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Multi-objective Co-optimization of Cooperative
Adaptive Cruise Control and Energy Management

Strategy for PHEVs
Yinglong He, Quan Zhou, Michail Makridis, Konstantinos Mattas, Ji Li, Huw Williams, and Hongming Xu

Abstract—Electrification, automation, and connectivity in the
automotive and transport industries are gathering momentum,
but there are escalating concerns over their need for
co-optimization to improve energy efficiency, traffic safety, and
ride comfort. Previous approaches to these multi-objective
co-optimization problems often overlook trade-offs and scale
differences between the objectives, resulting in misleading
optimizations. To overcome these limitations, this study
proposes a Pareto-based framework that demonstrably
optimizes the system parameters of the cooperative adaptive
cruise control (CACC) and the energy management strategy
(EMS) for PHEVs. The high-level Pareto knowledge assists in
finding a best-compromise solution. The results of this work
suggest that the energy and the comfort targets are
harmonious, but both conflict with the safety target. Validation
using real-world driving data shows that the Pareto optimum
for CACC and EMS systems, relative to the baseline, can
reduce energy consumption (by 7.57 %) and tracking error (by
68.94 %), while simultaneously satisfying ride comfort needs.
In contrast to the weighted-sum method, the proposed Pareto
method can optimally balance and scale the multiple objective
functions. In addition, sensitivity analysis proves that the
vehicle reaction time impacts significantly on tracking safety,
but its effect on energy saving is trivial.

Index Terms—Cooperative adaptive cruise control, energy
management strategy, multi-objective co-optimization, tracking
safety, energy consumption.

I. INTRODUCTION

ENERGY, environmental and safety challenges are
exacerbated by rising transport demand [1]. To tackle

these problems, vehicle electrification, automation and
connectivity are gathering momentum worldwide [2]–[4], but
there are escalating concerns over their synergistic impacts
on the control design of vehicles that fuse mechatronics with
new informatics, such as plug-in hybrid electric vehicles
(PHEVs) with automated driving systems.

PHEVs are widely promoted as an efficient and clean
solution that combines an internal combustion engine (ICE)
with an electric motor and a large rechargeable battery. This
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hybrid powertrain enables all-electric driving for extended
periods of time and overcomes the concern of range anxiety
[5], [6]. Intensive efforts on PHEVs have developed energy
management strategies (EMS) for coordinating the power
split in a fuel-efficient way [7]. However, the performance of
EMS is often compromised by the complexity and
uncertainty of driving conditions. It is therefore desirable to
synergize internal powertrain coordination and external
driving behaviour [8]. Meanwhile, the longitudinal driving
task gradually shifts from the human driver to in-vehicle
automated systems. For example, the radar-aided adaptive
cruise control (ACC) and the communication-enabled
cooperative adaptive cruise control (CACC) can regulate the
vehicle speed to maintain a user-specified time headway or
reach the user-desired speed [9]–[11]. These automated
driving systems are designed to improve energy efficiency,
road safety, and traffic throughput by optimizing velocity
trajectories (i.e., eco-driving), which can be integrated with
the EMS to further boost fuel economy [12]. Consequently,
the co-optimization of CACC/ACC and EMS is gaining
traction among automakers and policymakers [13].

Vehicles operate in the three longitudinal driving modes of
free-flow, car-following and platooning. Accordingly, studies
on CACC/ACC and EMS co-optimization can be divided into
the following three groups [14]:

1) Studies for free-flow scenarios [15]–[17] usually deal
with road constraints such as speed limits, traffic
lights, and road intersections. For example, a
powertrain and speed integrated control was proposed
to achieve 5.0 - 16.9 % fuel economy benefits, by
utilizing the road topography and the dynamic speed
limit [18]. Predictive energy optimization for
connected and automated PHEVs was reported to
deliver a fuel saving of 10.1 % when considering the
benefits of traffic light phasing [19].

2) Studies for car-following scenarios [20]–[22] mainly
address constraints of the movement of the preceding
vehicle, to improve fuel economy, tracking safety, etc.
For instance, a predictive car-following power
management system for PHEVs was demonstrated to
simultaneously coordinate battery state-of-charge (SoC)
planning, inter-vehicle spacing, and power split in a
cost-optimal manner [23]. Adopting similar techniques,
a deep fusion method with ACC and EMS claimed to
reduce fuel consumption by 5 % [24].
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3) Studies for platooning scenarios [25], [26] are
primarily concerned with interactions between multiple
vehicles. In a study on integrated optimization of
internal powertrain energy management and external
driving coordination for multiple hybrid electric
vehicles (HEVs), the optimal results indicated a fuel
saving of 17.9 % compared with their baseline
counterparts [27]. A two-layer hierarchical control
system was constructed for a set of connected HEVs
on a hilly terrain [28]. The top layer was tasked with
cooperative driving and battery SoC planning; the
bottom layer determined the power split and the gear
shifting strategy.

From the perspective of objective functions, prior studies on
CACC/ACC and EMS co-optimization problems are classified
into the following two types:

1) Some studies investigate single-objective
co-optimization [29], [30], which generally minimizes
fuel consumption by optimizing speed trajectory and
power split. However, this can only satisfy the fuel
economy needs, neglecting comprehensive vehicle
performance improvements.

2) Other studies highlight multi-objective co-optimization
[22]–[24], addressing various needs including energy
efficiency, tracking safety, ride comfort, traffic
throughput, etc., especially in car-following and
platooning scenarios. Previous studies converted the
original CACC/ACC and EMS co-optimization with
multiple objectives into a single-objective optimization
problem by weighted-sum methods. For example, in a
nonlinear model predictive control (NMPC) system,
the safety and the energy targets are integrated into a
cost function using a two-dimensional (2D) weight
vector [21].

The weighted-sum methods cannot, however, determine
the weights and the normalization factors that can optimally
balance and scale the multiple objective functions for a
problem with little or no information [31], which can cause
misleading optimization results. For example, in a study on
multi-objective ACC and EMS co-optimization [32], the
weighted-sum method led to an over-optimized fuel economy
(a fuel saving of 7.07 %), which in turn compromised other
attributes such as tracking safety (a tracking error increase of
10.5 %).

To overcome these limitations, we propose a Pareto-based
framework dealing with the multi-objective CACC and EMS
co-optimization for PHEVs. The high-level knowledge (e.g.,
trade-offs and scale differences between objectives) of the
Pareto frontier (PF) assists in finding a best-compromise
solution. The results of this study suggest that the energy
and the comfort targets are harmonious but both conflict
with the safety target. These objective values are measured
on different scales. In the validation using real-world driving
data, the Pareto optimum for CACC and EMS systems,
compared with the baseline scheme, can reduce energy
consumption (by 7.57 %) and tracking error (by 68.94 %),
while simultaneously satisfying ride comfort needs. In

contrast to the weighted-sum method, the Pareto method can
optimally balance and scale the multiple objective functions
and thus accurately capture the decision maker’s preferences.
In addition, sensitivity analysis proves that the vehicle
reaction time impacts significantly on tracking safety, but its
effect on energy saving is trivial.

The rest of this paper is structured as follows. Section II
describes the integrated CACC and EMS control framework
as well as the augmented system dynamics for car-following
and power-split. Section III presents the multi-objective
problem and optimization methods. In Section IV,
optimization results from the Pareto and the weighted-sum
methods are compared. Section V concludes the paper by
summarizing the main findings.

II. AUGMENTED SYSTEM DYNAMICS AND INTEGRATED
CONTROL FRAMEWORK

Fig. 1 illustrates the integrated CACC and EMS control
framework as well as the augmented system dynamics for
car-following and power-split. Their mathematical models
are elaborated below.

A. Longitudinal Driving Dynamics

The longitudinal motion dynamics of the following vehicle
are described by the equations,

vf = ẋf ,

af = v̇f ,

m0af =
1

r
Td −

1

2
ρCdAfv

2
f − fm0g cos θ

−m0g sin θ,

(1)

where xf , vf and af denote the longitudinal position (m),
velocity (m/s) and acceleration (m/s2), respectively; r is the
wheel radius (m); Td represents the driving torque (N·m) on
the wheel axle; m0 is the vehicle operating mass (kg); ρ is the
air density (kg/m3); Cd stands for the air drag coefficient; Af
is the vehicle effective frontal area (m2); θ is the road slope
(rad); g is the gravitational constant (9.8 m/s2); and f is the
rolling resistance coefficient.

B. Cooperative Adaptive Cruise Control

According to CACC systems reported in previous studies
[33], [34], the acceleration demand, af , can be computed
based on the inter-vehicle spacing and the relative speed, anf ,
or on the difference between the actual speed and the
maximum safe speed, amf . Consequently, the following
vehicle adopts the more restrictive choice as follows:

af (t) = min
(
anf (t), amf (t)

)
,

anf (t) =al(t− τ) + kv

(
vl(t− τ)− vf (t− τ)

)
+ ks

(
s(t− τ)− sdes

)
,

amf (t) =
(
vmaxf − vf (t)

)
/ts,

(2)

where al and vl are the leading vehicle’s acceleration (m/s2)
and speed (m/s), respectively. τ denotes the reaction time (s)
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Fig. 1. The augmented system dynamics and the integrated control framework.

including communication, sensing and actuation delays. Here
ts represents the control sample time (0.1 s); s is the
bumper-to-bumper spacing (m); sdes is the desired
inter-vehicle spacing (m); vmaxf is the maximum safe speed
(m/s); and kv and ks are gain factors to minimize the speed
difference and the tracking error, respectively.

The desired spacing, sdes, is the maximum among the
following distance, shw, according to the time headway
setting, the safe following distance, ssafe, considering the
deceleration capabilities of the vehicles, and the minimum
allowed distance, smin, as described by:

sdes = max(shw, ssafe, smin),

shw = vf thw,

ssafe =
v2f
2

(
1

bmax
f
− 1

bmax
l

)
,

(3)

where smin is the minimum clearance (2.0 m) in the standstill
situation; thw is the system-specified time headway (s); and
bmaxl and bmaxf are negative numbers indicating the maximum
braking decelerations (m/s2) of the leader and the follower,
respectively.

The maximum safe speed vmaxf is an important constraint
for avoiding rear-end collisions when the leading vehicle
initiates emergency braking, which can be expressed as:v

max
f =

√
−2bmaxf s0,

s0 = (xl − xf − L)− vfτ − v2l
2bmax

l
,

(4)

where xl and L are the leading vehicle’s position and exterior
length, respectively.

C. Hybrid Powertrain Dynamics

Fig. 2 (left) shows the PHEV powertrain with a power-split
configuration [27]. This system divides the engine power along
two paths through a mechanical gear set; one path goes to the
generator to produce electricity while the other one drives the
wheels.

The planetary gear assembly consists of a planet carrier, a
sun gear, and a ring gear, which are connected to the

gasoline engine, the generator, and the reducer, respectively.
Their torque balance is given by

Tm = −( rr
rs+rr

)Te + 1
κc
Td,

ωm = κcωd,

Tg = −( rr
rs+rr

)Te,

ωe = ( rr
rs+rr

)ωm + ( rs
rs+rr

)ωg,

(5)

where Te, Tm, and Tg indicate torques (N·m) that are
respectively delivered from the engine, the motor and the
generator; ωe, ωm, ωg , and ωd are respectively the angular
velocities (rad/s) of the engine, the motor, the generator and
the driveline; κc is the fixed gear ratio of the reducer; and rs
and rr are respectively the radii of the sun gear and the ring
gear.

The 1.5 L gasoline engine is modeled using its empirical
performance map, as displayed in Fig. 2 (a). According to the
data in the map, the instantaneous fuel consumption rate, ṁf

(g/s), is calculated by

ṁf =
Teωe
Hvηe

, (6)

where Hv is the lower heating value (J/g) of gasoline and ηe
is the engine thermal efficiency.

The high voltage battery pack consists of lithium-ion 18650-
type cells. The battery dynamics are governed by the following
equations [35], [36]:{

Pb = VocIb − I2bRin,
˙SoC = − Ib

Qb
= −Voc−

√
V 2
oc−4RinPb

2RinQb
,

(7)

where Ib and Pb are respectively the current (A) and the power
(W) of the battery pack; Rin and Voc respectively denote the
internal resistance (Ω) and the open-circuit voltage (V), whose
dynamic characteristics are displayed in Fig. 2 (b) (assuming
batteries operate at a constant temperature of 35 ◦C); Qb is the
nominal capacity (A·s) of the battery pack. The battery SoC
is subject to the constraints (SoC ∈ [0.2, 0.8]), to ensure safe
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Fig. 2. The power-split PHEV powertrain (left) and the dynamics of the engine (a) and the battery pack (b).

battery operation and prolong its service life [37]. According
to power balance, the battery power Pb is given by

Pb =
ηκm
m

r
Tdvf − ηgTeωe −

κcrr(η
κm
m − ηg)

r(rr + rs)
Tevf , (8)

where ηm and ηg represent the efficiency factors of the motor
and the generator, respectively. The motor can either drive
the wheels (κm = −1) or charge the battery by performing
regenerative braking (κm = 1).

D. Energy Management Strategy

Charge depleting - charge sustaining (CD-CS) is a
well-proved EMS [38], taking advantage of the PHEV’s
extended all-electric (or zero-emissions) range and protecting
battery cells from overcharge or overdischarge. Moreover,
this strategy is favored by its simplicity and ease of
implementation. According to the CD-CS model defined in
our previously published study [39], the engine torque
demand, Te, is computed as a function of the engine speed,
ωe, and the battery SoC as follows:

Te(SoC, ωe) =
0, SoC ∈ [ε1, 1],

Tmaxe (ωe) · exp
(
− (SoC−ε2)2

2σ2

)
, SoC ∈ [ε2, ε1],

Tmaxe (ωe), SoC ∈ [0, ε2],

(9)

where σ is a constant factor; ε1 and ε2 are two thresholds that
are equal to 0.8 and 0.2, respectively; and Tmaxe is the full-
load torque of the engine, as shown in Fig. 2 (a). The PHEV
main specifications mentioned in this section are summarized
in Table I.

III. PROBLEM FORMULATION AND OPTIMIZATION
METHODS

Fig. 3 gives an overview of the multi-objective CACC and
EMS co-optimization problem. The decision vector (or
solution), the objective vector (or outcome) and the state
vector are exemplified in subplots. Different driving cycles

TABLE I
MAIN SPECIFICATIONS OF THE POWER-SPLIT PHEV

Parameter Value Parameter Value

m0 1350 kg r 0.28 m
Af 2.2 m2 ρ 1.225 kg/m3

Cd 0.3 f 0.021
rs 0.03 m rr 0.078 m
κc 3.9 Qb 90000 A·s

of the leading vehicle are provided for optimization and
validation purposes. The formulated optimization problem is
solved by the Pareto method or the weighted-sum method
(serving as a benchmark), by guiding a population of
candidate solutions towards better solutions that
simultaneously minimize multiple objectives.

A. Multi-objective Problem Formulation

Fig. 3 (c) indicates that the decision vector K = [kv, ks, σ]
consists of the principal control parameters in CACC and
EMS systems. kv and ks are gain factors in equation (2),
that determine the car-following behaviour; the variable, σ,
in equation (9) governs the torque (or power) split. Previous
studies [34], [39] have given the recommended value, Kbase

= [0.58, 0.10, 0.10], that is utilized as the baseline scheme in
this work.

As an image of the decision vector K through the
optimization algorithm, the objective vector J = [J1, J2, J3]
is mainly concerned with tracking safety, ride comfort, and
energy efficiency, as follows:

min
K

J1 = 1
tf

∫ tf
0
‖s(t)− sdes(t)‖2 dt,

min
K

J2 = 1
tf

∫ tf
0
‖af (t)‖2 dt,

min
K

J3 =
1

1000 tf

(∫ tf

0

ṁf (t)Hv dt

+
(
SoC(tf )− SoC(0)

)
QbVb

)
,

(10)
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Fig. 3. Multi-objective co-optimization with the Pareto method and the weighted-sum method.

where tf is the end time of the driving cycle adopted. Each
element of the objective vector is defined as follows:

1) tracking capability, J1, (m) is a 2-norm function of
tracking error [40] and an important indicator for
improving car-following safety and traffic throughput
[41].

2) ride comfort, J2, (m/s2) is defined as a 2-norm
function of the following vehicle’s longitudinal
acceleration. Although some studies utilize jerk as the
indicator of ride comfort [24], acceleration is a more
intuitive measure of the driver’s sensation when driving
on the road [32].

3) power consumption, J3, (kW) is the average power
demand to complete the driving cycle. The terms
inside the parentheses represent the total energy
consumption (J) including the consumed gasoline and
the battery charge depletion [32].

Fig. 3 (a) shows the lead vehicle’s driving cycles: 1)
5*WLTC indicates 5 consecutive repetitions of the
worldwide harmonized light vehicle test cycle; 2) 10*NEDC
means 10 consecutive repetitions of the new European
driving cycle; 3) JRC Real-world, published by the European
Commission - Joint Research Centre (JRC), is a highway
driving trajectory with varying road gradient: this field test
was conducted on a section of Autostrada A26 (Italy)
between Ispra and Vicolungo, a 40-km trip, to collect driving
data under actual traffic conditions. Among these driving
cycles, the first one (5*WLTC) is applied in the
multi-objective optimization process; the other two
(10*NEDC and JRC Real-world) are utilized to validate the
reliability and robustness of the resulting optimal solutions.

B. Multi-objective Optimization Methods

As demonstrated in Fig. 3 (d), the Pareto method and the
weighted-sum method, for solving the above optimization
problem, are two evolutionary algorithms (EAs) generating
high-quality solutions by relying on bio-inspired operators
such as mutation, crossover, and selection. However, the two

methods have different selection schemes, i.e., different
approaches to ordering the objective vectors in each
generation.

1) Pareto method: For the formulated multi-objective
CACC and EMS co-optimization problem, a single solution
that simultaneously optimizes each objective is nonexistent.
Instead, there exists a (possibly infinite) number of Pareto
optimal solutions, in which one objective cannot be
improved without degrading at least one of the other
objectives. A solution K1 is said to dominate (or Pareto)
another solution K2 (in notation, K1 � K2) if the following
conditions are met [31]:{

Ji(K
1) ≤ Ji(K2),∀ i ∈ [1, 2, 3],

Jj(K
1) < Jj(K

2),∃ j ∈ [1, 2, 3],
(11)

The solutions that are not dominated by others are called
Pareto optimal KPF . Their corresponding outcomes (or
objective vectors JPF ) are represented by a Pareto frontier
(PF). The high-level knowledge (e.g., trade-offs and scale
differences between objectives) of the Pareto set (KPF ,
JPF ) assists in finding a best-compromise solution. To find
an approximation of the entire Pareto frontier, a
non-dominated sorting genetic algorithm (NSGA-III) [42],
[43] is employed in this work.

2) Weighted-sum method: Serving as a benchmark, the
weighted-sum method integrates different objectives into a
single cost function using configurable weights. After the
scalarization, the objective vectors can be ordered as per the
composite cost value. Mathematically, the weighted-sum
method can be represented by

min
K

F =

3∑
i=1

wi
Ji(K)

ni
for wi ≥ 0 and

3∑
i=1

wi = 1, (12)

where wi is the weight factor, and ni is the normalization
factor. Although this method is computationally efficient, the
major limitation is that it cannot determine the factors wi and
ni that can optimally balance and scale the objective functions
for a problem with little or no information [31]. In this work,
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a particle swarm optimization (PSO) algorithm [5] is applied
to minimize the cost function, F , and find the corresponding
optimal solution, KWS .

IV. RESULTS AND DISCUSSION

This section will be divided into four parts. Firstly, the
Pareto frontier (KPF , JPF ) reveals the high-level
knowledge, e.g., trade-offs and scale differences between the
objectives, for the CACC and EMS co-optimization problem.
Secondly, the Pareto knowledge assists in finding a
best-compromise solution K∗PF , whose safety and energy
benefits are validated by comparing with the baseline scheme
(Kbase) in various driving conditions. Thirdly, the
weighted-sum optimal solutions with (KP

WS) and without
(KB

WS) the Pareto knowledge, highlight that the
weighted-sum method cannot optimally scale the objective
functions if the Pareto information is unknown. Finally, we
compare the sensitivities of the objective functions to
variations in the reaction time, τ .

A. The Pareto Frontier

Fig. 4 shows the representative Pareto frontier (PF)
approximated by NSGA-III. For visualization and analysis
purposes, the three-dimensional (3D) objective vectors are
projected onto the 2D scatter plots of Fig. 4 (a) - (c). The
ideal (zideal) and the nadir (znad) vectors correspond to the
lower and the upper boundaries, respectively. Fig. 4 (a)
presents a trade-off between tracking capability, J1, and ride
comfort, J2, since one of them will deteriorate when the
other is improved on the PF. Fig. 4 (b) shows a similar
relationship between tracking capability, J1, and power
consumption, J3. However, Fig. 4 (c) demonstrates a
harmonious relationship between ride comfort, J2, and
power consumption, J3, because the reduction of any one is
rewarded with a simultaneous decrease in the other. It also
suggests that acceleration levels of the PHEV impact
significantly on its energy consumption [41].

TABLE II
MARGINAL DISTRIBUTIONS OF OBJECTIVES ON THE PARETO FRONTIER

Objective RPF Median

Tracking capability, J1 0.094 0.194
Ride comfort, J2 0.016 0.359
Power consumption, J3 0.018 18.147

Marginal distributions of the objectives are illustrated by the
box-whisker diagrams in Fig. 4 (d) - (f). The height of the box
is the interquartile range (IQR) between the first quartile (Q1,
25 %) and the third quartile (Q3, 75 %). The median (the band
inside the box) denotes the second quartile (Q2, 50 %). The
ends of the whisker represent the Pareto performance range
(RPF = znad − zideal). Table II summarizes the RPF values
and the medians of the PF, indicating that different objective
functions are measured on different scales. For example, the
median of power consumption, J3, is two orders of magnitude
larger than that of the tracking capability, J1.

0.194 0.2510.157

0.3
59

0.3
72

0.3
56

18
.14

7
18

.16
0

18
.14

2

0.355

0.360

0.365

0.370

0.375

Ri
de

 co
m

fo
rt,

 J
2 (

m
/s

2 ) (a)
znad

zideal

0.16 0.18 0.20 0.22 0.24 0.26

18.144

18.150

18.156

18.162
(b)

Po
w

er
 co

ns
um

pt
io

n,
 J

3 (
kW

)

Tracking capability, J1 (m)

IQR Pareto performance range ( RPF)

zideal

znad

Nadir vector ( znad)Pareto set (KPF ,  JPF)

0.355 0.360 0.365 0.370 0.375

(c)

Ride comfort, J2 (m/s2)

znad

zideal

(d)

J1 distribution
(g)

3D to 2D
projection

(e)

J 2
 d

ist
rib

ut
io

n

(f)

J 3
 d

ist
rib

ut
io

n

Median Mean
Ideal vector ( zideal)

Fig. 4. The representative Pareto frontier (PF) approximated by NSGA-III.

B. Benefits of the Pareto Optimum

Usually, only one solution is required but all Pareto
solutions (KPF ) are considered equally good because their
objective vectors, JPF , cannot be ordered directly. To find a
best-compromise solution, a penalty function, u, utilizes the
above high-level Pareto knowledge to rank the Pareto set
[44]:

min
K∈PF

u
(
J(K)

)
= min
K∈PF

3∑
i=1

wi
Ji(K)− zideali

znadi − zideali

, (13)

where zideali and znadi adjust objectives measured on
different scales to a notionally common scale; and the
weight factor wi represents the decision maker’s preferences,
whose value is assigned as w = [0.5, 0.25, 0.25] to balance
trade-offs between the objectives. Consequently, the Pareto
solution with the minimum penalty, u, is the
best-compromise one, K∗PF = [1.22, 1.06, 0.05] in this study
and defined as the Pareto optimum.

Fig. 5 draws a comparison between the Pareto optimum
(K∗PF ) and the baseline scheme (Kbase) in terms of their
car-following and power-split performances in the 5*WLTC
driving test. Fig. 5 (i) displays a zoomed portion of the
inter-vehicle spacing, s, profiles of Fig. 5 (a). It can be seen
from these two graphs that K∗PF can always meet the
minimum spacing requirement in equation (3), namely,
s ≥ 2.0 m; this constraint, however, is violated by the Kbase

control design. Moreover, Fig. 5 (b) shows that K∗PF can
significantly reduce tracking error, s − sdes, thus enhancing
car-following safety. Fig. 5 (c) and (d) illustrate the
following vehicle’s speed and acceleration, respectively. Fig.
5 (e) - (h) compare the power-split dynamics of the two
control schemes. For the Kbase design, the engine and the
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Fig. 5. The comparison of control performances between the Pareto optimum
K∗

PF and the baseline scheme Kbase.

generator started to work at ∼ 1700 s, i.e. switching to the
CS mode; the battery SoC was then kept at ∼ 0.4. For the
K∗PF design, however, the CS mode was postponed until ∼
3000 s and the battery SoC was controlled at the lower level
of ∼ 0.3.

Table III compares the control performances, Ji between
the Pareto optimum, K∗PF , and the baseline scheme, Kbase,
in the optimization (5*WLTC) and validation (10*NEDC and
JRC Real-world) driving cycles. The data highlight that the
Pareto optimal solution for CACC and EMS design can
provide considerable and consistent benefits in different
driving conditions. For example, in the JRC Real-world
driving cycle with varying road gradient, the Pareto
optimum, K∗PF , can reduce energy consumption (by 7.57 %)
and tracking error (by 68.94 %), while at the same time
satisfying ride comfort needs.

C. Weighted-sum Optimums

Serving as a benchmark, the weighted-sum method uses
the same weight vector, w = [0.5, 0.25, 0.25], as the Pareto
method to balance the trade-offs between the objectives. For
comparison purposes, the weighted-sum method in this work
utilizes two different normalization techniques [45]:

1) Normalization (without the Pareto knowledge) by
objective values at the baseline point, n = J(Kbase).
The corresponding weighted-sum optimum is (KB

WS ,
JBWS).

2) Normalization (with the Pareto knowledge) by the Pareto
performance range, n = RPF = znad − zideal. The
corresponding weighted-sum optimum is (KP

WS , JPWS).
Fig. 6 (a) - (c) illustrate the evolutions of JPWS and JBWS

during 30 PSO iterations. It is obvious that the weighted-sum
method is computationally efficient because the objectives
converged rapidly (within 20 generations). However,
different normalization techniques lead to different final
optimums. In Fig. 6 (d) - (f), the weighted-sum optimums
are projected onto 2D planes and compared with the Pareto
frontier (PF). It is worth noting that JPWS is located on the
PF and very close to the Pareto optimum, J∗PF . In contrast,
JBWS presents an over-optimized tracking capability, J1,
which can, in turn, compromise the other performance
measures, i.e. the ride comfort, J2, and the power
consumption, J3. Table IV summarizes the final optima
through the Pareto method as well as the weighted-sum
methods with differing normalization.

These comparisons reveal that the weighted-sum method
cannot determine the normalization factors that can optimally
scale the objective functions if the high-level Pareto
knowledge is unknown before the optimization begins. The
Pareto method can overcome this limitation by producing a
set of Pareto optimal solutions. These solutions indicate
trade-offs and scale differences between objectives and assist
in finding a best-compromise solution that can accurately
capture the decision maker’s preferences.

D. Sensitivities to the Reaction Time

Encompassing communication, sensing and actuation
delays, the reaction time, τ , in (2) and (4) is a major factor
that impacts tracking safety, ride comfort, and fuel economy.
This section demonstrates the sensitivities of the objectives
to τ variations and compares the performance robustness of
the Pareto and the weighted-sum optima.

The sensitivity of each objective to the reaction time
variation can be calculated by [5]

Si,j =

∣∣∣∣∣
(
Ji(τj)− Ji(τ0)

)
/Ji(τ0)

(τj − τ0)/τ0

∣∣∣∣∣, (14)

where Si,j is the sensitivity of the objective Ji (i = 1, 2, 3)
to the variation of the reaction time, τj ∈ [0.3, 0.4, 0.5, 0.6] s.
Ji(τ0) is chosen as the reference corresponding to the situation
when τj = τ0 = 0.3 s. The larger the sensitivity value, the
more significant the influence of reaction time on the outcome.

In Fig. 7, the tracking capability (J1) shows the highest
sensitivity to variation in τ . Its sensitivity, S1,j , increases
with increasing reaction time. The power consumption, J3, is
the least sensitive criterion, whose sensitivity is two orders
of magnitude smaller than that of J1. Therefore, the reaction
time impacts significantly on tracking safety, but its effect on
energy saving is trivial. In addition, compared with the
weighted-sum counterpart, KB

WS , the Pareto optimum, K∗PF ,
always exhibits less sensitivity to τ variation for every
objective, indicating a higher level of performance robustness
against a range of operational delays in various driving
scenarios.
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TABLE III
THE BENEFITS OF THE PARETO OPTIMUM K∗

PF

5*WLTC 10*NEDC JRC Real-world
J1 (m) J2 (m/s2) J3 (kW) J1 (m) J2 (m/s2) J3 (kW) J1 (m) J2 (m/s2) J3 (kW)

Kbase 0.5640 0.3638 19.2638 0.3710 0.2588 12.9026 0.9462 0.4831 47.5019
K∗

PF 0.1858 0.3602 18.1484 0.0936 0.2634 11.7137 0.2939 0.4915 43.9082
Reduction (%) 67.06 0.99 5.79 74.77 -1.78 9.21 68.94 -1.74 7.57
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Fig. 6. Multi-objective optimization using weighted-sum methods.

TABLE IV
THE COMPARISON OF THE PARETO AND THE WEIGHTED-SUM OPTIMUMS

IN THE 5*WLTC DRIVING TEST

K∗
PF KP

WS KB
WS

[1.22, 1.06, 0.05] [1.23, 1.06, 0.05] [1.89, 2.49, 0.05]

J1 (m) 0.1858 0.1864 0.1447
J2 (m/s2) 0.3602 0.3601 0.3758
J3 (kW) 18.1484 18.1483 18.1976
Penalty u 30.2384 30.2640 50.0000

V. CONCLUSIONS

In vehicle control design, the co-optimization of
electrification, automation, and connectivity is gaining
traction among automakers and policymakers. Previous
approaches such as weighted-sum methods overlook
trade-offs and scale differences inherent in these
multi-objective problems, resulting in misleading
optimizations. To overcome these limitations, this study
proposes a Pareto-based framework demonstrated to optimize
system parameters of cooperative adaptive cruise control
(CACC) and energy management strategy (EMS) for
PHEVs. The high-level knowledge of the Pareto frontier (PF)
assists in finding a best-compromise solution. The optimized
systems can be directly applied in real applications. The
results of this study are as follows:

1) The Pareto frontier suggests that the comfort and the
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Fig. 7. Sensitivities of the objectives to reaction time τ variations.

energy targets are harmonious, but they both conflict
with the safety target. Their objective values are
measured on different scales.

2) In the validation using real-world driving data, the
Pareto optimum, K∗PF , for CACC and EMS systems,
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compared with the baseline scheme, Kbase, can reduce
energy consumption (by 7.57 %) and tracking error (by
68.94 %), while at the same time satisfying ride
comfort needs.

3) In contrast to the weighted-sum method, the proposed
Pareto method can optimally balance and scale the
multiple objective functions and thus accurately
capture the decision maker’s preferences.

4) Sensitivity analysis proves that the vehicle reaction time
impacts significantly on tracking safety, but its effect on
energy saving is trivial.
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