
 
 

University of Birmingham

Evolutionary computing to determine the skin
friction capacity of piles embedded in clay and
evaluation of the available analytical methods
Alzabeebee, Saif; Chapman, David

DOI:
10.1016/j.trgeo.2020.100372

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Alzabeebee, S & Chapman, D 2020, 'Evolutionary computing to determine the skin friction capacity of piles
embedded in clay and evaluation of the available analytical methods', Transportation Geotechnics, vol. 24,
100372. https://doi.org/10.1016/j.trgeo.2020.100372

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 17. Apr. 2024

https://doi.org/10.1016/j.trgeo.2020.100372
https://doi.org/10.1016/j.trgeo.2020.100372
https://birmingham.elsevierpure.com/en/publications/928e9470-325b-4911-8139-d325ca497f62


1 
 

Evolutionary computing to determine the skin friction capacity 1 

of piles embedded in clay and evaluation of the available 2 

analytical methods  3 

 4 

 5 

Saif Alzabeebee, BSc (Hons), MSc (Hons), PhD, GMICE 6 

Geotechnical Engineer, Amey Consulting, International 7 

Design hub, The Colmore Building, Birmingham, United 8 

Kingdom, B4 6AT 9 

E-mail: Saif.Alzabeebee@gmail.com; 10 

Saif.Alzabeebee@amey.co.uk 11 

 12 

David N. Chapman, BSc (Hons), DIS, PhD, CEng, MICE, 13 

FHEA 14 

Professor of Geotechnical and Underground Engineering, 15 

School of Engineering, University of Birmingham, 16 

Edgbaston, Birmingham, United Kingdom, B15 2TT 17 

E-mail: D.N.Chapman@bham.ac.uk 18 

 19 

 20 

 21 

mailto:Saif.Alzabeebee@gmail.com
mailto:Saif.Alzabeebee@amey.co.uk
mailto:D.N.Chapman@bham.ac.uk


2 
 

Abstract 22 

Deep foundations are very important elements in the routine design of railways and 23 

bridges when the loads applied due to these important structures are higher than the 24 

bearing capacity of the soil. However, the methods currently available to calculate the 25 

bearing capacity of driven piles embedded in clay have been developed based on 26 

empirical factors derived from limited tests. Hence, further assessment of these 27 

methods and the development of new methods are urgently required. This paper 28 

discusses the development of a new robust model to calculate the skin friction capacity 29 

of driven piles using the multi-objective evolutionary polynomial regression (MOGA-30 

EPR) analysis. The paper also evaluates the accuracy of the available analytical 31 

methods. Real field results of skin friction capacity of driven piles have been used to 32 

achieve the objectives of the study. The results showed that the MOGA-EPR predicts 33 

the skin friction of driven piles with an excellent accuracy and better than the available 34 

analytical methods, with a mean absolute error (𝑀𝐴𝐸), a root mean square error 35 

(𝑅𝑀𝑆𝐸), mean (𝜇), a standard deviation (𝜎), a coefficient of determination (𝑅2), the 36 

variance account for (𝑉𝐴𝐹) and 𝑎20 − 𝑖𝑛𝑑𝑒𝑥 of 3.4, 4.6, 1.03, 0.24, 0.98, 99, and 0.75, 37 

respectively, for the training data, and 4.2, 5.3, 1.12, 0.15, 0.91, 97 and 0.77, 38 

respectively, for testing data. In addition, a novel model to predict the skin friction 39 

capacity of driven piles has been proposed based on the MOGA-EPR analysis and 40 

this model can be used by engineers and researcher with confidence. The evaluation 41 

of the analytical methods illustrated that the Lambda method accuracy is better than 42 

the Alpha and Beta methods as this method scored a less mean error (𝑀𝐴𝐸 = 7.8 and 43 

𝑅𝑀𝑆𝐸 = 12.5), a less standard deviation (𝜎 = 0.21), a higher coefficient of 44 

determination (𝑅2 = 0.91), higher value for the variance account for (𝑉𝐴𝐹=89) 45 

compared with the other analytical methods. In addition, the Beta method scored 46 

lowest compared with the other analytical methods with 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸, 𝜇, 𝜎, 𝑅2, 𝑉𝐴𝐹 47 

and 𝑎20 − 𝑖𝑛𝑑𝑒𝑥 of 17.2, 28.0, 1.07, 1.00, 0.55, 40 and 0.37, respectively. The findings 48 

of this study will help to achieve robust calculations of pile capacity and reduce 49 

uncertainty associated with the choice of the analytical method used in the design of 50 

driven piles in clay. 51 

Keywords: Evolutionary polynomial regression analysis; skin friction; driven piles; 52 

analytical methods 53 
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Highlights:  54 

- A novel mathematical model has been proposed to predict the skin friction 55 

capacity of driven piles embedded in clay. 56 

- The Lambda method produced the lowest error and highest coefficient of 57 

determination compared with the other analytical methods. 58 

- The Beta method scored lowest in the assessment of the current analytical 59 

methods. 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 
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1. Introduction 75 

Deep foundations are very important elements in the design of offshore structures, 76 

high-rise buildings, railways and bridges when the loads applied due to these 77 

important structures are higher than the bearing capacity of the soil (Li et al., 2019). 78 

The urgent demand for the expansion of such heavy structures has been the main 79 

reason for more reliable and robust design methods to accurately predict the bearing 80 

capacity of deep foundations as this is the main factor controlling the design of deep 81 

foundations (Doherty and Gavin, 2011; Alkroosh et al., 2015). The main issue is that 82 

the design methods used to predict the bearing capacity of deep foundations have 83 

been developed based on factors derived from limited tests (Doherty and Gavin, 84 

2011). Therefore, the accuracy of these design methods requires further assessment 85 

and testing. In addition, and due to the complexity of the pile behaviour and the limited 86 

tests used to develop the design methods, many previous studies have attempted to 87 

use data driven methods to predict the bearing capacity and settlement of deep 88 

foundations (Singh and Walia, 2017; Shahin, 2016). These previous studies are 89 

summarized in Table 1, the summary includes the data driven method/s each study 90 

considered, the input parameters, the output of the data driven method/s and the 91 

number of data points used.  92 

In addition to Table 1, there are several studies that have been conducted on the skin 93 

friction capacity of piles due to the importance of skin friction in practice as most of the 94 

piles are designed to allow very small settlement. The acceptance of a very small 95 

settlement in practice means that the routine design of these piles is based on the skin 96 

friction, as the end bearing capacity requires a settlement equal to or more than 10% 97 

of the diameter of the pile and such settlement is not acceptable in practice. Most of 98 

the past studies on the skin friction capacity have focused on the use of data driven 99 

methods to predict pile capacity, while there is very limited work concerned with the 100 

evaluation of the accuracy of the current analytical methods.  101 

Goh (1995) used artificial neural networks (ANN) to predict the skin friction capacity of 102 

driven piles embedded in clay and found that the ANN achieved good prediction of the 103 

skin friction, where the coefficient of correlation (R) ranged between 0.86 to 0.99 for 104 

the training data (the data used in the development of the ANN model) and 0.94 to 105 

0.96 for the testing data. Goh (1995) also found that ANN predicted the skin friction 106 
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capacity with an accuracy better than the Alpha and Beta methods (Alpha and Beta 107 

methods are analytical methods developed to predict the skin friction capacity of pile 108 

embedded in cohesive soils and will be discussed in the next section), where the R for 109 

the Alpha and Beta methods was equal to 0.98 and 0.73 for the training data, and 0.89 110 

and 0.70 for the testing data. Cherubini and Vessia (2007) evaluated the accuracy of 111 

the Alpha method in predicting the skin friction capacity of bored piles embedded in 112 

clay.  113 

Samui (2008, 2011) and Prayogo (2018) used a support vector machine (SVM) 114 

approach to predict the skin friction capacity of piles embedded in clay and also found 115 

that SVM provided good prediction of the skin friction capacity as the SVM produced 116 

low root mean square error values (which ranged between 4.4 to 13.9), low mean 117 

absolute error values (which ranged between 3.2 to 9.4), and high R values (which 118 

ranged between 0.93 to 0.99). Suman et al. (2016) tested the capabilities of 119 

multivariate adaptive regression splines (MARS) and functional networks (FN) to 120 

predict the skin friction of driven piles embedded in clay. Suman et al. (2016) found 121 

that these methods predicted the skin friction capacity with an accuracy better than 122 

the ANN, SVM, Alpha and Beta methods, as these methods scored lower mean 123 

absolute error values and lower root mean square error values.  124 

Moayedi and Hayati (2018b) developed design charts and a mathematical model to 125 

predict the skin friction capacity of driven piles embedded in clay. The design chart 126 

was developed based on ANN and the mathematical model was developed based on 127 

genetic programing (GP). Samui (2019) used Gaussian Process Regression (GPR) 128 

and Minimax Probability Machine Regression (MPMR) to predict the skin friction of 129 

driven piles embedded in clay and found that these methods estimated the skin friction 130 

capacity better than the ANN. The calculated mean absolute error was equal to 3.2, 131 

2.0 and 2.0 for the ANN, GPR and MPMR, respectively. In addition, the calculated 132 

mean root square error for the aforementioned methods was equal to 5.3, 4 and 4, 133 

respectively. 134 

Based on the literature review it is clear that many attempts have been made to predict 135 

the skin friction capacity of piles embedded in clay using data driven techniques, i.e. 136 

using ANN, SVM, MARS, FN, GP, GPR and MPMR. However, ANN is a black box 137 

method as it does not give the relationship between the dependent and the 138 



6 
 

independent variables (Faramarzi, 2011); hence, such a technique does not clearly 139 

show the influence of the pile length, pile diameter, undrained shear strength and 140 

effective stress on the skin friction capacity. Furthermore, SVM, MARS, FN, GP, GPR 141 

and MPMR provide complicated models, which cannot be easily interpreted and used. 142 

Also, no study in the literature has evaluated the capabilities of multi-objective 143 

evolutionary polynomial regression analysis (MOGA-EPR) in predicting the skin 144 

friction capacity of piles, although this method provides robust and simple 145 

mathematical models as demonstrated in many studies in the literature (Ahangar-Asr 146 

et al., 2014, 2016, 2018; Fiore et al., 2016; Alzabeebee et al., 2018, 2019; Alzabeebee, 147 

2019, 2020). In addition, previous studies evaluated the accuracy of Alpha method in 148 

predicting the skin friction capacity of bored piles (Cherubini and Vessia, 2007), and 149 

Alpha and Beta methods for the case of driven piles (Goh, 1995; Suman et al., 2016). 150 

However, Goh (1995) and Suman et al. (2016) did not mention the method used to 151 

calculate the 𝛼 parameter (which is a factor used in the Alpha method to calculate the 152 

skin friction capacity of piles embedded in clay) for the case of driven piles, although 153 

more than one approach is available in the literature to calculate the 𝛼 parameter as 154 

will be discussed in the next section. In addition, the previous studies did not evaluate 155 

the accuracy of the Lambda method, which is also an analytical method to predict the 156 

skin friction capacity of piles embedded in clay. Therefore, this study aims to improve 157 

the state-of-the-art with respect to the prediction of the skin friction of driven piles by 158 

considering two important objectives:  159 

1- The first objective is to use a very powerful and new data driven method to 160 

predict the skin friction capacity of driven piles in clay; the method is the multi-161 

objective evolutionary polynomial regression analysis. The strength of this 162 

method over the traditional data driven methods is that it has the ability to 163 

provide robust and simpler prediction models (Faramarzi, 2011) as the EPR 164 

gives the relationship between the parameters in the form of a simple 165 

mathematical expression (Ahangar-Asr et al., 2014, 2016, 2018; Alzabeebee 166 

et al., 2018, 2019; Nassr et al., 2018a, b). Having an equation as an outcome 167 

of the analysis is required to aid future designs and to make it easy to test this 168 

equation further when new data becomes available.  169 

2- The second objective is to assess the current analytical methods which have 170 

been developed to predict the skin friction capacity of bored piles embedded in 171 
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clay and understand the limitations and the capabilities of these methods, and 172 

to compare the prediction capabilities of these methods with the predictions 173 

from the multi-objective evolutionary polynomial regression analysis. 174 

The methodology of this research is briefly summarized in Figure 1. More details on 175 

the methodology will be discussed in Sections 2, 3, 4 and 5. 176 

Table 1: Summary of previous studies which have used data driven methods to predict 177 

pile settlement and capacity  178 

Reference 
Data driven 

method used 

Input 

parameters 

Output of the 

data driven 

method 

Number of 

load tests  

Shahin (2010) ANN 

𝐷𝑒𝑞, 𝐿, 𝐷𝑠𝑡𝑒𝑚, 

𝐷𝑏𝑎𝑠𝑒, 𝑞𝑐𝑡𝑖𝑝
,  

𝑞𝑐𝑠ℎ𝑎𝑓𝑡
 and 𝐹𝑠  

𝑄𝑢 

80 load tests 

for driven piles 

and 94 load 

tests for bored 

piles 

Alkroosh and 

Nikraz (2011a) 
GEP 

𝐷, 𝐿, 𝑞𝑐𝑡𝑖𝑝
, 

𝑞𝑐𝑠ℎ𝑎𝑓𝑡
 and 𝐹𝑠 

𝑄𝑢 

50 load tests 

for bored piles 

and 28 load 

tests for driven 

pile 

Alkroosh and 

Nikraz (2011b) 
ANN 

𝐷, 𝐿, 𝑞𝑐𝑡𝑖𝑝
, 

𝑞𝑐𝑠ℎ𝑎𝑓𝑡
, Δ(

𝑆

𝐷
), 

𝑃𝑖 and 𝑃𝑖+1  

𝑆/𝐷 

50 load tests 

for bored piles 

and 30 load 

tests for driven 

pile 

Ismail and 

Jeng (2011) 
ANN 

𝐷, 𝐿, 𝑃𝑖, 𝐸 and 

𝑘𝑠 
𝑆/𝐷 98 

Alkroosh and 

Nikraz (2012) 
GEP 

𝐷𝑒𝑞, 𝐿, 𝑞𝑐𝑡𝑖𝑝
, 

𝐹𝑠, 𝑞𝑐𝑠ℎ𝑎𝑓𝑡
 and 

𝐸 

𝑄𝑢 25  
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Alkroosh and 

Nikraz (2014) 
GEP 

𝐷, 𝐿, 𝑁𝑠ℎ𝑎𝑓𝑡, 

𝑁𝑡𝑖𝑝, 𝑆𝑡 and 

𝐻𝐸 

𝑄𝑢 25 

Momeni et al. 

(2014) 

ANN 
enhanced with 
genetic 
algorithm (GA) 
optimization 
technique 

𝐿, 𝐴, 𝑆𝑡, 𝑊, 

and 𝐻 
𝑄𝑢 50 

Shahin 

(2014a) 
RNN 

𝐷, 𝐿, 𝑞𝑐𝑡𝑖𝑝
, 𝐹𝑠, 

𝑓𝑅−𝑡𝑖𝑝 and 

𝑓𝑅−𝑠ℎ𝑎𝑓𝑡  

𝑆/𝐷 38  

Shahin 

(2014b) 
RNN 

𝐷, 𝐿, 𝑞𝑐𝑡𝑖𝑝
, 𝐹𝑠, 

𝑓𝑅−𝑡𝑖𝑝 and 

𝑓𝑅−𝑠ℎ𝑎𝑓𝑡  

𝑆/𝐷 23  

Milad et al. 

(2015) 
ANN and GEP 

𝑐′
𝑎𝑣𝑔, ø′

𝑎𝑣𝑔, 𝛿, 

𝛾′, 𝐹𝑃𝑁, 𝐿 and 

𝐴 

𝑄𝑢 100 

Momeni et al. 

(2015) 
ANN 

𝐿, 𝑆𝑡, 𝐴, 𝑁𝑠ℎ𝑎𝑓𝑡, 

and 𝑁𝑡𝑖𝑝 
𝑓𝑠, 𝑄𝑝 and 𝑄𝑢 36 

Armaghani et 

al. (2017) 

ANN and 
hybrid PSO-
ANN 

𝐿𝑠/𝐿𝑟, 𝐷, 𝐿, 

𝑈𝐶𝑆 and 𝑁𝑎𝑣 
𝑄𝑢 132 

Nejad and 

Jaksa (2017) 
ANN 

Type of pile 

test, type of 

pile, type of 

installation, 𝐿, 

𝐴, 𝐸, 𝑂, 𝑞𝑐𝑡𝑖𝑝
, 

𝑞𝑐𝑠ℎ𝑎𝑓𝑡
, 𝐹𝑠 and 

𝑃𝑖 

𝑆/𝐷 56  

Harandizadeh 

et al. (2018a) 
ANFIS 

𝐿, 𝐷, 𝑞𝑐𝑡𝑖𝑝
 and 

𝐹𝑠 
𝑄𝑢 72 
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Harandizadeh 

et al. (2018b) 

RBFNN, BR, 

LM and MT 

𝑐′
𝑎𝑣𝑔, ø′

𝑎𝑣𝑔, 𝛿, 

𝛾′, 𝐹𝑃𝑁, 𝐿 and 

𝐴 

𝑄𝑢 100 

Moayedi and 

Hayati (2018a) 

FFNNs and 

FTDNNs 

𝐷, 𝐿, 𝑞𝑐𝑡𝑖𝑝
 and 

𝑞𝑐𝑠ℎ𝑎𝑓𝑡
 

𝑆/𝐷 50 

Moayedi and 

Armaghani 

(2018) 

ANN optimised 

with 

imperialism 

competitive 

algorithm 

ø𝑠ℎ𝑎𝑓𝑡
′ , ø𝑡𝑖𝑝

′ , 

𝜎𝑡𝑖𝑝
′ , 𝐿 and 𝐴 

𝑄𝑢 59 

Shaik et al. 

(2018) 

ANN optimised 

with 

imperialism 

competitive 

algorithm and 

neuro-fuzzy 

inference 

system  

ø𝑠ℎ𝑎𝑓𝑡
′ , ø𝑡𝑖𝑝

′ , 

𝜎𝑡𝑖𝑝
′ , 𝐿 and 𝐴 

𝑄𝑢 59 

Chen et al. 

(2019) 

neuro-genetic, 

neuro-

imperialism, 

GEP and ANN 

𝐿, 𝐴, 𝑆𝑡, 𝑊, 

and 𝐻 
𝑄𝑢 50 

Harandizadeh 

et al. (2019) 

ANFIS–

GMDH–PSO 

and FPNN–

GMDH 

𝐿, 𝐷, 𝑞𝑐𝑡𝑖𝑝
and 

𝐹𝑠 
𝑓𝑠 and 𝑄𝑢 72 

Note: ANN: artificial neural networks, 𝐷𝑒𝑞: driven pile shaft equivalent diameter, 𝐿: 179 

length of the pile, 𝐷𝑠𝑡𝑒𝑚: bored pile stem diameter, 𝐷𝑏𝑎𝑠𝑒: bored pile base diameter, 180 

𝑞𝑐𝑡𝑖𝑝
: weighted average cone point resistance over pile tip failure zone, 𝑞𝑠ℎ𝑎𝑓𝑡: 181 

weighted average cone point resistance along pile shaft, 𝐹𝑠: weighted average cone 182 

sleeve friction resistance, 𝑄𝑢: ultimate pile capacity, GEP: Gene expression 183 

programming, 𝐷: diameter of the pile, Δ(
𝑆

𝐷
): normalized settlement increment, 𝑃𝑖: 184 
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current load state, 𝑃𝑖+1: future load state, 𝑆/𝐷: pile settlement to pile diameter, 𝐸: 185 

modulus of elasticity of the pile, 𝑘𝑠: soil stiffness, , 𝑁𝑠ℎ𝑎𝑓𝑡: average number of blows of 186 

the standard penetration test along the pile shaft, 𝑁𝑡𝑖𝑝: number of blows of the standard 187 

penetration test at the pile tip, 𝑆𝑡: pile set, 𝐻𝐸: hammer energy, 𝐴: cross-section area 188 

of the pile, 𝑊: hammer weight, 𝐻: hammer drop height, RNN: recurrent neural 189 

networks, 𝑓𝑅−𝑡𝑖𝑝: friction ratio at the pile tip, 𝑓𝑅−𝑠ℎ𝑎𝑓𝑡: friction ratio along the pile shaft, 190 

𝑐′
𝑎𝑣𝑔: average effective cohesions of the soil along the pile shaft, ø′

𝑎𝑣𝑔: average angle 191 

of shearing resistance along the pile shaft and pile tip, 𝛿: pile-soil friction angle, 𝛾′: 192 

effective unit weight of the soil, 𝐹𝑃𝑁: flap number, 𝑓𝑠: skin friction capacity of the pile, 193 

𝑄𝑝: end bearing capacity of the pile, PSO-ANN: artificial numeral network enhanced 194 

with particle swarm optimization, 𝐿𝑠/𝐿𝑟: length of soil layer to socket length, 𝑈𝐶𝑆: 195 

uniaxial compressive strength, 𝑁𝑎𝑣: average number of blows based on the standard 196 

penetration test the pile shaft and pile tip, 𝑂: perimeter of the pile in contact with the 197 

soil, ANFIS: neuro-fuzzy inference system, RBFNN: radial basis function neural 198 

network, BR: feedforward Bayesian regulation learning algorithm, LM: feedforward 199 

Levenberg-Marquardt algorithm, MT: model tree algorithm, FFNNs: feed-forward 200 

neural networks, FTDNNs: focused time-delay neural networks, ø𝑠ℎ𝑎𝑓𝑡
′ : average 201 

shearing resistance along the pile shaft, ø𝑡𝑖𝑝
′ : average shearing resistance at the pile 202 

tip, 𝜎𝑡𝑖𝑝
′ : effective stress at the pile tip, ANFIS–GMDH–PSO: neuro-fuzzy inference 203 

system and group method of data handling structure optimized by particle swarm 204 

optimization algorithm, FPNN–GMDH: fuzzy polynomial neural network type group 205 

method of data handling 206 

 207 

 208 

 209 

 210 

 211 

 212 
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 214 
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 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

Figure 1: Flow chart of the methodology of this research 228 

2. Current analytical methods 229 

There are currently three analytical methods available in the literature to estimate the 230 

skin friction capacity of driven piles embedded in clay (Das, 2011). These methods 231 

are: 232 

1- Lambda (𝜆) method: 233 

A thorough literature review to develop the evaluation criteria 

Start 

A thorough literature review to identify the gaps in knowledge  

Conclusions 

A thorough literature review on the current analytical methods 

Data collection and processing 

Development of a new prediction 

model using evolutionary polynomial 

regression analysis 

Calculation of the performance indices 

for the developed model 

Calculation of the performance indices 

for the current analytical methods 
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This method was proposed by Vijayvergiya and Focht (1972) and is based on the idea 234 

that the pile driving into the soil induces passive lateral earth pressure (Das, 2011). 235 

The method includes the vertical effective stress (𝜎𝑎𝑣𝑒
′ ) and proposes that the skin 236 

friction (𝑓𝑠) of the driven pile can be calculated using Equation 1. The 𝜆 factor in 237 

Equation 1 depends on the embedment depth of the pile (L) as shown in Figure 2. 238 

𝑓𝑠 = 𝜆(𝜎𝑎𝑣𝑒
′ + 2𝑆𝑢) (1) 

Where, 𝜎𝑎𝑣𝑒
′  is the average vertical effective stress and 𝑆𝑢 is the undrained shear 239 

strength. 240 

 241 

Figure 2: Relationship between the 𝜆 factor and the embedment depth of the pile (data 242 

is from Das (2011)) 243 

2- Alpha (𝛼) method: 244 

This method proposes that the skin friction of a driven pile is a percentage of the 245 

undrained shear strength by using an empirical adhesion factor called 𝛼 as shown in 246 

Equation 2. This 𝛼 empirical factor was originally proposed by Tomlinson in 1957 247 

(Terzaghi, 1996). However, there are three methods currently available to estimate 248 

the 𝛼  factor. These methods can be summarized as follows: 249 

- Sladen (1992) method: 250 
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Sladen (1992) proposed Equation 3 to predict the 𝛼 coefficient. The 𝐶 factor in 251 

Equation 3 is equal to or greater than 0.5 for driven piles (Das, 2011).  252 

- ISO (2016) method:  253 

ISO (2016) suggested two different equations to calculate the 𝛼 factor 254 

depending on the ratio of the undrained shear strength to the average vertical 255 

effective stress as shown in Equations 4 and 5. 256 

- Terzaghi et al. (1996) method:  257 

Terzaghi et al. (1996) suggested predicting the 𝛼 coefficient from Figure 3; 𝑃𝑎 258 

in Figure 3 is the atmospheric pressure (100 kPa). This Figure has been 259 

developed based on data collected from Dennis and Olson (1983) and Stas 260 

and Kulhawy (1984). However, Terzaghi et al. (1996) also recommended 261 

multiplying the 𝛼 coefficient obtained from Figure 3 by 0.54 (i.e. a reduction 262 

factor) for piles with a length equal to or greater than 50 m. Also, for pile lengths 263 

from 30 m to 50 m, the reduction factor varies linearly between 1.00 and 0.56. 264 

𝑓𝑠 = 𝛼𝑆𝑢 (2) 

𝛼 = 𝐶(
𝜎𝑎𝑣𝑒

′

𝑆𝑢
)0.45 (3) 

𝛼 = 0.5(
𝑆𝑢

𝜎𝑎𝑣𝑒
′ )−0.5   for 

𝑆𝑢

𝜎𝑎𝑣𝑒
′ ≤ 1 (4) 

𝛼 = 0.5(
𝑆𝑢

𝜎𝑎𝑣𝑒
′ )−0.25  for 

𝑆𝑢

𝜎𝑎𝑣𝑒
′ > 1 (5) 

 265 

Figure 3: The 𝛼 factor based on Terzaghi et al. (1996)  266 
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3- Beta (𝛽) method 267 

This method considers a different approach compared to the other two methods. In 268 

this method, the skin friction is determined using the drained angle of internal friction 269 

of the remolded clay (ø′) as shown in Equations 6 to 9 (Das, 2011). The beta factor 270 

ranges between 0.25 to 0.4 (Goh, 1995). 271 

𝑓𝑠 = 𝛽𝜎𝑎𝑣𝑒
′  (6) 

𝛽 = 𝐾 tan ø′  (7) 

𝐾 = 1 − sin ø′  for normally consolidated clay (8) 

𝐾 = (1 − sin ø′)√𝑂𝐶𝑅 for over consolidated clay (9) 

Where, 𝑂𝐶𝑅 is the over-consolidation ratio. 272 

3. Data used in the analyses 273 

The data used in the current study have been adapted from a database of skin friction 274 

capacities of driven piles presented by Goh (1995). The database comprises 65 points 275 

of data on the skin friction capacity of driven piles (𝑓𝑠). In addition, the data contains 276 

the length of the pile (𝐿), the diameter of the pile (𝐷), the average vertical effective 277 

stress (𝜎𝑎𝑣𝑒
′ ) and the average undrained shear strength (𝑆𝑢). Goh (1995) developed 278 

this database by collecting results from the literature; these results were for pile load 279 

tests conducted on timber and steel pipe piles. It is worth mentioning that these 280 

parameters have been selected as they are the most influential parameters with 281 

respect to the skin friction capacity of the pile. These parameters have also been used 282 

in previous studies for the prediction of the skin friction capacity of piles (Goh, 1995, 283 

Samui, 2008, 2011, 2019, Suman et al., 2016, Prayogo, 2018, Moayedi and Hayati, 284 

2018b).  285 

Table 2 shows the mean, standard deviation, maximum value (Max.), minimum value 286 

(Min.) and range of the collected data.  287 

 288 

 289 
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Table 2: Statistics of the data used in this study 290 

Statistic 

indicator 

Parameter 

𝐿 (m) 𝐷 (cm) 𝜎𝑎𝑣𝑒
′  (kPa) 𝑆𝑢 (kPa) 𝑓𝑠 (kPa) 

Mean 21.55 31.45 124.58 62.16 40.85 

Standard 

deviation 
16.37 16.61 127.71 60.03 36.52 

Max. 96.00 76.70 718.00 335.00 192.10 

Min. 4.60 11.40 19.00 9.00 8.00 

Range 91.40 65.30 699.00 326.00 184.10 

4. Multi-objective evolutionary polynomial regressions analysis (EPR) 291 

Multi-Objective Evolutionary Polynomial Regression (MOGA-EPR) is a genetic 292 

algorithm-based regression analysis developed by Giustolisi and Savic (2009) based 293 

on the original evolutionary polynomial regression analysis developed by Giustolisi 294 

and Savic (2006). The methodology of MOGA-EPR is based on using a genetic 295 

algorithm in combination with a regression analysis (Alzabeebee et al., 2018, 2019; 296 

Alzabeebee, 2019, 2020). In this method, the ‘fitting’ is conducted utilizing the least 297 

square method and the selection of the best fitting model is done using the genetic 298 

algorithm. The MOGA-EPR controls the model fitness and model complexity using 299 

spread functions to enable more robust analyses (Giustolisi and Savic, 2009). This 300 

method also controls overfitting issues by using penalization procedures. 301 

Equation 10 presents the starting point of the MOGA-EPR (Giustolisi and Savic, 2006). 302 

This equation produces an over-determined system, which is solved based on the 303 

least square methodology (Giustolisi and Savic, 2006).  304 

𝑦 = ∑ 𝐹(X, 𝑓(X), 𝑎𝑗) + 𝑎0

𝑚

𝑗=1

 (10) 

Where 𝑦 is the estimated output skin friction, 𝑎𝑗 is a constant value, 𝐹 is an assumed 305 

governing function between the input and the output variables; this function develops 306 

as the analysis time increases and based on artificial intelligence. X represents the 307 

independent variables matrix, 𝑓 is the general form of the output function and 𝑚 is the 308 
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maximum number of terms in the produced equation and it is set by the user, and 𝑎0 309 

is the bias. 310 

After solving Equation 10, the MOGA-EPR is formulated to find the model, which 311 

provides the best fit to the data by using different combinations of the exponents with 312 

the aid of artificial intelligence. Finally, the performance of the developed model is 313 

judged by determining a coefficient called the coefficient of determination (𝐶𝐷) and the 314 

model which scores the highest 𝐶𝐷 is selected; the 𝐶𝐷 is determined using Equation 315 

11  (Alani et al., 2014a, b; Faramarzi et al., 2014). It is worth noting that the exponents 316 

considered in the EPR analysis are also controlled by the user. More information on 317 

the MOGA-EPR can be found in Alani et al. (2014); Faramarzi et al. (2014); Ahangar-318 

Asr et al. (2014) and Alzabeebee (2017).  319 

𝐶𝐷 = 1 −
∑ (𝑓𝑠(𝑚) − 𝑓𝑠(𝑝))

2
𝑁

∑ (𝑓𝑠(𝑚) −
1
𝑁

∑ 𝑓𝑠(𝑝))𝑁

2

𝑁

 (11) 

Where, 𝑓𝑠(𝑚) is the measured skin friction, 𝑓𝑠(𝑝) is the predicted skin friction, and 𝑁 is 320 

the number of the input data used in the development of the model. 321 

5. Criteria considered to evaluate the accuracy of the MOGA-EPR model and 322 

the analytical methods 323 

The quality of the prediction of the MOGA-EPR model and the available analytical 324 

methods have been assessed following a statistical based methodology similar to 325 

previous studies (Ozer et al., 2008; Alkroosh et al., 2014, 2015; Onyejekwe et al., 326 

2015; Huang et al., 2019). The following points summarize the statistical measures 327 

used in the evaluation methodology: 328 

1- The first statistical measure was based on finding the error in the prediction by 329 

calculating the mean absolute error (MAE) and the root mean square error 330 

(RMSE). Equations 12 and 13 show the mathematical formulation of the MAE 331 

and the RMSE (Ozer et al., 2008; Onyejekwe et al., 2015; Huang et al., 2019). 332 

The lower the MAE and the RMSE, the better the prediction. It is worth 333 

mentioning that the MAE has been considered because it provides insight into 334 

the average error of the prediction. In addition, the RMSE has been considered 335 
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because it provides useful insight into the large error of the prediction, as the 336 

errors are squared before they are averaged as can be clearly noted in 337 

Equation 13 (Ashtiani et al., 2018). 338 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑓𝑠(𝑝) − 𝑓𝑠(𝑚)|

𝑛

1

 (12) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑓𝑠(𝑝) − 𝑓𝑠(𝑚))

2𝑛
1   (13) 

Where, n is the number of data points used in the evaluation; 𝑓𝑠(𝑝) is the predicted 339 

skin friction of the pile; and 𝑓𝑠(𝑚): is the skin friction measured in the field. 340 

2- The second statistical measure was based on calculating the mean (𝜇) of the 341 

ratio of the predicted skin friction to the measured skin friction as shown in 342 

Equation 14 (Onyejekwe et al., 2015). The expected range of the mean is zero 343 

to infinity. However, the optimum prediction should score a mean equal to 1 344 

(Onyejekwe et al., 2015). The predictive model underestimates the skin friction 345 

if the mean is less than one and overestimates the skin friction if the mean is 346 

higher than one.  347 

𝜇 =
1

𝑛
∑ (

𝑓𝑠(𝑝)

𝑓𝑠(𝑚)
)

𝑛

1

 (14) 

3- The third statistical measure was the standard deviation (𝜎) of the predicted 348 

skin friction to the measured skin friction. The standard deviation is calculated 349 

using Equation 15. The standard deviation provides a good indication to the 350 

distribution of the predicted values around the mean. The range of the standard 351 

deviation is between zero and one. A zero value provides the optimum 352 

prediction in which the scatter of the prediction around the mean a minimum. 353 

However, a value of one means a maximum scatter around the mean. Hence, 354 

the closer the standard deviation is to zero, the better the prediction (Alkroosh 355 

and Nikraz, 2014). 356 
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𝜎 =
√∑ (

𝑓𝑠(𝑝)

𝑓𝑠(𝑚)
− 𝜇)

2
𝑛
1

𝑛 − 1
 

(15) 

4- The fourth statistical measure was the coefficient of determination (𝑅2). The 𝑅2 357 

measures the average error of the prediction. The 𝑅2 ranges between zero and 358 

one, with an optimum value of one. Hence, the closer R2 is to one, the better 359 

the prediction accuracy (Alzabeebee et al. 2017; Tinoco et al. 2019). 𝑅2 is 360 

calculated using Equation 16 (Mohammadzadeh et al., 2019). 361 

𝑅2 =  
∑ (𝑓𝑠(𝑝)𝑖

− 𝑓𝑠(𝑝)𝑎𝑣𝑒𝑟𝑎𝑔𝑒
)(𝑓𝑠(𝑚)𝑖

− 𝑓𝑠(𝑚)𝑎𝑣𝑒𝑟𝑎𝑔𝑒
)𝑛

𝑖=1

√∑ (𝑓𝑠(𝑝)𝑖
− 𝑓𝑠(𝑝)𝑎𝑣𝑒𝑟𝑎𝑔𝑒

)2𝑛
𝑖=1 ∑ (𝑓𝑠(𝑚)𝑖

− 𝑓𝑠(𝑚)𝑎𝑣𝑒𝑟𝑎𝑔𝑒
)2𝑛

𝑖=1

 (16) 

Where, 𝑓𝑠(𝑝)𝑎𝑣𝑒𝑟𝑎𝑔𝑒
 is the average of the predicted skin friction values and 𝑓𝑠(𝑚)𝑎𝑣𝑒𝑟𝑎𝑔𝑒

 362 

is the average of the measured skin friction values. 363 

5- The fifth statistical measure was the variance account for (𝑉𝐴𝐹). The 𝑉𝐴𝐹 is 364 

usually employed to check the correctness of the predictive model. This is done 365 

by comparing the measured and the predicted output using Equation 17 366 

(Armaghani et al., 2017). A 𝑉𝐴𝐹 value of 100 means that the predictive model 367 

provides a perfect estimation of the output. Therefore, the closer the 𝑉𝐴𝐹 of the 368 

predictive model to 100, the better the prediction (i.e. lower variance). 369 

𝑉𝐴𝐹 = [1 −
𝑣𝑎𝑟(𝑓𝑠(𝑚) − 𝑓𝑠(𝑝))

𝑣𝑎𝑟(𝑓𝑠(𝑚))
] × 100 (17) 

6- The final statistical measure was the 𝑎20 − 𝑖𝑛𝑑𝑒𝑥. This statistical measure 370 

evaluates the percentage of the predictive outputs that falls within the range of 371 

80% to 120% of the measured output. A value of the 𝑎20 − 𝑖𝑛𝑑𝑒𝑥 of 1.0 means 372 

that the predictions of the models are equal to, or below, a 20% error. In 373 

addition, the closer the 𝑎20 − 𝑖𝑛𝑑𝑒𝑥 is to 1 the better, as it means that there are 374 

many predictions that are equal to, or below, a 20% error. The 𝑎20 − 𝑖𝑛𝑑𝑒𝑥 is 375 

calculated using Equation 18 (Armaghani, 2020).  376 
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𝑎20 − 𝑖𝑛𝑑𝑒𝑥 =
𝑚20

𝑛
 (18) 

Where, 𝑚20 is the number of results where the predicted to the measured skin friction 377 

is between 0.8 to 1.2. 378 

6. Development of the MOGA-EPR model 379 

The data, with statistics shown in Table 2, has been used to develop the MOGA-EPR 380 

model. This data has been divided into two groups: training data and testing data. 80% 381 

of the data has been used in the model development (training stage) and 20% of the 382 

data has been used in the model testing and validation (testing stage). It should be 383 

noted that dividing the data into training and test data is common in the development 384 

of data driven models, i.e. the training data is used in the training and the development 385 

of the MOGA-EPR model, and the performance of the developed model has been 386 

checked using independent data that has not been used in the training stage. Hence, 387 

the use of testing data ensures the robustness and accuracy of the developed model 388 

(Alani et al., 2014a, b; Faramarzi et al., 2014; Ahangar-Asr et al., 2014; Alzabeebee, 389 

2017, 2019, 2020; Alzabeebee et al., 2018, 2019). However, to avoid model 390 

extrapolation the variables of the testing data should be in the range of the data used 391 

in the model training (i.e. model development) (Alzabeebee, 2017, 2019, 2020; 392 

Alzabeebee et al., 2018, 2019). Hence, the data have been randomly shuffled and 393 

divided into two group, then statistical analyses have been conducted to ensure that 394 

the training and testing data are consistent. Tables 3 and 4 show the mean, standard 395 

deviation, maximum value (Max.), minimum value (Min.) and the range of both the 396 

training and testing data, respectively. The tables demonstrate the consistency of the 397 

training and the validation data. 398 

The MOGA-EPR analysis was conducted after ensuring that the data are consistent. 399 

Several structures and exponents of the mathematical model are now examined, and 400 

the performance of the obtained model is also studied using the criteria discussed 401 

previously in this paper. Equation 18 shows the best mathematical model obtained 402 

from the MOGA-EPR analysis. Figures 4a, b, c, d, e, f and g show the obtained 𝑀𝐴𝐸, 403 

𝑅𝑀𝑆𝐸, 𝜇, 𝜎, 𝑅2, 𝑉𝐴𝐹 and 𝑎20 − 𝑖𝑛𝑑𝑒𝑥 values for the training and testing data, 404 

respectively. Figure 4a clearly shows that the developed MOGA-EPR model gives a 405 
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very good accuracy with a 𝑀𝐴𝐸 of 3.4 and 4.2 for the training and testing data, 406 

respectively. The obtained 𝑅𝑀𝑆𝐸 results presented in Figure 4b also show that the 407 

model offers a very good prediction, where the 𝑅𝑀𝑆𝐸 is equal to 4.6 and 5.3 for the 408 

training and testing data, respectively. The 𝜇 values shown in Figure 4c give additional 409 

proof of the accuracy, where the developed model slightly overestimates the skin 410 

friction as the obtained 𝜇 values are 1.03 and 1.12 for the training and testing data, 411 

respectively. Furthermore, the obtained values of the 𝜎 (Figure 4d) and 𝑅2 (Figure 4e) 412 

also show the strength of the model, where 𝜎 is equal to 0.24 for the training and 0.15 413 

for the testing data and 𝑅2 is very close to one being equal to 0.98 and 0.91 for the 414 

training and the testing data, respectively. The results of the 𝑉𝐴𝐹 (Figure 4f) provides 415 

additional trust in the robustness of the model as the obtained 𝑉𝐴𝐹 is very close to 416 

100 for training and testing data (99 for training data and 97 for testing data). The 417 

𝑎20 − 𝑖𝑛𝑑𝑒𝑥 analyses (Figure 4g) also demonstrate the prediction capabilities of the 418 

models as the percentage of the obtained predictions with error less than or equal to 419 

20% is 75% and 77% for training and testing data, respectively. 420 

𝑓𝑠 = 28.44
𝐷. √𝑆𝑢

𝐿3
− 3 × 10−7

√𝐷. √𝜎𝑎𝑣𝑒
′ . 𝑆𝑢

3

𝐿2
− 83.81

√𝐷

√𝐿. √𝜎𝑎𝑣𝑒
′

+ 0.023
√𝐷. √𝜎𝑎𝑣𝑒

′ . 𝑆𝑢

√𝐿
+ 27.17 

(18) 

Figures 5a and b show the relationship between the predicted and measured skin 421 

friction values. It is clear from the figures that most of the points are on or very close 422 

to the no-error line, which means that the developed model provides very good 423 

prediction and providing further confidence in the developed MOGA-EPR model. 424 

 425 

 426 

 427 

 428 

 429 
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Table 3: Statistics of the training data used in the MOGA-EPR analysis 430 

Statistical 

indicator 

Parameter 

𝐿 (m) 𝐷 (cm) 𝜎𝑎𝑣𝑒
′  (kPa) 𝑆𝑢 (kPa) 𝑓𝑠 (kPa) 

Mean 20.56 30.80 119.57 63.13 41.80 

Standard 

deviation 
16.44 17.12 132.08 63.65 38.38 

Max. 96.00 76.70 718.00 335.00 192.10 

Min. 4.60 11.40 19.00 9.00 8.00 

Range 91.40 65.30 699.00 326.00 184.10 

 431 

 432 

Table 4: Statistics of the testing data used in the MOGA-EPR analysis 433 

Statistical 

indicator 

Parameter 

𝐿 (m) 𝐷 (cm) 𝜎𝑎𝑣𝑒
′  (kPa) 𝑆𝑢 (kPa) 𝑓𝑠 (kPa) 

Mean 25.52 34.05 144.62 58.31 37.03 

Standard 

deviation 
16.08 14.69 110.94 44.50 28.83 

Max. 66.40 61.00 448.00 185.00 109.20 

Min. 9.40 15.00 49.00 17.00 12.00 

Range 57.00 46.00 399.00 168.00 97.20 

 434 
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(g) 

 

Figure 4: Results of the statistical analyses of the MOGA-EPR model: (a) Mean 435 

absolute error (𝑀𝐴𝐸); (b) root mean square error (𝑅𝑀𝑆𝐸); (c) Mean (𝜇); (d) standard 436 

deviation (𝜎); (e) coefficient of determination (𝑅2); (f) variance account for (𝑉𝐴𝐹); and 437 

(g) 𝑎20 − 𝑖𝑛𝑑𝑒𝑥 438 

 439 

        

(a) 

        

(b) 

Figure 5: Relationship between the MOGA-EPR predicted skin friction and measured 440 

skin friction for: (a) training data; and (b) testing data 441 

7. Evaluation of the accuracy of the analytical methods 442 

It is very important to understand the limitations and the accuracy of the current 443 

analytical methods. Thus, the accuracy of the previously discussed analytical methods 444 

has been assessed in this section using the assessment methodology discussed 445 
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earlier in this paper. The results of the assessment have also been compared with the 446 

MOGA-EPR model. The 𝛽 factor has been considered equal to 0.33 in the calculation 447 

of the skin friction capacity using the Beta method; this value is the average of the 448 

expected range for the 𝛽 factor (Goh, 1995). Furthermore, the three methods 449 

mentioned previously to calculate the 𝛼 factor have been considered in this 450 

assessment; the Sladen (1992) method has been named Alpha 1, the ISO method 451 

has been named Alpha 2, and the Terzaghi et al. method has been named Alpha 3. 452 

Figures 6a, b, c, d, e, f and g show the obtained 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸, 𝜇, 𝜎, 𝑅2, 𝑉𝐴𝐹 and 𝑎20 −453 

𝑖𝑛𝑑𝑒𝑥 for all of the analytical methods, respectively. In addition, Figures 7a, b, c, d and 454 

e show the relationship of the predicted and measured skin friction for all of the 455 

analytical methods. Comparing Figures 6 and 7 with Figures 4 and 5 clearly shows the 456 

MOGA-EPR model predicts the skin friction capacity better than all of the other 457 

analytical methods. Furthermore, Figure 6 shows that the Lambda method predicted 458 

the skin friction with lowest error (Figures 6a and b), lowest standard deviation (Figure 459 

6d), highest coefficient of determination (Figure 6e), highest value for the variance 460 

account for (Figure 6f) compared with the Alpha and Beta methods. However, the 461 

mean (𝜇) of the Lambda method was relatively higher than the other methods (Figure 462 

6c). Furthermore, the results of the mean (𝜇) show that, on average, all the analytical 463 

methods tend to overestimate the skin friction of the pile except for the Alpha 3 method 464 

which, on average, slightly underestimates the skin friction capacity. In addition, Figure 465 

6g reveals that on average the Lambda, Alpha 1 and Alpha 2 methods produces 466 

similar accuracy in terms of the percentage of the predictions with error equal to or 467 

lower than 20%, where the scored 𝑎20 − 𝑖𝑛𝑑𝑒𝑥 value is equal to 0.60, 0.62 and 0.63 468 

for Lambda, Alpha 1 and Alpha 2 methods, respectively. Figures 7a, b, c, d and e 469 

show that Lambda method provides less scatter around the mean compared with the 470 

Alpha and Beta methods and this is confirmed by the obtained coefficient of 471 

determination and 𝑉𝐴𝐹, which is higher for the Lambda method as shown in Figures 472 

6e and f.  473 

It is also obvious from Figure 6 that the Alpha 1 and Alpha 2 methods predict the skin 474 

friction capacity with slightly higher 𝑀𝐴𝐸 (8.9 for Alpha 1 and 8.1 for Alpha 2), 𝑅𝑀𝑆𝐸 475 

(14.4 for Alpha 1 and 13.0 for Alpha 2) and 𝜎 (0.32 for Alpha 1 and 0.27 for Alpha 2) 476 

compared than the Lambda method. In addition, the Alpha 1 and Alpha 2 methods 477 

predict the skin friction capacity with slightly lower 𝑅2 (0.85 for Alpha 1 and 0.88 for 478 
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Alpha 2) and 𝑉𝐴𝐹 (85 for Alpha 1 and 88 for Alpha 2) than the Lambda method. The 479 

Alpha 1 and Alpha 2 methods also achieved a 𝜇 value closer to 1 (𝜇 = 1.02 for the 480 

Alpha 1 method and 𝜇 = 1.07 for the Alpha 2 method) compared with the Lambda 481 

method (𝜇 = 1.16). Thus, the Alpha 1 and Alpha 2 methods can be both ranked second 482 

compared with other analytical methods.  483 

Finally, Figures 6 and 7 also show that the Beta method is the worst performing 484 

method and the error produced using this method is very high (𝑀𝐴𝐸 = 17.2 and 485 

𝑅𝑀𝑆𝐸 = 28.0) compared with other methods. Also, the 𝜎 value obtained using the Beta 486 

method is 1.00; this means a maximum scatter around the mean and can also be 487 

confirmed by the very low coefficient of determination calculated using this method, 488 

which is equal to 0.55 (Figure 6e) and the very low 𝑉𝐴𝐹, which is equal to 40 (Figure 489 

6f). The very low coefficient of determination of the Beta method can also be evidenced 490 

by Figure 7e, which shows a large scatter of the predicted-measured relationship 491 

compared with the no-error line. Also, the 𝑎20 − 𝑖𝑛𝑑𝑒𝑥 for the Beta method is very low 492 

and is equal to 0.37; this means only 37% of the predictions are with error equal to or 493 

less than 20%. Hence, the Beta method ranked last based on this assessment.  494 
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Figure 6: Results of the statistical analysis: (a) Mean absolute error (𝑀𝐴𝐸); (b) root 495 

mean square error (𝑅𝑀𝑆𝐸); (c) Mean (𝜇); (d) standard deviation (𝜎); and (e) coefficient 496 

of determination (𝑅2); (f) Variance account for (𝑉𝐴𝐹); and (g) 𝑎20 − 𝑖𝑛𝑑𝑒𝑥 497 
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(a) 

 

(b) 

 

(c) 

 

(d) 

                                                                                     

(e) 

Figure 7: Predicted versus measured skin friction using: (a) Lambda method; (b) Alpha 498 

1 method; (c) Alpha 2 method; (d) Alpha 3 method; and (e) Beta method 499 

8. Conclusions 500 

The results of this study have demonstrated the abilities of the multi-objective 501 

evolutionary (MOGA-EPR) polynomial regression analysis in predicting the skin 502 

friction capacity of driven piles embedded in clay. The MOGA-EPR model achieved a 503 
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very low error, a mean value close to 1, low standard deviation, very high coefficient 504 

of determination, very high value for the variance account for and high value for the 505 

𝑎20 − 𝑖𝑛𝑑𝑒𝑥 for both training and testing data. Furthermore, the accuracy of the 506 

MOGA-EPR model has been confirmed by presenting the relationship between the 507 

predicted and measured skin friction values for both the training and testing data and 508 

the presented relationships demonstrated the accuracy of the MOGA-EPR model as 509 

most of the points were on or very close to the no-error line for both the testing and 510 

training data. In addition, the MOGA-EPR model has been compared with the available 511 

analytical methods in the literature and the results have demonstrated that the 512 

developed model is better than the available analytical methods as the MOGA-EPR 513 

model performed better based on the statistical measures. Thus, the developed model 514 

can be used with confidence in future designs. However, it is worth stating that the 515 

developed model has been trained and tested based on lengths of pile ranging from 516 

4.60 m to 96.00 m, diameters of piles ranging from 11.40 cm to 76.70 cm and 517 

undrained cohesion ranging from 9.00 kPa to 355 kPa. Hence, the model should be 518 

used for designs within these ranges. Nonetheless, the developed model can also be 519 

tested further in the future when new data becomes available. 520 

In addition, assessing the available analytical methods showed that the Lambda 521 

method is the most accurate method compared with Alpha and Beta methods. This 522 

method scored an mean absolute error (𝑀𝐴𝐸) of 7.8, a root mean square error (𝑅𝑀𝑆𝐸) 523 

of 12.5, a mean (𝜇) of 1.16, a standard deviation (𝜎) of 0.21, a coefficient of 524 

determination (𝑅2) of 0.91, a value for the variance account for (𝑉𝐴𝐹) of 89 and 𝑎20 −525 

𝑖𝑛𝑑𝑒𝑥 of 0.6. Hence, this method can also be used as an alternative to the MOGA-526 

EPR model developed in this study. Furthermore, the Alpha 1 method (Sladen, 1992) 527 

and Alpha 2 method (ISO, 2016) also scored low errors and high coefficient of 528 

determination; the errors of both methods are slightly higher than the Lambda method. 529 

The Alpha 1 and Alpha 2 methods also scored a 𝜇 closer to 1 than the Lambda method; 530 

therefore, both methods can be ranked second. The Beta method scored lowest 531 

compared with the other analytical methods with a 𝑀𝐴𝐸 of 17.2, a 𝑅𝑀𝑆𝐸 of 28.0, a 𝜇 532 

of 1.07, a 𝜎 of 1.00, a 𝑅2 of 0.55, a 𝑉𝐴𝐹 of 40 and 𝑎20 − 𝑖𝑛𝑑𝑒𝑥 of 0.37. The developed 533 

mathematical model in this paper and the results of the assessment of the analytical 534 

methods are very useful to geotechnical engineers and will help to achieve better pile 535 

designs in the future. 536 
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