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Behavioral/Cognitive

Reward-Based Improvements in Motor Control Are Driven
by Multiple Error-Reducing Mechanisms
Olivier Codol,1 Peter J. Holland,1 Sanjay G. Manohar,2,3 and Joseph M. Galea1

1School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom, 2Nuffield Department of Clinical Neurosciences, John
Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom, and 3Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD,
United Kingdom

Reward has a remarkable ability to invigorate motor behavior, enabling individuals to select and execute actions with greater
precision and speed. However, if reward is to be exploited in applied settings, such as rehabilitation, a thorough understand-
ing of its underlying mechanisms is required. In a series of experiments, we first demonstrate that reward simultaneously
improves the selection and execution components of a reaching movement. Specifically, reward promoted the selection of the
correct action in the presence of distractors, while also improving execution through increased speed and maintenance of ac-
curacy. These results led to a shift in the speed-accuracy functions for both selection and execution. In addition, punishment
had a similar impact on action selection and execution, although it enhanced execution performance across all trials within a
block, that is, its impact was noncontingent to trial value. Although the reward-driven enhancement of movement execution
has been proposed to occur through enhanced feedback control, an untested possibility is that it is also driven by increased
arm stiffness, an energy-consuming process that enhances limb stability. Computational analysis revealed that reward led to
both an increase in feedback correction in the middle of the movement and a reduction in motor noise near the target. In
line with our hypothesis, we provide novel evidence that this noise reduction is driven by a reward-dependent increase in
arm stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate motor
performance without compromising accuracy.

Key words: feedback control; stiffness; reaching; reinforcement; action selection; action execution.

Significance Statement

While reward is well-known for enhancing motor performance, how the nervous system generates these improvements is
unclear. Despite recent work indicating that reward leads to enhanced feedback control, an untested possibility is that it also
increases arm stiffness. We demonstrate that reward simultaneously improves the selection and execution components of a
reaching movement. Furthermore, we show that punishment has a similar positive impact on performance. Importantly, by
combining computational and biomechanical approaches, we show that reward leads to both improved feedback correction
and an increase in stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invig-
orate performance without compromising accuracy. This work suggests that stiffness control plays a vital, and underappreci-
ated, role in the reward-based imporvemenets in motor control.

Introduction
Motor control involves two main components that may be indi-
vidually optimized: action selection and action execution (Chen

et al., 2018). While the former addresses the problem of finding
the best action to achieve a goal, the latter is concerned with per-
forming the selected action with the greatest precision possible
(Stanley and Krakauer, 2013; Shmuelof et al., 2014; Chen et al.,
2018). Naturally, both processes come at a computational cost,
meaning the faster an action is selected or executed, the more
prone it is to errors (Fitts, 1954).

Interestingly, both action selection and action execution are
highly susceptible to the presence of reward. For instance, intro-
ducing monetary reward in a sequence learning task leads to a
reduction in selection errors, as well as a decrease in reaction
times, suggesting faster computation at no cost to accuracy
(Wachter et al., 2009). Similarly, in saccades, reward reduces
reaction times and sensitivity to distractors (Manohar et al.,
2015). Reports also indicate that reward invigorates movement
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execution by increasing peak velocity and accuracy during
saccades (Takikawa et al., 2002) and reaching movements
(Summerside et al., 2018; Carroll et al., 2019; Galaro et al., 2019).
Together, these studies suggest that reward can shift the speed-
accuracy function, at least in isolation, of both selection and exe-
cution. However, it is currently unclear whether reward can
simultaneously enhance both the selection and execution com-
ponents of a reaching movement. As reward has generated much
interest as a potential tool to enhance rehabilitation procedures
for clinical populations (Goodman et al., 2014; Quattrocchi et al.,
2017), it is crucial to determine whether it can improve selection
and execution of limb movements without interference. Addi-
tionally, punishment has strongly dissociable effects from reward
in motor adaptation (Galea et al., 2015), motor learning
(Wachter et al., 2009; Abe et al., 2011; Steel et al., 2016; Griffiths
and Beierholm, 2017) and saccades (Manohar et al., 2017).
However, it remains unclear whether punishment invigorates
reaching movements in a similar manner to reward.

Another open question is how reward mechanistically drives
improvements in performance. Recent work in eye and reaching
movements suggests that reward acts by increasing feedback
control, enhancing one’s ability to correct for movement error
(Carroll et al., 2019; Manohar et al., 2019). However, there are
far simpler mechanisms which reward could use to improve exe-
cution. For example, the motor system can control the stiffness
of its effectors, such as the arm during a reaching task (e.g.,
through cocontraction of antagonist muscles) (Perreault et al.,
2002; Gribble et al., 2003). This results in the limb being more
stable in the face of perturbations (Franklin et al., 2007) and ca-
pable of absorbing noise that may arise during the movement
itself (Selen et al., 2009; Ueyama and Miyashita, 2013), thus
reducing error and improving performance (Gribble et al., 2003).
Yet, it is unclear whether the reward-based improvements in exe-
cution are associated with increased stiffness.

To address these questions, we devised a reaching task where
participants were monetarily rewarded depending on their reac-
tion time and movement time. Occasionally, distractor targets
appeared, in which case participants had to withhold their move-
ment until the correct target onset, allowing for a selection com-
ponent to be quantified. In a first experiment, we show that
reward improves both selection and execution concomitantly,
and that this effect did not scale with reward magnitude. In a sec-
ond experiment, we demonstrate that, although both reward and
punishment led to similar effects in action selection, action execu-
tion showed a more global, noncontingent sensitivity to punish-
ment. Behavioral and computational analysis of trajectories revealed
that, in addition to an increase in feedback corrections during
movement, a second mechanism produced a decrease in motor
noise at the end of the movement. We hypothesized that the reduc-
tion in motor noise may be achieved through an increase in arm
stiffness. We tested this hypothesis and provide empirical evidence
that arm stiffness was increased in rewarded trials.

Materials and Methods
Participants
Thirty participants (2 males, median age: 19, range: 18-31 years) took
part in Experiment 1. Thirty participants (4 males, median age: 20.5
years, range: 18-30 years) took part in Experiment 2. Thirty participants
(10 male, median age: 19.5 years, range: 18-32 years) took part in
Experiment 3, randomly divided into two groups of 15. Twenty partici-
pants (2 male, median age: 19 years, range: 18-20 years) took part in
Experiment 4. All participants were recruited on a voluntary basis and
were rewarded with their choice of money (£7.5/h) or research credits.

They were informed that this remuneration was in addition to the mone-
tary feedback they would gain by performing well during the tasks.
Participants were all free of visual (including color discrimination), psy-
chological, or motor impairments. All the experiments were conducted
in accordance with the local research ethics committee of the University
of Birmingham (Birmingham, United Kingdom).

Although no power analysis was performed for Experiments 1 and 2,
both included relatively large group sizes (N= 30) in comparison with
current literature. The sample size for Experiment 3 was preregistered
(https://osf.io/qt43b) and based on a previous study using a comparable
stiffness estimation technique (Selen et al., 2009). Similarly, we initially
tested 15 participants for Experiment 4 and observed an expected null
result. However, to ensure this null result was not the consequence of
sample size, we collected an additional 5 participants (N=20).

Task design
Participants performed the tasks on an endpoint KINARM (BKIN
Technologies). They held a robotic handle that could move freely on a
plane surface in front of them, with the handle and their hand hidden by
a panel (Fig. 1A). The panel included a mirror that reflected a screen
above it, and participants performed the task by looking at the reflection
of the screen (60Hz refresh rate), which appeared at the level of the hid-
den hand. Kinematics data were sampled at 1 kHz.

Each trial started with the robot handle bringing participants 4 cm in
front of a fixed starting position, except for Experiments 3 and 4 to avoid
interference with the perturbations during catch trials. A 2-cm-diameter
starting position (angular size ; 3.15°) then appeared, with its color
indicating one of several possible reward values, depending on the
experiment. Participants were informed of this contingency during the
instructions. The reward value was also displayed in 2-cm-high text
(angular size ; 3.19°) under the starting position (Fig. 1B,C). Because
color luminance can affect salience and therefore detectability, lumi-
nance-adjusted colors were used (see http://www.hsluv.org/). The colors
used were, in red-green-blue format [76/133/50] (green), [217/54/104]
(pink), and [59/125/171] (blue) for 0, 10 and 50 p, respectively, and dis-
tractor colors were green, pink, or blue. To ensure that a specific color
did not bias the amount of distracted trials, we fitted a mixed-effect
model distracted; color1 ð1jparticipantÞ1 ð1jrewardÞ with color a 3-
level categorical variable encoding the color of the distractor target.
Distractor color did not explain any variance in selection error
(p ¼ 1:72 � 10�69, p ¼ 0:46 and p ¼ 0:82 for the intercept, pink and
blue colors, respectively), confirming that the observed effect was not
driven by distractor colors. From 500 to 700ms after participants
entered the starting position (on average 5876 354 ms after the starting
position appeared), a 2-cm-diameter target (angular size ; 2.48°)
appeared 20 cm away from the starting position, in the same color as the
starting position. Participants were instructed to move as fast as they
could toward it and stop in it. They were informed that a combination of
their reaction time and movement time defined how much money they
would receive, and that this amount accumulated across the experiment.
They were also informed that end position was not factored in as long as
they were within 4 cm of the target center.

The reward function was a closed-loop design that incorporated the
recent history of performance, to ensure that participants received simi-
lar amounts of reward despite idiosyncrasies in individual’s reaction
times and movement speed, and that the task remained consistently
challenging over the experiment (Manohar et al., 2015; Berret et al.,
2018; Reppert et al., 2018). To that end, the reward function was defined
as follows:

rt ¼ rmax �max 1� e
MTRT�t2

t1

� �
; 0

� �
(1)

where rmax was the maximum reward value for a given trial, MTRT was
the sum of reaction time and movement time, and t 1 and t 2 adaptable
parameters varying as a function of performance (Fig. 1D). Specifically,
t 1 and t 2 were the mean of the last 20 trials’ 3-4th and 16-17th fastest
MTRTs, respectively, and were initialized as 400 and 800ms at the start
of each participant training block. t values were constrained so that
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t 1 , t 2 , 900 was always true. In practice, all reward values were
rounded up (or down in the punishment condition of Experiment 2) to
the next penny so that only integer penny values would be displayed. Of
note, this reward function (Eq. 1) allows weighting the impact of move-
ment times and reaction times differentially when obtaining MTRTs.
However, we did not want to emphasize one over the other, since our
aim was to observe how selection and execution performance vary with
reward when taking place concomitantly. Therefore, our MTRTs were
simply the addition of movement time and reaction time for a given trial,
without any weighting bias.

Targets were always of the same color as the starting position (Fig.
1B), and participants were informed of this relationship during the
instructions. However, in Experiments 1 and 2, occasional distractor tar-
gets appeared, indicated by a different color than the starting position
(green, pink, or blue, depending on the correct target’s color; Fig. 1C).
Participants were informed to ignore these targets and wait for the sec-
ond target to appear. Failure to comply in rewarded and punished trials
resulted in no gains for this trial and an increase in loss by a factor of 1.2,
respectively. The first target (distractor or not) appeared 500-700 ms af-
ter entering the starting position using a uniform random distribution,
and correct targets in distractor trials appeared 300-600 ms after the dis-
tractor target using the same distribution. Our task is reminiscent of a
go-no-go task where one must execute or inhibit an action, usually a but-
ton press, when presented with a “go” cue or a distractor cue (Guitart-
Masip et al., 2014), respectively. As the go-no-go paradigm involves
pressing a button versus not pressing it, the main differences between a
go-no-go task and an action selection task are that a go-no-go task does
not include a “response selection” stage (Donders, 1969); and requires
participants to inhibit expression of the prepared action. However, the
task we used here involves four possible reaching directions (three after
the distractor onset) rather than a single action that has to be executed
or inhibited, making our paradigm closer to an action selection task,
although an inhibitory component remains.

When reaching movement velocity passed below a 0.03 m/s thresh-
old, the end position was recorded, and monetary gains were indicated
at the center of the workspace. After 500ms, the robotic arm then
brought the participant’s hand back to the initial position 4 cm above the
starting position.

In every experiment, participants were first exposed to a training
block, where all targets had the same reward value equal to the mean of

all value combinations used later in the experiment (e.g., if the experi-
ment had 0 and 50 p trials, the training reward amounted to 25 p per
trial). Participants were informed that money obtained during the train-
ing would not count toward the final amount they would receive.
Starting position and target colors were all gray during training. The t
values obtained at the end of training were then used as initial values for
the actual task.

Experimental design
Experiment 1: reward-magnitude. The purpose of the first experiment
was to assess the effect of reward magnitude on the selection and execu-
tion components of a reaching movement. There were four possible tar-
get locations positioned every 45° around the midline of the workspace,
resulting in a 135° span (Fig. 1A). Participants first practiced the task in
a 48-trial training block. They then experienced a short block (24 trials)
with no distractors, and then a main block of 168 trials (72 distractors,
42.86% of all trials). Trials were randomly shuffled within each block.
Reward values used during the task were 0, 10, and 50 p.
Experiment 2: reward versus punishment. The goal of the second

experiment was to compare the effects of reward and punishment on the
selection and execution components of a reaching movement. The same
four target positions were used as in Experiment 1, and participants first
practiced the task in a training block (48 trials). Participants then performed
a no-distractor block and a distractor block (12 and 112 trials) in a rewarded
condition (0 and 50 p trials) and additionally in a punishment condition
(�0 and �50 p trials). The order of reward and punishment blocks was
counterbalanced across participants. In the distractor blocks, 48 trials were
distractor trials (42.86%). Before the punishment blocks, participants were
told that they would start with £11 and that the slower they moved, the
more money they lost. This resulted in participants gaining on average a
similar amount of money on the reward and punishment blocks. They were
also informed that, if they missed the target or went to the distractor target,
their losses on that trial would be multiplied by a factor of 1.2. The reward
function was biased so that:

rt ¼ �rmax �max 1� e
MTRT�t2 1 a

t1 1 b

� �
; 0

� �
(2)

With a ¼ 268:5 and b ¼ �71:4. The update rule was also altered,
with t 1 and t 2 the mean of the last 20 trials’ 15–16th and 17–18th fastest
MTRTs, respectively. These changes were obtained by fitting the

Figure 1. Reaching paradigm. A, Participants reached to an array of targets using a robotic manipulandum. B, Time course of a normal trial. Participants reached at a single target and
earned money based on their performance speed. If they were too slow (MTRT, s2), a message “Too slow!” appeared instead of the reward information. Transition times are indicated below
for each screen. A uniform distribution was used for the transition time jitter. C, Time course of a distractor trial. Occasionally, a distractor target appeared, indicated by a color different from
the starting position. Participants were told to wait for the second, correct target to appear and reach toward the latter. D, The faster participants completed their reach to the target, the more
money they were rewarded. The speed of the the response was quantified as the sum of movement time and reaction time (i.e., MTRT), and the function mapping MTRT to reward varied
based on two parameters s1 and s2. s1 and s2 enabled the reward function to adjust throughout the task as a function of individual performance history, to ensure all participants received a
similar amount of reward (see Task design). Top, Bottom, How how the function varied as a function of s1 (s2 fixed at 800 ms) and s2 (s1 fixed at 400 ms), respectively, for a 10 p trial.
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performance data of the reward-magnitude experiment to a punishment
function with free a and b parameters and free updating indexes to mini-
mize the difference in average losses compared with the average gains
observed in the reward-magnitude experiment. On average, participants
gained £5.40 in the reward condition and lost £5.63 in the punishment
condition (paired t test: t(29) = –0.55, p = 0.58, d = –0.1), meaning that
this manipulation successfully allowed for a similar amount of gains and
losses for a given participant.
Experiment 3: end-reach stiffness. Experiment 3 aimed to examine

whether reward was associated with increased muscle stiffness at the end
of movement. Because arm stiffness is strongly dependent on arm con-
figuration, stiffness ellipses are usually oriented, with a long axis indicat-
ing a direction of higher stiffness. This orientation is influenced by
several factors, including position in Cartesian space (Mussa-Ivaldi et al.,
1985). If reward affects stiffness as we hypothesized, the possibility that
this effect is dependent on a target location must therefore be consid-
ered. To account for this, two groups of participants (N= 15 per group)
reached for a target located 20 cm from the starting position at either 45°
to the right or the left. On occasional “catch” trials (31% trials pseudor-
andomly interspersed), when velocity passed under a 0.03m/s threshold,
a 300-ms-long, fixed-length (8 mm) displacement pushed participants
away from their end position and back, allowing us to measure endpoint
stiffness (see Data analysis). Because displacements of this amplitude
were noticeable, participants were instructed to ignore them and not
react, and we used a low proportion of catch trials to reduce anticipation.
Importantly, participants were explicitly informed that the accuracy of
their reach was defined by their position before the displacement, mean-
ing that the displacement will not impact their monetary gains (e.g., by
pushing them away from the target). No distractor trials were used in
this experiment. This type of displacement profile was based on previous
work showing that it can reliably provide endpoint stiffness measure-
ments (Franklin et al., 2003; Selen et al., 2009).

Participants performed two training sessions: one with no catch trials
(25 trials) and one with four catch trials out of 8 trials, with displacements
of 0°, 90°, 180°, and 270° around the end position to familiarize partici-
pants with the displacement. Participants then performed the main block
with 64 catch trials out of 200 trials (32%) and 0 and 50 p reward values.
During the main block, displacements were in 1 of 8 possible directions
from 0° to 315° around the end position, in step increments of 45° and
randomly assigned over the course of the block. We used sessions of 233
trials to ensure session durations remained short, ruling out any effect of
fatigue on stiffness as cocontraction is metabolically taxing. To ensure that
any measure of stiffness was not due to differences in grip position, a loose
finger grip, or postural changes, participants’ hands were restrained with a
solid piece of plastic, which locked the wrist in a straight position, prevent-
ing flexion-extension or radial-ulnar deviations. As the participants held a
vertical handle, pronation-supination was also not possible. In addition, a
reinforced glove (The Active Hand Company) securely strapped the fingers
around the handle during the entire task, preventing any loosening of grip.
Experiment 4: start-reach stiffness. In this last experiment, we tested

whether similar differences in endpoint stiffness existed between reward-
ing and no-reward trials immdiately before the start of the reach. The
experiment was essentially similar to Experiment 3, except that the catch
trials occurred in the start position at the time the target was supposed
to appear. To ensure participants remained in the starting position, two
different targets (45° and �45° from midline) were used to maintain
directional uncertainty. Participants had 24 trials during the no-catch-
trial training, 16 trials during the catch-trial training (8 catch trials), and
200 trials during the main block, with 64 (32%) catch trials. Displace-
ments always occurred 500ms after entering the starting position, to
avoid a jitter-induced bias in stiffness measurement. In noncatch trials,
targets also appeared after a fixed delay of 500ms. Because participants
voluntarily moved into the starting position after it appeared, they had
sufficient time to process the reward information.

Data analysis
All the analysis code is available on the Open Science Framework web-
site, alongside the experimental datasets at https://osf.io/7as8g/. Analyses

were all made in MATLAB (The MathWorks) using custom-made
scripts and functions.

Trials were manually classified as distracted or nondistracted. Trials
that did not include a distractor target were all considered nondistracted.
Distracted trials were defined as trials where a distractor target was dis-
played, and participants initiated their movement toward the distractor
instead of the correct target, based on their reach angle when exiting the
starting position. If participants readjusted their reach “mid-flight” to
the correct target or initiated their movement to the correct target and
readjusted their reach to the distractor, this was still considered a dis-
tracted trial. In ambiguous situations, we took a conservative approach
and labeled the trial as nondistracted (e.g., if the reach direction was
between the correct target and the distractor so that it was challenging to
dissociate the original reaching direction). On very rare occasions (,20
trials in the whole study), participants exited the starting position away
from the distractor but before the correct target appeared; these trials
were not classified as distracted.

Reaction times were measured as the time between the correct target
onset and when the participant’s distance from the center of the starting
position exceeded 2 cm. In trials that were marked as “distracted” (i.e.,
participant initially moved toward the distractor target), the distractor
target onset was used. In trials including a distractor, the second, correct
target did not require any selection process to be made, since the appear-
ance of the distractor target informed participants that the next target
would be the right one. For this reason, reaction times were biased to-
ward a faster range in trials in which a distractor target appeared, but
participants were not distracted by it. Consequently, mean reaction
times were obtained by including only trials with no distractor, and trials
with a distractor in which participants were distracted. For the same rea-
son, trials in the first block were not included because no distractor was
present, and no selection was necessary. For every other summary vari-
able, we included all trials that were not distracted trials, including those
in the first block. For normalized data, normalization was performed by
substracting the baseline condition to the other conditions for each par-
ticipant individually.

In Experiments 1 and 2, we removed trials with reaction times
.1000ms or,200ms, and for nondistracted trials we also removed tri-
als with radial errors.6 cm or angular errors.20. Overall, this resulted
in 0.3% and 0.7% trials being removed from Experiment 1 and 2, respec-
tively. Speed-accuracy functions were obtained for each participant indi-
vidually. For the execution speed-accuracy function, we sorted all trials
based on their peak velocity and obtained the average radial error using a
sliding window of 30-centile width with 2-centiles (50 quantiles) sliding
steps (Manohar et al., 2015). For the selection speed-accuracy function,
reaction times and selection accuracy (the proportion of nondistracted tri-
als) were used instead of peak velocity and radial accuracy. Then, each indi-
vidual speed-accuracy function was averaged by quantile across participants
in both the x and y dimension.

To gain a deeper understanding of the control strategy used during
reaches under reward, we used a kinematic analysis technique intro-
duced in saccades in Manohar et al. (2019). Briefly, this analysis consists
of obtaining the autocorrelation of reaching trajectories over time. We
assessed how much the set of positions at time t across all trials corre-
lated with the set of positions at any other time t6 n (e.g., t1 1 or
t � 5). If movements are stereotyped across trials, this correlation will be
high because the early position will provide a large amount of informa-
tion about the later or earlier position. On the other hand, if trajectories
are variable over time within a trial, the correlation will decrease because
there will be no consistency in the evolution of position over time. This
can be visualized using a correlation heatmap with time on both the x
and y axes (see Figs. 6, 7). Time-time correlation analyses were per-
formed exclusively on nondistracted trials. Trajectories were taken from
exiting the starting position to when velocity fell to ,0.01m/s. They
were rotated so that the target appeared directly in front of the starting
position, and y-dimension positions were then linearly interpolated to
100 evenly spaced time points. We focused on the y dimensions because
it displays most of the variance. Correlation values were obtained on y
positions and Fisher-transformed before follow-up analyses (Manohar et
al., 2019).
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For Experiments 3 and 4, the displacements (8 mm) were in 8 possible
directions arrayed radially around the participant’s hand position at the
time of displacement onset. The displacement profile was transient, with a
ramp-up, a plateau, and a ramp-down phase to bring the hand back to the
original end position. Importantly, the displacement profile was not
stepped but controlled at each time step during all three phases. This
enabled us to preset the ramp-up and ramp-down profile so as to ensure
the smoothest trajectory possible. To this end, we used a sixth-order poly

nomial function x tð Þ ¼ 20: t
tend

� �3 � 45: t
tend

� �4
1 36: t

tend

� �5� 10 t
tend

� �6

that minimizes acceleration at the beginning and at the end of the ramp;
with tend the time at the end of the displacement and t the current time at
which the position x is evaluated. The three phases of displacement
(ramp-up, plateau, and ramp-down) were all 100ms long. As the position
was clamped during the plateau phase, velocity and acceleration were on
average null, removing any influence of viscosity and inertia. Therefore,
the amount of force required to maintain the displacement during plateau
was linearly proportional to endpoint stiffness of the arm (Perreault et al.,
2002). Positions and servo forces in the x and y dimensions between 140
and 200 ms after perturbation onset were averaged over time for each
catch trial (Franklin et al., 2003; Selen et al., 2009). Then, the stiffness val-
ues were obtained using multiple linear regressions (function fitlm in
MATLAB). Specifically, for each participant, Kxx and Ka

xy were the result-
ing x and y coefficients of Fx ; 11 x1 y (with 1 representing the individ-
ual interercept in the Wilkonson notation) and Ka

yx and Kyy were the
resulting x and y coefficients of Fy ; 11 x1 y. The intercept in the
regression parameters were not removed to prevent any possible bias in
the stiffness (slope) estimates. Data points whose residual was .3 times
the SE of all residuals were excluded (1.56% and 2.27% for Experiment 3
and 4, respectively). Then, we can define the asymmetrical stiffness matrix
as follows:

Ka ¼ Kxx Ka
xy

Ka
yx Kyy

" #
(3)

And the symmetrical stiffness matrix that we will use in subsequent
analysis as follows:

K ¼
Kxx

Ka
xy 1Ka

yx

2
Ka

xy 1Ka
yx

2
Kyy

2
664

3
775 ¼ Kxx Kxy

Kxy Kyy

� �
(4)

These matrices can be projected in Cartesian space using a sinusoidal
transform (Eq. 5), resulting in an ellipse.

x
y

� �
¼ K � cost

sint

� �
0 � t � 2p (5)

This ellipse can be characterized by its shape, orientation, and ratio,
which we obtained using a previously described method (Perreault et al.,
2002).

The displacement was applied by the endpoint KINARM used
for the reaching task. Sampling during the perturbation was the same as
during the reaching (1 kHz). The KINARM was equipped with two
sets of encoders: a low-resolution primary encoder set and an additional
high-resolution secondary encoder set. The error gain feedback mat-

rices during the displacement were as follows: Kp ¼ 400 0
0 400

� �
,

Kv1 ¼ 2:5 0
0 2:5

� �
; and Kv2 ¼ 6 0

0 6

� �
, with Kp the gain matrix (N) for

position error and Kv1 and Kv2 the two gain matrices (N.s) for velocity
error. The corrective feedback torques (N.m) were defined as
t ¼ Kp:dx2 1Kv2 :d _x2 1Kv1 :d _x1with dx2 and d _x2 the positional (m)
and velocity (m/s) error from the high-resolution secondary encoder,
respectively, and d _x1 the velocity error from the low-resolution primary

encoder. The feedback torques were then converted to endpoint feedback
forces (N) to be applied by the two-link robotic arm of the KINARM

using a Jacobian transform matrix F ¼ �L1:sinu 1 L1:cosu 1

�L2:sinu 2 L2:cosu 2

� �
:t ,

with L1 and L2 the length of each link, and u 1 and u 2 their angular posi-
tion. The resulting feedback forces were then low-pass filtered using a sec-
ond-order Butterworth filter with a 50Hz cutoff.

Statistical analysis
Although for most experiments we used mixed-effect linear models to
allow for individual intercepts, we used a repeated-measure ANOVA in
Experiment 1 to compare reward magnitudes with each other independ-
ently. This allowed us to assess the effect of reward without assuming a
magnitude-scaled effect in the first place. Paired-sample t tests were used
when one-way repeated-measure ANOVAs reported significant effects,
and effect sizes were obtained using partial h 2 and the Cohen’s d
method. For Experiment 2, we used mixed-effect linear models. For
Experiments 3 and 4, mixed-effect linear models were also used to
account for a possible confound between reward and peak velocity in
stiffness regulation, while accounting for individual differences in speed
using individual intercepts. Since Experiment 3 included a nested design
(i.e., participants were assigned either to the right or left target but not
both), we tested for an interaction using a two-way mixed-effect
ANOVA to avoid an artificial inflation of p values (Zuur, 2009). For all
ANOVAs, Bonferroni corrections were applied where appropriate, and
post hoc paired-sample t tests were used if ANOVAs produced signifi-
cant results. Bootstrapped 95% CIs of the mean were also obtained and
plotted for every group.

Since trials consisted of straight movements toward the target, we
considered position in the y dimension (i.e., radial distance from the
starting position) to obtain time-time correlation maps because it
expresses most of the variability. To confirm this, reach trajectories were
rotated so the target was always located directly in front, and error distri-
bution in the x and y dimension was compared for both Experiments 1
and 2. The y dimension indeed displayed a larger spread in error
(Experiment 1: t(11,156) = –16.15, p , 0.001, d = –0.31; Experiment 2:
t(14,852) = –13.68, p , 0.001, d = –0.22). Time-time correlation maps
were analyzed by fitting a mixed-linear model for each time point (Zuur,
2009; Manohar et al., 2019) allowing for individual intercepts using the
model z; reward1 ð1jparticipantÞ, with z the Fisher-transformed
Pearson coefficient r for that time point. Then clusters of significance,
defined as time points with p, 0.05 for reward, were corrected for mul-
tiple comparisons using a clusterwise correction and 10,000 permuta-
tions (Nichols and Holmes, 2002; Maris and Oostenveld, 2007). This
approach avoids unnecessarily stringent corrections, such as Bonferroni
correction, by taking advantage of the spatial organization of the time-
time correlation maps (Nichols and Holmes, 2002; Maris and
Oostenveld, 2007).

Model simulations
We performed simulations of a simple dynamical system to observe how
time-time correlation maps are expected to behave under different types
of hypothetical controllers. The simulation code is available online on
the Open Science Framework URL provided above. Simulation results
were obtained by running 1000 simulations and obtaining time-time
correlation values across those simulations. The sigmoidal activation
function SðtÞ used for simulations of the late component was a Gaussian
cumulative distribution function such as the following:

S tð Þ ¼ 1

s � ffiffiffiffiffiffiffi
2p

p
ðt

�1
e
�ðx�mÞ2

2s2 dx (6)

with s ¼ 0:5;m ¼ 0:8s (or 800ms for our simulation, which is run in
ms) and t0 , t, tf is the simulation time step. It should be noted that
the use of a sigmoidal function is arbitrary and may be replaced by any
other activation function, such as heaviside, although this will only alter
the simulation outcomes quantitatively rather than qualitatively. Values
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of the feedback control term are taken from Manohar et al. (2019). On
the other hand, different noise terms were taken for our simulations
because previous work only manipulated one parameter per comparison,
whereas we manipulated both noise and feedback at the same time in
several models (Eqs. 16, 17) and the model is more sensitive to feedback
control manipulation than to noise termmanipulation.

Two alternative sets of models were used to assess the effect of signal-
dependent noise and delay in feedback corrections, respectively. For the
first set, the noise term was redefined asNðm;sðtÞÞ with the following:

s tð Þ ¼ 16 � t
tf

	 
2

� 32 � t
tf

	 
3

1 16 � t
tf

	 
4

1 0:5 (7)

with Equation 7 being proportional to the velocity profile of a minimum
jerk reachingmovement (Flash andHogan, 1985). Here, the equationwas
adjustedsothat0:5 � sðtÞ � 1:5,sð0Þ ¼ sðtf Þ ¼ 0:5 andsðtf =2Þ ¼ 1:5.
The second set of models included a delay in feedback corrections, so that
the feedback term b � xt and its equivalent in different model variations
became b � xt�399. A 400 time step delay was chosen because observed
movement times in the reward-magnitude and reward-punishment
experiments were on average between 350 and 400ms, resulting in a feed-
back delay of ; 350 � 400=1000 ¼ 140ms, which is within the range of
feedback control delays expressed during reaching tasks (Pruszynski et al.,
2011;Carroll etal., 2019).

Regarding model selection, comparisons were performed by fitting
each of the five datasets to six candidate models as follows:

xt1 1 ¼ xt 1 g � N ðm;sÞ (8)

xt1 1 ¼ xt 1 b � xt 1Nðm;sÞ (9)

xt1 1 ¼ xt � 0:002 xt 1 ð11 g � St1 1Þ � N ðm;sÞ (10)

xt1 1 ¼ xt 1 ð�0:0021 b � St1 1Þ � xt 1Nðm;sÞ (11)

xt1 1 ¼ xt 1 ð�0:0021 b Þ � xt 1 ð11 g � St1 1Þ � N ðm;sÞ (12)

xt1 1 ¼ xt 1 ð�0:0021 b � St1 1Þ � xt 1 ð11 gÞ � N ðm;sÞ (13)

with Equation 8 representing a model with noise reduction, Equation 9 a
model with increased feedback control, Equation 10 a model with late
noise reduction, Equation 11 a model with late increase in feedback con-
trol, Equation 12 a model with increased feedback and late noise reduc-
tion, and Equation 13 a model with late noise reduction and increased
feedback. The free parameters were b and g , with the last two models
including both of them and all others including one. SðtÞ was a sigmoidal
activation function as indicated in Equation 6 and was fixed. A total of
1000 simulations were done with 1000 time steps per simulation. Time-
time correlation maps were then Fisher-transformed and substracted
from a control model xt1 1 ¼ xt 1Nðm;sÞ for Equation 8 and
xt1 1 ¼ xt � 0:002 � xt 1Nðm;sÞ for all other models to obtain contrast
maps. The resulting contrast maps were then fitted to the empirical con-
trast maps obtained to minimize the sums of squared errors for each
individual for individual-level analysis, and across individuals for the
group-level analysis. Of note, rather than fitting the model to the across-
participant averaged contrast map in the group-level analysis, the model
minimized all the individual maps at once, allowing for a single model fit
for the group without averaging away individual map features. The optimi-
zation process was done using the fminsearch function of the Optimization
toolbox in MATLAB. The free parameter search was initialized with
b 0 ¼ 0 and g 0 ¼ 0. Model comparisons were performed by finding the
model with lowest BIC, defined as BIC ¼ nlogðRSS=nÞ1 klogn with
n ¼ 1002 ¼ 10;000 the number of time points per participant map, k the
number of parameters in the model considered, and RSS the model’s resid-
ual sum of squares.

Results
Reward concomitantly enhances action selection and action
execution
Experiment 1 examined the effect of reward on the selection and
execution components of a reaching movement. First, we
assessed whether the speed-accuracy functions were altered by
reward. As expected, reward shifted the speed-accuracy functions
for both selection and execution, underlining augmented motor
performance (Fig. 2A,B). Comparing each variable of interest
individually, participants showed a clear and consistent improve-
ment in selection accuracy in the presence of reward. Specifically,
they were less likely to be distracted in rewarded trials, although
this was independent of reward magnitude (repeated-measures
ANOVA, F(2) = 15.8, p = 0.001, partial h 2 = 0.35; post hoc 0 p vs
10 p, t(29) = –3.34, p = 0.005, d = –0.61; 0 p vs 50 p, t(29) = –5.32, p
, 0.001, d = –0.97; 10 p vs 50 p, t(29) = –2.21, p = 0.07, d = –0.49;
Fig. 3A). However, this did not come at the cost of slowed deci-
sion-making, as reaction times remained largely similar across
reward values; if anything, reaction times were slightly shorter if a
large reward (50 p) was available compared with no-reward (0 p)
trials, although this was not statistically significant (F(2) = 2.35, p =
0.10, partial h 2 = 0.07; Fig. 3B,C).

In addition, reward led to a marked improvement in action
execution by increasing peak velocity that scaled with reward
magnitude, although this was driven by three extreme values
(F(2) = 43.0, p , 0.001, partial h 2 = 0.60; post hoc 0 p vs 10 p,
t(29) = –7.40, p , 0.001, d = –1.35; 0 p vs 50 p, t(29) = –7.61, p ,
0.001, d = –1.39; 10 p vs 50 p, t(29) = –3.52, p = 0.003, d = –0.64;
Fig. 3D). Unsurprisingly, movement time also showed a similar
effect; that is, mean movement time decreased with reward,
although this did not scale with reward magnitude (F(2) = 15.3, p
, 0.001, partial h 2 = 0.35; post hoc 0 p vs 10 p, t(29) = 4.07, p ,
0.001, d = 0.74; 0 p vs 50 p, t(29) = 4.99, p, 0.001, d = 0.91; 10 p
vs 50 p, t(29) = 2.08, p = 0.09, d = 0.38; Fig. 3E). However, this
reward-based improvement in speed did not come at the cost of
accuracy as radial error (F(2) = 0.15, p = 0.86, partial h 2 = 0.005)
and angular error (F(2) = 1.51, p = 0.23, partial h 2 = 0.05)
remained unchanged (Fig. 3F–H).

These results demonstrate that reward enhanced the selection
and execution components of a reaching movement simultane-
ously. Interestingly, these improvements were mainly driven by an
increase in accuracy for selection and in speed for execution.
However, reward magnitude had only a marginal impact, as
opposed to the presence or absence of reward per se. Consequently,
for the remaining studies, we used the 0 and 50 p trial conditions to
assess the impact of reward on reaching performance.

Figure 2. Speed-accuracy functions for selection (A) and execution (B) shift as reward
values increase. The functions are obtained by sliding a 30% centile window over 50 quan-
tile-based bins. A, For the selection panel, the count of nondistracted trials and distracted tri-
als for each bin was obtained, and the ratio (100 � nondistracted/total) calculated
afterward. B, For the execution component, the axes were inverted to match the selection
panel in A. Top left corner indicates faster and more accurate performance (see Data
analysis).
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Punishment has the same effect as reward on selection but a
noncontingent effect on execution
Next, we asked whether punishment led to the same effect as
reward, as previous reports have shown that they have dissoci-
able effects on motor performance (Wachter et al., 2009; Galea et
al., 2015; Song and Smiley-Oyen, 2017; Hamel et al., 2018). The
reward block consisted of randomly interleaved 0 and 50 p trials,
whereas the punishment block consisted of –0 p and –50 p trials,
indicating the maximum amount of money that could be lost on
a single trial as a result of slow reaction times and movement
times.

First, we obtained speed-accuracy functions for the selection
and execution components in the same way as for Experiment 1
(Fig. 4). While punishment had a similar effect on selection (Fig.
4A), it produced dissociable effects on execution (Fig. 4B).
Specifically, while peak velocity increased with punishment simi-
larly to reward, it was accompanied by an increase in radial error.
Although this could suggest that punishment does not cause a
change in the speed-accuracy function relative to its own baseline
(�0 p) trials, a clear shift in the speed-accuracy function could
be seen between the baseline trials of the reward and punishment
conditions (Fig. 4B). Therefore, relative to reward, a punishment
context appeared to have a noncontingent beneficial effect on
motor execution.

To examine these results further, we fitted a mixed-effect lin-
ear model DV; 11RP1 value1RP : value1 ð1jparticipantÞ
that included individual intercepts and an interaction term,
where DV is the dependent variable considered, RP indicated
whether the context was reward or punishment (i.e., reward
block or punishment block), and value indicated whether the
trial is a baseline trial bearing no value (0 p and –0 p) or a
rewarded/punished trial bearing high value (50 and –50 p). As
in Experiment 1, value improved selection accuracy (b = 9.72,

CI = [4.51, 14.9], t(116) = 3.70, p , 0.001; Fig. 5A) without any
effect on reaction times (b = –0.007, CI = [–0.015, 0.002], t(116)
= –1.53, p = 0.13; Fig. 5B,C) and increased peak velocity and
decreased movement time (main effect of value on peak velocity,
b = 0.096, CI = [0.045, 0.147], t(116) = 3.76, p, 0.001; on move-
ment time, b = –0.02, CI = [–0.033, 0.007], t(116) = –3.15, p =
0.002; Fig. 5D,E) at no accuracy cost (radial error, b = –0.085, CI
= [–0.001, 0.171], t(116) = 1.96, p = 0.052; angular error, b =
–0.081, CI = [–0.027, 0.189], t(116) = 1.49, p = 0.14; Fig. 5F–H),
therefore replicating the findings from Experiment 1.
Importantly, context (reward vs punishment) did not alter these
effects on selection accuracy (main effect of block, b = –1.94, CI
= [–7.15, 3.26], t(116) = –0.74, p = 0.46; interaction, b = –0.97,
CI = [–8.34, 6.39], t(116) = –0.26, p = 0.79; Fig. 5A), reaction
times (main effect of block, b = –0.003, CI = [–0.006, 0.011],
t(116) = –0.66, p = 0.51; interaction, b = –0.002, CI = [–0.014,

Figure 3. Reward enhances performance in both selection and execution. For all bar plots, data were normalized to 0 p performance for each individual. Bar height indicates group mean.
Dots represent individual values. Error bars indicate bootstrapped 95% CIs of the mean. A, Selection accuracy, as the percentage of trials where participants initiated reaches toward the correct
target instead of the distractor target. B, Mean reaction times. C, Scatterplot of mean reaction time against selection accuracy. Values are normalized to 0 p trials. Colored lines indicate the
mean value for each condition. Solid gray lines indicate the origin (i.e., 0 p performance). Data distributions are displayed on the sides, with transversal bars indicating the mean of the distribu-
tion. Triangles represent 50 p trials. D, Mean peak velocity during reaches. E, Mean movement times of reaches. F, Mean radial error at the end of the reach. G, Mean angular error at the end
of the reach. H, Scatterplot showing execution speed (peak velocity) against execution accuracy (radial error), similar to C.

Figure 4. Reward and punishment affect speed-accuracy functions for selection (A) and
execution (B) components. The functions are obtained by sliding a 30% centile window over
50 quantile-based bins. A, For the selection panel, the count of nondistracted trials and dis-
tracted trials for each bin was obtained, and the ratio (100� nondistracted/total) calculated
afterward. B, For the execution component, the axes were inverted to match the selection
panel in A. Top left corner indicates faster and more accurate performance (see Data
analysis).
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0.010], t(116) = –0.38, p = 0.70; Fig. 5B), or peak velocity (main
effect of block, b = –0.015, CI = [–0.066, 0.036], t(116) = –0.59,
p = 0.56; interaction, b = –0.024, CI = [–0.047, 0.096], t(116) =
–0.67, p = 0.50; Fig. 5D). Finally, in line with the observed speed-
accuracy functions, the punishment context did affect radial ac-
curacy, with accuracy increasing compared with the rewarding
context (main effect of block, b = 0.10, CI = [0.019, 0.19],
t(116) = 2.42, p = 0.017; Fig. 5F), although no interaction was
observed (b = –0.07, CI = [–0.19, 0.05], t(116) = –1.16, p = 0.25).
This can be directly observed when comparing baseline values,
as radial error in the –0 p condition was on average smaller than
in the 0 p condition (Fig. 5F, pink group).

Reward reduces execution error through increased feedback
correction and late noise reduction
How do reward and punishment lead to these improvements in
motor performance? In saccades, it has been suggested that
reward increases feedback control, allowing for more accurate
endpoint performance. To test for this possibility, we performed
the same time-time correlation analysis as described by Manohar
et al. (2019). Specifically, we assessed how much the set of posi-
tions at time t across all trials correlated with the set of positions
at any other time t6 n (e.g., t1 1 or t � 5Þ. If movements are
stereotyped across trials, this correlation will be high because the
early position will provide a large amount of information about
the later or earlier position. On the other hand, if trajectories are
variable over time within a trial, the correlation will decrease

because there will be no consistency in the evolution of position
over time. Importantly, the latter occurs with high online feed-
back because corrections are not stereotyped, but rather depend-
ent on the random error on a given trial (Manohar et al., 2019).
If the same mechanism is at play during reaching movements as
in saccades, a similar decrease in time-time correlations should
be observed.

All time points’ correlations were performed by comparing
position over trials by centiles, leading to 100 time points along
the trajectory (Fig. 6A–G). Across Experiments 1 and 2, we
observed an increase in time-time correlation in the late part of
movement both with reward and punishment (Fig. 6H–K),
although this did not reach significance in the 50 p-0 p condition
of the second experiment (Fig. 6J) and the significance cluster
size was relatively small in the 10 p-0 p condition (Fig. 6H). In
contrast, the early to middle part of movement showed a clear
decorrelation that was significant in three conditions but not in
the 50 p-0 p condition of the first experiment. Surprisingly, no
difference was observed when comparing baseline trials from
Experiment 2 (Fig. 6L), which is at odds with the behavioral
observations that radial error was reduced in the –0 p condition
compared with 0 p (Fig. 5F). Overall, although quantitative dif-
ferences are observed across cohorts, their underlying features
are qualitatively similar (with the exception of the baselines con-
trast; Fig. 6L), displaying a decrease in correlation during move-
ment followed by an increase in correlation at the end of
movement. This suggests that a common mechanism may take
place. To assess the global trend across cohorts, we pooled all

Figure 5. Reward and punishment have a similar effect on selection, but not on execution. For all bar plots, data were normalized to baseline performance (0 p or�0 p) for each individ-
ual. Bar height indicates group mean. Dots represent individual values. Error bars indicate bootstrapped 95% CIs of the mean. A, Selection accuracy. B, Mean reaction times for each participant.
C, Scatterplot of mean reaction time against selection accuracy. Values are normalized to 0 p trials. Colored lines indicate mean values for each condition. Solid gray lines indicate the origin (i.
e., 0 p performance, or �0 p, in the punishment condition). Data distributions are displayed on the sides, with transversal bars indicating the mean of the distribution. Circles, triangles and
rhombi represent 50 p,�50 p and (�0 p), and�0 p trials, respectively. D, Mean peak velocity. E, Movement times. F, For radial error, punishment did not protect against an increase in error,
while reward did. However, a difference can be observed between the baselines (blue bar). G, Angular error. H, Scatterplot showing execution speed (peak velocity) against execution accuracy
(radial error), similar to C.
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cohorts together a posteriori, and indeed
observed a weak early decorrelation, fol-
lowed by a strong increase in correlation
late in the movement (Fig. 6M).
Interestingly, this consistent biphasic
pattern across conditions and experi-
ments is the opposite to the one
observed in saccades (Manohar et al.,
2019). Therefore, this analysis would
suggest that reward/punishment causes
a decrease in feedback control during
the late part of reaching movements.
However, a reduction in feedback con-
trol should result in a decrease in accu-
racy, which was not observed in our
data. A more likely possibility is that
another mechanism is being imple-
mented that enables movements to be
performed with enhanced precision
under reward and punishment.

One possible candidate is muscle
cocontraction. By simultaneously con-
tracting agonist and antagonist muscles
around a given joint, the nervous system
is able to regulate the stiffness of that
joint. Although this is an extremely
energy inefficient mechanism, it has
been repeatedly shown that it is very
effective at improving arm stability in
the face of unstable environments, such
as force fields (Franklin et al., 2003).
Critically, it is also capable of dampen-
ing noise (Selen et al., 2009), which
arises with faster reaching movements,
and therefore enables more accurate
performance (Todorov, 2005). There-
fore, it is possible that increased arm
stiffness could, at least partially, underlie
the effects of reward and punishment
on motor performance.

Simulation of time-time correlation
maps with a simplified dynamical system
To assess whether the correlation maps we observed are in line
with this interpretation, we performed simulations using a simpli-
fied control system (Manohar et al., 2019) and evaluated how it
responded to hypothesized manipulations of the control system.
Let us represent the reach as a discretized dynamical system
(Todorov, 2004) as follows:

xt1 1 ¼ a � xt 1 b � ut 1Nðm;sÞ (14)

The state of the system at time t is represented as xt , the
motor command as ut , and the system is susceptible to a random
Gaussian process with mean m ¼ 0 and variance s ¼ 1. a
and b represent the environment dynamics and control para-
meter, respectively. For simplicity, we initially assume that
a ¼ 1; b ¼ 0, and that x0 ¼ 0. Therefore, any deviation from 0
is solely due to the noise term that contaminates the system at ev-
ery time step.

We performed 1000 simulations, each including 1000 time steps,
and show the time-time correlationmaps of the different controllers
under consideration. First, we assume that no feedback has taken

place (b ¼ 0, Eq. 14). The system is therefore only driven by the
noise term (Fig. 7A). The controller can reduce the amount of
noise (e.g., through an increase in stiffness) (Selen et al., 2009).
This can be represented as xt1 1 ¼ xt 1 g � N ðm;sÞ with
g ¼ 0:5. However, this would not alter the correlation map (Fig.
7B,C) as was previously shown (Manohar et al., 2019) because the
noise reduction occurs uniformly over time. Now, if a feedback
term is introduced with b ¼ �0:002 and ut ¼ xt , the system
includes a control term that will counter the noise and becomes
the following:

xt1 1 ¼ xt � 0:002 � xt 1Nðm;sÞ (15)

With such a corrective feedback term, the goal of the system
becomes to maintain the state at 0 for the duration of the simula-
tion. This is equivalent to assuming that x represents error over
time and the controller has perfect knowledge of the optimal move-
ment to be performed. Higher feedback control (b ¼ �0:003)
would reduce errors even further. Comparing this high feedback
model with the low feedback model (Eq. 15; Fig. 7D,E), we see that
the contrast (Fig. 7F) shows a reduction in time-time correlations
similar to what is observed in the late part of saccades (Manohar et
al., 2019) and in the early part of arm reaches in our dataset

Figure 6. Time-time correlation maps show that monetary reward and punishment have a biphasic effect on the reach
time course. A-C, Time-time correlation maps for all trial types (0, 10, and 50 p) in Experiment 1. Colors represent Fisher-trans-
formed Pearson correlation values. For each map, the bottom left and top right corners represent the start and the end of the
reaching movement, respectively. The color maps are nonlinear to enhance readability. D-G, Time-time correlation maps for all
trial types (0, 50, �0, �50 p) in Experiment 2. H, I, Comparison of Fisher-transformed correlation maps with the respective
baseline map (A) for Experiment 1. Solid black line indicates clusters of significance after clusterwise correction for multiple
comparisons. J-L, Similar comparisons for Experiment 2, with each condition’s respective baseline (D, F). M, Similar comparison
when pooling all contrasts, except the baselines contrast together.
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(Fig. 6H–K). Since our dataset displays a biphasic correlation map,
it is likely that two phenomena occur at different time points during
the reach. To simulate this, we altered the original model by includ-
ing a sigmoidal activation function SðtÞ that is inactive early on
(S0 ¼ 0) and becomes active (Stf ¼ 1) during the late part of the
reach (for details, see Model simulations). This leads to two possible
mechanisms, namely, a late increase in feedback or a late reduction
in noise as follows:

xt1 1 ¼ xt 1 ð�0:0021 b � St1 1Þ � xt 1Nðm;sÞ
with b ¼ �0:001 (16)

xt1 1 ¼ xt � 0:002 � xt 1 ð11 g � St1 1Þ � N ðm;sÞ
with g ¼ �0:5 (17)

The results show that a late increase in feedback causes decor-
relation at the end of movement (Eq. 16; Fig. 7G,H), which is the
opposite of what we observe in our results. However, similar to
our behavioral results, a late reduction in noise causes an
increase in the correlation values at the end of movement (Eq.
17; Fig. 7I,J). Therefore, our results (Fig. 6H–K) appear to be
qualitatively similar to a combined model in which reward and
punishment cause a global increase in feedback control and a
late reduction in noise (Eq. 18; Fig. 7K,L) as follows:

xt1 1 ¼ xt � 0:003 � xt 1 ð1� 0:5 � St1 1Þ � N ðm;sÞ (18)

The simulations displayed here incorrectly assume that feedback
can account for errors from one time step to the next, that is nearly
immediately (Bhushan and Shadmehr, 1999) and that the noise
term remains the same throughout the reach (Todorov, 2004;
Shadmehr and Krakauer, 2008). To explore whether these features
would alter our observations, we simulated two alternative sets of
models. A first set included a delay of 400 time steps in the feedback
response (Fig. 7M), and a second set included a bell-shaped noise
term similar to a reach with signal-dependent noise under mini-
mum jerk conditions (Fig. 7N). Both sets of simulation produced
results similar to those observed in the original set of models.

Quantitative model comparison
To formally test which candidate model best describes our em-
pirical observations, we fitted each of them to the experimental
datasets. Each of the five empirical conditions displayed in
Figure 6H–L was kept separate, each condition representing a
cohort, and their fit assessed separately. While individually fitted
models present several advantages over group-level analysis, it
has been argued that the most reliable approach to determine
the best-fit model is to assess its performance both on individ-
ual and group data and compare the outcomes (Cohen et al.,
2008; Lewandowsky and Farrell, 2011) and we will therefore
follow this approach. We included six candidate models in
our analysis: noise reduction (one free parameter g ; Fig. 7C),
increased feedback (one parameter b ; Fig. 7E), late feedback
(one parameter b ; Fig. 7H), late noise reduction (one parame-
ter g ; Fig. 7J), increased feedback with late noise reduction
(two parameters b and g ; Fig. 7L), and an additional model
with noise reduction and a late increase in feedback control
(two parameters b and g ).

Individual-level analysis resulted in the increased feedback
with late noise reduction model being selected by a strong major-
ity of participants for each cohort (Cohorts 1–5: x 2 = ½97:6; 76:8;
74:4; 116:8; 83:2�, all p, 0:001; Fig. 8A), confirming qualitative
predictions. The best-fit model for each participant was
defined as the model displaying the lowest Bayesian informa-
tion critetion (BIC) (Fig. 8B). This allowed us to account for
each model’s complexity because the BIC penalizes models
with more free parameters. Of note, the “baselines” cohort dis-
played the highest BIC for all models considered. However,
this should not be surprising, considering that this cohort is
the only one that showed no significant trend in its contrast
map (Fig. 6L). To confirm that the selected model is indeed
the most parsimonious choice, we compared the individual-
level outcome with a group-level outcome. Each candidate
model was fit to all individual correlation maps at once,
thereby allowing for each free parameter to take a single value
per cohort. This is equivalent to assuming that the parameters
are not random but rather fixed effects, allowing us to observe
the population-level trend with higher certainty, although at

Figure 7. Simulations of time-time correlation map behavior under different models of the reward- and punishment-based effects on motor execution. A, D, Time-time correlation maps of
both control models. Colors represent Fisher-transformed Pearson correlation values. For each map, the bottom left and top right corners represent the start and the end of the reaching move-
ment, respectively. B, E, G, I, K, Time-time correlation maps of plausible alternative models. C, F, H, J, L, Comparison of models with their respective baseline models. M, Same as in L, but
with feedback delay of 400 time steps. N, Same as in L, but with a bell-shaped noise term to introduce signal-dependent noise.
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the cost of ignoring its variability (Cohen et al., 2008;
Lewandowsky and Farrell, 2011). Again, for every cohort
except the baseline cohort, the model with lowest residuals
sum of squares (Fig. 8A) and lowest BIC (Fig. 8B) was the
increased feedback with late noise reduction model, although
the increased feedback model BIC was marginally lower for the
large-reward cohort (D BIC = 4) and therefore was a similarly
good fit. Finally, fitting all nonbaseline cohorts yielded the same
result. Comparing group-level and invidividual-level model
comparisons, we observe that the same model is consistently
selected across all experimental cohorts besides the baselines
cohort, corroborating the hypothesis that late noise reduction
occurs alongside a global increase in feedback control in the
presence of reward or punishment. As mentioned previously,
one way to increase noise resistance during a motor task is by
increasing joint stiffness, a possibility that we test in the follow-
ing experiment.

The effect of reward on endpoint stiffness at the end of the
reaching movement
Next, we experimentally tested whether the reduction in noise
observed in the late part of reward trials was associated with an
increase in stiffness. For simplicity, we focused on the reward
context only from this point. We recruited another set of partici-
pants (N= 30) to reach toward a single target 20 cm away from a
central starting position in 0 and 50 p conditions, and used a
well-established experimental approach to measure stiffness
(Fig. 9A) (Burdet et al., 2000; Selen et al., 2009) (for details, see
Materials and Methods).

Figure 9B–E shows the displacement profile of a single partic-
ipant. Stiffness estimates were assessed during the plateau phase,
marked by the gray area, in which the displacement was most
stable (Fig. 9B,C). While the y dimension exhibited more vari-
ability than the x dimension, this increased variability was within

Figure 8. Model comparisons for individual and group fits. A, Proportion of participants whose winning model was the one considered (light gray) against all other models (dark gray) for
every cohort. B, Individual and mean BIC values for each participant and each model. Lower BIC values indicate a more parsimonious model. Dots represent individual BICs. Black dot represents
the group mean. Error bars indicate the bootstrapped 95% CIs of the mean. C, Residual sum of squares for group-level fits. Darker colors represent lower values. D, Same as in C, but for BIC.
fb, Feedback; noise red., noise reduction.
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the same range for both the 0 and 50 p trials (Fig. 9F–I).
Additionally, while peak velocity was higher during the move-
ment in the reward condition, we can see in Figure 9G that veloc-
ity was within similar ranges across conditions at the start of the
displacement, underlining that stiffness estimates were unlikely
to be biased by velocity through the measurement technique
used. A paired t test of mean velocity at displacement onset for
each reward condition and across participants yielded a non-
significant result (x dimension: t(29) = –1.75, p = 0.09; y dimen-
sion: t(29) = 1.17, p = 0.25); idem for mean acceleration at
displacement onset (x dimension: t(29) = 0.39, p = 0.70; y dimen-
sion: t(29) = –0.11, p = 0.91).

To quantify the global amount of stiffness, we compared the
ellipse area across conditions (Fig. 10A–C). In line with our hy-
pothesis, the area substantially increased in rewarded trials com-
pared with non-rewarded trials (Fig. 10A,B). This effect of reward
was very consistent across both target positions (Fig. 10B),
although absolute stiffness was globally higher for the left target
(Fig. 10C). On the other hand, other ellipse characteristics, such as
shape and orientation (Fig. 10D,E), showed less sensitivity to
reward. However, since reward also increased average velocity
(Fig. 10F), in line with our previous results, perhaps this increase
in stiffness is a response to higher velocity rather than reward. To
avoid this confound, we fitted a mixed-effect linear model, allow-
ing for individual intercepts and target position intercept, where
variance in area could be explained both by reward and velocity:
area; 11reward1 peakvelocity1ð1jparticipantÞ1ð1j targetÞ.

As expected, reward, but not peak velocity, could explain the var-
iance in ellipse area (peak velocity: p ¼ 0:46; reward: p ¼ 0:003;
Table 1), confirming that the presence of reward results in
higher global stiffness at the end of the movement. In con-
trast, fitting a model with the same explanatory variables to
the Ky component of the stiffness matrices, which showed
the greatest sensitivity to reward compared with the other com-
ponents (Fig. 10G), revealed that not only reward (p, 0:001,
Bonferroni corrected) but also peak velocity (p=0.025, Bonferroni-
corrected; Table 2) explained the observed variance (model:
Ky; 11 reward1 peakvelocity1 ð1jparticipantÞ1 ð1jtargetÞ).
In comparison, no significant effects were found to relate to the Kx
component (reward: p ¼ 0:21, peak velocity: p ¼ 1, Bonferroni-
corrected; Kx; 11 reward1 peakvelocity1 ð1jparticipantÞ1
ð1jtargetÞ).

Because interactions with nested elements cannot be com-
pared directly using a mixed-effect linear model (Zuur et al.,
2010; Schielzeth and Nakagawa, 2013; Harrison et al., 2018), we
used a repeated-measures ANOVA to compare the interaction
between reward and target on stiffness. No interaction between
reward and target location was observed on area (F(1) = 0.069,
p = 0.79, partial h 2 , 0.001; Fig. 10A,C).

To better understand the relationship between end-reach
stiffness and mid-reach velocity independently of reward value,
we took advantage of the fact that participants tend to reach at
different speeds compared with one another. We fitted a linear
model Ky; peakvelocity and Kx; peakvelocity for each reward
value independently, to assess how stiffness changes as a function

Figure 9. Displacement profiles at the end of the reach for a single participant. A, Schematic of the displacement. Gray circle represents a target. Black circle represents the cursor. Dashed
line indicates the past trajectory. At the end of the movement, when velocity decreased behind a threshold of 0.03 m/s, a displacement occasionally occurred in 1 of 8 possible directions.
Colored arrow indicates each direction. B, Position over time during the displacement for a participant. Right and left columns indicate the x and y dimensions, respectively. C, Velocity profile.
D, Acceleration profile. E, Force profile. Two vertical black solid lines indicate the limit between the ramp-up and plateau, and plateau and ramp-down phase. Values for each variable were
taken as the average over time during the 140-200 ms window (gray area), when the displacement is clamped and most stable. F-I, Details of the displacement profiles for each direction inde-
pendently. 0 and 50 p trials are also represented in red and green, respectively, for comparison.
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of reaching speed across individuals when the reward value is
fixed. We found that peak velocity did not explain Ky or Kx
(p ¼ 0:30 and p = 0:30, respectively; Bonferonni-corrected) for
non-rewarded trials, while it explained Ky but not Kx for
rewarded trials (p ¼ 0:0147 and p = 0:37, respectively). This con-
firms that velocity only affects end-reach stiffness in the y direc-
tion. Interestingly, it also suggests that stiffness variance cannot
be explained by peak velocity at all at the lower speeds expressed
in 0 p conditions.

We conclude that endpoint stiffness is sensitive to both
reward and velocity. However, the velocity-driven increase in
stiffness is specific to the dimension that this velocity is
directed toward, whereas the reward-driven increase in stiff-
ness is nondirectional, at least in our task. This is likely
because our task does not distinguish direction of error (i.e.,
error in the y dimension is not more punishing than in the x
dimension) and so error must be reduced in all dimensions
(Selen et al., 2009).

Reward does not alter endpoint stiffness at the start of the
movement
Finally, the time-time correlation maps also suggest that the
increase in stiffness should only occur at the end of the reaching
movement, since the early and middle parts show an opposite
effect (decorrelation). Therefore, an increase in endpoint stiffness
should not be present immediately before the reach. Unlike the
previous experiment, reward and velocity in the subsequent
reach had no impact on stiffness, either by the matrix component
Ky (reward: p ¼ 0:19; peak velocity: p ¼ 0:45; Table 3), or by
area (reward: p ¼ 0:35; peak velocity: p ¼ 0:75; Table 4), corrob-
orating our interpretation of the correlation map (Fig. 11).

Discussion
Here, we demonstrated that reward simultaneously improves the
selection and execution components of a reaching movement.
Specifically, reward promoted the selection of the correct action

Figure 10. Reward increases stiffness at the end of movement. A, Individual (top) and mean (down) stiffness ellipses. Shaded areas around the ellipses represent bootstrapped 95% CIs.
Right and left ellipses represent individual ellipses for the right and left target, respectively. B, Ellipses area normalized to 0 p trials. Error bars indicate bootstrapped 95% CIs. C, Non-normalized
area values are also provided to illustrate the difference in absolute area as a function of target. L, Left target; R, right target. D, Ellipse shapes normalized to 0 p trials. Shapes are defined as
the ratio of short to long diameter of the ellipse. E, Ellipse orientation normalized to 0 p trials. Orientation is defined as the angle of the ellipse’s long diameter. F, Peak velocity normalized to
0 p trials. Peak velocity increased with reward. G, Stiffness matrix elements for 50 p trials normalized to the stiffness matrix for 0 p trials.

Table 1. Mixed-effect model for stiffness area at the vicinity of the target

Model:
area ; 11 velocity 1 reward 1 (1 | target) 1 (1 | participant)

No. of observations 60 AIC 1562.1
Fixed effects coefficients 3 BIC 1574.6
Random effects coefficients 32 Log-likelihood �775.03
Covariance parameters 3 Deviance 1550.1
Fixed effects coefficients (95% CIs):

Variable Estimate SE t statistic df p value Lower Upper
Intercept 1.58E1 05 1.09E1 05 1.4411 57 0.15501 �61456 3.77E1 05
Velocity 84461 83260 1.0144 57 0.31467 �82266 2.51E1 05
Reward 52737 15180 3.4741 57 0.000986 22340 83134

Random effects covariance parameters (95% CIs):
Variable Levels Type Estimate Lower Upper
Target 2 SD 89,384 28,576 279,590
Participant 30 SD 1.2749 96,198 1.69E1 05
Error 60 Residual SD 48,540 37,688 62518
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in the presence of distractors, while also improving execution
through increased speed and maintenance of accuracy, resulting
in a shift of each component’s speed-accuracy functions. In addi-
tion, punishment had a similar impact on action selection and
execution, although it enhanced execution performance across
all trials within a block; that is, its impact was independent from
the current trial value. Computational analysis revealed that the
effect of reward on execution involved a combination of
increased feedback control and noise reduction, which we then
showed was due to an increase in arm stiffness at the end of the

reaching movement. Overall, we confirm previous observations
that feedback control increases with reward, and propose a new
error-managing mechanism that the control system uses under
reward: regulation of arm stiffness.

Our results add to the literature arguing that reward increases
execution speed in reaching (Chen et al., 2018; Summerside et
al., 2018) and saccades (Takikawa et al., 2002; Manohar et al.,
2015), but they also deviate in some respects. First, in a serial
reaction time study, reward and punishment both reduced reac-
tion times in humans (Wachter et al., 2009), while reaction times

Table 2. Mixed-effect model for stiffness Ky component at the vicinity of the target

Model:
Ky ; 11 velocity 1 reward 1 (1 | target) 1 (1 | participant)

No. of observations 60 AIC 731.43
Fixed effects coefficients 3 BIC 743.99
Random effects coefficients 32 Log-likelihood �359.71
Covariance parameters 3 Deviance 719.43
Fixed effects coefficients (95% CIs):

Variable Estimate SE t statistic df p value Lower Upper
Intercept �178.28 80.817 �2.206 57 0.031432 �340.11 �16.447
Velocity �205.92 75.341 �2.7331 57 0.008341 �356.78 �55.049
Reward �66.893 16.903 �3.9575 57 0.000212 �100.74 �33.046

Random effects covariance parameters (95% CIs):
Variable Levels Type Estimate Lower Upper
Target 2 SD 8.6E-05 NA NA
Participant 30 SD 107.1 79.9 143.6
Error 60 Residual SD 58.18 45.16 74.94

Table 3. Mixed-effect model for stiffness Ky component at the start of the movement

Model:
area ; 11 velocity 1 reward 1 (1 | participant)

No. of observations 40 AIC 1000.4
Fixed effects coefficients 3 BIC 1008.9
Random effects coefficients 20 Log-likelihood �495.22
Covariance parameters 2 Deviance 990.45
Fixed effects coefficients (95% CIs):

Variable Estimate SE t statistic df p value Lower Upper
Intercept 176720 105090 1.6817 37 0.10106 �36206 389640
Velocity �34147 106840 �0.3196 37 0.75107 �250630 182330
Reward 11547 12086 0.95537 37 0.34559 �12942 36036

Random effects covariance parameters (95% CIs):
Variable Levels Type Estimate Lower Upper
Participant 20 SD 104260 75922 143160
Error NA Residual SD 22268 16332 30360

Table 4. Mixed-effect model for stiffness area at the start of the movement

Model:
Ky ; 11 velocity 1 reward 1 (1 | participant)

No. of observations 40 AIC 460.82
Fixed effects coefficients 3 BIC 469.27
Random effects coefficients 32 Log-likelihood �225.41
Covariance parameters 2 Deviance 450.82
Fixed effects coefficients (95% CIs):

Variable Estimate SE t statistic df p value Lower Upper
Intercept �421.01 134.26 �3.188 37 0.0029121 �700.04 �155.98
Velocity 184.74 138.08 1.3379 37 0.18909 �95.041 464.53
Reward �12.34 16.319 �0.75617 37 0.45434 �45.406 20.726

Random effects covariance parameters (95% CIs):
Variable Levels Type Estimate Lower Upper
Participant 30 SD 97.543 70.244 135.45
Error NA Residual SD 32.425 23.767 44.237
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are not significantly altered here. However, that study did not
include distractors, and serial reaction time tasks strongly
emphasize reaction times as a measure of learning. Regardless,
the authors showed a punishment-specific noncontingent effect
on performance, similar to our results. A possible interpretation
is that the motor system presents a “loss aversion” bias similar to
prospect theory (Kahneman and Tversky, 1979; Chen et al.,
2017, 2020) may have interesting practical implications, as one
could imagine training sessions with sparse punishment, enough
to signify a punishment context, that will enable faster learning
(Galea et al., 2015). Our task is also reminiscent of go-no-go or
antisaccade tasks, in which a prepotent response must be inhib-
ited (Guitart-Masip et al., 2014). Consequently, whether reward
impacts action selection through improvements of response
selection or executive inhibition remains an interesting area of
future investigation. Next, radial accuracy has been shown to
improve with reward in monkeys (Takikawa et al., 2002; Kojima
and Soetedjo, 2017) and humans (Manohar et al., 2015, 2019),
but these were studies of saccadic eye movements. One reaching
task showed improvements in angular accuracy (Summerside et
al., 2018), but their baseline (no-reward) accuracy requirements
were minimal, possibly allowing for larger improvements com-
pared with our task, and potentially explaining why we did not
observe similar improvements. Finally, while other studies have
shown that speed-accuracy functions shift with practice (Reis et
al., 2009; Telgen et al., 2014), it is noteworthy that reward has a
capacity to do so in what seems a nearly instantaneous time-
scale, that is, from one trial to the next, as opposed to hours or
even days in skill learning (Telgen et al., 2014).

While it is well established that stiffness has a beneficial effect
on motor performance, our work provides the first evidence that
this mechanism is used in a rewarding context. Therefore, the
current results highlight the need to develop a greater under-
standing of how the CNS implements stiffness in an intelligent
and task-specific manner to maximize reward. Stiffness itself
could be regulated through a change in cocontraction of antago-
nist muscles, which is a simple but costly method to increase

stiffness and enhance performance against noise (Gribble et al.,
2003; Selen et al., 2009; Ueyama et al., 2011). The presence of
reward may make such cost “worthy” of the associated metabolic
expense (Todorov, 2004; Ueyama and Miyashita, 2014). Another
possibility is that the stretch reflex increases, leading to stronger
counter-acting forces produced against the perturbation. For
instance, the stretch reflex is sensitive to cognitive factors, such
as standing next to a void (Horslen et al., 2018). Nevertheless,
the contribution of stiffness in reward-based performance has
implications for current lines of research on clinical rehabilita-
tion that focus on improving rehabilitation procedures using
reward (Goodman et al., 2014; Quattrocchi et al., 2017). While
several studies report promising improvements, excessive stiff-
ness may expose vulnerable clinical populations to increased risk
of fatigue and even injury. Therefore, careful monitoring may be
required to avoid this possibility.

Previous work on saccades shows that reward had no effect
on stiffness (Manohar et al., 2019), meaning that the limb con-
troller uses an additional error-managing mechanism. Why do
saccadic and limb control use dissociable control approaches?
One possibility may be the difference in motor command profile.
Saccadic control displays a remarkably stereotyped temporal pat-
tern of activity, in which the saccade is initiated by a transient
burst of action potentials from the motoneurons innervating the
extraocular muscles (Robinson, 1964; Joshua and Lisberger,
2015). Critically, this burst reaches its maximum output rate
nearly instantaneously in an all-or-nothing fashion (Robinson,
1964; Joshua and Lisberger, 2015), with only marginal variation
based on reward and saccade amplitude (Xu-Wilson et al., 2009;
Reppert et al., 2015; Manohar et al., 2019). In comparison, motor
commands triggering reaching movements present a great diver-
sity of temporal profiles depending on task requirements, and of-
ten do not reach maximum stimulation level. This difference
may impact the temporal pattern of motor unit recruitment
because, according to the size principle (Llewellyn et al., 2010),
low-force producing, high-sensitivity motor units are always
recruited first during a movement. However, those motor units

Figure 11. Reward does not alter stiffness at the start of movement. A, Individual (top) and mean (down) stiffness ellipses. Shaded areas around the ellipses represent bootstrapped 95%
CIs. Right and left ellipses represent individual ellipses for the right and left target, respectively. B, Ellipses area normalized to 0 p trials. Error bars indicate bootstrapped 95% CIs. C, Stiffness
matrix elements for 50 p trials normalized to the stiffness matrix for 0 p trials. D, Peak velocity normalized to 0 p trials. E, Ellipse shapes normalized to 0 p trials. Shapes are defined as the ratio
of short to long diameter of the ellipse. F, Ellipse orientation normalized to 0 p trials. Orientation is defined as the angle of the ellipses’ long diameter.
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are also noisier due to their higher sensitivity (Dideriksen et al.,
2012). Since saccades always rely on an all-or-nothing input pat-
tern, all motor units are quickly recruited, including high-force,
low-sensitivity motor neurons that are normally recruited last.
This would drastically reduce the production of execution noise,
making stiffness unnecessary (Dideriksen et al., 2012). In line
with this argument, previous work has shown that execution
noise has a minimal contribution to overall error in eye move-
ments (Van Gisbergen et al., 1981) compared with internally
generated (planning) noise (Manohar et al., 2019). Interestingly,
the opposite has been reported for reaching, suggesting that exe-
cution rather than planning noise is dominant in reaching errors
(van Beers et al., 2004). These dissociable activation patterns of
motor commands could potentially explain the differences in
error-managing mechanisms between saccadic control and
reaching. Finally, eye muscles are remarkably more innervated
than peripheral skeletal muscles (Porter et al., 1995; Floeter,
2010), leading to a greater quantity of motor units, which scales
negatively with noise at the effector stage (Hamilton et al., 2004),
which possibly makes stiffness regulation unnecessary.

It is less clear what kind of feedback control is involved in
reward-driven improvements. Feedback control encompasses
several error-correcting processes that exhibit varying delays.
This includes the spinal stretch reflex (;25 ms delay) (Weiler et
al., 2019), transcortical feedback (;50 ms) (Pruszynski et al.,
2011), and visual feedback (;170 ms) (Carroll et al., 2019).
While the spinal stretch reflex is extremely fast, it is difficult to
assume an effect of reward or motivation occurring at the spinal
level. On the other hand, transcortical feedback includes primary
motor cortex processing (Pruszynski et al., 2011), a structure that
shows sensitivity to reward (Thabit et al., 2011; Bundt et al.,
2016; Galaro et al., 2019). Consequently, an exciting possibility
for future research is that transcortical feedback gain is directly
enhanced by the presence of reward. Indirect evidence suggests
so, as feedback control on similar timescales is sensitive to ur-
gency in reaching (Crevecoeur et al., 2013). This suggests that
transcortical feedback gains can also be precomputed beforehand
to meet task demands. Finally, recent work shows that reward
can indeed modulate visual feedback control in reaching (Carroll
et al., 2019). Therefore, it is possible that both transcortical and
visual feedback gains increase in the presence of reward,
although the former remains to be proved empirically.
Additionally, more sophisticated models incorporating several
distinct feedback loops may provide further insight on this mat-
ter (e.g., Mitrovic et al., 2010).

In saccades, the feedback controller that underlies reward-
driven improvements is localized in the cerebellum and adjusts
the end part of a saccade trajectory based on errors in the for-
ward model prediction (Van Gisbergen et al., 1981; Chen-Harris
et al., 2008; Frens and Donchin, 2009; Manohar et al., 2019).
Interestingly, evidence in humans shows that cerebellar forward
models do contribute to feedback control in reaching (Miall et
al., 2007), and more recently, optogenetics manipulation in mice
confirmed its involvement in enhancing reaching endpoint pre-
cision (Becker and Person, 2019). Therefore, reward may also
enhance the cerebellar feedback loop, although this would only
contribute to reducing planning, rather than execution noise
(Manohar et al., 2019), and at the end of movement, in contra-
diction with what we observe here.

In this study, we show that reward can improve the selection
and execution components of a reaching movement simultane-
ously. While we confirm previous suggestions that enhanced

feedback control contributes to the improvement in execution,
we introduce a novel mechanism by showing that global end-
point stiffness is regulated by the potential reward of a given trial.
Therefore, reward drives multiple error-reduction mechanisms,
which enable individuals to invigorate motor performance with-
out compromising accuracy.
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