of circRNAs to their parental genes in the investigated pathways.

We also found that the activation of a pathway (as measured
by gene signature score) is mostly independent of the circRNAs
within the pathway, but less so when looking at relative
expression. These instances, for which the relative expression
either positively or negatively correlates with the pathway
expression, might be under certain biological constraints. In the
case of a negative correlation, the cancer cell seems to avoid
upregulation of circRNA and the observation could be explained
by a steady level of circRNAs with increasing pathway activity.
With a positive correlation there may be a cis-acting role on the
pathways, since their relative expression increases with pathway
activity but is not bound to the expression of the parental
gene. The way by which these circRNAs potentially interact
with pathways of interest cannot be directly deduced from this
analysis. However, systematic correlation studies may help to
identify candidates for functional follow up screens.

Interestingly, four predicted miRNA sponges could be
found differentially expressed. We found cancer-related
pathway-specific genes being targets of the top recurrent
miRNAs (targeting circRNA). The miR-15/107 family is
found to have target sites within circRNAs from host genes
CDC42, MGEA5, CHPT1, GPATCH2L, TSEN2, RPL14,
PLD1, TFRC, PDLIM5, and PTK2. The genes CDC42,
PLD1, and PTK2 are involved in the EGFR signaling

pathway; the miR-15/107 family is reported to have tumor
suppressor properties (34, 39), and the circRNAs from
the above genes for EGFR signaling pathway can act
as “sponges” to exert oncogenic effect in the context of
NMIBC. Similarly, miR-204-5p/211-5p has targets within
CDC42, KHDRBS1, ASH1L, MDM2, GPATCH2L, WSB1,
ZNF638, and AGTPBP1 genes. Along with CDC42, MDM2
is involved in DNA damage responses. Additionally, the
duo of miR-204-5p/211-5p has recently been reported to
be involved in resistance to BRAF inhibition (40). Hence,
circRNAs harboring target sites for miR-204-5p/211-5p
can have important implications for tumor treatment and
progression (41, 42).

The number of samples in our study is still small, especially
for Grade 1 and Grade 2 samples and the reported list of
differentially expressed circRNAs provides a list of interesting
candidates that can be tested in future studies. However, the
existence of another bladder cancer cohort suitable for circRNA
detection by Okholm et al. gave us the opportunity to compare
two different cohorts and to test our findings in their data.
The grade-specific relationships of circRNAs could be identified
in the dataset of Okholm et al. (21). This indicates a certain
amount of transferability between independent cohorts, despite
different computational pipelines, and provides some mutual
validation of the two cohorts. The urinary circRNA in the
dataset from prostate cancer patients provided by Vo et al.
would be expected to comprise both prostate cancer specific
circRNAs and circular RNAs from normal bladder tissue, and
was therefore suitable to investigate whether circRNAs detected
in our study can be detected in urine. Indeed, we found
50% of the circular RNAs in the urine set in at least one of
our bladder tumor samples, and 12% of the bladder tumor
circRNAs from this study exist in the urine dataset. It is
therefore likely that a high proportion of circRNAs expressed
by bladder tumors will be detectible in urine, notwithstanding
the circRNAs differentiating between grades are slightly under-
represented with 8% recall. The latter observation might indicate
that the discriminative set comprises instances that are bladder
cancer specific; however, given the relatively small size of
this dataset, the significance of this finding remains unclear.
Nevertheless, these observations indicate a need to further
investigate the potential of urinary circRNAs as diagnostic and/or
prognostic biomarkers.

CONCLUSION

The present study provides a step in the comprehensive
evaluation of circRNAs in the context of bladder cancer.
Intriguingly, despite their potential function as microRNA
sponges, circRNAs are potentially affecting host mRNA levels
at the transcriptional stage, as compared to post-transcriptional
control by miRNAs. We have also identified circRNA candidates
worthy of further functional investigation, and comprising
potential miRNA sponges and circRNAs correlated to pathway
expression. Our analysis indicates circRNA differences between
bladder cancer grades, and their relative expression levels may
provide an additional modality for patient risk stratification.
Furthermore, since circRNAs have a longer half-life in the
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extracellular milieu than other RNAs and are detectable in urine,
they may be useful non-invasive biomarkers for bladder cancer
diagnosis and risk stratification.
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