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Abstract—This paper introduces the concept of the driver-

identified supervisory control system, which forms a novel 

architecture of adaptive energy management for hybrid electric 

vehicles (HEVs). As a man-machine system, the proposed system 

can accurately identify the human driver from natural operating 

signals and provides driver-identified globally optimal control 

policies as opposed to mere control actions. To help improve the 

identifiability and efficiency of this control system, the method of 

spectrum-guided fuzzy feature extraction (SFFE) is developed. 

Firstly, the configuration of the HEV model and its control system 

are analyzed. Secondly, design procedures of the SFFE algorithm 

are set out to extract 15 groups of features from primitive 

operating signals. Thirdly, long-term and short-term memory 

networks are developed as a driver recognizer and tested by the 

features. The driver identity maps to corresponding control 

policies optimized by dynamic programming. Finally, the 

comparative study includes involved extraction methods and their 

identification system performance as well as their application to 

HEV systems. The results demonstrate that with help of the SFFE, 

the driver recognizer improves identifiability by at least 10% 

compared to that obtained using other involved extraction 

methods. The improved HEV system is a significant advance over 

the 5.53% reduction on fuel consumption obtained by the fuzzy-

logic-based system. 

 
Index Terms—Adaptive supervisory control; deep recurrent 

LSTM network; driver identification; dynamic programming; 

feature extraction; hybrid electric vehicles 

I. INTRODUCTION 

ERSISTENT environmental issues and periodic energy 

crises are major concerns for the automobile industry [1]. 

As an emerging trend, vehicle electrification aims to investigate 

alternative powertrain technologies and offer potentially fuel-

efficient solutions in propulsion systems, traffic strategies and 

urban studies [2]. Hybrid technology is a good transition 

solution to environmental pollution that makes it possible to 

both improve the fuel economy and reduce the exhaust 

emissions of vehicles [3], [4]. For hybrid electric vehicles 

(HEVs), developing optimal energy management strategies is 

critical to achieving the best performance and energy efficiency 

through power-split control. As another primary element, the 

driver plays a significant role in safety and eco-driving [5]. 

Most of the literature currently ignores the human driver error 
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in eco-driving, leading to errors in tracking the recommended 

velocity profiles. In reality, the driver may not follow the 

optimal velocity precisely and this uncertainty may affect the 

velocity tracking performance and increase fuel consumption 

[6]. Thus, vehicle control strategies that seek highly optimized 

performance need to optimize the system composed of both the 

vehicle and the driver. 

Classical control strategies have difficulty in meeting the 

requirements of this standard, because the driver's information 

is not easy to exploit in real time [7]. In order to break through 

this bottleneck, scholars and industry started to shift their focus 

to forward information fusion in supervisory control systems 

(i.e. driving-feature-related identification and prediction) [8]. 

This scheme deepens the consideration of individual driving 

style and incorporates this factor into the decision-making of 

energy allocation in HEV systems [9]. It makes smart cars 

operate in a more human-like way to explore control strategies 

that are more efficient rather than following a standardized 

strategy. In this case, this paper classifies the state-of-the-art of 

energy management strategies into two aspects based on 

whether the driver behavior related is involved or not and 

discuss them as follows. 

Modelling driving behavior in the HEV energy management 

requires accurate quantification of the relationship between 

driving behavior and fuel consumption [10]. Li et al. employ K-

means to classify driving behaviors with rigid boundaries but 

the uncertainty of driving behavior is not considered [11]. 

Wahab et al. use Gaussian mixture models (GMMs) to extract 

driving feature, training by fuzzy neural networks [12]. 

However, the applicability of GMMs to other environments is 

debatable. Xie et al. integrate Markov chain (MC) models and 

dynamic programming (DP) to implement stochastic model 

predictive control for plug-in hybrid electric buses [13]. In fact, 

some dramatic driving states may be homogenized into a very 

low probability distribution or even ignored altogether in the 

training process of a MC model. This issue may occur in the 

work of Cairano et al.  [14]. Zhang et al. construct a hierarchical 

driving behavior model, providing in-depth knowledge about 

behavior generation, transmission, and consequence [15], but 

the rationality of its classification needs to be further explored 

and its simulation results should be validated in real 
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applications. Lei et al. utilize a sliding window driving pattern 

search algorithm which incorporates offline particle swarm 

optimization [16], but the algorithm is flawed and fails to find 

global optimal solutions [17]. Li et al. create an online velocity 

predictor, and it helps guarantee the effectiveness of swarm-

based optimal control sequences in energy-saving [18]. Similar 

to the work of Zhang et al.  [19], most of the existing research 

on the division of driver behavior is ‘driving-style-based’. Such 

hierarchical driver models, however, result in the consequence 

that the control policy optimized for a single style may lose the 

global optimal advantage during mode switching. 

There is also a considerable amount of literature concerned 

with supervisory control systems that introduce emerging 

technologies and methodologies. Kolmanovsky et al. describe 

the development and experimental implementation of game 

theory for HEV energy management [20]. Game theory, 

however, requires deep knowledge of the system elements and 

consequently cannot be extrapolated to other vehicle types [21]. 

Zhou et al. research a ‘model-free’ predictive energy 

management system for increasing the prediction horizon 

length by 71% from model-based one [22]. Deep reinforcement 

learning [23], has been employed by Wu et al. to develop a 

continuous control strategy for hybrid electric buses [24]. But 

the feasibility and stability of implementing such model-free 

algorithms into an actual vehicle controller needs to be further 

investigated and validated. Sorrentino et al. develop flexible 

procedures for co-optimizing design and control of fuel cell 

hybrid vehicles and its outcomes yield useful guidelines that 

support decision making in the design process [25]. In the work 

of Ahmadi et al., a genetic algorithm is invoked to accurately 

adjust control parameters of an FLC, and its results show that 

fuel economy and vehicle performance are significantly 

improved [26]. In the work of Kheirandish et al., a dynamic 

fuzzy cognitive network is proposed to describe the behavior of 

a fuel cell electric bicycle system [27]. Moreover, some other 

type of fuzzy-logic-based control system are employed for 

HEV energy management such as neuro-fuzzy [28], genetic-

fuzzy [29] and Takagi-Sugeno fuzzy [30] control systems. 

However, such fuzzy-logic-based supervisory control systems 

are established based on human cognition and their 

performances are largely limited by empirical knowledge. 

In order to break through the limitations of the 

aforementioned research, this paper proposes the novel 

adaptive energy management architecture of a driver-identified 

supervisory control system. Differing from conventional 

adaptive control systems with driving-style-based adjustment, 

the proposed system can accurately identify the human driver 

from natural operating signals and provides driver-identified 

globally optimal control policies as opposed to mere control 

actions. To help improve identifiability and efficiency of this 

control system, the method of spectrum-guided fuzzy feature 

extraction (SFFE) is developed to exploit spectral information 

after defuzzification integration for adaptively adjusting the 

size of the sampling window. Firstly, the configuration of the 

HEV model is analyzed and its control-oriented optimization 

problem is formulated. Secondly, the structure of the driver-

identified supervisory control system is presented, and design 

procedures of the SFFE algorithm are set out beginning with 

conventional methods to extract 15 groups of features from 

primitive operating signals. Thirdly, long short-term memory 

(LSTM) networks are developed as a driver recognizer and 

tested by the aforementioned features. The driver identity is 

then mapped to corresponding control policies optimized by 

dynamic programming. Finally, the comparative study includes 

involved extraction methods and their identification system 

performance as well as their application to HEV systems. 

Following the introduction, the configuration of the HEV and 

its control-oriented optimization problem are analyzed in 

section II. Section III elaborates the structure of the driver-

identified supervisory control system and the design procedures 

of the SFFE algorithm, followed by recognizer training and 

controller optimization of the HEV system. Section IV declares 

the collection process of testing cycles, the human driver who 

created it as well as the driving simulation platform used. 

Section V investigates the comparative study of involved 

extraction methods and their identification system performance 

as well as their application to HEV systems. Conclusions are 

summarized in section VI. 

II. VEHICLE CONFIGURATION AND PROBLEM FORMULATION 

A. HEV Configuration 

The series-parallel HEV powertrain supervised by the vehicle 

controller, includes one gasoline engine, one integrated starter-

generator (ISG), one trans-motor and two energy sources of fuel 

and electricity as shown in Fig. 1. In this case, the powers from 

the ICE after the transmission and the trans-motor are combined 

by coupling their speeds, where the speeds of the two power 

plants are decoupled to be chosen freely as described in [31]. 

The peak power of the trans-motor is 𝑃𝑚𝑜𝑡∗ = 75 kW 

(kilowatt) with 270 N ∙ m (newton - meter) peak torque. The 

peak power of the gasoline engine is 𝑃𝐼𝐶𝐸∗ = 63 kW  with 

140 N ∙ m peak torque. The peak power of the ISG is 𝑃𝐼𝑆𝐺∗ =
32 kW. The data for all of the components is provided by the 

ADVISOR software. Their suitability has been established in 

the authors' previous work [18], [32].  The authors are 

committed to continuing development of the control system 

using the same vehicle model for driveline system analysis and 

optimization. The main parameters of the HEV model are 

shown in Table I. 

 
Fig. 1. The structure of the series-parallel HEV powertrain 
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TABLE I 
MAIN PARAMETERS OF THE HEV MODEL 

Symbol Parameters Values 

𝑀 Gross mass 1,500 kg 

𝐴𝑓 Windward area 2 m2 

𝑅𝑤ℎ Tire rolling radius 0.3 m 

𝐶𝑑 Air drag coefficient 0.3 

𝑖0 Differential ratio 3.75 

𝑖𝑔 Transmission ratio  3.55/1.96/1.30/0.89/0.71 

B. Problem Formulation 

In order to rationally assign the demand power of the 

powertrain to different power sources, the demand power of the 

powertrain and the state of charge (SoC) value of the battery 

package (BP) are treated as two input variables and the two 

output variables are the rotational speed of traction motor and 

the required power of the ISG. Here, the supervisory control 

system comprises two modes of pure electric traction and 

optimization-based traction, which can be expressed as 

(𝑇𝑚𝑜𝑡, 𝑛𝑚𝑜𝑡 , 𝑃𝑖𝑐𝑒 , 𝑃𝑔𝑒𝑛) = {
𝑀𝑜𝑑𝑒𝐸𝑉(𝑃𝑑 , 𝑆𝑜𝐶), 0.8 ≥ 𝑆𝑜𝐶 > 0.5 

𝑀𝑜𝑑𝑒𝑜𝑝𝑡.(𝑃𝑑 , 𝑆𝑜𝐶), 0.5 ≥ 𝑆𝑜𝐶 > 0.2
 (1) 

where, 𝑀𝑜𝑑𝑒𝐸𝑉  indicates a pure electric traction mode; 

𝑀𝑜𝑑𝑒𝑜𝑝𝑡. indicates an optimization-based control mode; 𝑇𝑚𝑜𝑡  

is the torque of traction motor; 𝑛𝑚𝑜𝑡 is the rotational speed of 

traction motor; 𝑃𝑖𝑐𝑒 is the power of internal combustion engine; 

𝑃𝑔𝑒𝑛 is the power of the integrated starter-generator; 𝑃𝑑 is the 

demand power of the powertrain; and 𝑆𝑜𝐶 is the BP’s state of 

charge. To ensure the BP is performing under proper conditions 

and to protect the BP from over discharge and over charge, the 

battery’s SoC should remain in the range, 0.2 < 𝑆𝑜𝐶 ≤ 0.8 as 

recommended [33]. 

In the electric traction mode, enough battery current can be 

supplied to satisfy the powertrain demand independently so that 

neither the ICE nor the ISG need to operate. The power 

distribution in this state is 
𝑇𝑚𝑜𝑡,𝑘 = 𝑇𝑑,𝑘

𝑛𝑚𝑜𝑡,𝑘 =
𝑃𝑑,𝑘
𝑇𝑚𝑜𝑡,𝑘

∙ 9550

𝑃𝑔𝑒𝑛,𝑘 = 0

𝑃𝐼𝐶𝐸,𝑘 = 0 }
 
 

 
 

   .                       (2) 

where the constant 9550 is a conversion factor when units of 

torque, power and rotation speed are newton - meter, kilowatt, 

and revolutions per minute, respectively. The optimization-

based control mode allows ICE power to be used either to 

simultaneously drive the vehicle and charge the BP or to 

partially drive the vehicle supplemented by a BP-charge-

depleting drive from the trans-motor, depending on the sign of 

the trans-motor speed, 𝑛𝑚𝑜𝑡  (negative charges, positive 

depletes). The power distribution in this state is therefore given 

by 
𝑇𝑚𝑜𝑡,𝑘 = 𝑇𝑑,𝑘

𝑛𝑚𝑜𝑡,𝑘 = 𝑛𝑚𝑜𝑡_𝑜𝑝𝑡,𝑘
𝑃𝑔𝑒𝑛,𝑘 = 𝑃𝑔𝑒𝑛_𝑜𝑝𝑡,𝑘

𝑃𝐼𝐶𝐸,𝑘 = −𝑃𝑔𝑒𝑛,𝑘 + (𝑃𝑑,𝑘 −
𝑇𝑚𝑜𝑡,𝑘 ∙ 𝑛𝑚𝑜𝑡,𝑘

9550
)}
 
 

 
 

   ,      (3) 

where 𝑛𝑚𝑜𝑡_𝑜𝑝𝑡,𝑘  is the optimal rotation speed of the traction 

motor; and 𝑃𝑔𝑒𝑛_𝑜𝑝𝑡,𝑘 is the optimal demand power of the ISG. 

Based on Eq. (3), the state equation of the HEV model can be 

generally expressed in discrete-time format by the following 

equation 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘)

𝑥 = 𝑆𝑜𝐶
𝑢𝑘 = [𝑛𝑚𝑜𝑡_𝑜𝑝𝑡,𝑘 𝑃𝑔𝑒𝑛_𝑜𝑝𝑡,𝑘]

}  ,                    (4) 

where, 𝑥 is the state variable; 𝑘 is the integer-valued discrete 

time variable; and 𝑢 denotes the control variable expressed as a 

vector of the optimized rotational speed 𝑛𝑚𝑜𝑡_𝑜𝑝𝑡 of the traction 

motor and the optimized demand power 𝑃𝑔𝑒𝑛_𝑜𝑝𝑡 of the ISG. 

The principal optimization target for HEV systems is to 

reduce fossil fuel consumption by obtaining energy from the 

electricity grid. The following cost function for minimizing fuel 

consumption will be adopted 

min 𝐽 = ∑ 𝐿(𝑥𝑘 , 𝑢𝑘)

𝑁−1

𝑘=0

= ∑𝐸𝑓𝑢𝑒𝑙,𝑘

𝑁−1

𝑘=0

  ,              (5) 

where, 𝑁  is the length of the driving cycle in discrete time-

steps, 𝐿 is the instantaneous cost, and 𝐸𝑓𝑢𝑒𝑙  is the instantaneous 

fuel consumption at the  𝑘 th time step. To ensure a smooth 

operation of engine, ISG, traction motor, and battery, the 

following constraints will be needed for the optimization. 

𝑠. 𝑡.

{
 
 

 
 

𝑇𝑚𝑜𝑡,𝑘 , −𝑇𝑚𝑜𝑡
∗ ≤ 𝑇𝑚𝑜𝑡,𝑘 ≤ 𝑇𝑚𝑜𝑡

∗

𝑛𝑚𝑜𝑡_𝑜𝑝𝑡,𝑘,

𝑃𝐼𝐶𝐸,𝑘,

𝑃𝑔𝑒𝑛_𝑜𝑝𝑡,𝑘,

0 ≤ 𝑛𝑚𝑜𝑡_𝑜𝑝𝑡,𝑘 ≤ 𝑛𝑚𝑜𝑡
∗

0 ≤ 𝑃𝐼𝐶𝐸,𝑘 ≤ 𝑃𝐼𝐶𝐸
∗

−𝑃𝐼𝑆𝐺∗ ≤ 𝑃𝑔𝑒𝑛_𝑜𝑝𝑡,𝑘 ≤ 0

𝑆𝑜𝐶𝑘 , 0.2 < 𝑆𝑜𝐶𝑘 ≤ 0.8

        ,    (6) 

where, 𝑇𝑚𝑜𝑡
∗  and 𝑛𝑚𝑜𝑡

∗  are the maximum torque and the 

maximum rotational speed of the traction motor; 𝑃𝐼𝐶𝐸
∗  and 𝑃𝐼𝑆𝐺∗ 

are the maximum power of the engine and of ISG. 

III. DRIVER-IDENTIFIED SUPERVISORY CONTROL SYSTEM 

A. System Architecture 

The proposed driver-identified supervisory control system 

includes one LSTM-based driver recognizer and one DP-based 

supervisory controller as shown in Fig. 2. During real-time 

driving, human drivers generate primitive operating signals 

which are collected by a driving simulator. Due to primitive 

operating signals with interference information redundancy, 

driving feature extraction is needed to improve the 

identifiability and the efficiency of this control system. Through 

feature extraction, these extracted signals will be used as inputs 

to the recognizer identifying drivers that each bridge to their 

own control policy in the supervisory controller. Finally, the 

driver-identified control signal will be sent to the HEV 

powertrain to manage energy utilization. 

 
Fig. 2. Workflow of driver-identified supervisory control system 
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B. Driving Feature Extraction 

To improve identifiability of the driver-identified 

supervisory control system, characterization of the training 

material is needed for the extraction of hidden features from the 

time-series of the primitive operating signals. The driving 

operating signals studied in this paper are vehicle speed, gas 

pedal deflection, brake pedal deflection, and steering angle. 

Compared to other signals that need to be detected with 

additional sensors, they were shown to be a pragmatic choice 

for driving style recognition by Martinez et al [9]. This section 

starts with the primitive operation signals namely Feature 0 and 

follows by introducing the rest of 14 groups of features that are 

respectively extracted by time-domain, frequency-domain and 

the proposed SFFE methods. 

Feature 0: The driving operating signals originally collected 

from a driving simulator are regarded as the baseline in this 

research and are combined into the row vector,  
[𝑣 𝛾 𝛽 𝛿], where 𝑣 is vehicle speed (km/h); 𝛾 is gas pedal 

deflection (%); 𝛽 is brake pedal deflection (%); and 𝛿 is the 

steering angle (rad). 

1) Time and Frequency Domain Extractions 

In the widely used time-domain extraction technique, a short-

term sliding window is introduced to standardize the sampling 

dimension and lengthen the memory time of characteristic 

states. Here, the dataset of driving operating signals is defined, 

in which each time step k of data is expressed as given by: 

(𝒗, 𝜸, 𝜷, 𝜹)𝑇 = [

𝑣𝑘−ℎ+1 𝑣𝑘−ℎ+2
𝛾𝑘−ℎ+1 𝛾𝑘−ℎ+2

⋯ 𝑣𝑘  
⋯ 𝛾𝑘

𝛽𝑘−ℎ+1 𝛽𝑘−ℎ+2
𝛿𝑘−ℎ+1 𝛿𝑘−ℎ+2

⋯ 𝛽𝑘
⋯ 𝛿𝑘

]             (7) 

where, ℎ is length of the short-term sliding window, which is 

taken to be the discrete time equivalent of 60 seconds. 

Feature 1: The maximum values of the four elements in the 

time-domain are adopted to reflect the operating intensity of 

drivers. Based on Eq. (7), their values can be calculated by 

(𝑣𝑚𝑎𝑥 , 𝛾𝑚𝑎𝑥 , 𝛽𝑚𝑎𝑥 , 𝛿𝑚𝑎𝑥) = max(𝒗, 𝜸, 𝜷, 𝜹𝑎𝑏𝑠)
𝑇   ,        (8) 

where 𝜹𝑎𝑏𝑠 denotes the element wise absolute value of 𝜹. 

Feature 2: The maximum ranges of the four elements in the 

time-domain are adopted to reflect the operating proficiency of 

drivers. In general, drivers with higher operating proficiency 

have lower maximum range. Based on Eq. (7), their values can 

be calculated by 

(𝑣𝑟𝑛𝑔., 𝛾𝑟𝑛𝑔., 𝛽𝑟𝑛𝑔., 𝛿𝑟𝑛𝑔.) 

= max(𝒗, 𝜸, 𝜷, 𝜹𝑎𝑏𝑠)
𝑇 −min(𝒗, 𝜸, 𝜷, 𝜹𝑎𝑏𝑠)

𝑇   .          (9) 
Feature 3: The average values of the four elements in the time-

domain are adopted to reflect driving habits. The authors 

hypothesize that this factor is related to the driving geography 

and the environment but a discussion of this hypothesis is 

beyond the scope of this paper and will be left as a topic for 

future research. Based on Eq. (7), the average values of the four 

elements in the time-domain are 

(𝑣𝑎𝑣𝑔., 𝛾𝑎𝑣𝑔., 𝛽𝑎𝑣𝑔., 𝛿𝑎𝑣𝑔.) =
∑ (𝒗, 𝜸, 𝜷, 𝜹𝑎𝑏𝑠)

𝑇𝑖=ℎ
𝑖=0

ℎ
    .   (10) 

Another mainstream extraction method to determine the 

extent of pre-processing human behaviors is frequency domain 

extraction [34]. Here, the discrete (fast) Fourier transform 

(DFT) is used to calculate three principal features and they will 

be examined later when training the recognizer. Therefore, the 

DFT of matrix Eq. (7) can be written 

(𝑯𝑣 , 𝑯𝛾 , 𝑯𝛽 , 𝑯𝛿)
𝑇
=

[
 
 
 
𝐻𝑣,1 𝐻𝑣,2
𝐻𝛾,1 𝐻𝛾,2

⋯ 𝐻𝑣,𝐿
⋯ 𝐻𝛾,𝐿

𝐻𝛽,1 𝐻𝛽,2
𝐻𝛿,1 𝐻𝛿,2

⋯ 𝐻𝛽,𝐿
⋯ 𝐻𝛿,𝐿]

 
 
 

       (11) 

where, 𝐻𝑣, 𝐻𝛾, 𝐻𝛽, 𝐻𝛿  denote the single-sided amplitude 

spectra  corresponding to vehicle speed, gas pedal deflection, 

brake pedal deflection, and steering angle, respectively; and 

𝐿 = ℎ 2⁄ . 

Feature 4: The maximum magnitudes of the four elements in 

the frequency domain are used to express the spectral intensity 

of driving operation via the equation, 

(𝐻𝑣_𝑚𝑎𝑥,𝑘 , 𝐻𝛾_𝑚𝑎𝑥,𝑘 , 𝐻𝛽_𝑚𝑎𝑥,𝑘, 𝐻𝛿_𝑚𝑎𝑥,𝑘) 

= max(𝑯𝑣, 𝑯𝛾, 𝑯𝛽 , 𝑯𝛿)
𝑇
   ,                    (12) 

Feature 5: The frequencies corresponding to the maximum 

magnitudes (denoted by max𝑓𝑟𝑒𝑞) of the four elements in the 

frequency domain are used to express the regularity of driving 

operation via the equation, 

(𝑓𝑣_𝑚𝑎𝑥,𝑘
∗ , 𝑓𝜚_𝑚𝑎𝑥,𝑘

∗ , 𝑓𝜎_𝑚𝑎𝑥,𝑘
∗ , 𝑓𝜍_𝑚𝑎𝑥,𝑘

∗ ) 

= max𝑓𝑟𝑒𝑞(𝑯𝑣, 𝑯𝛾 , 𝑯𝛽 , 𝑯𝛿)
𝑇
   .              (13) 

Feature 6: As another feature to express the regularity of 

driving operation, the frequencies corresponding to the 

centroids of the four elements in the frequency domain are 

considered. They are defined as follows: 

(𝐻𝑣_𝑐𝑒𝑛,𝑘
∗ , 𝐻𝜚_𝑐𝑒𝑛,𝑘

∗ , 𝐻𝜎_𝑐𝑒𝑛,𝑘
∗ , 𝐻𝜍_𝑐𝑒𝑛,𝑘

∗ ) 

=
∑ 𝑓𝑖
𝑖=𝐿
𝑖=1 × (𝐻𝑣,𝑖, 𝐻𝛾,𝑖, 𝐻𝛽,𝑖, 𝐻𝛿,𝑖)

∑ 𝑓𝑖
𝑖=𝐿
𝑖=1

      ,           (14) 

in which 

𝑓𝑖 =
𝐹𝑠

ℎ
𝑖, 𝑖 = 1,2, … , 𝐿,                     (15) 

where, 𝐹𝑠 = 1000 Hz is the sampling frequency. 

2) Spectrum-guided Fuzzy Feature Extraction 

It should be noted that instantaneous changes in driver 

behavior might affect the characteristic expression of the time-

series data during real-time driving. The SFFE activates the 

sampling window and uses frequency-domain characteristics as 

the basis for adaptively adjusting the window size. It is 

developed to ensure the classification accuracy while 

adaptively searching for a more appropriate minimum size of 

the sliding window. Ideally, it can enable the elimination of the 

effects of sudden driver behavior changes on the characteristic 

expression of the time-series data through adaptively adjusting 

the size of the short-term sliding window. The consideration of 

spectral features easily captures essential attributes from the 

dynamic driving signals and they can be exploited as an 

important factor in adjusting window size. Inspired by fuzzy 

encoding technology, all spectral features are integrated to 

balance the contribution of each element to the window size, 

thereby guiding time-domain extraction. The design procedures 

of the SFFE are: 

Feature 7-15: The fuzzy sets with linguistic terms are regulated 

with standard triangular membership functions (MFs), where 

the degree of membership is expressed as a function of 

normalized values in the interval, [0,1]. The values of the MFs 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3872055/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3872055/
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in the FLC are set at three levels: Low, Medium, and High. 

These functions fuzzify the crisp inputs. Here, the inputs of the 

FLC need to be sensitively scaled to maintain the boundaries of 

their working area. They are formulated mathematically 

through the relationship, 

(𝑣∗, 𝛾∗, 𝛽∗, 𝛿∗) = (
𝑣𝑓 − 𝑣𝑓

−

𝑣𝑓
+ − 𝑣𝑓

− ,
𝛾𝑓 − 𝛾𝑓

−

𝛾𝑓
+ − 𝛾𝑓

− ,
𝛽𝑓 − 𝛽𝑓

−

𝛽𝑓
+ − 𝛽𝑓

− ,
𝛿𝑓 − 𝛿𝑓

−

𝛿𝑓
+ − 𝛿𝑓

−) , (16) 

where, 𝑣𝑓 , 𝛾𝑓 , 𝛽𝑓 , 𝛿𝑓 indicate spectral feature signals related to 

speed, gas, brake and steering angle; ∙−  and ∙+  indicate the 

corresponding minimum and maximum; and ∙∗  indicates the 

corresponding scaled input, [0,1]. The rule base determines the 

control output O with the inputs states A, B, C, and D by 

applying a ‘if A and B and C and D then O’ policy. A 

mathematical expression of the ‘if A and B and C and D then 

O’ policy is 

𝑂 = (𝐴 × 𝐵 × 𝐶 × 𝐷) ∘ 𝑅 .                        (17) 

where, ‘A’, ‘B’, ‘C’, ‘D’ denote the fuzzy sets of scaled spectral 

signals related to speed, gas, brake and steering angle; ‘O’ 

denotes the crisp of the reference of scalar coefficient [0,1] for 

the size of sliding windows; and ‘R’ denotes the fuzzy relation 

matrix by cross-product of four fuzzy sets of inputs. 

To simplify the expression of 34 = 81  fuzzy logic 

inferences, we assign values to linguistic sets: ‘Short’ =
1;  ‘Medium’ = 2;  ‘Long’ = 3.  Therefore, the reasoning 

process that is based on Eq. (17) with the Sugeno fuzzy set can 

then be described by the following if-then statements: 

if 𝐴 + 𝐵 + 𝐶 + 𝐷 ∈ [4,6]

if 𝐴 + 𝐵 + 𝐶 + 𝐷 ∈ [7,9]

if 𝐴 + 𝐵 + 𝐶 + 𝐷 ∈ [10,12]
}  then O is {

Long
Medium
Short

   (18) 

In this inference mechanism, the implied fuzzy sets are 

produced using the max–min composition. In defuzzification, 

these implied fuzzy sets are combined to provide a crisp value 

of the controller outputs. There are several approaches [35] to 

accomplish the defuzzification process, of which the centroid 

of area method has been chosen for this case. The final output 

is then measured as the average of the individual centroids 

weighted by their membership values as follows: 

𝑂 =
∑ 𝑂𝑢𝑡𝑖 ∙ 𝜑𝑖
𝑛
𝑖=1

∑ 𝜑𝑖
𝑛
𝑖=1

ℎ∗ = ℎ −
ℎ

2
𝑂 }

 

 

    ,                      (19) 

where, 𝑂𝑢𝑡𝑖 is the output of rule base i; 𝜑𝑖 is the centre of the 

output MF; and ℎ∗ is the size of the adaptive sliding window. 

In this paper, these functions are taken as a triangular 

membership function as follows: 

𝑞𝑖 = max(min (
𝑥 − (0.5𝑖 − 0.9)

0.4
,
(0.5𝑖 − 0.1) − 𝑥

0.4
) , 0), 

  𝑖 = 1,2,3.                                     (20) 
Through fuzzy encoding technology, the proposed method 

extracts 3 × 3  permutations between time and frequency 

domain. i.e. nine groups of extra features.  Their mapping 

relation is expressed as shown in Fig. 3. As an upgraded version 

of time-domain extraction, the purpose is the elimination of the 

effects of sudden driver behavior changes on the characteristic 

expression of the time-series data. So far, 15 groups of features 

extracted from the original operating signals are obtained and 

then used as training data for the driver recognizer. These will 

be discussed in the next section. 

 
Fig. 3. Mapping relation in spectrum-guided fuzzy feature extraction 

C. Recognizer Training and Controller Optimization 

This section introduces two principal parts to develop the 

driver-identified supervisory control system: 1) the structure 

and training data of networks to be trained; 2) the driver-

identified dynamic programming for controller optimization.  

1) Bidirectional LSTMs and training data 

To efficiently classify each time step of the extracted 

sequence data, a bidirectional recurrent neural network (RNN) 

is adopted as a model that can overcome various restrictions 

inherent in conventional RNNs. This model divides regular 

RNN neuron states into forward and backward. These two 

networks connect to the same output layer to generate output 

information. With this structure, both past and future situations 

of sequential inputs in a time frame are evaluated without delay 

[36]. After 20 runs of the repeatability test for 10, 20, 50, 100, 

and 200 one-cell memory blocks, using 100 one-cell memory 

blocks achieved the highest value of average identifiability. 

Thus, a Bi-directional LSTM network, with two hidden LSTM 

layers, both containing 100 one-cell memory blocks of one cell 

each is used in this research. 

To gain a better understanding of the contribution of each 

feature to driver identification, ablation studies are performed 

to divide the training data and the extracted features into two 

categories for each extraction method: one category is target 

features; the remaining category is non-target features. In each 

ablation, one feature is removed from all combinations of single 

types. E.g. in time-domain extraction methods, if Feature 1 is 

regarded as a target feature, Features 2 and 3 are the 

corresponding non-target features. If Feature 2 is regarded as 

the target feature, Features 1 and 3 are the corresponding non-

target features. Similar arguments can be applied in other cases. 

2) Driver-identified dynamic programming 

According to the decision of the LSTM-based driver 

recognizer, the control policies in the DP-based control mode 
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need to be adaptively switched for each driver. Therefore, the 

control variables must be redetermined and their definition is  

𝑢𝑘 = Φ𝑖(𝑆𝑜𝐶𝑘),                               (21) 

in which 

𝑖 = ℤ𝑙𝑠𝑡𝑚(𝑣𝑘 , 𝛾𝑘, 𝛽𝑘 , 𝛿𝑘), 𝑖 = [𝐴, 𝐵, 𝐶, 𝐷, … ],        (22) 
where 𝑢  is the control variable; Φ𝑖  is the DP-based control 

policy for index 𝑖 driver; and ℤ𝑙𝑠𝑡𝑚 is the LSTM-based network 

to determine the driver behavior.  

In the optimization-based control mode, DP is employed to 

locate the optimized control actions at each stage by minimizing 

the fuel consumption cost function over a certain driving cycle. 

As an industry-recognized global optimization algorithm, DP 

can efficiently handle the constraints and nonlinearity of a 

problem and find a global optimal solution [37]. Here, the DP 

problem is described as the recursive Eqs. (23) and (24), which 

can be solved through backward recursion. The sub-problem 

for the (𝑁𝑖 − 1)th step is 

𝐽𝑁𝑖−1
∗ (𝑥𝑁𝑖−1) = min

𝑢𝑁𝑖−1
[𝐿(𝑥𝑁𝑖−1, 𝑢𝑁𝑖−1) + 𝐺(𝑥𝑁𝑖)] . (23) 

For the 𝑘th 0 ≤ 𝑘 < 𝑁𝑖 − 1 step, the sub-problem is given by 

𝐽𝑘
∗(𝑥𝑘) = min

𝑢𝑘
[𝐿(𝑥𝑘 , 𝑢𝑘) + 𝐺(𝑥𝑘)]    ,           (24) 

where,  𝐽𝑘
∗(𝑥𝑘)  is the optimal cost-to-go function at state 𝑥𝑘 

from the 𝑘th step to the termination of the driving cycle, and 

𝑥𝑘+1 is the state in the (𝑘 + 1)th step after the control variable 

𝑢𝑘 is applied to state 𝑥𝑘 at the 𝑘th step according to Eq. (24). 

IV. EXPERIMENTAL SET-UP 

A. Data Collection in Driver Simulator 

In this paper, data collection is conducted on the cockpit 

package (supported by a Thrustmaster T500RS) with the same 

HEV model with an automatic gearbox as Fig. 4. This is to 

make sure the driving characteristics exhibited by them are 

under the same constraints and their results are comparable. 

With respect to real-world road conditions, the road map model 

used with reconstructed traffic simulates a cyclic undivided 

highway with uphill, downhill, curved and straight roads and is 

provided by IPG CarMaker. To reduce the impact of differing 

traffic and road conditions on human drivers, they are restricted 

to the same cycling road conditions and required to follow the 

speed limits, stop signs, traffic lights, and other traffic 

regulations. It should be noted that the driver’s pedal behavior 

might be dependent on the vehicle, the pedal to torque map, and 

even the physical pedal resistance feedback.  

 
Fig. 4. Collection process of driving profiles 

B. Driving Operation Patterns 

Observable driving signals can be categorized into three 

groups [34]: 1) driving behavior, e.g., gas and brake pedal 

pressures and steering angles; 2) vehicle status, e.g., velocity, 

acceleration, and engine speed; and 3) vehicle position, e.g., 

following distance, relative lane position, and yaw angle. 

Among these driving signals, we focus on driving behavior with 

respect to the relationship between velocity, gas, brake pedal, 

and steering angle operating signals. Table 2 organizes driving-

related information about six subjects. 
TABLE II  

DRIVING INFORMATION OF SIX SUBJECTS 

Driver Age Time to hold a 

driving license (yrs.) 

Annual mileage 

(mile) 

Driving 

geography 

A 27 10 2000 Urban 

B 27 5 3000 Hybrid 

C 24 7 2500 Hybrid 
D 26 10 1500 Hybrid 

E 26 4 6000 Motorway 

F 30 1 1000 Urban 

 

Fig. 5 shows driving operation pattern examples of 10-min 

driving signals collected in the simulator with a 10Hz sampling 

frequency, wherein (a) is used for training and (b) is used for 

testing and their data capacity ratio is 5:6. For one single driver, 

6000×4 original signal data has been collected. Data from 

Driver F is only used as testing data to further validate the 

system robustness. It can be seen that primitive driving 

operation patterns are like a ‘yarn ball’ and their fragments are 

intertwined. It is difficult to distinguish their owners under the 

same road conditions. 

 
Fig. 5. Driving profiles during designed road condition 

V. RESULTS AND DISCUSSIONS 

A. Significant Difference Analysis 

In this section, the significant difference of extraction results 

are analyzed and the Mann-Whiney U test is conducted to 

determine whether two independent driver samples were 

selected from populations having the same distribution without 

the assumption of normal distributions. Fig. 6 shows p-value 

results based on the null hypothesis of no significant difference 

between the two drivers of primitive operation data, in which p-

values greater than 0.05 are marked in red. From the results, the 

primitive velocity samples between every two drivers all have 

a statistical difference, while some groups of the rest of the 

primitive samples between every two drivers have no 

statistically significant difference. Especially for primitive 

steering angle samples, the distribution differences for each pair 

of drivers is hard to statistically distinguish. 
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Fig. 6. Mann-Whiney U test results of original driving profile 

Based on the results of Mann-Whiney U test, the 

independence factor is chosen to represent the performance of 

the original data by using all extraction methods. The extraction 

method with a higher independence factor provides better 

performance in terms of the significant difference results. Its 

definition is 

𝐼𝑖 =
𝑁𝑢𝑚≤0.05

𝑁𝑢𝑚𝑎𝑙𝑙

   ,                               (25) 

where, 𝑁𝑢𝑚≤0.05 is the number of p-values less than or equal 

to 0.05 of significant differences between each pair of drivers; 

𝑁𝑢𝑚𝑎𝑙𝑙  is the number of all trials. Calculating by Eq. (25), the 

independence factor values of all involved extraction methods 

are presented in Table II.  
TABLE II 

INDEPENDENCE FACTOR OF USING INVOLVED EXTRACTION METHODS 

 Original Time Frequency SFFE-
4 

SFFE-
5 

SFFE-
6 

𝑁𝑢𝑚≤0.05 32 118 113 120 120 120 

𝑁𝑢𝑚𝑎𝑙𝑙 40 120 120 120 120 120 

𝐼𝑖  0.80 0.98 0.94 1.00 1.00 1.00 

Notes: the SFFE-4, -5, and -6 denote using the Feature 4, 5, and 6 as different 

spectral signals to guide extraction respectively. 

By comparing the independence factor value, all extraction 

methods have a certain degree of improvement in stripping the 

driver’s characteristics from the original driving data. 

Compared to time or frequency domain methods, the proposed 

SFFE can be more robustly implemented for these test drivers 

following the same road scenario. Through adaptively adjusting 

the size of sampling windows, this method can capture driving 

characteristics more accurately under relatively harsh 

conditions. Moreover, the types of features collected may limit 

their significant difference. To evaluate the contribution of 

existing driving characteristics to driver identifiability is 

another interesting and independent topic that could be studied 

in future work. 

B. Identification Performance Comparison 

In Table III, the contribution of the extracted feature (training 

material) types to driver identification is investigated. An initial 

experiment was conducted on every single feature of using 

different extraction methods (Target groups). As [38] 

considered, the ablation validation was performed for features 

other than selected single features (Non-target groups). The 

training process, which uses each feature extracted from the 

training cycles, has been repeated 20 times and the best testing 

results for each feature and network structures is recorded 

respectively. After investigation, the training parameters of the 

networks were set at 100 hidden units, 0.01 initial learn rate and 

80 maximum epochs that are convergent and efficient.  

It is seen that all three methods have a certain improvement 

in the characterization of the original data (59.2%), in which 

SFFE-5 method realize the highest identifiability of 96.1% by 

using Bi-LSTM networks without Feature 2. The method 

proposed by Wijnands et al. uses non-extracted data for training 

purposes so it is clearly not applicable in this case [39]. From 

the perspective of extraction methods, the proposed SFFE ranks 

first with the 80.4% average identifiability compared to those 

of time domain (71.9%) and frequency domain (68.0%) 

extraction methods. From the perspective of network structure, 

the Bi-LSTM network has 78.6% average identifiability and the 

forward one has 71.7% average identifiability. With the double 

feature dimensions of training, the identifiability generally has 

an upward trend (average 9.35% up), whereas it does not work 

for the original data.  

    Figure 8 shows real-time driver identification that compares 

the best performance of each type of extraction methods, which 

includes the original (Feature 0), time-domain (Feature 3), 

frequency-domain (Feature 5) and the proposed SFFE (Feature 

11). During real-time driving, the original data driven driver 

recognizer cannot identify the driver from their driving 

operation signal. Training by using time domain or frequency 

domain data improves the recognition accuracy of the driver 

TABLE III 

IDENTIFIABILITY COMPARISON FROM VIEW OF FEATURES AND NETWORKS 

Feature  Forward LSTM Bidirectional LSTM Average identifiability 

Type Num. Target Non-target Target Non-target Each num. Each type 

Original 0 0.590 0.590 0.593 0.593 0.592 0.592 

Time- 1 0.579 0.653 0.749 0.726 0.677  

domain 2 0.599 0.714 0.622 0.833 0.692 0.719 

 3 0.76 0.655 0.836 0.800 0.788  

Frequency- 4 0.604 0.514 0.651 0.804 0.643  
domain 5 0.621 0.645 0.618 0.829 0.678 0.680 

 6 0.565 0.764 0.785 0.754 0.717  

 7 0.745 0.758 0.773 0.806 0.771  
SFFE-4 8 0.776 0.906 0.733 0.909 0.806 0.798 

 9 0.796 0.749 0.756 0.863 0.766  

 10 0.798 0.793 0.906 0.861 0.840  
SFFE-5 11 0.835 0.870 0.939 0.961 0.8940 0.855 

 12 0.723 0.817 0.878 0.920 0.825  

 13 0.763 0.765 0.818 0.891 0.809  

SFFE-6 14 0.783 0.838 0.738 0.853 0.778 0.803 
 15 0.761 0.721 0.797 0.914 0.748  

Average identifiability 0.706 0.762 0.735 0.832 0.759 

 



IEEE TRANSACTIONS ON FUZZY SYSTEMS 

 

8 

recognizer, especially for Drivers A, D, and E. Training by 

using data extracted by the proposed SFFE can further improve 

recognition accuracy of Driver C and reduce the size of 

sampling windows from 60 s to 47 s, but there still is a defect 

in identifying Driver B. It may be caused by Driver B having 

many behavioral similarities to Driver C and D. This factor is 

related to the driving geography and the environment, wherein 

the feature homogenization could reduce the classification 

performance of the proposed method. Like Driver F, Driver B’s 

data does not participate in the training process so that his 

driving fragments are assigned to other drivers. Then the DP-

based supervisory controller calls a control policy 

corresponding to the driver for energy distribution to minimize 

the influence of the defect. 

 
Fig. 8. Real-time performance of driver identification 

C. Vehicle Adaptability Performance 

This section discusses the fuel economy of the driver-

identified control supervisory system and examines vehicle 

adaptability under different control strategies. 

 
Fig. 9. Fuel consumption comparison over different human drivers 

Figure 9 shows fuel consumption comparison over different 

human drivers, in which each driving cycle in this case is of 

60min duration and formed by six 10 min testing fragments 

from each driver. The data clearly indicates that fuel 

consumption over different human drivers has significant 

differences, in which fuel consumption of Driver D (the highest 

in all testing drivers) is nearly twice that of Driver E. Compared 

to the baseline and FL-based schemes, the LSTM+DP control 

strategy always maintains the lowest fuel consumption for all 

of the drivers. From the perspective of the drivers, the higher 

the baseline fuel consumption, the greater the energy-saving 

potential of the LSTM+DP control strategy. Moreover, the 

gender of human drivers is not considered in the paper but may 

also affect the energy-saving performance of the developed 

system, especially, in the way they apply pressure to gas and 

brake pedals [12]. 

 
Fig. 10. Real-time performance comparison over different control strategies 

In Fig. 10, the driver-identified supervisory control system is 

further compared with the FL-based (fuzzy logic system) and 

baseline (charge depleting and charge sustaining control 

strategy) schemes under real-world driving conditions. These 

two widely-used strategies considered in the comparison group 

have both been employed and verified in the author's past work 

[18], [32]. Differing from FL-based control systems, the SFFE 

driven system has the unique ability to identify the driver and 

offer a personalized control policy. The fuel consumption under 

the proposed control system is significantly lower than other 

control systems while maintaining relatively higher SoC values. 

Compared to the baseline control system, both the FL-based 

and the proposed schemes have stronger robustness in adapting 

to the driving styles of differing drivers. Differing from the 

fuzzy control strategy, the DP algorithm considers fuel 

consumption of HEVs from a global perspective to balance the 

flow of electricity usage and maximize the fuel economy of 

HEV systems. The Bi-LSTM helps supervisory control systems 

to identify target drivers to ensure the effectiveness of 
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optimized control policies. It is worth mentioning that for 

Driver F (no knowledge of him in the network), the proposed 

system has excellent adaptability that continues to operate in 

the last period (3000 - 3600 s) with the lowest energy 

consumption. However, the conventional baseline control 

system has no ability to counter the change of drivers and even 

driving styles. The vehicle performance with different control 

strategies is summarized in Table IV. From the results, the 

LSTM+DP control strategy significantly reduces fuel 

consumption to 5.2 liter/100 km, and saves 11.31% energy 

over the baseline (FL-based one saves 5.53%). 
TABLE IV 

VEHICLE PERFORMANCE COMPARISON OVER REAL-WORLD DRIVING 

Control 

strategy 

Final 

SoC 

Fuel consumption 

(liter/100 km) 

Total 

energy (J) 

Energy 

saving (%) 

Baseline 0.2014 6.141 1.1715e+08 - 

FL-based 0.4252 5.762 1.1031e+08 5.53% 
LSTM+DP 0.2809 5.207 1.0389e+08 11.31% 

VI. CONCLUSION 

This paper proposes a driver-identified supervisory control 

system of hybrid electric vehicles (HEVs), wherein an 

improved method of spectrum-guided fuzzy feature extraction 

(SFFE) is developed for improving the recognition accuracy 

and efficiency of this control system. The comparative study 

including involved extraction methods and their identification 

system performance as well as its application to HEV systems 

has been carried out. The contributions drawn from the 

investigation are as follows: 

1) With help of the spectrum-guided fuzzy feature extraction, 

recognition accuracy of both forward and bi-directional 

LSTM networks rises 7% and 6% from other extraction 

methods (time or frequency domain). 

2) Compared to forward LSTM networks, bi-directional 

LSTM networks have a better performance with an 

average of 7% higher accuracy in driver identification 

performance. 

3) For each human driver, the driver-identified supervisory 

control system can save more fossil fuel, compared to 

fuzzy logic-based and rule-based them, especially for 

driver D (saving up to 16%). 

4) Driven by a human driver whose data was not in the 

training set, this proposed system shows strong robustness 

and provides excellent energy-saving performance, 

compared to the baseline (11.31%) and FL-based (5.53%) 

schemes. 
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