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Correlation for permutations

J. Robert Johnson∗ Imre Leader† Eoin Long‡

April 1, 2020

Abstract

In this note we investigate correlation inequalities for ‘up-sets’ of
permutations, in the spirit of the Harris–Kleitman inequality. We fo-
cus on two well-studied partial orders on Sn, giving rise to differing no-
tions of up-sets. Our first result shows that, under the strong Bruhat
order on Sn, up-sets are positively correlated (in the Harris–Kleitman
sense). Thus, for example, for a (uniformly) random permutation π,
the event that no point is displaced by more than a fixed distance d
and the event that π is the product of at most k adjacent transpo-
sitions are positively correlated. In contrast, under the weak Bruhat
order we show that this completely fails: surprisingly, there are two
up-sets each of measure 1/2 whose intersection has arbitrarily small
measure.

We also prove analogous correlation results for a class of non-
uniform measures, which includes the Mallows measures. Some ap-
plications and open problems are discussed.

1 Introduction

Let X = {1, 2, . . . , n} = [n]. A family F ⊂ P(X) = {A : A ⊂ X} is an
up-set if given F ∈ F and F ⊂ G ⊂ X then G ∈ F . The well-known
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and very useful Harris–Kleitman inequality [7, 9] guarantees that any two
up-sets from P(X) are positively correlated. In other words, if A,B ⊂ P(X)
are both up-sets then

|A ∩ B|
2n

≥ |A|
2n
× |B|

2n
.

The result has been very influential, and was extended several times to cover
more general contexts [6, 8, 1]. However, for the most part, these results tend
to focus on distributive lattices (such as P(X)) and it is natural to wonder
whether correlation persists outside of this setting.

In this note we aim to explore analogues of the Harris–Kleitman inequality
for sets of permutations. There are two particularly natural notions for what
it means for a family of permutations to be an up-set here, and the level
of correlation that can be guaranteed in these settings turns out to differ
greatly.

We write Sn for the set of all permutations of [n], which throughout the
paper we regard as ordered n-tuples of distinct elements of [n]. That is, if
a ∈ Sn then a = (a1, . . . , an) where {ak}k∈[n] = [n]. Given a ∈ Sn and
i ∈ [n], we write pos(a, i) for the position of i in a, i.e. pos(a, i) = k if
ak = i. Given 1 ≤ i < j ≤ n, the pair {i, j} is said to be an inversion in a if
pos(a, i) > pos(a, j). We will write inv(a) for the set of all inversions in a.
A pair {i, j} ∈ inv(a) is adjacent in a if pos(a, i) = pos(a, j) + 1.

Definition. Given a family of permutations A ⊂ Sn, we say that:

(i) A is a strong up-set if given a ∈ A, any permutation obtained from a
by swapping the elements in a pair {i, j} ∈ inv(a) is also in A.

(ii) A is a weak up-set if given a ∈ A, any permutation obtained from a by
swapping the elements in an adjacent pair {i, j} ∈ inv(a) is also in A.

We remark that both strong and weak up-sets have natural interpretations
in the context of posets (see Chapter 2 of [4]). Given a,b ∈ Sn write a ≤s b if
b can be reached from a by repeatedly swapping inversions. We write a ≤w b
if b can be reached from a by repeatedly swapping adjacent inversions. These
relations give well-studied partial orders, known as the strong Bruhat order
and the weak Bruhat order respectively. A (strong or weak) up-set is then
simply a family which is closed upwards in the corresponding order1.

1Note that this is in agreement with the usual notion of an up-set in P(X), starting
from the poset

(
P(X),⊆

)
.
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123

213

231

321

312

132

The weak order for n = 3

123

213

231

321

312

132

The strong order for n = 3

It is clear that every strong up-set is also a weak up-set, but the opposite
relation is not true. For i, j ∈ [n] let Uij = {a ∈ Sn : i occurs before j in a}.
If i < j, then Uij is a weak up-set but not a strong up-set (except U1n). For
example, when n = 3, the family U12 = {123, 132, 312} is a weak up-set but
not a strong up-set (because 213 differs from 312 by swapping 2 and 3 into
increasing order but 213 6∈ U12).

Our first result is that strong up-sets are positively correlated in the sense
of Harris–Kleitman. That is, if A,B ⊂ Sn are strong up-sets then

|A ∩ B|
n!

≥ |A|
n!
× |B|

n!
.

As we will also consider non-uniform measures, we phrase this in a more
probabilistic way. We will say that a probability measure µ on Sn is positively
associated (for the strong order) if µ(A∩B) ≥ µ(A) · µ(B) for all strong up-
sets A and B.

Theorem 1. The uniform measure µ(A) = |A|
n!

on Sn is positively associated
(for the strong order).

For weak up-sets the situation is more complicated. We saw that both U12
and U23 are weak up-sets and each has size n!/2. But U12 ∩ U23 is the family
of permutations in which 1, 2, 3 occur in ascending order. So, for n ≥ 3 we
have

|U12 ∩ U23|
n!

=
1

6
<

1

4
=
|U12|
n!
× |U23|

n!
.

A plausible guess might be that every two up-sets A and B with size n!/2
achieve at least this level of correlation. Surprisingly, this turns out to be far
from the truth; such an A and B can be almost disjoint.

Theorem 2. Let 0 < α, β < 1 be fixed. Then there are weak up-sets A,B ⊂
Sn with |A| = bαn!c, |B| = bβn!c and |A∩B| = max(|A|+|B|−|Sn|, 0)+o(n!).
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The correlation given in Theorem 2 is (essentially) minimal, since any
two families A,B ⊂ Sn satisfy |A ∩ B| ≥ max

(
|A|+ |B| − |Sn|, 0

)
.

Theorem 2 shows in quite a strong sense that the uniform measure on
Sn is not positively associated under the weak order. Our next result will
prove positive association for a wider collection of measures under the strong
order, giving a different generalisation of Theorem 1.

Before describing these measures, we first give an alternative representa-
tion of elements of Sn (essentially the Lehmer encoding of permutations –
see Chapter 11.4 of [10]). Given a ∈ Sn we can associate a vector f(a) =
(f1, . . . , fn) ∈ Gn := [1]× [2]× · · · [n], with

fj := |{i ∈ [j] : pos(a, i) ≤ pos(a, j)}|.

In other words, fj describes where element j appears in the n-tuple a in
relation to the elements from [j]. This gives a bijection between Sn and Gn,
and our positively associated measures on Sn are built from this connection.

Definition. Let X1, . . . , Xn be independent random variables, where each
Xk takes values in [k]. The independently generated measure µ defined by
{Xk}k∈[n] is the following probability measure on Sn: given a ∈ Sn we have

µ(a) :=
∏
k∈[n]

P
(
Xk = f(a)k

)
.

We simply say that µ is independently generated if this holds for some such
collection of {Xk}k∈[n].

Our second positive result applies to independently generated measures.

Theorem 3. Every independently generated probability measure on Sn is
positively associated.

We note that the uniform measure on Sn is independently generated,
taking Xk to simply be uniform on [k]. Thus Theorem 3 implies Theorem 1.

We note that one special case of an independently generated measure
is the Mallows measure [11]. Recalling the definition of inv(a) above, the
Mallows measure with parameter 0 < q ≤ 1 is defined by setting

µ(a) ∝ q| inv(a)|.
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That is, µ(a) =
(∑

a∈Sn
q| inv(a)|

)−1 · q| inv(a)|.
Our results in fact go beyond independently generated measures, and it

turns out that here a key idea is a notion of up-set that sits ‘between’ the
weak and strong up-sets above. This notion, which we call ‘grid up-sets’
(defined in Section 2), provides an environment that is suitable for FKG-like
inequalities. This approach will allow us to strengthen Theorem 3 to apply
to measures satisfying more general conditions.

Before closing the introduction, we note that while we have stated our
results for up-sets, it is easy to obtain equivalent down-set versions of Theo-
rems 1–3 (for example, see Chapter 19 of [5]). These follow by noting that a
set A in a partial order (P,<) is an up-set if and only if Ac = P \A is a down-
set. Indeed, if µ is a probability measure on P and µ(A ∩ B) ≥ µ(A) · µ(B)
then we obtain the complementary inequality

µ(Ac ∩Bc) = 1− µ(A)− µ(B) + µ(A ∩B) ≥ 1− µ(A)− µ(B) + µ(A) · µ(B)

= µ(Ac) · µ(Bc).

The plan of the paper is as follows. In Section 2 we prove our positive
association results. Here we give a self-contained proof of Theorem 3. We
also introduce grid up-sets and use them to extend Theorem 3. In Section 3
we prove Theorem 2, constructing weak up-sets with bad correlation prop-
erties. Section 4 gives some applications of our main results, to families of
permutations defined with bounded ‘displacements’, sequential domination
properties, as well as to left-compressed set systems. Finally, in Section 5,
we raise some questions and directions for further work.

2 Correlation for strong up-sets

In this section we will prove Theorem 3. As noted in the introduction, the
uniform case is an immediate corollary (Theorem 1). The proof will use
induction on n. To relate a family of permutations of [n] with a family of
permutations of some smaller ground set, we ‘slice’ according to position of
element n. Given a family A ⊂ Sn and k ∈ [n] let Ak ⊂ Sn−1 denote those
permutations obtained by deleting the appearance of element ‘n’ from a ∈ A
with pos(a, n) = k. That is:

Ak :=
{

(a1, a2, . . . , an−1) ∈ Sn−1 : (a1, . . . , ak−1, n, ak, . . . , an−1) ∈ A
}
.
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In the next simple lemma we collect two properties of the slice operation
which will be useful later.

Lemma 4. If A ⊂ Sn is a strong up-set and the slices A1,A2, . . . ,An ⊂ Sn−1
are defined as above then:

(i) Ak is a strong up-set for all k ∈ [n], and

(ii) A1 ⊂ A2 ⊂ A3 · · · ⊂ An.

Proof. Part (i) is immediate. To see (ii), note that if a ∈ Ak then we have
(a1, . . . , ak−1, n, ak, . . . , an−1) ∈ A. Now, as A is a strong up-set and n > ak,
the pair {ak, n} ∈ inv(a) and we find (a1, . . . , ak, n, ak+1, . . . , an−1) ∈ A,
giving a ∈ Ak+1.

We will also need the following simple and standard arithmetic inequality,
which will be used to relate the conditional probabilities of the slices in Sn−1
to probabilities in Sn. We provide a proof for completeness.

Lemma 5. Let u1, . . . , un, v1, . . . , vn, t1, . . . , tn ∈ [0,∞) with u1 ≤ . . . ≤ un,
v1 ≤ . . . ≤ vn and

∑n
k=1 tk ≤ 1. Then

n∑
k=1

tkukvk ≥

(
n∑
k=1

tkuk

)(
n∑
k=1

tkvk

)
.

Proof. For convenience set u0 = v0 = 0. Then, for all k ∈ [n] set xk =
uk − uk−1 and yk = vk − vk−1. Note that the conditions on uk and vk give
xk, yk ≥ 0. Now,

n∑
k=1

tkukvk =
n∑
k=1

tk(x1 + · · ·+ xk)(y1 + · · ·+ yk) =
∑
i,j

ri,jxiyj,

where

ri,j =

{
ti + · · ·+ tn if i ≥ j,
tj + · · ·+ tn if i ≤ j.

Similarly,(
n∑
k=1

tkuk

)(
n∑
`=1

t`v`

)
=

(
n∑
k=1

tk
( k∑
i=1

xi
))( n∑

`=1

t`
(∑̀
j=1

yj
))

=
∑
i,j

si,jxiyj,

where si,j = (ti + · · · + tn)(tj + · · · + tn). As tk ≥ 0 for all k ∈ [n] and∑n
k=1 tk ≤ 1, we see that ri,j ≥ si,j for all i, j and the result follows.
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Proof of Theorem 3. We wish to show that if µ is an independently generated
probability measure on Sn and A,B ⊂ Sn are strong up-sets in Sn then
µ(A∩B) ≥ µ(A) ·µ(B). We will prove this by induction on n. The statement
is trivial for n = 1. Assuming that the statement holds for n − 1, we will
prove it for n.

To begin, note that as µ is independently generated on Sn, it is defined by
independent random variables {Xi}i∈[n]. Take ν to denote the independently
generated measure on Sn−1 defined by the independent random variables
{Xi}i∈[n−1]. By definition of µ, if a = (a1, . . . , an) ∈ Sn with ak = n then
setting a[n−1] := (a1, . . . , ak−1, ak+1, . . . , an) ∈ Sn we have

µ(a) = ν(a[n−1]) · P(Xn = k).

It follows that given any family F ⊂ Sn we have µ(F|Xn = k) = ν(Fk).
Note that the measure ν does not depend on k, which is important below.

With this in hand, suppose that A,B ⊂ Sn are strong up-sets. Then

µ
(
A ∩ B

)
=
∑
k∈[n]

P(Xn = k)µ
(
A ∩ B|Xn = k

)
=
∑
k∈[n]

P(Xn = k)ν
(
(A ∩ B)k

)
,

where the second equality follows by the previous paragraph. Clearly we
have (A ∩ B)k = Ak ∩ Bk. Moreover, as both Ak and Bk are strong up-sets
by Lemma 4 (i) and ν is independently generated, by induction we have
ν(Ak ∩ Bk) ≥ ν(Ak) · ν(Bk). Applying this above gives

µ(A ∩ B) ≥
∑
k∈[n]

P(Xn = k) · ν(Ak) · ν(Bk) =
∑
k∈[n]

tkukvk,

where tk = P(Xn = k), uk = ν(Ak) and vk = ν(Bk). Note now from Lemma
4 (ii) that we have u1 ≤ . . . ≤ un, v1 ≤ . . . ≤ vn and

∑
k∈[n] tk = 1. Thus the

hypothesis of Lemma 5 applies, and this lemma gives

µ(A ∩ B) ≥
∑
k∈[n]

tkukvk ≥
(∑
k∈[n]

tkuk

)(∑
k∈[n]

tkvk

)
=
(∑
k∈[n]

P(Xn = k)ν(Ak)
)(∑

k∈[n]

P(Xn = k)ν(Bk)
)

= µ(A) · µ(B).

This completes the proof of the theorem.
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In contrast to this self-contained proof, our second proof will use the
machinery of the FKG inequality in the following form.

Theorem 6 (FKG inequality [6]). Let L be a finite distributive lattice and
let µ be a probability measure on L satisfying

µ(x ∧ y) · µ(x ∨ y) ≥ µ(x) · µ(y).

for all x, y ∈ L. Then any up-sets A,B ⊂ L satisfy µ(A∩B) ≥ µ(A) · µ(B).

To make use of Theorem 6 recall that the permutations Sn are in one-
to-one correspondence with elements of the grid Gn := [1] × [2] × · · · × [n],
where a ∈ Sn is indentified with f(a) ∈ Gn. Using this correspondence
we will transfer the ‘grid’ partial order ≤g on Gn to Sn, where f ≤g g for
f ,g ∈ Gn if fi ≤ gi for all i ∈ [n].

Definition. The grid order ≤g on Sn is given by defining a ≤g b if f(a) ≤g
f(b) when viewed as elements of Gn. A family A ⊂ Sn is a grid up-set if
whenever a ∈ A and b ∈ Sn with a ≤g b then b ∈ A.

We now use the FKG inequality to Gn to give a second proof of Theorem
3. In fact this approach strengthens the result in two ways: it applies to grid
up-sets rather than just strong up-sets, and it applies to measures satisfying
a more general FKG-type condition.

Let a,b ∈ Sn. As Gn is a distributive lattice we can define a ∨ b and
a∧b in Sn in natural way: let a∨b, a∧b be the unique elements of Sn with:

f(a ∨ b)k = max
{
f(a)k, f(b)k

}
; f(a ∧ b)k = min

{
f(a)k, f(b)k

}
.

Theorem 7. Suppose that µ is a probability measure on Sn with

µ(a ∨ b) · µ(a ∧ b) ≥ µ(a) · µ(b) (1)

for all a,b ∈ Sn. Then any grid up-sets A,B ⊂ Sn satisfy µ(A ∩ B) ≥
µ(A) · µ(B).

Proof of Theorem 7. Transfer µ from Sn to Gn, by setting µ(f(a)) = µ(a)
for all a ∈ Sn. As f : Sn → Gn is a bijection this defines µ on Gn. By choice
of the operations ∨ and ∧ on Sn above, (1) implies that

µ(f ∨ g) · µ(f ∧ g) ≥ µ(f) · µ(g)

for all f ,g ∈ Gn. The result now follows by applying Theorem 6 to Gn.
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To complete our second proof of Theorem 3, by Theorem 7, it is enough
to show that (i) every strong up-set is a grid up-set and (ii) that (1) holds for
independently generated measures. This is content of the next two lemmas.

Lemma 8. If a,b ∈ Sn with a ≤g b then a ≤s b. Consequently, every
strong up-set in Sn is also a grid up-set.

Proof. Suppose that a,b ∈ Sn where (a,b) is a covering relation in the grid
order. That is, there is i ∈ [n] with f(b)i = f(a)i + 1 and f(a)j = f(b)j for
all j 6= i. It suffices to show that a ≤s b by transitivity, since every relation
in ≤g can be expressed as a sequence of covering relations.

Let pos(a, i) = k and take ` > k minimal so that pos(a, j) = ` for some
j < i; such a choice of ` must exist since (a,b) is a covering relation with
f(b)i = f(a)i + 1. It is clear that a and b differ only in position k and `,
where ak = b` = i and a` = bk = j. Thus {i, j} ∈ inv(a) and swapping these
entries we obtain b, i.e. a ≤s b.

Lastly, if A is a strong up-set with a ∈ A and a ≤g b then a ≤s b, and
so b ∈ A. Thus A is a grid up-set, as required.

Lemma 9. Inequality (1) holds for every independently generated probability
measure µ on Sn.

Proof. Suppose that µ is an independently generated probability measure on
Sn, defined by the independent random variables {Xk}k∈[n]. Then for every
a ∈ Sn we have

µ(a) =
∏
k∈[n]

P
(
Xk = f(a)k

)
.

Then given a,b ∈ Sn and a ∨ b and a ∧ b as above, we have

µ(a ∨ b) · µ(a ∨ b) =
∏
k∈[n]

[
P
(
Xk = max(f(a)k, f(b)k)

)
× P

(
Xk = min(f(a)k, f(b)k)

)]
=
∏
k∈[n]

(
P
(
Xk = f(a)k

)
· P
(
Xk = f(b)k

))
= µ(a) · µ(b).

Thus (1) holds with equality for all a,b ∈ Sn, as required.
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Above we defined the grid order on Sn in such a way that it was isomorphic
to the usual product ordering on Gn. Analysing the proof of Lemma 8 more
carefully gives an alternative description of the grid order on Sn in terms
of certain switches. Given 1 ≤ i < j ≤ n, recall that {i, j} is an inversion
in a if pos(a, j) = k < ` = pos(a, i). We will say that {i, j} is a dominated
inversion in a if additionally am ≥ i, j for all m ∈ [k, `]. Then a ≤g b if b can
be reached from a by a sequence of operations, each consisting of swapping
the elements from a dominated inversion.

The grid order for n = 3

123

213

231

321

312

132

3 No correlation for weak up-sets

In this section we construct weak up-sets which are very far from being
positively correlated. We will need the following simple concentration result.

Lemma 10. Let 0 < γ, δ, ε < 1. Let U, V ⊂ [n] with |U | = γn and |V | =
δn. Select a ∈ Sn uniformly at random and consider the random variable
N(a) := |{i ∈ U : ai ∈ V }|. Then P

(
N > (γ + ε)|V |

)
→ 0 as n→∞.

Proof. For each i ∈ [n] let 1i : Sn → {0, 1} denote the Bernoulli random
variable with 1i(a) = 1 iff ai ∈ V . Then E[1i] = |V |/n for all i ∈ [n]. Noting
that N =

∑
i∈U 1i, linearity of expectation gives E[N ] = γ|V |.

To calculate the variance of N , note that E[1i · 1j] ≤ |V |2/n2 for i 6= j.
Since N =

∑
i∈U 1i, this gives

E[N2] =
∑
i∈U

E[12
i ] +

∑
i 6=j∈U

E[1i1j] ≤ γ|V |+ γ2|V |2,

10



and so Var(N) = E[N2]−
(
E[N ]

)2 ≤ γ|V |. Chebyshev’s inequality then gives
P(N > (γ + ε)|V |) ≤ P(|N −E[N ]| ≥ ε|V |) ≤ γ/

(
ε2|V |

)
→ 0 as n→∞.

We are now ready for the proof of Theorem 2.

Proof of Theorem 2. Given 0 < α, β, ε < 1, we require to find weak up-sets
A,B ⊂ Sn for large n, which satisfy |A| ≥ αn!, |B| ≥ βn! and |A ∩ B| ≤
(max(α+ β − 1, 0) + 5ε)n!. Indeed, by deleting minimal elements from such
A and B we obtain weak up-sets of size bαn!c and bβn!c as in the theorem.

To begin, set m = d( α
α+β

)ne so that m
n−m = α

β
+ o(1). Consider the

function g : Sn → [m] where g(a) equals the number of elements from [m]
which do not appear after element m in a. That is,

g(a) :=
∣∣{i ∈ [m] : pos(a, i) ≤ pos(a,m)

}∣∣.
Noting that g is non-decreasing under switching inversions, we see that A :=
{a ∈ Sn : g(a) ≥ (1 − α)m} is a weak up-set in Sn. Also noting that the
families Li = {a ∈ Sn : g(a) = i} for i ∈ [m] partition Sn into equal-sized
sets, we obtain |A| =

∑
i∈[(1−α)m,m] |Li| ≥ αn!.

Our second family B is defined similarly. Let h : Sn → [n−m+ 1], where
h(a) equals the number of elements from [m,n] := {m,m + 1, . . . , n} which
do not appear before element m in a. That is,

h(a) :=
∣∣{i ∈ [m,n] : pos(a, i) ≥ pos(a,m)

}∣∣.
Reasoning as above, we find B := {a ∈ Sn : h(a) ≥ (1− β)(n−m+ 1)} is a
weak up-set and |B| ≥ βn!.

Having defined both families, it only remains to upper bound |A ∩ B|.
Here it is helpful to consider two further families.

• For a ∈ Sn let N1(a) :=
∣∣{k ∈ U1 : ak ∈ V1

}∣∣, where U1 = [(1−α−ε)n]
and V1 = [m]. Then E1 :=

{
a ∈ Sn : N1(a) ≥ (1− α)|V1|

}
.

• For a ∈ Sn let N2(a) :=
∣∣{k ∈ U2 : ak ∈ V2

}∣∣, where U2 = [(β + ε)n, n]
and V2 = [m,n]. Then E2 :=

{
a ∈ Sn : N2(a) ≥ (1− β)|V2|

}
.

The functions N1 and N2 are defined as in Lemma 10, and so we have
|E1|, |E2| ≤ εn!, provided n ≥ n0(α, β, ε).

We claim that every a ∈ C := (A ∩ B) \ (E1 ∪ E2) satisfies

pos(a,m) ∈ I :=
[
(1− α− ε)n, (β + ε)n

]
. (2)

11



Note that this will complete the proof of the theorem, since it gives

|A∩B| ≤ |C|+ |E1|+ |E2| ≤
( |I|+ 1

n

)
n!+2εn! ≤

(
max(α+β−1, 0)+5ε

)
n!.

To prove the claim, take a ∈ A ∩ B. Note that if pos(a,m) < (1 − α − ε)n
then a ∈ E1 since

N1(a) = |{k ∈ U1 : ak ∈ V1}| = |{i ∈ [m] : pos(a, i) ≤ (1− α− ε)n}|
≥ g(a) ≥ (1− α)m = (1− α)|V1|,

The first equality is by definition of N1, the second equality holds by double
counting, the first inequality follows from by definition of g and the fact that
pos(a,m) ≤ (1− α− ε)n, and the final inequality holds as a ∈ A.

Similarly, if pos(a,m) > (β + ε)n then a ∈ E2, since

N2(a) = |{k ∈ U2 : ak ∈ V2}| = |{i ∈ [m,n] : pos(a, i) ≥ (β + ε)n}|
≥ h(a) ≥ (1− β)(n−m+ 1) = (1− β)|V2|.

Again, the first two equalities hold by definition of N2 and by double counting
respectively. The first inequality follows from the definition of h and the fact
that pos(a,m) > (β + ε)n, and the final inequality holds as a ∈ B.

We have shown that if a ∈ (A ∩ B) \ (E1 ∪ E2) = C then a satisfies (2)
which, as described above, completes the proof.

4 Examples and an application

Several natural families of permutations enjoy the property of being strong
up-sets. In the first subsection we present a number of examples of these.
Together these provide a wide variety of families for which positive correla-
tion results can be deduced from Theorem 1 and Theorem 3. For instance,
we shall see that for a random permutation a ∈ Sn (chosen uniformly or
following an independently generated measure), the event that no element is
displaced by more than a fixed distance d by a and the event that a contains
at most k inversions are positively correlated. Likewise, each of these events
is positively correlated with the event that at least u elements from {1, . . . , v}
occur among the first w positions in a.

In the second subsection we will give an application of Theorem 1 to the
correlation of left-compressed set families.
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4.1 Examples of strong up-sets

Layers

For each k ∈
[
0,
(
n
2

)]
let Lk := {a ∈ Sn : | inv(a)| = k}. Then it is easily

seen that the family L≥k := ∪i≥kLi is a strong up-set. In words, this is the
set of all permutations which can be written as a product of at most

(
n
2

)
− k

adjacent transpositions.

Band-like permutations

Our next example is based on considering how much each element is moved
by a permutation. Given a permutation a ∈ Sn and an element i ∈ [n], the
displacement of i in a is given by disp(a, i) := |i − pos(a, i)|. We will say a
is a t-band permutation if disp(a, i) ≤ t for all 1 ≤ i ≤ n.

Lemma 11. The t-band permutations in Sn form a strong up-set.

Proof. Suppose that a ∈ Sn is a t-band permutation and that {i, j} ∈ inv(a).
Let b be the permutation obtained from a by swapping i and j. It is clear
that disp(a, k) = disp(b, k) for all k /∈ {i, j}. A simple case check also gives

(a) disp(b, i) + disp(b, j) ≤ disp(a, i) + disp(a, j), and

(b) | disp(b, i)− disp(b, j)| ≤ | disp(a, i)− disp(a, j)|.

As a is a t-band permutation we have disp(a, i), disp(a, j) ≤ t and so it
follows that disp(b, i), disp(b, j) ≤ t, i.e. b is also a t-band permutation.

In fact this argument shows rather more. Given a ∈ Sn, the displacement
list d(a) is the vector given by:

d(a) :=
(

disp(a, 1), . . . , disp(a, n)
)
.

Now, given a set of vectors D ⊂ {0, 1, . . . , n − 1}n, we can form the family
of permutations A(D) := {a ∈ Sn : d(a) ∈ D} ⊂ Sn. That is, those
permutations in Sn whose displacement lists lie in D.

Definition. A set of permutations A is said to be band-like if A = A(D)
for some set D ⊂ {0, 1, . . . , n− 1}n which is closed under:

• reordering the entries,
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• decreasing any entry,

• replacing two entries of an element of D with new entries so that neither
the sum or difference of these entries increases.

The argument of Lemma 11 shows that:

Lemma 12. Any band-like set of permutations in Sn is a strong up-set.

In addition to t-band permutations, examples of band-like sets include
{a ∈ Sn :

∑n
i=1 disp(a, i) ≤ t} and {a ∈ Sn :

∑n
i=1 disp(a, i)2 ≤ t}.

Sequentially dominating permutations

Our final example arises from assigning weight and thresholds as follows.
Given a sequence of real weights w = (w1, . . . , wn) with w1 ≥ w2 ≥ · · · ≥ wn
and thresholds t = (t1, . . . , tn) we consider the family

D(w, t) :=
{

a = (a1, . . . , an) ∈ Sn :
m∑
i=1

wai ≥ tm for all m
}
.

Since the weights are decreasing, such families are closed under swapping
inversions and so form strong up-sets.

Some common families arise in this way, including the families of permu-
tations which satisfy ‘at least a elements from {1, . . . , b} occur among the
first c positions’. Indeed, such families can be written as D(w, t), where

w = (1, . . . , 1︸ ︷︷ ︸
b

, 0, . . . , 0︸ ︷︷ ︸
n−b

),

with ti = a if i = c, and ti = 0 otherwise.

Many specific examples follow from these general families. For instance,

Corollary 13. Let a be a random permutation chosen under an indepen-
dently generated probability measure on Sn. Then, for any k, l,m, u, v, w ∈ N,
any two of the following events are positively correlated:

• There are at most k inversions in a,

• No element is displaced by more than l by a,
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• The sum over all elements of the displacements in a is at most m,

• The first w positions of a contain at least u of the elements {1, . . . , v}.

Amusingly, the families of permutations constructed in the proof of The-
orem 2 (our non-correlation result for weak up-sets) can be described using
weights in a superficially similar way to a sequentially dominated family.
Given a non-increasing sequence of weights and any thresholds, we may de-
fine the set of all permutations satisfying that the sum of all entries up to
and including element m is at least tm for all m. More precisely,

D′(w, t) :=
{

a = (a1, . . . , an) ∈ Sn :
m∑
i=1

wai ≥ tam for all m
}
.

In general this is not an up-set in the strong or weak sense. However, if we
take weights u1 = u2 = . . . uk = 1, uk+1 = · · · = un = 0 with threshold
sk = k/2 and weights v1 = v2 = . . . vk = 0, vk+1 = · · · = vn = −1 with
threshold tk = −k/2 then the two families D′(u, s) and D′(v, t) are precisely
those constructed in the proof of Theorem 2.

4.2 Maximal chains and left-compressed up-sets

A family of sets A ⊂ P(X) is left-compressed if for any 1 ≤ i < j ≤ n,
whenever A ∈ A with i 6∈ A, j ∈ A we also have (A \ {j}) ∪ {i} ∈ A. See
[5] for background and a number of useful applications of compressions. It
is not hard to show that if A and B are left-compressed r-uniform families
(that is, each consists of r-element subsets of [n]) then they are positively
correlated in the sense that

|A ∩ B|(
n
r

) ≥ |A|(n
r

) × |B|(n
r

) .
However, in general left-compressed families may not be positively correlated;
indeed, they may simply be disjoint if the families have different sizes. Below
we use Theorem 1 to give a natural measure of the similarity of non-uniform
families from which positive correlation for left-compressed families follows.

A maximal chain in P(X) is a nested sequence of sets C0 ⊂ C1 ⊂ · · · ⊂ Cn
with Ci ⊂ X and |Ci| = i. A permutation a of X can be thought of as a
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maximal chain in P(X) by identifying a with the family of sets forming initial
segments from a; that is setting Ci := {a1, . . . , ai} for all i ∈ [0, n].

If A is a family of sets, we write c(A) for the number of maximal chains
which contain an element of A. Note that if A is r-uniform then the prob-
ability that a uniformly random maximal chain meets A is proportional to
|A| and so in this case c(A)/n! = |A|/

(
n
r

)
. If A and B are families of sets

then we write c(A,B) for the number of maximal chains that meet both A
and B. We will use c(A) as our measure of the size of A and c(A,B) as our
measure of the intersection (or similarity) of A and B. With this notion, the
following Theorem can be interpreted as saying that left-compressed families
are positively correlated.

Theorem 14. If A and B are left-compressed families from P(X) then

c(A,B)

n!
≥ c(A)

n!
× c(B)

n!
.

Proof. Let C(A) denote the set of all permutations of X which correspond
to chains meeting A and C(B) be the set of all permutations of X which
correspond to chains meeting B. Since A and B are left-compressed C(A)
and C(B) are strong up-sets in Sn. Applying Theorem 1 gives the result.

We remark that while the functional c(A)/n! is thought of as a measure
A, it is not a probability measure on P(X) since additivity fails (e.g. consider
the partition P(X) = ∪i

(
X
i

)
).

A number of further variations on this result are possible (e.g. if A
is left-compressed and B is right-compressed then A and B are negatively
correlated). For example, given a family F ⊂ P(X) and a maximal chain C,
let NF(C) := |C ∩ F|. Identifying permutations a ∈ Sn with maximal chains
as above, we obtain the following.

Theorem 15. Let A,B ⊂ P(X) be left-compressed families and suppose that
C is a maximal chain from P(X) chosen uniformly at random. Then for any
k, l we have

P
(
NA(C) ≥ k,NB(C) ≥ l

)
≥ P

(
NA(C) ≥ k

)
· P
(
NB(C) ≥ l

)
.

5 Open questions

One general question is to determine which other measures on Sn satisfy
positive association. A particularly appealing class of measures to consider
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here are those given by a 1-dimensional spatial model. Spatial models of this
kind are much studied in statistical physics. See [3, 2] for examples of such
results.

Let x(1), x(2), . . . , x(n) ∈ R with x(1) ≤ x(2) ≤ · · · ≤ x(n). We will
regard these as n particles placed in increasing order on the real line. A per-
mutation a = (a1, . . . , an) ∈ Sn gives rise to a permutation of these particles.
In this model, any point x(i) is displaced by |x(i)− x(pos(a, i))|. The total
displacement is

∑
i |x(i)−x(pos(a, i))|. We define the associated measure on

Sn by
µ(a) ∝ q

∑
i |x(i)−x(pos(a,i))|.

More generally, given a non-decreasing function V : R+ → R+, define

µ(a) ∝ q
∑

i V (x(i)−x(pos(a,i))).

These definitions are special cases of the well-studied Boltzmann measures
in which points are picked in Rd and more general functions in the exponent
of q are allowed.

We suspect that all measures defined in this way have positive association.
However we do not have a proof of this, even in special cases. The following
three cases all seem interesting.

Question 1 (Equally spaced points). Is the measure µ defined by

µ(a) ∝ q
∑

i |i−pos(a,i)|

positively associated?

This corresponds to taking x(i) = i and V (u) = |u|.

Question 2 (Middle gap). Let m(a) = |{k : 1 ≤ k ≤ n/2, n/2 < ak ≤ n}|
be the number of elements which are moved ‘across the middle gap’ by a. Is
the measure µ defined by

µ(a) ∝ qm(a)

positively associated?

This corresponds to taking x(i) = 0 for i ∈ [n
2
] and x(i) = 1 if i ∈ [n

2
+1, n]

and V (u) = 1 if u < 0 and V (u) = 0 otherwise.
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Question 3 (Fixed points). Let f(a) = |{k : ak = k}| be the number of fixed
points of a. Is the measure µ defined by

µ(a) ∝ qn−f(a)

positively associated?

This corresponds to taking any distinct {x(i)}i∈[n] and setting V (0) = 0
and V (u) = 1 otherwise.

Lastly, the correlation behaviour seen in the strong and weak orders are
extreme, with the first displaying Harris–Kleitman type correlation (Theorem
1) and the second displaying worst possible correlation (Theorem 2). It seems
interesting to understand how correlation behaviour emerges between these
extremes.

Definition. Given t ∈ [n], a family of permutations A ⊂ Sn is a t-up-set if
given a ∈ A, any permutation obtained from a by swapping the elements in
a pair {i, j} ∈ inv(a) with | pos(a, i)− pos(a, j)| ≤ t is also in A.

Note that if t = 1 then a t-up-set is simply a weak up-set. On the other
hand, for t = n then a t-up-set is a strong up-set. Thus we can think of t-
up-sets as interpolating between the weak and strong notions as we increase
t ∈ [n]. It seems natural to investigate the correlation behaviour of t-up-sets.

Question 4 (Correlation for t-up-sets). Given α > 0, does there exist β > 0
such that the following holds: given n ∈ N and t = dαne, any two t-up-sets
A,B ⊂ Sn with |A|, |B| ≥ αn! satisfy |A ∩ B| ≥ βn!.
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