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Synergizing Domain
Expertise With
Self-Awareness in Software
Systems: A Patternized
Architecture Guideline

BY TAO CHEN , Member IEEE, RAMI BAHSOON , AND XIN YAO, Fellow IEEE

ABSTRACT | To promote engineering self-aware and

self-adaptive software systems in a reusable manner,

architectural patterns and the related methodology provide

an unified solution to handle the recurring problems in the

engineering process. However, in existing patterns and

methods, domain knowledge and engineers’ expertise that

is built over time are not explicitly linked to the self-aware

processes. This link is important, as knowledge is a valuable

asset for the related problems and its absence would cause

unnecessary overhead, possibly misleading results, and

unwise waste of the tremendous benefits that could have

been brought by the domain expertise. This article highlights

the importance of synergizing domain expertise and the

self-awareness to enable better self-adaptation in software

systems, relying on well-defined expertise representation,

algorithms, and techniques. In particular, we present a holistic
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framework of notions, enriched patterns and methodology,

dubbed DBASES, that offers a principled guideline for the

engineers to perform difficulty and benefit analysis on possible

synergies, in an attempt to keep “engineers-in-the-loop.”

Through three tutorial case studies, we demonstrate how

DBASES can be applied in different domains, within which a

carefully selected set of candidates with different synergies

can be used for quantitative investigation, providing more

informed decisions of the design choices.

KEYWORDS | Architectural patterns; human-in-the-loop;

self-adaptive software systems; self-aware software systems.

I. I N T R O D U C T I O N
Engineering software systems has become increasingly
complex and labor-intensive due to the continuous
changes in requirements, the underlying environments,
and the relevant data. Such complexity is prevalent
when engineering self-aware and self-adaptive software
systems—a category of systems that is capable of obtain-
ing and maintaining knowledge on themselves and the
environment, reasoning about this knowledge, and even-
tually adapting their operations to better cope with the
changes. In this respect, engineers need some sets of
high-level guideline that provides a clear overview of the
software system to be built, based on which they are able
to make better-informed decisions during the engineer-
ing process. Such a high-level guideline for engineering
software systems can be represented in the form of archi-
tectural patterns and their methodologies. In essence,
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architectural patterns are particular solutions for com-
mon and recurring domain-specific problems, culminating
best practices, and described at high level [1]. A variety
of architectural patterns and methodologies exist, each
of which aims at a different context, for example, dis-
tributed systems [2], [3], service-oriented systems [4],
[5], self-adaptive systems [6], [7], and more recently,
self-aware and self-adaptive software systems [8]–[12]
(also known as self-awareness architectural patterns).

Unlike the other patterns, self-awareness architectural
patterns particularly document the common primitives and
different capabilities of self-awareness for obtaining and
maintaining knowledge about different aspects, such as
time, goals, or interactions between different nodes of
software systems. Although these patterns are abstract,
they can be instantiated to meet particular needs for engi-
neering a self-aware and self-adaptive software system,
thereby providing more concrete guideline on how to
align the capabilities of self-awareness with the require-
ments. Over the last few years, those patterns and the
related methodology have proved to be promising when
engineering self-aware and self-adaptive software systems,
as evident by the fact that they have been referenced and
used in various autonomic domains, such as cloud resource
and configuration management [13]–[15], multiproces-
sors systems scheduling [16], sensor network control [17],
and multicamera coordination [18].

Traditionally, engineering self-awareness in software
systems have been primarily supported by various arti-
ficial intelligence (AI) algorithms, which serve as cheap
and “black boxes” that can be directly applied with lit-
tle specialization [19], [20]. However, as reviewed by
Menzies [21], an emerging question in the application of
AI algorithms to various engineering problems is the valid-
ity of the assumptions that underlie the creation of those
algorithms. Therefore, the practice of applying standard
AI algorithms as “black boxes,” where researchers do not
tinker with internal design choices of these algorithms with
respect to their expertise on the problem is not ideal [21].
Indeed, self-aware and self-adaptive software systems have
never been created by nonexperts. This means that soft-
ware and systems engineers often accumulate domain
expertise that is built over time. Such expertise, if captured
and exploited, would provide an important added value to
consolidate the self-awareness capability of the software
system. Utilizing domain expertise to guide the processes
of underlying AI algorithms, and thus the self-awareness,
can bear additional benefit. In this way, the software
system would be more controllable, which helps to mon-
itor and avoid some abnormalities in behaviors, providing
a foundation for keeping “engineers-in-the-loop.” There
exist many research studies [22]–[26] that show superior
results can be obtained by specializing AI algorithm to the
particulars of engineering problem with domain expertise.

With this in mind, despite the successful applications
of the existing architectural patterns and methodology for
engineering self-awareness, the consideration of engineers’

expertise, particularly on how they can be “synergized”
into the self-awareness capabilities, is weak, ad hoc and
left implicit. By the term synergy, we refer to the process
of incorporating domain expertise, which involves the
knowledge of the problem that is not naturally initiative
(on contrary to, e.g., the range and type of parameters,
various equality, and inequality constraints) but can be
extracted following engineering principles, into the under-
lying algorithms/techniques that realize self-awareness.
Indeed, the lack of a holistic framework of patterns and
methodology would inevitably create a barrier for the
domain information/knowledge to be maintained, reused,
and exploited to steer the design process, especially given
a large variety of existing expertise representations and
AI algorithms. This absence can eventually result in some
strong domain expertise being overlooked, causing unnec-
essary overhead and possibly misleading results [27], [28].

To overcome such a gap, in this article, we formalize
a holistic framework that provides a principled guideline
to perform Difficulty and Benefit Analysis for Synergizing
domain Expertise and Self-awareness (hence dubbed as
DBASES). Our aim is to elaborate and showcase how
DBASES can support the “synergy” and reveal its impor-
tance, taking into account the self-awareness in software
systems based on well-defined and widely used expertise
representations, algorithms, and techniques. It is indeed
an ambitious plan, therefore, we intend to be introductory
rather than comprehensive. However, we hope that this
article can spark a dialogue about the diverse and rep-
resentative research on combining domain expertise with
self-awareness, and that some level of consensus on the
design of such synergy will be achieved.

Specifically, our key contributions of the DBASES frame-
work in this article are as follows.

1) We introduce general notions that captures the
domain expertise of the engineers and their syner-
gies with the concept of self-awareness, providing
intuitive, extracted, and readily available information
to enrich the self-awareness architectural patterns.
Specifically, we contribute to the following.

a) We present the notions of expertise representation
with concrete examples, based on which we form a
classification and the related rules that help capture
the expertise knowledge.

b) Drawing on the expertise representation, we codify
a taxonomy that describes their nature in terms of
structurability and tangibility.

c) We then discuss their possible synergies with differ-
ent capabilities of self-awareness, and present rules
that classify different levels of synergies and the rel-
ative difficulty,1 with respect to the structurability
and tangibility of expertise representation.

2) We illustrate, by means of examples, how the pro-
posed notions can be used to enrich the well-defined

1Difficulty is related to complexity, which can impact both the
implementation and maintenance of a software system.
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self-awareness architectural patterns from the litera-
ture [8], and in what ways they can be instantiated to
cope with different styles of synergies.

3) Supporting by the proposed notions and the enriched
patterns, we present a practical, intuitive, and step-
by-step methodology that assists the engineers to
analyze the difficulty and benefit for alternative syner-
gies of domain expertise with self-awareness, reveal-
ing their importance. This would help the engineers
to elicit the most preferred candidate(s) for further
investigation, while ruling out some of the options
that are clearly undesired, thus saving great effort in
the development.

4) We demonstrate three recent tutorial case stud-
ies [23], [24], [26], which relied on DBASES, that
seek to build self-aware and self-adaptive software
systems. Through quantitative results, we show how
DBASES can be applied to the engineering process for
analyzing the difficulty and benefit of different syn-
ergy candidates, leading to a set of more promising
ones for further investigation.

The remaining article is organized as follows. We moti-
vate the needs and discuss the related work in Section II,
followed by a brief overview of the capabilities of
self-awareness and the existing self-awareness architec-
tural patterns in Sections III and IV. After that, in Section V,
we present the notions and theoretical foundation that
underpins DBASES. In Section VI, we illustrate how the
existing self-awareness patterns can be enriched with
DBASES. In Section VII, we present, as part of DBASES,
a practical step-by-step methodology that assists the engi-
neers in selecting the possible ways of synergies. Three
tutorial case studies from different domains are drawn in
Section VIII to demonstrate how DBASES can be practi-
cally applied. Finally, Section X concludes this article with
discussion on future work.

II. P R E L I M I N A R I E S
A. Problem Nature and Domain Expertise

As mentioned, self-aware and self-adaptive software
systems have been increasingly relying on AI algorithms
and techniques. Indeed, given the significant growth of the
AI community, it is not uncommon to see that successful
engineering of self-awareness is underpinned by several AI
algorithms [23], [26], [29]–[36], which conducts learn-
ing, reasoning, and problem solving.

In general, the application of standard AI algorithms
and techniques may need to be combined with suffi-
cient domain information, and thus they can better serve
the purpose. Yet, it is important to note that domain
information can be distinguished between the problem
nature and the domain expertise. In fact, the former
refers to the nature information of the problem, which
is the basic elements required to appropriately apply the
algorithm/techniques (e.g., the range of parameters) [27],
[28]; and the latter is the engineers’ domain expertise,

which is specifically related to the engineering problem to
be addressed and is often deemed optional, but desirable.
In essence, what make the additional engineers’ domain
expertise differ from the basic problem nature is as follows.

1) Problem nature refers to commonly known properties
and characteristics of the problem domain, such that
the AI algorithms have to comply with in order to be
used appropriately. This may, for example, include the
range of parameters, sparsity of the values, various
equality, and inequality constraints. Directly applying
standard AI algorithms is often considered as exploit-
ing only the problem’s nature due primarily to the
generality of existing AI algorithms [21].

2) In contrast, the domain expertise is represented as
or produced by typical software and system engi-
neering methods, practices, and models. Most com-
monly, the knowledge of domain expertise is not
naturally intuitive form the problem context but can
be extracted through engineering practices, skills, and
tools, for example, design models, formatted docu-
ments, or even concepts.

B. Lessons From Applying Standard AI
Algorithms in Engineering

In the software and system engineering community,
there is an increasing recognition on the limitation of
applying standard AI algorithms to various engineering
problems. A very recent study, conducted by Agrawal and
Menzies [32], on a wide range of software engineering
problems has revealed the following fact.

The conclusion delivers a very clear message that the
standard AI algorithms combined with the necessary infor-
mation of problem nature, including those that realize
self-awareness [27], [28], cannot fully meet the complex
requirements of engineering software systems. It, there-
fore, calls for better specialization of these AI algorithms
based on the domain expertise of engineers.

From the literature, it is not uncommon to see that
greater benefits can be obtained by synergizing domain
expertise. For example, there is a thread of research that
seeks to synergize the feature model, which represents
domain expertise on requirement analysis, with evolution-
ary search to reason about behaviors of the self-aware
and self-adaptive software systems [37]. This is motivated
by the fact that domain expertise on the requirement

PROCEEDINGS OF THE IEEE 3
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cannot be easily captured by simply applying the AI algo-
rithms. Another example of “software/system engineering
needs different AI algorithms” comes from the work of
Hindle et al. [38], in which they stated that, unlike the
common areas where AI was most originally applied,
domain expertise in software engineering may suggest
some important terms in the code which is used exponen-
tially less frequent. This can provide useful information
when model the software system with AI, enabling more
accurate self-awareness of the faults.

The domain expertise of engineers can often serve as
useful information to engineer self-aware and self-adaptive
software systems, thus they should not be simply ignored.
To this end, a better synergy between domain expertise and
AI algorithms is required. Although in this case the AI algo-
rithms may be made less general and pose extra difficulty,
they are expected to work better under the given problem
where the domain expertise lies, and more importantly,
rendering the self-awareness more controllable. It is in
fact part of our contributions in DBASES to provide better
analysis on the tradeoff between difficulty and benefit
when designing different ways of synergy.

C. Problems

As summarized in the recent surveys [27], [28], major-
ity of the work incorporates merely the necessary informa-
tion of the problem nature with self-awareness in an ad hoc
manner, which is the direct application of the standard AI
algorithms. This is because the problem nature can be eas-
ily obtained and the existing AI algorithms are designed to
be as general as possible, such that they will cope with the
basic properties of different domains. However, it is clearly
difficult to perform the same for synergizing domain exper-
tise without omission. The key issue is that there is a lack
of general guideline that assists the engineers when engi-
neering self-awareness into software systems with explicit
consideration of the domain expertise. For example, it is
not uncommon that engineers would have certain domain
expertise represented as models, documentations, or even
artifacts of software systems, but how they may be related
to self-awareness is unknown. Below, we illustrate some
common but difficult decisions and problems to deal with
during the synergy process, together with what contribu-
tions in DBASES can help on each.

1) Which available domain expertise can be synergized
into which aspect of self-awareness?

a) Answering such a question would require under-
standing on both the available domain expertise
and which aspect of the self-awareness is required,
for example, time, goal, or interaction [39]. Clearly,
there will be constraints that prevent certain syn-
ergies, for example, a feature model cannot usu-
ally help in terms of interaction, as its notation
does not embed any knowledge of it. In essence,
the feasible synergies form the possible candidates
for the engineers to make design decision. Yet,

it is challenging to build the set of candidates for
synergy in the absence of systematic guideline,
especially when multiple forms of domain expertise
and aspects of self-awareness exist.

2) To what extent can a synergy be completed and what
are the difficulties?

a) Synergies can often be done in different levels,
for example, whether the domain expertise
can be directly incorporated into the algo-
rithm/techniques or certain internal components
need to be specialized [8], [11]. This is a crucial
design decision to make and it should not be
conducted without knowing the relative difficulty,
which directly related to the cost of the engineering
and maintenance process. However, without guide-
line, it would be difficult for the engineers to obtain
a full picture of the possible extent of synergy and
their difficulties.

3) How to make decision taking into consideration the
difficulty of synergy and the expected benefit?

a) The different candidates of alternative design
options would inevitably lead to a decision
space [40], [41]. As a result, it would be chal-
lenging to enable well-informed decision making
without the support of quantifiable and intuitive
metrics. In particular, given the potentially large
number of alternatives, it would be nicer to intu-
itively understand which can be ruled out and what
needs to be investigated further.

As a result, the lack of general guideline on
how to exploit engineers’ expertise when engineering
self-awareness into software systems would hinder the
benefits of domain expertise synergy, causing barrier to
create more advanced and controllable self-awareness
driven by the expertise of engineers.

This is what we seek to achieve in this article with
DBASES for engineering self-aware and self-adaptive soft-
ware systems, in which we conduct the first attempt
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to propose a general, yet holistic framework to assist
the engineers in making decisions of synergy, or at
least a more concise set of options that are subject to
further investigation.

D. Related Work on Architectural Pattern and
Methods

Software and system architecture, as the highest level of
abstraction for all software systems, serves as the frame-
work for satisfying requirements; as the managerial basis
for cost estimation and process management; and as an
effective basis for reuse and dependence analysis [42].
From the community of software and systems engineering,
architectural patterns and the related methods seek to
abstract common features of architecture instances in a
specific domain, which is known to serve as a useful guide
to the engineers when designing software systems [42].
Among others, cost–benefit analysis method (CBAM) [41]
and architecture tradeoff analysis method (ATAM) [40] are
two most widely used methodologies that help to reason
about different design options on architectures and their
patterns. However, they were designed to deal with general
software system and thus are irrelevant to the concept of
self-awareness.

Over the past two decades of research for architecting
self-aware and self-adaptive software systems, several
architecture patterns and their methodologies have
emerged. Among others, feedback loop-based architecture
pattern [43], whether as single loop or multiple loops,
have been the most widely adopted approach. Such
pattern merely assumes that the software system can be
monitored, and that it can be influenced after certain
process is completed based upon the collected data. The
reason behind its popularity is due to its simplicity and
flexibility, such that there is no constraint on how and what
should be architected in the patterns. Yet, as the software
system becomes more complex, such simplicities turna
barrier, as the software and systems engineers require
more specific guideline when designing the architecture
which has been missing from the feedback loop-based
architecture pattern.

In light of these, the MAPE-K architecture pat-
tern [6] and its design guidelines are proposed to
provide more specific codification about what should
be achieved within a feedback loop when engineering
self-aware and self-adaptive software systems. In MAPE-K,
the (K)nowledge component is shared by the (M)onitor,
(A)nalyser, (P)lanner, and (E)xecutor components, which
provides primitives for expressing domain knowledge in K.
This knowledge is used to reason about run-time adapta-
tion. Two other patternized methods, which are subclasses
of MAPE-K but generic enough to be classified as rep-
resentative styles with distinct qualities. The first one is
proposed by Oreizy et al. [44] in which the pattern consists
of an adaptation layer and an evolution layer. Particularly,
the adaptation layer is responsible for monitoring and
adapting, whereas the evolution layer caters to ensuring

that changes in the running system are performed in such
a way that the operation of the system is not disrupted.
The second patternized method is Rainbow [7], which is
explicitly designed for engineering rule-based adaptation
in software systems. Since the above patterns assume a
centralized scenario where there is only one instance of
software system to be adapted, the MAPE-K is then further
extended by Weyns et al. [45] into a decentralized version,
such that they are specialized into contexts with differ-
ent degrees of decentralization that the software system
encounters, with some guidelines.

Inspired by Gat’s three-layer architecture in the robotics
domain [46], Kramer and Magee [47] presented a con-
ceptual three layered architecture patterns and methods for
self-adaptive software system. The three layers, namely
goal layer, change layer, and component control layer, work
in a hierarchical way such that the goal layer provides
change plans, which are then further translated into change
actions by the change layer, and eventually those actions
are run by the component control layer. The opposite of the
direction would occur when data need to be collected.

Alternative to the MAPE-K and the three-layer pat-
tern, the SElf-awarE computing framework (SEEC) [48]
is another set of architectural patterns and methods that
claim self-aware capabilities. In a nutshell, SEEC relies on
the basic (O)bserve-(D)ecide-(A)ct (ODA) loop [48]. Here,
the O and A components in ODA are equivalent to the M
and E components in MAPE-K, respectively, while analysis
and planning tasks are subsumed in the Decide compo-
nent. Another more recent effort, namely the model-based
learning, reasoning, and acting loop (LRA-M loop) [9],
aims to capture the knowledge of self-awareness in terms
of universal models, which can then be exploited by the
reasoning.

However, all the above patterns and methods have
focused on providing guideline about how to exploit the
obtained knowledge to inform adaptation, but limited
in modeling the knowledge at a coarse grain, without
explicit distinction between knowledge concerns for dif-
ferent levels, for example, at goals, time, or interaction.
In 2014, we proposed a set of self-awareness patterns and
methodolgoy [8], [10]–[12] derived from the general con-
cept of self-awareness [49] for engineering self-aware and
self-adaptive software systems. Unlike others, we explicitly
encode the pattern based on the fine-grained capability of
self-awareness with respect to stimulus, goal, time, inter-
action, and meta-self, considering their distinctions and
interplays (we elaborate the patterns in Section III). Those
patterns have been followed by a considerable amount of
work from other research groups and have attracted a wide
range of attention. However, our experience with industrial
partners when using those patterns and methods (together
with the other state of the art) is that they fail to capture
how domain expertise, and more importantly how they
can be combined with the AI algorithms that underpin
self-awareness, which has now become a major barrier for
them to follow.
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III. C A P A B I L I T I E S O F S E L F -
A W A R E N E S S I N S O F T W A R E S Y S T E M S
Self-awareness is certainly not new in the other disciplines,
but it is challenging to model such a concept in the context
of software systems. In this article, we use the term node to
refer to a software system that can either work alone, or as
one individual in a networked group of different systems.
Drawing on Neisser’s notions on the self-awareness from
the psychology domain, different capabilities of compu-
tational self-awareness have been codified [49], which
are what the DBASES framework based upon. As illus-
trated below, each self-aware capability captures distinct
knowledge that a software system would need in order
to perform self-adaptation and self-expression at certain
degree.

1) Stimulus Awareness: A software system is stimulus-
aware, if it has knowledge of stimuli. The software
system is not able to distinguish between the sources
of stimuli. It does not have knowledge of past/future
stimuli but enables the ability in a software system
to respond to events. It is a prerequisite for all other
capabilities of self-awareness.

2) Time Awareness: A software system is time-aware if it
has knowledge of historical and/or likely future phe-
nomena. Implementing time-awareness may involve
the software system possessing an explicit mem-
ory, capabilities of time-series modeling and/or
anticipation.

3) Interaction Awareness: A software system is
interaction-aware if it has knowledge that stimuli and
its own actions form part of interactions with other
systems and the environment. It has knowledge via
feedback loops that its actions can provoke, generate,
or cause specific reactions from the environment.
It enables a software system to distinguish between
other nodes of software systems and environments.
Simple interaction-awareness may just enable
a software system to reason about individual
interactions. More advanced interaction-awareness
may involve the possessing knowledge of social
structures such as communities or network topology.
In this article, from the pattern’s perspective,
we strictly treat interaction awareness with respect
to the different nodes of software systems and/or
the environment, and thus the internal information
about interactions between different elements
within a single software system is not considered as
knowledge of interaction.

4) Goal Awareness: A software system is goal-aware if
it has knowledge of current goals, objectives, pref-
erences, and constraints. It is important to note that
there is a difference between a goal existing implicitly
in the design of a software system, and it having
knowledge of that goal in such a way that it can
reason about it. The former does not describe goal-
awareness; the latter does. Example implementations

of such knowledge in a software system include
state-based goals (i.e., knowing what is a goal state
and what is not) and utility-based goals (i.e., having
a utility or objective function).

5) Meta-Self-Awareness: A software system is meta-self-
aware if it has knowledge of its own capability(ies) of
awareness and the degree of complexity with which
the capabilities(ies) are exercised. Such an awareness
permits a software system to reason about the ben-
efits and costs of maintaining a certain capability of
awareness (and degree of complexity with which it
exercises this capability).

IV. S E L F-A W A R E N E S S
A R C H I T E C T U R A L P AT T E R N S
Although the notions of self-awareness can be well concep-
tualized with respect to a software system, the presence
of various requirements would still need more concrete
guideline on how those concepts can be modeled within
the needs. This urges a formal documentation of the
self-awareness as architectural patterns when engineering
self-aware and self-adaptive software systems. An archi-
tectural pattern refers to an architectural problem-solution
pair for a given domain, which, in the context of self-aware
software systems, means that they are linked to the
capabilities of self-awareness. Our previously proposed
self-awareness architectural patterns [8], [10]–[12] have
been showing great potential in engineering self-aware
and self-adaptive software systems.

In such context, different capabilities of computational
self-awareness enable capability of the systems to obtain
and react upon certain knowledge, which could be either
about its own states or about the environment. The pat-
terns provide a formal way to ensure that only relevant
capabilities of self-awareness are included and their inclu-
sion justified by identified benefits. There is no need for
a system to become unnecessarily complex, learning, and
maintaining self-awareness capabilities which do nothing
to advance the outcomes for that system, generating only
overhead. Each of the self-awareness architectural patterns
is decentralized by design. That is, structurally they resem-
ble a peer-to-peer network of interconnecting self-aware
nodes, varying only in the number of the capabilities and
the type of interconnection between them. Even with the
decentralized expression, a centralized software system
can be easily modeled by considering only one node. In this
section, we provide an overview of these well-defined
patterns with selected examples.

A. Notations

In general, an architecture of software system consists of
two fundamental elements, the component and connector,
which are described as follows [8].

1) Component: A smaller and more manageable part of
a software system, which is often divided based on
requirements, functionality, and purpose.
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Fig. 1. Basic notation for self-awareness architectural patterns.

2) Connector: A bridge that represents the possible
interaction between components and the multiplicity
involved.

The uniqueness of the self-awareness architectural pat-
terns is that, the component is replaced by the notion
of capability of self-awareness, sensoring, and actuating,
in which case they are not necessarily to be a one-to-
one mapping. In other words, depending on the context,
two or more capabilities may be combined and realized in
one component; or one capability can be implemented in
separate components. The basic notation used to describe
the patterns is depicted in Fig. 1.

In particular, the connectors are used to express the
physical and logical interactions, which have different
notations.

1) Physical Connector: This means there is a direct inter-
action between the components, and each compo-
nent is required to directly interact with the others.
Notably, the physical connectors are further divided
into two types. The first type, expressed as a red
arrow, particularly refers to the interactions for dif-
ferent capabilities of the self-awareness (e.g., goal
and time-awareness); in contrast, the second type,
denoted by black solid arrows, represents the inter-
actions for the self-awareness of the same capability
(e.g., the interaction-awareness from different inter-
acting software systems).

2) Logical Connector: This does not require direct
interaction, but rather the data or control in the
interaction is sent/received through the sensors and
actuators, which have the physical connector. For
instance, self-expression and self-adaptation might be
logically required to reach consensus among different
nodes, but such an interaction is physically realized
through sensors and actuators.

Note that the sensors and actuators can be either exter-
nal or internal, where the former refers to the case that
information/control is aimed for external nodes; whereas
the latter means such data/control exchange happen only
internally at the current node. The benefit of additionally
introducing the logical connector is that, for example,
when designing a capability of self-awareness where the

communication protocol is not needed, the pattern can still
illustrate that the software system needs to interact with
the others. Thus, this provides the engineers with a more
precise view on the architecture.

The multiplicity operators are used to represent how
many concrete components (which may realize one or
more capabilities of self-awareness), including those from
different nodes of software systems, are involved in the
interaction. In the self-awareness architectural patterns,
there are three types of multiplicity operators (denoted as
Mul_Op).

1) + expresses that the number of components that real-
ize the same capability in the interaction is restricted
to at least one.

2) 1 indicates that one and only one component that
realizes the same capability is permitted.

3) ∗ indicates that zero, one, or many components that
realize the capability specified is permitted in the
interaction.

B. Patterns

Drawing on the feasible combinations of the self-aware
capabilities, we have previously documented eight
well-defined patterns for engineering self-aware software
systems [8]. In a nutshell, these patterns are summarized
in Table 1. Noteworthily, the meta-self-awareness is consid-
ered as an optional capability, and thereby it is not explic-
itly coded into a particular given pattern. Each pattern
was documented using standard pattern template [50] as
follows.

1) Problem/Motivation: A scenario where the pattern is
applicable.

2) Solution: A representation of the said pattern in a
graphical form.

3) Consequences: A narration of the outcome of applying
the pattern.

4) Example: Instance of the pattern in real applications
or systems.

We designed the patterns following the principles of
architectural patterns.

In other words, we provide a collection of architecture
design decisions to realize the self-aware capability, para-
meterized by the level of knowledge available (which is
behavioral in essence). The provided description is generic,
providing template solution to recurring problems. Level of
knowledge can range from stimuli, time, goal, interaction,
and so the parameterization of the design decisions that
invoke the self-aware capability.

In fact, codifying different structures has been
commonly used as the way to patternize software
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Table 1 Self-Awareness Architectural Patterns

architecture when engineering self-aware and
self-adaptive systems [45]. Our ways of formulating and
describing the patterns were inspired by Weyns et al. [45],
who proposed patterns for self-adaptive systems with
a special focus on their interactions in a decentralized
manner. It is worth noting that the pattern can be
instantiated, such that a capability may be decomposed
into more than one actual components.

Indeed, the key differences of the patterns are what
combination of self-aware capabilities is involved, but they
also exhibit different forms of interactions and multiplicity.
This is important, as the combination of capabilities cannot
be done arbitrarily. For example, all the patterns would
need stimulus-awareness; stimulus- and goal-awareness
cannot be the only capabilities to form a pattern, as merely
obtaining information about the stimulus does little help
to reason about goals. There are also examples where the
combination of self-aware capabilities are the same but
differ on how they interact with each other, for example,
the basic information sharing pattern and coordinated
decision-making pattern.

In the following, we elaborate on two patterns as exam-
ples; the more comprehensive specification can be found
in our handbook [8].

1) Temporal Knowledge Aware Pattern:

a) Problem/Motivation: The knowledge of timing
enables the capability of proactive adaptation and poten-
tially, better adaptation quality. However, the other capa-
bility of awareness, for example, interaction, might not be
a necessity, therefore it could affect the self-aware system
as it is suffering unnecessary overhead.

b) Solution: As shown in Fig. 2, in this pattern,
the knowledge of timing enables the capability of proac-
tive adaptation and potentially, better adaptation qual-
ity, which is specifically supported via time-awareness.
The temporal knowledge aware pattern incorporates only
time-awareness working in conjunction with stimulus

Fig. 2. Temporal knowledge aware pattern.

awareness, which eliminates the unnecessary overhead
introduced by the other capabilities of self-awareness, that
is, the goal, interaction, and meta-self-awareness may not
be needed.

c) Consequences: When using this pattern, the key
benefit is that the software system can be equipped with
knowledge about historical data. The categories of data are
vast, ranging from the internal states or the environment.
However, this should not include data about the other
nodes, as interactions have been omitted. It should be
noted that this pattern does not cater for changing goals
and their related reasoning. That is, it assumes that the
goal of the software system is known at design-time and
statically encoded in the system, without the opportunity
to modify and reason about at run-time.

d) Example: A concrete example of where this pattern
is applied could be for the cloud environment where
resource is sharing via virtual machine (VM) on each node
of a software system. In this context, by leveraging the
historical usage of resources, time-series prediction would

8 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Chen et al.: Synergizing Domain Expertise With Self-Awareness in Software Systems

Fig. 3. Temporal goal aware pattern.

be able to predict the demand of VMs on a node of software
system for the near future, which assists proactive provi-
sioning of resource and potentially, prevents requirements
violation and/or resource exhaustion.

2) Temporal Goal Aware Pattern:
a) Problem/motivation: The knowledge of goals and

time together might not necessarily to be shared among
nodes, especially in cases where the optimization of local
goals could lead to acceptable global optimum.

b) Solution: As shown in Fig. 3, in the temporal goal
aware pattern, the goal-awareness provides explicit capa-
bility to reason about and even modify the goal at runtime,
which offers further guarantee on the optimality of certain
goals. However, the knowledge of goals and time might
not necessarily to be shared among different software
systems, especially in cases where the optimization of local
goals could lead to acceptable global optimum. Specifically,
in this pattern there is no notion of “sharing” information
as the software system is not aware of any interactions
and, therefore, it does not have the awareness of the
presence of the other nodes. It is worth noting that the
absence of interaction awareness does not mean there is
no interaction—the software system and the environment
could still interact with each other, but it merely is not
aware of the details involved in the process.

c) Consequences: A key benefit of this pattern is
that the knowledge of historical events can be used in
conjunction with the ability to reason about goals. This
often provides emergent adaptation behaviors [23], [25].
However, a major limitation is the removal of interaction
awareness, especially when the goal-awareness is present,
implies that different nodes of software systems could be
in inconsistent state. The engineers should carefully verify
that such situation would not result in the violation of
system requirements. In addition, the self-expression and
self-adaptation on a software system could not use any
information from others when making decisions.

d) Example: Example application domain of the pat-
tern could be: for adaptive web application in a centralized

mode, there is only a single software system exist, and thus
no interaction is needed. Another more complex example is
when orchestrating fully decentralized harmonic synchro-
nization among different mobile devices, which requires
each node of software system to be aware of stimulus,
time, and goal but not necessarily interaction. In such a
case, each software system receives phase and frequency
updates from the others or the environment, and reacts
upon based on its own time and goal information. This is a
typical example where there are occurrences of interaction
but no occurrences of interaction awareness because a
single software system only aware of the incoming phase
and frequency updates but it has no knowledge of where
they come from.

C. Guideline on Selecting Patterns and Underlying
Algorithms/Techniques

In our handbook [8], we have codified a compre-
hensive guideline that assists the software engineers to
select the self-awareness architectural patterns for a node,
and the underlying algorithms/techniques2 that realize
each capability. In a nutshell, the selection of patterns
and algorithm/techniques follows the general processes of
ATAM [40], which is a well-known methodology on design
selection, such that the choice is made based on qualita-
tive assessment and quantitative evaluation, supported by
simulation and profiling.

Noteworthily, albeit that the patterns are alternative for
a single node, different nodes can be based upon distinct
patterns, or different instantiations of an identical pat-
tern, under systems-of-system or distributed environment.
Therefore, the patterns can be used in a composite manner.

As shown in Fig. 4, the overall guideline is an iterative
process, in which the selection of pattern and the under-
lying algorithms/techniques can be continuously refined

2This may be a type of algorithms/techniques instead of a specific
one.

Fig. 4. Guideline of selecting self-awareness architectural pattern

and the underlying algorithms/techniques.
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Table 2 Classification of the Representations on Domain Expertise With Possible Examples

based on the profiling results. The final outcome for each
node, after a satisfied number of iterations, would be
the instantiation of a selected self-awareness architectural
pattern with chosen underlying algorithms/techniques for
self-awareness. Due to limited space, we advise interested
readers to our handbook [8] for detailed information.

V. D B A S E S F O U N D AT I O N S
A. Representations of Engineers’ Domain
Expertise

As mentioned in Section II-A, for domain information,
it is important to distinguish between problem nature and
domain expertise; the former is not necessarily equivalent
to the latter. Domain expertise, particularly, that from
the software and system engineers, can be represented in
various forms. For the simplicity of exposition, we use the
following terminology to explain this concept in DBASES.

1) Expertise Representation: Expertise representation is
generally abstract, which can be further refined and
customized for expressing the domain expertise that
captures domain knowledge for a specific case. These
are often the general skills and tools that are familiar
to a software and system engineer. For example, fea-
ture model is a representation of the expertise, which
is commonly used by software and system engineers.
It can be applied to a wide range of application
domains within each of which the representation
would be specialized into a particular design instance.

2) Category of Expertise Representation: This refers to a
group of expertise representations that share similar
nature, for example, the feature model, unified mod-
eling language (UML) models, and the goal model are
all design models.

Clearly, an expertise representation can be specialized
into different instances that share the same structure,
rules, and semantics, but each can capture/be tailored to
handle different knowledge about the domain. Drawing
on the recent survey about what expertise knowledge
has been considered in practically engineering self-
awareness [27], [28], DBASES is underpinned by a clas-
sification, as shown in Table 2, to categorize the most
commonly used expertise representations when engineer-
ing software systems.3 Each of the categories is explained
as follows.

3The examples here do not intend to be exhaustive, but they serve
as intuitive illustrations of the concepts.

1) Methodology: This refers to the systematic specifi-
cation and analysis methods that are applied to abstract
the expertise and represent it to aid the development
of software systems. An expertise representation can be
considered in this category if all of the following criteria
are met.

1) It covers all or nearly all the phases in engineering a
software system.

2) It contains specific methods, rules, postulates, proce-
dures, or processes to manage a software or system
project.

3) It involves description about the roles of different
stakeholders in the engineering process, for example,
analysts, designers, and testers.

2) Concept: This includes the intents, drivers/forces,
and motivations that derive the knowledge/expertise
capture and representation. An expertise representation
stands as a Concept if all of the following criteria
are met.

1) It represents an abstract idea or generic notion in
mind that captures some common and justifiable phe-
nomena of different instances in software and system
engineering.

2) It aims to describe an idea or notion in a “plain” way
that is intuitive and close to the general understand-
ing of human.

3) It is a widely recognized practice and truth in the
engineering process.

3) Model: This involves the standard for abstracting the
expertise; it can systematically capture at least certain
aspects of a software system, which are mainly utilized
during the analysis and design phases. An expertise repre-
sentation belongs to Model if all of the following criteria
are met.

1) It contains a formal notation or language to describe
how knowledge about the software system can be
captured.

2) It can represent certain aspects of the software system
and the relationships between them.

3) It is a more formal way of representing concept(s).
4) It is often illustrated in a graphical manner.

4) Documentation: This refers to artifacts that document
and express the metadata for the representations of exper-
tise, specifying scope, constrains, uses, anti-uses, etc., with
an aim to be understandable for different stakeholders
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(e.g., end users, managers). An expertise representation
belongs to Documentation if all of the following criteria
are met.

1) It contains metadata provided on digital or analog
media.

2) It aims to illustrate data or represent agreement
between parties for the software system.

3) It is entirely (or mostly) based on “plain” textual
language of human.

5) Program: This involves the expertise representations
that actually enable the software system to run. An exper-
tise representation is related to Program if the following
criterion is met.

— It is related to the source code that enables the
execution of the software system.

6) Assumption: This refers to the expertise representa-
tions that are directly derived from the subjective beliefs
and experience of the software and system engineers,
which may not be well-justifed. An expertise represen-
tation can be considered in this category if all of the
following criteria are met.

1) It is a general belief about the software system derived
from specific instances.

2) It represents the sense of expectation on certain
aspects of the software system, which is not guaran-
teed to be true.

The above classification in DBASES does not aim to
be exhaustive, but they serve as a general guideline that
covers majority of the cases, and thereby it can be flexibly
extended. It may be possible that a given representation
of expertise can fit more than one categories, in which
case it is the engineer’s decision on which one is more
suitable. Similarly, it is also possible that a representation
cannot be fit into any category above. In such a case,
the representation can form an additional category (e.g.,
Other category), which can then be considered under
the criteria of structurability and tangibility that we will
elaborate as follows.

B. Structurability and Tangibility

The expertise representation expresses knowledge can
be a result of one’s experience, which would be in vari-
ous forms. Therefore, it is also important to understand
whether these representations are structural and tangible,
as studied in human cognition research [71]. In a software
and systems engineering domain, it is not uncommon
to see that more structural representations can be more
beneficial [72], and more tangible ones are better tools to
express knowledge [73]. Therefore, given the variety of
different expertise representations, explicitly recognizing
their category in terms of structurability and tangibil-
ity is important. A structural representation means that
the organization of its information follows specific rules,
or semantics; otherwise, it is said to be nonstructural.

Fig. 5. Confusion matrix on the taxonomy of the expertise

representations with respect to structurability and tangibility.

Specifically, a given representation of expertise is structural
if all of the following criteria can be satisfied.

1) Its organization and arrangement of the internal ele-
ments (and their relations) form some repeatable
patterns.

2) It can be specialized into case-dependent variants,
which, although different, can still be derived from
the same core.

3) It contains explicit, step-by-step, information about
how itself can be “assembled.”

A tangible representation refers to the expertise repre-
sentation that is perceptible by directly interacting and/or
observing; or otherwise it is nontangible. Again, a repre-
sentation of expertise is tangible if all of the following
criteria can be satisfied.

1) It can be directly seen or touched to understand the
information it holds.

2) It comes with a digital or analog media.

In Fig. 5, we further taxonomize the aforementioned six
categories of expertise representations depending on their
nature with respect to the above criteria of structurability
and tangibility, as part of DBASES. The taxonomy provides
a more intuitive way for the engineers to understand how
a category can be linked to these two properties. However,
it is worth noting that any given expertise representation
can be assigned using the above criteria.

It is clear that expertise representations in the category
of Model and Program are both structural and tangible,
as they can easily meet all the criteria mentioned above.
On the other extreme, representations in the category of
Assumption and Concept, as the name suggests, are
both nonstructural and nontangible. Because they cannot
be derived from the same pattern, and are difficult to be
seen or interacted with directly, which have failed to meet
the criteria for being structural and tangible.
Documentation contains expertise representations

that can be directly seen and comes with a media, thereby
they are tangible, but could be structural or nonstructural.
For example, service level agreement (SLA) and applica-
tion program interface (API) documents also satisfy the
three criteria of being structural. In contrast, requirement
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Table 3 Possible Synergies Between Expertise Representation and Self-Aware Capabilities

documents and user manuals are nonstructural, whose
content is documented by natural language without spe-
cific rules. Thereby they fail to meet the criterion that
there are variants which can be derived from the same
common ground.

The category of Methodology would have expertise
representations that are nontangible as they cannot be
directly observed. Yet again, they could be structural or
nonstructural. For instance, the structured systems analysis
and design method (SSADM) is a rather structural method-
ology and it satisfies all three criteria. In contrast, Scrum,
which is a form of Agile methodology, does not contain
explicit, step-by-step, information about its internal struc-
ture due to the need of being flexible. Therefore, Scrum is
said to be nonstructural.

C. Relationship Between Expertise
Representations and Capabilities of
Self-Awareness

Expertise representations can be possibly synergized
to inform, enrich, and/or refine the capabilities of
self-awareness depending on the domains, and guided by
the specific design of expertise representations. Drawing
on the work reviewed by recent survey on engineering
self-awareness [27], [28] and our understandings form
the EPiCS project4 [49], in Table 3, we illustrate some
examples of the possible synergies with respect to the
categories presented previously.

Given the openness of certain categories of expertise
representations (e.g., Methodology and Assumption),
the domain expertise can be potentially synergized to

4http://epics.uni-paderborn.de/

benefit all the possible capabilities of self-awareness.
For example, the SCURM methodology can help to better
understand the engineering process of the algorithms that
realize certain self-awareness. In addition, the method-
ology also covers the management between incremen-
tal development and operation phase. This, for instance,
can assist the meta-self-awareness to collect suitable data
about the applicability of other self-awareness as the soft-
ware system runs, and thereby providing readily available
information to be discussed again in the next phase of
incremental development.

For other cases, on the other hand, domain exper-
tise knowledge can be only useful to certain capabil-
ities. For example, domain knowledge expressed using
feature models would be useful for stimulus-, time-, and
goal-awareness but can be of limited help for interac-
tion and meta-self-awareness. This is because it neither
expresses information on the interactions between nodes
of software systems nor provides foundations to reason
about the needs of different self-awareness capabilities.

Another example is related to goal modeling. In par-
ticular, goal modeling and its various refinements can be
synergized with the benefit of goal-awareness. The aim,
for example, is to dynamically analyze the satisfaction of
that goal, areas, and traces within the model that requires
refinements and further elaboration to meet the goal. This
can be supported by synergizing the goal model with the
stimulus- and time-awareness which would enable better
goal reasoning. However, the goal model itself does not
often express information on interaction.

As mentioned, capturing and modeling the knowledge,
expressed via domain expertise can take forms of struc-
tured or unstructured and tangible or nontangible, which
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is heavily influenced by the available representations of
domain expertise for the engineering of the self-aware and
self-adaptive software system. Arguably, the structured and
tangible expertise representations are often more system-
atic means and disciplined approaches, while unstructured
and nontangible ones can be naturally flexible for probing,
learning, and cross-fertilization of expertise. In this regard,
the structurability and tangibility can largely affect the
design and maintenance difficulty of synergy, as we will
discuss in Section V-F.

It is worth noting that the examples here are merely for
the guideline on the possible synergies in DBASES, they do
not mean to restrict one to follow a specific synergy if both
the expertise representation and the related capability of
self-awareness are available. Whether a synergy is needed,
as well as the level and form of such synergy (as we discuss
in the following), is highly domain-dependent.

D. Levels of Domain Expertise Synergy

Generally, the information possessed by an expertise
representation can be synergized with a capability of
self-awareness at different extents. However, given the
complexity of expertise representation, as well as
the underlying algorithms/techniques for self-awareness,
the synergy of expertise with self-aware software system
may require to be automatic depending on the level.

In DBASES, we propose and distinguish four hierarchical
levels of expertise synergy with a self-aware capability,
which can be flexibly selected and reasoned about given
the requirements. The hierarchical levels are derived from
our experience on working with industry practitioners
form the EPiCS project [49], together with the work in
recent survey on engineering self-awareness [27], [28].
It is known that hierarchical analysis is highly beneficial
for classifying concepts in engineering software systems,
especially when dealing with requirements of the engineer-
ing problems [74]. Specifically, inspired by the work of
Berry et al. [75], we describe each level according to the
aspects listed as follows.

1) Motivation: A scenario where the level is required.
2) Criteria: A set of criteria classifies the synergy to a

particular level.
3) Description: A general elaboration of the characteris-

tics of the level.
4) Example: An instance where the level has been used.
The levels are structured in an incremental way, that is,

level 2 would retain all the properties of level 1 and level 0.

1) Level 0 of Synergy:
a) Motivation: This is the level such that there is no

actual domain expertise synergy but could merely utilize
the necessary information about the problem nature to
achieve the most basic specialization of the AI algorithms.
This is often the case when standard AI algorithms are
directly applied.

b) Criteria: Since this is the most basic level of
synergy (i.e., no synergy at all), and thus there are no

criteria for this level, as in essence, any realization of the
self-awareness is at least level 0.

c) Description: Here, the engineers may not (or only
trivially) reason about the problem and thus there may
be no expertise representations. The underlying algorithm
and technique that realize a capability of self-awareness
does not use any information derived from the domain
expertise. At this level, the synergy is a manual process.

d) Example: Considering a distributed system, where
there is a machine learning algorithm that learns what
are the important nodes to be tuned, but if the nodes
are simply taken from whatever nodes that are currently
running, then here, information of the problem nature (the
available nodes) is used in stimulus-awareness. However,
there is a lack of human reasoning involved (thus no
domain expertise). Therefore, in such a case, we still have
level 0 of domain expertise synergy.

2) Level 1 of Synergy:
a) Motivation: Apart from the problem nature, which

is often naturally intuitive with the problems, software
and system engineering involves many cases where the
detailed information is not obvious, which can only be
made available through the expertise of engineers together
with various tools and methods.

b) Criteria: Specifically, the synergy is at level 1 if the
following criterion is met.

1) The expertise representation is specialized through
in-depth reasoning according to the software system
to be built.

c) Description: This is the most common level where
there is a limited synergy between domain expertise and
self-awareness. Here, the engineers do reason about the
problem and there are certain expertise representations.
However, there is no, or only trivial, machine reasoning
on the reasoned expertise representation that aims to
extract more meaningful information for a capability of
self-awareness (and the underlying algorithm/technique),
which is the key step to sufficiently synergize the exper-
tise. At this level, the synergy can be either a manual or
automatic process.

d) Example: For example, the produced feature
model design is a representation of expertise after careful
human reasoning, but if the goal-awareness simply embed
all the features from the model to optimize, then it is
clearly a level 1 of domain expertise synergy, as some infor-
mation about the human reasoning is used (the features)
while there is no further, nontrivial reasoning about the
feature model itself.

3) Level 2 of Synergy:
a) Motivation: The expertise representation produced

by extensive human reasoning is likely to be complicated
and large, which may be an inevitable result for the soft-
ware system that is built and evolved over years. In such
a case, the useful information contained in the expertise
representation is blur and difficult to be used directly.
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b) Criteria: The synergy is at level 2 if all of the
following criteria are met.

1) The expertise representation is specialized through
in-depth human reasoning according to the software
system to be built.

2) There is a nontrivial automatic process that extracts
information from the expertise representation for the
software system.
c) Description: In this level, the engineers are

required to reason about the problem and produce certain
representations of their expertise. There is also a need of
further automatic machine reasoning, which extracts and
synergizes the useful information of the reasoned expertise
representation with the underlying algorithm and tech-
niques for realizing self-awareness. However, the under-
lying algorithms and techniques do not need to be aware
of the information about the expertise; they may operate
as if there is no such information.

d) Example: For example, an engineer may reason
about and produce a feature model, then, the model would
be further reasoned and extracted, such that the irrelevant
features for optimizing the software system are ruled out
in the capability of goal-awareness. However, from the
perspective of the search algorithm, it does not aware
that the given features to tune have been tailored by the
experts’ specialized knowledge; it would merely operate as
if those features were selected arbitrarily.

4) Level 3 of Synergy:
a) Motivation: Although most algorithm/techniques

would work without changing their internal structure, it is
often the case that when their internal components are
tailored specifically with the extracted domain expertise,
the expected results can be largely improved. Such a
process is not essential, but desirable.

b) Criteria: In particular, the synergy is at level 3 if all
of the following criteria are met.

1) The expertise representation is specialized through
in-depth human reasoning according to the software
system to be built.

2) There is a nontrivial automatic process that extracts
information from the expertise representation for the
software system.

3) The internal components of the algorithm are
tailored, such that it can actively and directly
exploit the information extracted from the expertise
representation.
c) Description: This is the highest level of domain

expertise synergy. Here, both human reasoning and auto-
matic machine reasoning on the representation of exper-
tise are needed. In addition, the underlying algorithm
and technique for realizing self-awareness need to be
tailored in a way that they can be aware of the experts’
specialized knowledge, and thus promote more explicit
reactions and exploitation of the expertise. This often
implies a nontrivial consolidation to the internal compo-
nents of the algorithm and techniques, which would make

them less general but being more specific to the given
problem.

d) Example: Considering a queuing model, which is
analyzed and designed by the engineers, used to syner-
gize with a tailored machine learning algorithm to offer
better awareness of goal. In this case, the queen model
has some parameters that can be tuned automatically.
More importantly, the machine learning algorithm is aware
of the expertise expressed in the model, such that the
training and updating mechanism can be tailored by the
queuing model, which will clearly influence the accuracy
of learning.

It is worth noting that for all levels, self-awareness and
self-adaptation are still achieved through the underlying
algorithms and techniques, but their behaviors are guided
by varying the amount of information about the engineers’
domain expertise, as constrained by the corresponding
level of domain expertise synergy.

E. Benefit Score on Synergy

Generally, it is expected that a higher level of synergy
would lead to better quality of self-awareness, and even-
tually better results of self-adaptation. This is because the
underlying algorithm and technique can be guided, or even
consolidated, with the information of domain expertise to
fit with the domain problem better. To support quantitative
reasoning on the potential benefit for different levels of
synergy in DBASES, each level can be assigned a numeric
score as follows.

1) Level 0: benefit score = 1.25.
2) Level 1: benefit score = 1.5.
3) Level 2: benefit score = 1.75.
4) Level 3: benefit score = 2.

where the values are normalized into the range between
1 and 2 to assure numeric stability. Noteworthily, the scores
are fairly flexible as they serve as indication on the relative
rank between different levels. Hence, the above scores are
default settings in DBASES where the margin between
different levels is equivalent. It is, however, perfectly
acceptable to ask the stakeholders and engineers to assign
the relative benefits score depending on the needs, similar
to what have been done in CBAM [41], as long as the
ranking remains unchanged. For example, if one considers
that level 3 is likely to obtain much higher benefits than the
others, then one may assign the benefit scores from level 0
to level 3 as: 1.1, 1.2, 1.3, and 2, respectively.

Indeed, the proficiency would have a definite impact on
the likely benefit, as immature expertise, for example, that
from a naive or inexperienced engineer, would likely to
mislead the algorithms and techniques for self-awareness
and self-adaptation. To reflect on this, within the method-
ology we introduce in Section VII, the engineers are asked
to weight the proficiency on the expertise representation
and the underlying algorithms for self-awareness, based
on which a more informed-decision of the synergy can be
made.
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Fig. 6. Design difficulty and the related score of expertise synergy

with respect to the levels, structurability and tangibility. (w denotes

the weight (w ∈∈∈ [1, 2]) that distinguishes the difficulty between

general and specific form of synergy for all cases. Level 0 always has

a difficulty score of 1). (a) Level 1. (b) Level 2. (c) Level 3.

F. Difficulty Score on Designing Synergy

In DBASES, the design of the synergizing domain
expertise with a self-aware capability can be of either
specific or general forms. In the specific case, one needs
to analyze and reason about a particular instance of
expertise representation (e.g., a design of feature model),
and synergize it with a specific algorithm/technique (or
any algorithms/techniques of the same type) that realizes
self-awareness and self-adaptation. In the general case,
the synergy needs to operate on different instances of
expertise representation, for example, it works on any
design instance of the feature model, and any algo-
rithms/techniques of the same type. Undoubtedly, these
forms do not applied on the level 0 of synergy.

It is clear that designing the general synergy would
impose greater difficulty than the specific one, as wider
range of the possible instances under the expertise rep-
resentation needs to be considered. Here, the difficulty
also serves as a general indicator of the cost in terms
of labor, time, and resource for both implementation and
maintenance, therefore, it is a crucial factor to consider
when synergizing domain expertise. Within each of the two
forms of synergies, the relative degrees of design difficulty
vary depending on the levels of expertise synergy, as well
as the structurability and tangibility of the expertise rep-
resentation involved. Depending on different situations,
the relative level of difficulty and the associated numeric
scores have been illustrated in Fig. 6.5 Note that the design
difficulty for level 0 of synergy is constantly set as 1, that is,
they are at most as hard as level 1 synergy even considering

5The illustration shows only relative degrees of design difficulty,
i.e., a “very easy” does not means it is easy in an absolute sense, but it
is relatively easier comparing with the others. Similarly, a “very easy”
in the general synergy form is not equivalent to the “very easy” in the
specific synergy form.

different forms, since there is no actual synergy at all.
More specifically, in Fig. 6, the difficulty is ranked in a

way that it is consistent with the general understanding.
At level 1, the synergy shares similar design difficulty
regardless of the structurability and tangibility because at
this level the main difficulty is related to the human rea-
soning of the domain knowledge, which is part of the tasks
that the engineers have to do regardless whether there
is a synergy. In particular, the algorithms and techniques
for realizing self-awareness and self-adaptation are directly
exploited to the domain, rendering the actual synergy
relatively straightforward. At level 2, the synergy becomes
more difficult in general. Particularly, the design difficulty
becomes higher as the related expertise representation
turns into a nonstructural form but remain unchanged with
respect to the tangibility. This is because here, the underly-
ing algorithms and techniques do not require to be aware
of the domain expertise, thus the tangibility is less impor-
tant. However, machine reasoning on the given expertise
representation is necessary, therefore, the domain exper-
tise needs to be made structural for the automatic reason-
ing and synergy to take place. Such an extra processing
of structuring could impose additional design difficulty.
Finally, at level 3, the expertise representation needs to be
both structural and tangible, and thereby for expertise rep-
resentation that belongs to the category of Assumption or
Concept, additional efforts need to be conducted on both
structuralization and tangibilization, rendering it as the
most difficult case of synergy. Relatively, structuralization
is more complex and difficult than tangibilization, as the
former often requires in-depth and high proficiency on
the expertise representation, whereas the latter, can be as
simply as translating and documenting the concepts.

Based on the ranking, each case is assigned a numeric
score to add quantitative values in the design process. The
scores have been normalized in the range between 1 and 2,
which can be used directly in the methodology discussed
in Section VII. w is the normalized weight (between 1
and 2) that distinguishes the difficulty between general
and specific form of synergy (e.g., 2 for general and 1.5 for
specific) as provided by the engineers. Such a weight
is applied to all possible synergy under consideration
when engineering a self-aware and self-adaptive software
system.

Noteworthily, similar to the benefit scores, the default
margin between the difficulty scores of different cases is
almost identical. However, it is perfectly possible that if
one considers a case to be more difficult than the others
and hence amend the margin, as long as the ranking is
preserved.

Indeed, the actual synergy approach is highly domain
dependent, relying on the selected underlying algo-
rithms/techniques for self-awareness, the expertise rep-
resentation that is available and the other constraints as
well as requirements. Nevertheless, given the information
about the expertise representation and the expected level
of domain expertise synergy, the degree of design diffi-
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Fig. 7. Possible capabilities of self-awareness in the

self-awareness architectural patterns with explicit synergy between

domain expertise and self-awareness.

culty offers the engineers with intuitive guidelines and
information on the likely barriers, in addition to the likely
benefits. This gives rise to the opportunity for them to
rethink and even refine the level of expertise synergy
at the design stage, considering the tradeoff between
efforts and the expected quality. To demonstrate such
details, in Section VIII, we elaborate examples of the
synergy approaches within the contexts of three diverse
case studies.

VI. E N R I C H E D S E L F-A W A R E N E S S
P AT T E R N S I N D B A S E S
We now illustrate how the notions of domain expertise rep-
resentations and their synergies in DBASES’s foundation
can be embedded with the capabilities of self-awareness,
which are collectively expressed using the self-awareness
patterns.

A. Capabilities of Self-Awareness in the Patterns
With Explicit Domain Expertise

The proposed self-awareness architectural patterns,
as discussed in Section IV, can be enriched based on
the proposed synergy framework in Section V. Fig. 7
shows the general capabilities of self-awareness, which
underpins the self-awareness architectural patterns, with
explicit links to different expertise representations. Such
a general enrichment can be instantiated into diverse
instances, depending on the available expertise represen-
tation, the selected pattern, and the required synergy.
Clearly, for a particular domain, there can be more than
one expertise representation (from the same or differ-
ent categories), but only one specialized instance of an
expertise representation exists at a time. Those exper-
tise representations, depending on their categories, may
or may not undergo structuralization and tangibilization.
Importantly, an expertise representation needs to be syner-
gized with at least one capability of self-awareness (e.g.,
time and goal) and its underlying algorithm/technique.
On the other hand, there is no cap on the maximum
number of self-awareness capabilities that it can synergize
with; it is possible that an expertise representation may

be synergized with all the capabilities of self-awareness.
According to Fig. 6, each synergy expresses the expected
level involved, as well as the form and the design difficulty,
which are separated by a semicolon.

Noteworthily, it is important to distinguish level 0 of syn-
ergy and no domain information is required. The former
has no synergy but the information of the problem nature
may still be used. The latter refers to no information is used
in a self-aware capability at all. With the enriched pattern,
level 0 is still expressed, but without showing the selection
of form and the difficulty level. This becomes much more
intuitive when instantiating the enriched self-awareness
pattern with explicit domain expertise, which we elaborate
in Section VI-B.

B. Examples of Instantiating the Patterns With
Explicit Domain Expertise

In Fig. 8, we illustrate an example where the infor-
mation sharing pattern and the related algorithms and
techniques have been chosen. Then, following the general
pattern from Fig. 7, the information sharing pattern can be
instantiated with explicit domain expertise and the related
synergies in different ways, among which Fig. 8 is one
candidate. In this example, the expertise representation is
a design of the Petri net that contains rich domain expertise
about the concurrence and transitions between conditions,
etc. This is particularly useful for the interaction-awareness
and the underlying algorithm/technique, which enables
a level 2 synergy between domain expertise and self-
awareness. Specifically, the actual synergy can vary, for
example, suppose a machine learning algorithm underpins
the interaction-awareness to learn the likely under-utilized
node for assigning more workloads. Here, the designed
Petri net provides strong domain expertise about the fea-
tures (conditions), which can be further parsed automat-
ically to form a more relevant set of features. Finally,
the resulted feature set is learned by the machine learning
algorithm. This is clearly a level 2 of synergy, as there
are both human and machine reasoning on the expertise
representation, yet the machine learning algorithm itself
does not know the fact that the given feature set was
derived from domain expertise. There is no link between

Fig. 8. Instantiating information sharing pattern with synergy

between Petri net and self-awareness.
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Fig. 9. Instantiating goal-sharing pattern with synergies of

queuing model and requirement document.

a design of the Petri net and stimulus awareness, which
means no information has ever been used for stimulus.

As expressed in the figure, the form of synergy is specific,
which means only a design of Petri net needs to be syn-
ergized with the capability of self-awareness. Given that
the Petri net belongs to the category of Model which is
both structural and tangible (as seen from Fig. 5), there
is no additional structuralization and tangibilization. The
design difficulty of synergy is therefore “easy” according to
Fig. 6. In contrast, if the expected level of domain expertise
synergy was level 1 or level 3, then the design difficulty
would become “very easy” or “moderate,” respectively.

Fig. 9 shows a slightly more complicated example,
in which the goal-sharing pattern and the related algo-
rithms and techniques have been selected. In this example,
the goal-sharing pattern can be instantiated with two
aspects of domain expertise that are of different expertise
representations and from distinct categories. Again, there
could be different ways of synergies depending on the
form and level, within which Fig. 9 illustrates only one
candidate. Specifically, the design of queuing model is
clearly a type of model while the requirement document
belongs to the Documentation category. There are three
synergies of domain expertise, each of which belongs to a
different level. At the simplest form, the queuing model can
create a level 1 of synergy with stimulus-awareness. This
can be, for example, the feature components of the model
serves directly as the detection points of any stimulus
from the software systems, and therefore no extra rea-
soning and analysis conducted on the produced queuing
model. Another synergy is between the queuing model
and the goal-awareness, which can be of level 2. Here,
certain parameters in the designed queuing model may be
changed dynamically, either by a deterministic or machine
learning algorithm. The tailored model, in turn, acts as the
function to evaluate an adaptation solution within a search
algorithm that optimizes toward the optimality of a goal.
Such extra reasoning conducted on the queuing model has
promoted the synergy to level 2.

In this example, the requirements document requires
a relatively more complex, level 3 synergy with the
goal-awareness. For example, the negotiated requirement

document may be further analyzed using techniques for
natural language processing, then, the results are syner-
gized with the internal structure of a search algorithm, for
example, to form tailored operators. In this way, the syner-
gized expertise is fully aware by the underlying algorithm
that realizes goal-awareness, which can explicitly react to
the knowledge of expertise. This is aligned with the criteria
of level 3. Again, those missing links between an expertise
representation and a capability of self-awareness implies
that there is no information to be used at all.

In this case, the queuing model can be linked with spe-
cific form of synergies while the requirements document
requires the general form, in which case any given formats
and designs of the requirements document need to be
synergized with the self-awareness capability, and thus it
is relatively harder. The relative design difficulty for all
three synergies can be distinguishable using Figs. 5 and 6.
A queuing model is both structural and tangible, and
thus no extra processes are needed, therefore the level 1
synergy has a design difficulty of “very easy” whereas the
level 2 one is classified as “easy.” The synergy related to
the requirements document is more complex, as it belongs
to the Documentation category and it is tangible but
nonstructural. As a result, given the required synergy of
level 3, the relative design difficulty is “very hard.” Note
that since the requirements document requires general
forms for its two synergies, they are likely to be more
difficult than the specific one for the queuing model.

VII. M E T H O D O L O G I C A L A N A L Y S I S
I N D B A S E S
Drawing on the aforementioned notions and enriched
patterns, in this section, we codify a detailed methodol-
ogy, as part of DBASES, that can assist the quantitative
design on the synergy when engineering self-aware and
self-adaptive software systems. In a nutshell, the method-
ology contains the steps below, the details of which will be
explained in Sections VII-A–VII-E.

1) Patterns and Algorithms: Selecting patterns and algo-
rithms.

2) Representations of Expertise: Determining the avail-
able representations of expertise.

3) Candidates Creation: Creating design candidates by
instantiating the selected enriched pattern with syn-
ergy between domain expertise and self-awareness.

4) Difficulty and Benefit Scores: Calculating the overall
difficulty and benefit scores for all the candidate
synergies of expertise under the chosen pattern.

5) Further Investigation: Selecting the suitable candi-
date(s) for further investigation.

A. Patterns and Algorithms

The first step is to determine which is the suitable
architectural pattern for self-awareness and the underlying
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algorithms/techniques6 that realize the self-aware capa-
bilities. As mentioned in Section IV, we have proposed
a handbook, together with a comprehensive guideline
to guide the engineer to make such selections. A more
thorough explanation and case studies can be found in the
handbook [8].

B. Representations of Expertise

The actual representation of domain expertise is highly
dependent on the case, and thus their diversity can vary.
However, arguably any given software and systems engi-
neering would require at least one formal representation
of expertise. In this step, we ask the engineers to create
a list of all available representation of the expertise based
on their existing knowledge, some of which could be taken
from the examples in Table 2.

C. Candidates Creation

According to the available representations of expertise
identified in step 2, this step aims to answer the following
questions for each of these representations.

1) Which category does the expertise representation
belong to? (using the criteria in Section V-A)

2) If such a representation structural? Is it tangible?
(using the criteria or classification in Section V-B)

3) The expertise representation can be synergized
with which algorithm/technique that realizes the
self-aware capability? What are the possible levels of
synergy? (using the criteria in Section V-D)

4) What is the possible form for each synergy?
5) What is the difficulty level for each synergy? (using

the Fig. 6)
Note worthily, the different synergies of expertise rep-

resentations and their combinations form the possible
alternative instantiations of the enrichment for the selected
pattern, as shown in Section VI. In this way, step 3 aims
to create a candidate set of instantiations for the enriched
patterns with information about all possible ways of syn-
ergies. For example, suppose that there are two expertise
representations and the chosen pattern is information shar-
ing pattern, which has two self-aware capabilities. If both
representations need to be synergized with all self-aware
capabilities while the synergy can be at all levels and under
both forms, then considering all possible combinations,
the outcomes of step 3 would be 2 × 44 = 512 candidates.
The final selection would be made based on the quantita-
tive scores on both the difficulty and benefits for all the
alternative candidates.

D. Difficulty and Benefit Scores

In this step, we aim to visualize the difficulty and
benefits score for all the candidates identified from step
4 using the synergy framework. In particular, the overall

6One may only need to decide the type of algorithms, rather than a
specific one.

difficulty of a candidate Cn that has a total of n synergies
is calculated as

DCn =
n�

i=1

di

pi
(1)

whereby di is the original difficulty score for synergiz-
ing the corresponding expertise representation in the i th
synergy. As mentioned in Section V-F, the original diffi-
culty score has been predefined according to the struc-
turability and tangibility of the representation. The w is
a normalized weight given by the engineers and it is
applicable to all other synergies. pi is the proficiency on
the i th synergy (normalized between 1 and 2), which
covers both the expertise representation and the underly-
ing algorithms/techniques that realize the corresponding
self-aware capability. The higher the proficiency, the less
difficulty for achieving the synergy.

The overall expected benefit of a candidate Cn can be
computed as

BCn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n�

i=1

pi × bi , at level 0

n�

i=1

w × pi × bi , otherwise
(2)

where bi is the original expected benefit score for the
i th synergy, as discussed in Section V-D. Again, w and pi

are the actual forms (i.e., general or specific) of the synergy
and the proficiency, respectively. The higher proficiency,
the larger the expected benefit.

As mentioned, the values of w and pi entirely depend
on the domain, and therefore it is difficult to draw any
general guidelines. However, their relative settings can
be discussed case by case. For example, the relative w

between general or specific form of synergy may be small
for structural and tangible expertise representation, as it is
more straightforward to generalize it from specific cases;
in some situations, the w may be identical as the two
forms may not differ too much, such as queuing model.
In contrast, for nonstructural and/or nontangible exper-
tise representations, their margin of w can be amplified.
As regards p, the category of domain expertise represen-
tation and the selected algorithms, together with the engi-
neer’s own experience, can provide indication about how
its value for different synergies can be relatively set. For
example, an engineer who works on software variability
management and machine learning algorithms for years
would likely to rank a high proficiency for the synergy
between feature model and learning algorithm, but for
other synergies, the proficiency can be given a relatively
low value.

E. Further Investigation
As we can see from the example of benefit/difficult plot

in Fig. 10, each candidate is an instantiation of the selected
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Fig. 10. Example of visualizing the difficulty and benefit scores

for all candidates.

and enriched patterns with a particular way of synergizing
domain expertise. While some of the candidates are clearly
dominated by the others, there can be a tradeoff between
the difficulty and the expected benefit.

Indeed, to physically validate whether the achieved
benefits and incurred difficulty (in terms of both imple-
mentation and maintenance) by the candidates are truly
acceptable, it is an ideal case that if all the candidates
can be subject to further investigation and profiling, that
is, the actual implementation, profiling, and evaluation.
However, given the time/resource constraint in real-world
software and system development scenario, it is often the
case that only a handful of them can be prototyped [41].
This is in fact what we seek to provide with the engineers:
an intuitive and principled guideline to extract the can-
didates for further investigation. In DBASES, the intuitive
visualization of benefit/difficult plot provides the neces-
sary foundation for the engineers to select only the most
desirable ones, ruling out those that are clearly unneeded
and thus saving the valuable human efforts in investigating
them. As an example, Fig. 10 shows three selected candi-
dates for further investigation.

Noteworthily, despite there may be more than one way
to implement the prototype of a particular candidate, it is
generally possible to use a representative in the compari-
son process during further investigation, as what has been
done in the domain of architecture profiling [41].

After further investigation, the final selection for produc-
tion would inevitably involve not only the engineers, but
also other stakeholders of the software systems. However,
the methodology in DBASES, supported by the frame-
work about synergy between domain expertise and self-
awareness, their levels of difficulty and the enriched
patterns, have enabled a more intuitive and quantita-
tive visualization of all the possible alternatives in the
tradeoff. This, in turn, provides better informed deci-
sion making when synergizing domain expertise with the
self-awareness in software systems.

VIII. C A S E S T U D I E S : P R A C T I C A L
A P P L I C AT I O N S O F D B A S E S
F R A M E W O R K
In this section, we illustrate the practical applications of
DBASES framework on three tutorial case studies, each

of which is recent research effort that seeks to engineer
self-awareness into different types of software systems.
Those studies are the collaboration in a team of researchers
and engineers from China and United Kingdom, under the
funding grants from their research councils.

As part of the methodology in DBASES, for all case stud-
ies, a set of desirable and representative candidates was
selected for further investigation. This includes the actual
prototype implementation of these candidates, deploying
the resulted self-aware and self-adaptive system(s), run-
ning them and measuring their behaviors according to
various quality indicators with real-world benchmarks.
Eventually, the most promising one with the verified results
would be chosen for production.

Each case study covers a type of software systems that
may be applied to different scenarios, for example, a highly
constrained software system may run as a web-based
systems or service-based systems. Therefore, for the can-
didates that are subject to further investigations, their
prototypes were run on one or more scenarios. All the
quantitative experiments are done in real environments,
using the actual software system that fit under a given
scenario. The data and source code used for all three case
studies are publicly available on GitHub.7

A. Self-Awareness and Self-Adaptation for Highly
Constrained Software Systems

Context: Self-adaptive software systems often have sev-
eral nonfunctional quality attributes ( e.g., latency and
throughput), which are difficult to manage due to the
changing environment, such as workload. Those software
systems are centralized, but structurally complex, that is,
there is a large number of features and complex depen-
dence constraints. A typical example could be the multilay-
ered web applications, in which the actual software often
relies on a stack of third party libraries and frameworks,
each of which has its own different adaptable features that
can interplay together to influence the behaviors of the
entire software system.

Problem: The aim of the first case study is, at runtime,
to achieve more effective multiobjective optimization on
the nonfunctional qualities of software systems. Clearly,
in such context, self-awareness offers stronger capability
for a software system to conduct more informed optimiza-
tion and reasoning.

Challenges: The challenges here are twofold.

1) It is difficult to effectively and systematically convert
the design of self-adaptive systems, expressed as a
feature model, to the context of a search algorithm
while considering the right encoding of features in the
solution representation. This is even more complex in
the presence of feature dependence constraints, e.g.,
the cache size can only be adapted when the cache
feature has been “turned on,” or, the size of a thread

7https://github.com/taochen/ssase/tree/master/experiments-data
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pool needs to be equal to or greater than the number
of spare threads in the pool.

2) Optimizing multiple conflicting objectives and man-
aging their tradeoffs are complex and challenging in
self-adaptive systems, especially at run time. This is
attributed to the huge number of alternative adap-
tation solutions that can vary with their quality for
the said requirements. Moreover, the dynamic and
uncertain nature of self-adaptive systems further com-
plicates the conflicting relations between objectives,
rendering the tradeoff surface difficult to explore.

1) Patterns and Algorithms: After analyzing the require-
ments and following the handbook [8], it has been iden-
tified that there is no need to have knowledge about the
interactions. This is because the target software system was
not aimed for distributed environment, and that it is con-
sidered as satisfactory to optimize the local goal for a single
self-adaptive system. Furthermore, the environment is not
expected to actively react on the adaptation of the software
system, and thus no interaction between it and the envi-
ronment. There is also no need for meta-self-awareness,
because the extra overhead on reasoning about the dif-
ferent capabilities of self-awareness is unnecessary, as the
requirements on the capabilities are clear. In contrast,
goal-awareness is the essential part as it permits capability
to reason about goal and search toward an optimal (or
near-optimal) solution. Time-awareness is also important
in the modeling of goal, which consolidates the capability
to thoroughly evaluate, and even predict, the effectiveness
of a solution during the optimization process. As a result,
these have led to the conclusion that the temporal goal
aware pattern is the most appropriate pattern for the
design. The pattern has been illustrated in Fig. 3.

The primary goal is to optimize nonfunctional quality,
and thus a vast of search algorithms is available. How-
ever, there may be an explosion of the search space for
the self-adaptive system, which renders the problem as
intractable. Furthermore, it is difficult, if not possible,
to obtain a precise understanding on the nature of the
optimization problem beforehand and there are often mul-
tiple conflicting quality to be optimized. Drawing on these
and as guided by the handbook [8], it has been concluded
that the metaheuristic algorithms, particularly the evolu-
tionary algorithms, are promising to realize the capability
of goal-awareness in the software systems. However, given
the wide range of possible domains, it is expected that the
solution does not tie to a specific evolutionary algorithm,
rather, it should support a diverse set of evolutionary algo-
rithms. In addition, machine learning algorithms and other
modeling techniques can be used to support the knowledge
of time, which form the objective model that is essential in
the reasoning of goal. Finally, stimulus-awareness, which
is the simplest capability of self-awareness, can be realized
by periodic detection. A complete list of the algorithms and
techniques that realize the capabilities of self-awareness
involved are shown in Table 4.

Table 4 Algorithms and Techniques That Realize the Capabilities of

Self-Awareness for the First Case Study

2) Representations of Expertise: In this case, the only
available representation of expertise is the feature
model [76], which is expressed as the tree structure. Such
a model is widely used for software and systems engineers
to represent the functional variability of software. In the
context of self-adaptive software systems, the inherited
concept of a feature model allows it to define the extent
to which the software system is able to adapt at run-
time (i.e., a range of variations that the software system
can achieve). In particular, there is no definite constraint
about the level that the feature model can cover, that is,
the features define the prominent or distinctive aspects
between different variations of a software system [60],
which range from high-level architectural elements (an
entire component) to low-level configurations (a specific
parameter). Fig. 11 shows an example of the feature
model, where there are four in-branch dependences and
two cross-branch dependences.

1) OPTIONAL refers to the feature that might be “turned
off.”

2) MANDATORY denotes core features that cannot be
“turned off.”

3) XOR represents the feature in a group such that
exactly one group member can be “turned on.”

4) OR means a group in which at least one group mem-
ber needs to be “turned on.”

5) Fi REQUIRE Fj means the former can only be “turned
on” if the latter is “turned on.”

6) Fi EXCLUDE Fj denotes two features that are symmet-
rically mutually exclusive.

3) Candidates Creation: At this step, all the possible
ways of synergy can be created by instantiating the
enriched self-awareness architectural pattern. In particular,
answers to the questions presented in Section VII are
shown as follows.

1) Which category does the expertise representation
belong to?

Fig. 11. Feature model.
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Fig. 12. Difficulty and benefit scores for all candidates in the first

case study.

— Answer: Feature model belongs to the Model cate-
gory.

2) If such a representation structural? Is it tangible?

— Answer: It is both structural and tangible.

3) The expertise representation can be synergized
with which algorithm/technique that realizes the
self-aware capability? What are the possible levels of
synergy?

— Answer: It needs to be synergized with all three
self-aware capabilities in the enriched temporal
goal aware pattern. However, the synergy can only
be at level 1 to the stimulus awareness but level 1
and level 2 are allowed for time awareness. For
goal awareness, all levels except level 0 are pos-
sible, but level 2 and level 3 would require the
synergy with time awareness to be at level 2.

4) What is the possible form for each synergy?

— Answer: Only the synergy with goal awareness can
be of both specific or general form. The others are
to be realized in a general form.

5) What is the difficulty level for each synergy?

— Answer: According to Fig. 6, the difficulty level
ranges between very easy to moderate.

The above answers have led to six different candi-
dates of synergizing domain expertise represented as the
enriched temporal goal aware pattern.

4) Difficulty and Benefit Scores: For all the six candidates,
their overall scores with respect to both the difficulty
and benefit are illustrated in Fig. 12. In particular, the w

between specific and general form of synergy is set as
1.2 and 1.4, respectively, the proficiency is set as 1.8 for
all synergies in a candidate.

5) Further Investigation: As shown in Fig. 12, after dis-
cussions, three candidates have been selected for further
investigation, as they are either desirable or serve as rep-
resentatives for the others. Briefly, each of the candidates
is specified as follows.

1) C1 (BC1 = 13.23, DC1 = 2.8): As shown in Fig. 13(a),
the candidate automatically extracts only impor-
tant features to create synergies in time- and

goal-awareness, at level 2 and level 3, respectively.
In particular, dependence constraints are also injected
and synergized with the evolutionary algorithms that
underpin the goal-awareness. No machine reason-
ing is required for stimulus-awareness, which senses
directly on the features at level 1 of synergy.

2) C2 (BC2 = 12.6, DC2 = 2.64): The candidate, illus-
trated in Fig. 13(b), achieves the synergy of the
feature model with goal-awareness at level 2 (general
form), such that the evolutionary algorithm is not
aware of the dependence constraints; all the other
synergies remain the same as that of C1.

3) C3 (BC3 = 11.79, DC3 = 2.51): Fig. 13(c) illustrates
the candidate in which the feature model is syner-
gized with time- and goal-awareness at level 1 (gen-
eral form), that is, all possible features are selected

Fig. 13. Possible candidates selected for further investigation in

the first case study. (a) Candidate C1. (b) Candidate C2.

(c) Candidate C3.
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Table 5 Real Subject Software Systems for the Experiments of the First

Case Study

to be tuned without further parsing of the feature
model, and no dependence constraint is captured by
the evolutionary algorithm. All the other synergies
remain the same as that of C1.

More technical details on the actual synergy approaches
can be found in [23].

6) Further Investigation Setup: Since all the synergies are
in general form, the candidates are evaluated on two dif-
ferent real subject software systems, namely RUBIS [77]
(a web system) and SOA [33] (a service system), under
two distinct categories of evolutionary algorithms, that is,
Nondominated Sorted Genetic Algorithm II [78] (NSGA-II)
and Indicator-Based Evolutionary Algorithm [79] (IBEA),
for realizing goal-awareness that optimizes different con-
flicting quality objectives. The details of the two sub-
ject software systems can be found in Table 5. Given
that the optimization occurs at runtime, the setup of
both algorithms has been carefully tuned, such that the
mutation rate is 0.1 and crossover rate to be 0.9, with
100 population size for ten generation. Each experiment
is repeated 100 turns to cater for the stochastic nature
of the optimization. For the time-awareness, machine
learning model [13], [80], [81] is used for RUBIS and
the analytical model [25], [33] is adopted for SOA. The
results are statistically significant as confirmed by the
Wilcoxon Signed Rank test (p <0.05) with nontrivial
effect sizes (ESs), following the guideline provided by
Kampenes et al. [82].

The quality indicators for benefit and difficulty are
shown in Table 6. As can be seen, the benefits are assessed
by various performance attributes, which are scenario-
dependent, as well as the percentage of valid solutions
found for adaptation. The difficulty is evaluated by using
lines-of-code (LOC) of the implemented prototypes for
the candidates, as it is a common metric to measure the
complexity in software engineering. A higher LOC implies
higher complexity in implementation and maintenance,
hence higher difficulty.8

8Note that we do not include LOC for any third party libraries.

Table 6 Quality Indicators for Benefit and Difficulty for the First

Case Study

Fig. 14. Benefits on RUBiS under further investigated candidates

over all runs. (a) C1 (NSGA-II). (b) C2 (NSGA-II). (c) C3 (NSGA-II).

(d) C1 (IBEA). (e) C2 (IBEA). (f) C3 (IBEA).

7) Results: As shown in Figs. 14 and 15, clearly, we see
that for all cases, in contrast to C3, C2 finds more solu-
tions that are condensed to the bottom-left (top-left for
SOA) corner of the objective space. This means that
more advanced synergy helps to enable more promising
results in the optimization. When comparing C1 and C2,
the solutions are even more condensed to the ideal corner
under C1, and is of particular significance in the case of
SOA due to its stronger extents of conflicts. This proves
that allowing the underlying algorithm for goal-awareness
to be aware of the domain expertise, although impose
higher design difficulty, can be very beneficial in terms of
the results.

Fig. 16 illustrates the mean percentage of valid solutions
found, and we see that the C1 achieves 100% valid solution
as the evolutionary algorithm is aware of the expertise
about the dependence during the evolution, which pro-
motes the ability to actively repair the solutions that violate
dependence. C2, on the other hand, do not have such
benefits but it is more likely to result in valid solutions than

Fig. 15. Benefits on SOA under further investigated candidates

over all runs. (a) C1 (NSGA-II). (b) C2 (NSGA-II). (c) C3 (NSGA-II).

(d) C1 (IBEA). (e) C2 (IBEA). (f) C3 (IBEA).
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that of C3. This is because C2 encodes a set of automatically
extracted and more elitist features to be tuned. C3, in con-
trast, encodes all the features in the feature model, which
can hardly find valid solutions given the high number of
features in the subject software systems.

For the difficulty shown in Table 7, as expected, C1 has
the highest LOC which implies higher difficulty in imple-
mentation and maintenance. C2 is ranked the second but
its differences to C3 are small, which suggests that the
difficulty related to automatically extracting the important
features is considerably low.

B. Self-Awareness and Self-Adaptation for Change
Expensive Software Systems

Context: Self-adaptive software systems may subject to
financial contracts with respect to its performance and
resource consumption to perform adaptation. For example,
a software system deployed on the Cloud Computing plat-
form are charged on the amount of resources it consumes,
and it may incur monetary penalty (or reward) for violat-
ing (or exceeding) some agreed threshold of performance.
In particular, the adaptations in the target self-adaptive
software systems are often expensive, or the reasoning
process related to the adaptation is resource consuming,
and therefore in certain cases, it could be more beneficial
to not adapting.

Problem: In the second case study, the aim is to dynam-
ically determine when and whether to adapt those critical
software systems for which adaptations can impose expen-
sive cost. This again exhibits a strong requirement of self-
awareness.

Challenge: The key challenge is how to model and reason
about the dynamic and uncertain cost–benefit between
adapting the software system and not adapting it, then
deciding on when and whether to adapt. It is required to
measure the software systems not only on the achieved
quality of nonfunctional attributes, but also, in terms of
the monetary values that it generates, or carry as debts.

1) Patterns and Algorithms: After analyzing the require-
ments and following the handbook [8], it has been con-
cluded that there is no interaction awareness required,
as the target software system was not an aim for distrib-
uted environment, and that it is considered as satisfied to

Table 7 LOC for the First Case Study

Fig. 16. Mean percentage of valid solutions found under further

investigated candidates over all runs. (a) RUBiS. (b) SOA.

optimize the local goal for a single self-adaptive system.
Furthermore, the environment is not expected to actively
react on the adaptation of the software system, and thus no
interaction between it and the environment. There is also
no need for meta-self-awareness, because the requirements
on the required capabilities are clear and that the problem
itself aims to reduce the extra computations involved in the
self-adaptation process. Therefore, the overhead produced
by meta-self-awareness, which could be potentially high,
should be better avoided. Indeed, the self-adaptive soft-
ware system itself is often goal-aware due to the need of
explicitly reasoning on the goals and objectives. However,
for the problem that should be dealt with (i.e., when and
whether to adapt), extensive reasoning on the goals is not
the key purpose; rather, it is more related to track and
make a binary decision: to adapt or not to adapt, drawing
on insights about their time-varying cost-benefits. As a
result, these have led to the conclusion that the temporal
knowledge aware pattern is the appropriate pattern for the
design. The pattern is illustrated in Fig. 2.

In this case study, the primary goal is to model the
time-varying cost–benefit on the decision of adapting and
not adapting the software system. Therefore, by following
the steps in the handbook [8], machine learning algo-
rithm has been identified as the promising way to handle
the problem. This is because they are often effective in
producing fast prediction in acceptable time, given that
sufficient amount of past samples. Since there are only
two decisions to model, the problem can be rendered as a
binary classification problem, where, given a set of features
(e.g., software system status and environment changes),
the model aims to predict whether it is better to adapt
or not. Again, given the generality of the target software
system, the solution should not be specific to a particular
machine learning algorithm, and thus it should support
a wide range of the types, allowing for better flexibility
on customization. As for the stimulus-awareness, it can be
easily realized by periodic detection. A complete list of the
algorithms and techniques that realize the capabilities of
self-awareness involved are shown in Table 8.

2) Representations of Expertise: Here, there are two rep-
resentations of expertise, namely the SLA and the technical
debt concept.
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Table 8 Algorithms and Techniques That Realize the Capabilities of

Self-Awareness for the Second Case Study

In general, SLA is a formal legal binding negotiated
between the software company and the end users before
the software system is built [83]. An example frag-
ment of the typical SLA, derived from the well-known
WS-Agreement [84], is shown in Fig. 17, which states the
rate of reward and penalty on the mean latency ($/s) and
rate of CPU time of planning ($/s) for a software system.
Specifically, the SLA states that the rate for the cost of
adaptation is $0.345 per CPU second; and an adaptation
that utilizes 2 s would lead to a total cost of $0.69.
Similarly, the SLA may contain a penalty rate of mean
latency violation as $0.043/s for a requirement of 2 s.
Therefore, if there is a mean latency of 2.5 s for a period,
then the penalty for it would be (2.5 − 2) × 0.043 =
$0.0215.

Technical debt for software engineering was coined by
Cunningham [56], to help deciding whether to improve
the software, considering the costs and benefits of
improvement versus that of not improving it. In gen-
eral, when software faces bugs or requires improvement,
the engineers have two options: 1) improve the software,
in which case the quality of the software may be improved,
but extra rework cost would needs to be paid for the
human and resources spent or 2) leave it as it is, and
thereby the software remain as flawed, which could accu-
mulate the interests incurred by the bugs. The benefit of
technical debt concept is that it offers an intuitive way
for software and system engineers to make decision about
whether to improve or not, and to track the debt over time.

3) Candidates Creation: At this step, the team creates all
the possible ways of synergy by instantiating the enriched
self-awareness architectural pattern. In particular, they
answer the questions presented in Section VII as follows.

Fig. 17. Fragment of an SLA.

Fig. 18. Difficulty and benefit scores for all candidates in

the second case study.

1) Which category does the expertise representation
belong to?

— Answer: SLA belongs to the Documentation cate-
gory but technical debt belongs to the Concept.

2) If such a representation structural? is it tangible?

— Answer: SLA is both structural and tangible while
technical debt is neither structural nor tangible.

3) The expertise representation can be synergized
with which algorithm/technique that realizes the
self-aware capability? What are the possible levels of
synergy?

— Answer: SLA needs to be synergized with both
self-aware capabilities in the temporal knowl-
edge aware pattern, but information and expertise
related to technical debt need to be used with the
time awareness only. The synergy between SLA
and stimulus awareness needs to be at level 1,
while for time awareness, it can be of any level
(including level 0). Similarly, the technical debt
can be synergized with time awareness at any level
(including level 0).

4) What is the possible form for each synergy?

— Answer: All the synergies need to be realized in a
general form.

5) What is the difficulty level for each synergy?

— Answer: According to Fig. 6, the difficulty level
ranges between very easy to challenging.

The above answers produce 16 different candidates of
synergizing domain expertise represented as the enriched
temporal knowledge aware pattern.

4) Difficulty and Benefit Scores: For all the 16 candidates,
their overall scores with respect to both difficulty and
benefit are shown in Fig. 18. In this context, the w between
specific and general form of synergy is set to 1.2 and 1.4,
respectively. For each candidate, the proficiency is set as
1.8 for all synergies related to SLA and 1.5 for those related
to technical debt.

5) Further Investigation: Two candidates, as illustrated
in Fig. 19(a), have been selected due to its superiority
on the expected benefit over most other candidates, while
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Fig. 19. Possible candidates selected for further investigation in

the second case study. (a) Candidate C1. (b) Candidate C2.

causing an acceptable degree of difficulty. In a nutshell,
they are discussed as follows.

1) C1 (BC1 = 11.865, DC1 = 3.01): As shown
in Fig. 19(a), the candidate automatically converts
the technical debt concept into structural and tan-
gible knowledge, which can be synergized with
time-awareness at level 2. The SLA has also been
parsed to extracted meaningful information to consol-
idate understanding regarding time as level 2 of syn-
ergy. The stimulus-awareness, however, directly use
the information from SLA without additional machine
reasoning at level 1 of synergy.

2) C2 (BC2 = 11.235, DC2 = 2.86): For the candi-
date in Fig. 19(b), the synergy of domain exper-
tise on the SLA and technical debt concept with
the time-awareness are realized at level 1. In this
way, the time awareness merely predicts the occur-
rence of an event, that is, violation of performance
requirement (the only information from SLA), with-
out further parsing on the SLA and technical debt.
The prediction results are then further analyzed by
statistical inference; thus only the significant, reliable,
and persistent violations would trigger adaptation. All
the other synergies remain the same as those of C1.

More technical details on the actual synergy approaches
can be found in [24].

6) Further Investigation Setup: The candidates are eval-
uated using RUBIS (detailed in Table 5) as the subject

Table 9 Cloud-Based Software System for the Experiments of the Second

Case Study

Table 10 Quality Indicators for Benefit and Difficulty for the Second

Case Study

Table 11 Benefits in Terms of Latency and Power, Their Statistical

Significance and Effect Sizes (ESs) Over All Runs (Statistically Significant

Comparison Between C1 and C2 Is Highlighted in Gray)

software system deployed and run in the real cloud envi-
ronment, with the negotiated SLA shown in Table 9. Two
distinct machine learning algorithms are run in parallel,
that is, Naive Bayes [85] (NB) and multilayer percep-
tron [86] (MLP), each of which is of different complex-
ities. The goal is to optimize the latency and power of
the cloud-based software system, and thus both mul-
tiobjective planner (MOP) and single-objective planner
(SOP), in which all objectives are combined in an equally
weighted aggregation, are applied. The actual objective
function to be optimized is trained based on machine
learning [13], [80], [81]. However, it is worth noting that
optimization is not a concern of the designed software
system that is self-aware, as it is not part of selected the
pattern. The number of repeated runs is 100 for the exper-
iments, based on which the mean is reported. The results
are confirmed by Wilcoxon signed rank test (p < 0.05),
following the ESs categorization in [82].

Similar to the previous case study, the quality indica-
tors used to assess both benefit and difficulty are shown
in Table 10.

7) Results: From Table 11, we see that for all cases,
the C1 under all algorithms outperforms the C2 on both
quality attributes, with statistical significance and nontriv-
ial ES on at least one attribute. In Fig. 20, we also observe
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Table 12 LOC for the Second Case Study

that C1 has led to less debt, meaning that the monetary
value generated by the software system, after synergizing
the domain expertise with automatic machine reasoning,
is higher than the case when the synergy is limited. We can
also note that such benefit is achieved by using remarkably
smaller amount and cost of adaptation.

To gain a better understanding about the total debt,
we plot the debt throughout for an entire run. Fig. 21(a)
shows the cumulative distribution of debt for different
levels of synergy, when using MOP. We can see clearly that,
in contrast to others, C1 with the two machine learning
algorithms reduces the debt quicker as their slopes are
much steeper than the C2. Yet, the superiority of C2 on debt
reduction is much more obvious when the debt is greater
than about $9. Fig. 21(b) compares the cumulative debt of
approaches when using SOP. Here, we see that C1 is again
significantly outperforms the case when there is no actual
synergy, with faster reduction on the debt.

The difficulty in terms of LOC is shown in Table 12.
As can be seen, C1 requires higher LOC than C2, which
implies higher difficulty in implementation and mainte-
nance. This is predictable based on the benefit/difficult
plot. However, we did not expected that the margin is as
little as 3672 lines, suggesting that the difficulty difference
is in fact negligible given the much better benefits brought
by C1.

C. Self-Awareness and Self-Adaptation for Rapidly
Composed Software Systems

Context: Service systems, unlike the others, do not
have the actual implementation. Instead, they have a set
of abstract services, each of which can be adapted to
select different concrete services published in the Internet,
according to a given workflow with different predefined
connectors (sequential or parallel) [25], [33], [87], [88].
Such a process, namely service composition, is the key
to enable rapid realization and integration of different
functionalities that are required by the stakeholders. This is
also a benefit of service systems, such that they share some
similarities which make the exploitation of past problem
instances and experiences possible.

Problem: In the third case study, the aim is to con-
duct multiobjective optimization for rapidly composing
self-adaptive service systems at runtime, leveraging the
benefits from the capabilities of self-awareness.

Fig. 20. Total debt, number, and cost of adaptation under further

investigated candidates over all runs.

Challenge: The challenge here is that there is often a
large number of services to fulfill the same functional
requirement, but come with different levels on some
possibly conflicting nonfunctional quality-of-service (QoS)
attributes, for example, latency, throughput, and cost.
Thereby optimizing and finding the good service compo-
sition plans, that is, a set of selected concrete services,
and their tradeoffs becomes a complex and challenging
problem which is known to be NP-hard [33], [89]. In addi-
tion, given the potentially rapid needs of composing the
services, the optimization requires fast convergence to
ensure the effectiveness of the optimized composition plan.

1) Patterns and Algorithms: Following the procedures
from the handbook [8], it has been concluded that the
requirements in this case study do not involve interaction
awareness because there is no way to know in advance
what are the concrete services available, thus there is
often a service broker that act as a centralized point to
compose a service system. Furthermore, the environment
is not expected to react on the adaptation of the software
system, hence no interaction between it and the envi-
ronment. The meta-self-awareness has been ruled out as
the requirements on the required capabilities is clear, and
no need to introduce extra overhead. Goal-awareness is
again essential in the optimization and time-awareness is
also crucial for self-adaptive service systems because the
currently available concrete services, as well as their QoS
values, could change over time, and thereby requiring a
model that cope with such a change. As a result, these have

Fig. 21. Cumulative distribution function of debt under further

investigated candidates over all runs. (a) MOP. (b) SOP.
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Table 13 Algorithms and Techniques That Realize the Capabilities of

Self-Awareness for the Third Case Study

led to the conclusion that the temporal goal aware pattern
as the appropriate choice for the design. The pattern has
been illustrated in Fig. 3.

Given the NP-hard problem with an explosion of the
search space and the nature of multiobjectivity for the
self-adaptive services systems, the handbook [8] has sug-
gested that the metaheuristic algorithms, particularly the
evolutionary algorithms, are promising to realize the capa-
bility of goal-awareness in the software systems. Yet, given
the high diversity of the workflow structures, it is expected
that the solution does not tie to a specific evolutionary
algorithm, rather, it should support a wide range of evo-
lutionary algorithms. The time-awareness is supported by
an analytical model, which tracks the available set of
concrete services and their QoS values, and is capable of
evaluating the aggregated QoS value for the workflow. The
stimulus-awareness can be realized by event driven detec-
tion, such that the stimulus is captured through passive
detection. A complete list of the algorithms and techniques,
with respect to the capabilities of self-awareness involved,
are shown in Table 13.

2) Representations of Expertise: There are two funda-
mental representations of the expertise in this case:
the workflow structure of the service composition and
past problem instances/experience about the optimization
when composing services.

As shown in Fig. 22, where we can see that the workflow
is represented as a graph and each vertex represents an
abstract service. The edge denotes the connector between
vertices, for example, they can be either sequential where
the users’ requests are proceed in strict order or parallel
such that different users’ requests are handled by simulta-
neously.

Another important representation of expertise is past
problem instances and experience about the service com-
position. In the context of service composition, adaptation
is required when change occur, for example, the QoS
of concrete service changes or some concrete services
becomes unavailable. These changes, albeit can occur
rapidly, often occur in relatively small extents. As a result,
past problem instances and experience can still provide
useful information for the scenario after changes occur. For
example, changes on the QoS for a few concrete services
may not affect the search and objective space significantly.
Furthermore, composition plans for service composition
with similar workflow structure can also be rather useful.

3) Candidates Creation: At this step, the team considers
all the candidates of synergy by instantiating the enriched

self-awareness architectural pattern. In particular, they
answer the questions as presented in Section VII as follows.

1) Which category does the expertise representation
belong to?

— Answer: Workflow structure belongs to the Model
category but past problem instances/experience
belongs to the Assumption.

2) If such a representation structural? is it tangible?

— Answer: Workflow structure is both structural and
tangible while past problem instances/experience
is neither structural nor tangible.

3) The expertise representation can be synergized
with which algorithm/technique that realizes the
self-aware capability? What are the possible levels of
synergy?

— Answer: The workflow structure needs to be syn-
ergized with both stimulus- and time-awareness
at level 1; its synergy with goal-awareness is also
required, but can be at any level except level 0.
The past problem instances/experience needs to be
synergized with goal-awareness only, at all levels,
including level 0.

4) What is the possible form for each synergy?

— Answer: The workflow structure can be synergized
with goal awareness in either specific or general
form. All other synergies need to be realized in a
general form.

5) What is the difficulty level for each synergy?

— Answer: According to Fig. 6, the difficulty level
ranges between very easy to challenging.

The above answers produce 24 different candidates of
synergizing domain expertise represented as the enriched
temporal goal aware pattern.

4) Difficulty and Benefit Scores: For all the 24 candidates,
their overall scores with respect to both the difficulty
and benefit are shown in Fig. 23. Here, the w between
specific and general form of synergy is set to 1.3 and 1.5,
respectively. For each candidate, the proficiency is set to
1.8 for all synergies related to workflow structure and
1.3 for those related to past problem instances/experience.

Fig. 22. Example model of workflow structure for a service

composition.
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Fig. 23. Difficulty and benefit scores for all candidates in the third

case study.

5) Further Investigation: After discussion with the team,
two candidates, as shown in Fig. 24(a), are selected since
they appear to achieve a relatively good balance between
the likely difficulty and the expected benefit. In brief, each
of them is discussed as follows.

1) C1 (BC1 = 15.108, DC1 = 4.11): The candidate
in Fig. 24(a) automatically converts the knowledge of
past problem instances and experience into structural
and tangible representation. This is then used directly
synergized with the goal-awareness to expedite the
optimization process at level 2. The workflow model,
which is a result of human reasoning, is directly
utilized by the stimulus-, time- and goal-awareness at
level 1 of synergy.

Fig. 24. Possible candidates selected for further investigation in

the third case study. (a) Candidate C1. (b) Candidate C2.

Table 14 Subject Service-Based Systems for the Experiments of the

Third Case Study

2) C2 (BC2 = 14.125, DC2 = 3.6): As shown in Fig. 24(b),
the candidate has no synergy between the past
problem instances/experience and goal-awareness.
In other words, the evolutionary algorithm realizes
goal-awareness, supported by the time aware analyti-
cal model, without any additional information on the
past problem instances and experiences. All the other
synergies remain the same as those of C1.

More technical details on the actual synergy approaches
can be found in [26].

6) Further Investigation Setup: The investigation is con-
ducted by using the real-world WS-DREAM data set [90],
which contains QoS values for 4500 services. Four distinct
workflow structures of the software systems are randomly
generated, each with 5, 10, 15, and 100 abstract services,
respectively. As shown in Table 14, the number of con-
crete services and their QoS values on latency, through-
put, and cost9 are randomly selecting form the data set,
resulting in a range between 510 and 12 200 possible
concrete services with a search space over one million.
NSGA-II [78] and IBEA [79] are used as the underlying
evolutionary algorithm for goal-awareness, which are set
a mutation rate of 0.1 and a crossover rate of 0.9, with
100 population size for 50 generation (300 generations
for the case of 100 abstract services). As mentioned,
for time-awareness, standard analytical models for ser-
vice compositions are used [89]. All experiments were
repeated 30 times and the mean values are reported.
Again, the quality indicators used to assess both benefit
and difficulty are shown in Table 15.

7) Results: From Table 16, clearly, C1 leads to at
least the same results for a quality objective when com-
paring to the case of C2. In particular, it has also
resulted in better Hypervolume (HV) value10 [91]. All the

9The cost values are generated in a way that a concrete service with
better latency would also have higher cost.

10HV measures the region from the nondominated solutions to a
nadir point, which in this case is a vector of the worst possible objective
values found. The larger the HV value, the better.
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Table 15 Quality Indicators for Benefit and Difficulty for the Third

Case Study

Table 16 Benefits Under Further Investigated Candidates Over All Runs

comparisons, except those equivalent ones, are statistically
significant according to the Wilcoxon Signed Rank test
(p <0.05), with nontrivial ESs. In particular, the improve-
ment tends to be amplified as the number of abstract
services increases, implying that the more complex the
scenario, the better benefit that the domain expertise on
past problem instances can offer when combined with the
self-awareness. In Figs. 25 and 26, we see that on all
cases, C1 achieves higher HV value than that of the C2

throughout, meaning that it exhibits faster convergence.
Again, the improvement is more obvious under more com-
plex scenarios, for example, when there are 100 abstract
services.

In Fig. 27, the team examines how the behaviors of
the software systems change when the underlying algo-
rithm that realizes self-awareness is simplified. To this end,
the crossover operator in NSGA-II is omitted, based on
which the results can be compared to the cases when it is
present for both approaches. Clearly, we see a considerable

Fig. 25. Changes of mean HV (y-axis) when using NSGA-II on all

runs with respect to the number of evaluations (x-axis) under further

investigated candidates. (a) 5AS. (b) 10AS. (c) 15AS. (d) 100AS.

reduction on the HV values when the crossover operator is
removed, suggesting that a simplified version of the under-
lying algorithm that realizes self-awareness may negatively
affect the performance. Furthermore, the more complex
the service system, the greater the reduction. However,
we see that C1 is more resilient than C2, which again
proves that the domain expertise of past problem instance
can be beneficial in guiding the algorithm that achieves
self-awareness for even better results.

As shown in Table 17, C1 requires higher LOC than
C2, which is as anticipated. Yet, their margin of difficult

Fig. 26. Changes of mean HV (y-axis) when using IBEA on all runs

with respect to the number of evaluations (x-axis) under further

investigated candidates. (a) 5AS. (b) 10AS. (c) 15AS. (d) 100AS.

PROCEEDINGS OF THE IEEE 29



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Chen et al.: Synergizing Domain Expertise With Self-Awareness in Software Systems

Fig. 27. Mean HV reduction (on all systems and runs) for

simplified algorithm under further investigated candidates.

is remarkably small (635 lines) and hence it is wiser to
choose C1 for the actual deployment.

IX. D I S C U S S I O N
A. How DBASES Can Help?

In summary, there are three aspects based on which
DBASES can help to engineering synergy between
domain expertise and self-awareness in a principled way,
as follows:

1) Encapsulates various notations and classification that
helps to understand, analyze, and reason about the
information and knowledge that the engineers have
for achieving self-awareness.

2) Visualizes the possible synergies, in a form of the
enriched self-awareness architectural patterns, to pro-
vide intuitive understanding of the candidates.

3) Provides a methodology, building on the above two
points, that offers step-by-step guidance on how to
engineering self-awareness with explicit considera-
tion of domain expertise.

It is worth noting that, although DBASES aims to help
the engineers to finally select a single candidate of synergy,
within the engineering process, it is by no mean that we
restrict them to select only one or to choose all of the
possible candidates. In this respect, DBASES is similar to
CBAM [41], which is a successful architecture selection
methodology that also helps to reveal and quantify the
cost, benefit, and risk of design options in software devel-
opment. CBAM also provides some visualizations similar
to the way we do, but it is irrelevant to the explicit
categories of domain expertise and their synergies to self-
awareness. In fact, the precise description of which synergy
candidate(s) chosen for implementation is irrelevant to the
point of the framework and the message of this article. Our
key point is that we have given the engineers a principled,
repeatable method for making architectural choices of can-
didate(s), and understanding the consequences of these
choices in terms of difficult and benefit, This method has

been successful in that it guided the engineers to consider
many ways of synergy that they would have otherwise
overlooked, for two reasons.

1) Taking the difficult/benefit plot in Fig. 10 as an exam-
ple, some candidates have extremely high benefits
scores whilst relatively easy to realize and hence bear
some of the highest desirability.

2) Some candidates have relatively low benefit scores
but are still quite difficult to realize, primarily due to
low proficiency. Therefore, they can be ruled out from
consideration.

It is perfectly normal that more than one candidate are
selected for further investigation and profiling, as what we
have done in the tutorial case studies. But our framework
provides such an opportunity to intuitively localize which
are the prefer ones and which candidates should be ruled
out, thereby saving the valuable human effort in investi-
gating them.

B. Threats to Applicability

When the number of possible candidate increases,
the engineers are likely overwhelmed with identifying and
discussing them all. However, the fact that there are many
combinations is not uncommon when making architec-
tural design decisions [40]; this is in fact a more general
problem in Operational Research that how can one makes
proper tradeoff decision when there is a large number of
alternatives. Visualization and quantification seem to be a
promising solution, which is what DBASES provides. In this
way, a designer can have more intuitive information on the
relative difficulty and benefits on the alternative, and thus
making informed decision.

Of course, when the number of points is too many to
conduct analysis visually, it is possible to improve DBASES
by incorporating some forms of preferences so that only a
particular region of points that is of interest can be focused.
This is, however, subject to future work.

C. Threats to External Validity

It is known that methodological work is extremely diffi-
cult to be evaluated and ensure its generality. The reported
case studies, as the name suggested, aim to replicate what
would have happen when DBASES is used in a diverse
scenarios, in which case it is likely that only some desirable
ones can be selected for further investigation while ruling
out the others which are of no interests. This is the reason
why we have chosen a subset of the candidates in the
experiments. Of course, it is indeed possible to evaluate all
of the synergy candidate, but this would consume a large

Table 17 LOC for the Second Case Study
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amount of time/resource, which we plan to investigate as
part of future work.

Another threat is related to whether the industry prac-
titioners will find that the DBASES is practical enough at
a real-world industrial scale. Indeed, while this is impor-
tant, it cannot be achieved without expensive surveying
process, which will be extremely time-consuming. There-
fore, we see this work as a first step to promote engineering
synergy between domain expertise and self-awareness, and
a more thorough evaluation with industrial stakeholders is
part of our ongoing research.

X. C O N C L U S I O N A N D F U T U R E W O R K
Architectural patterns and methodology for self-awareness
have proven to be effective in guiding the systematic
design, knowledge representation, and reasoning for soft-
ware systems that demand self-adaptation. However, when
domain expertise needs to be synergized with the capa-
bilities of self-awareness, current patterns, and methods
lack guidelines about which domain expertise can be syn-
ergized, the extents of synergy and what are the tradeoffs
involved.

This article is the first attempt that highlights the
importance of synergizing domain expertise with the
self-awareness in software systems, relying on well-defined
underlying approaches. As part of the contributions,
we present a holistic framework, dubbed DBASES, that
offers a principled guideline for the engineers to per-

form difficulty and benefit analysis for synergizing domain
expertise and self-awareness.

Using three tutorial case studies from distinct domains,
we describe how DBASES can help to assist in making
design decision on the synergy of domain expertise with
self-aware capabilities, particularly on selecting candidates
for further investigation with quantitative profiling.

The notion of synergy in DBASES is a genuine attempt
toward keeping domain experts and architects in the
loop, a branch of a larger vision that relate to keeping
“engineers-in-the-loop” for self-adaptive software systems,
in which human (i.e., software and system engineers for
our case) can control the behaviors of the underlying
algorithms and techniques that realize the self-awareness
at least to certain extents. This will consequently offer
greater intuition and transparency into the awareness
processes of the self-adaptive software system, improving
its interpretable and explainable appeal.

Drawing on the foundation provided in this article,
future research shall investigate how exactly the human
can be placed into the loop with DBASES, considering the
timeliness and reliability of their expertise. Those problems
will open up a full range of new research directions,
drawing on the findings and proposals derived from this
article. This is one of our ongoing research investigation
that is evolving into a specialized topic by its own for
the discipline of engineering self-aware and self-adaptive
software systems.
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