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Several studies have highlighted the interplay between metabolism, immunity and
inflammation. Both tissue resident and infiltrating immune cells play a major role in the
inflammatory process of rheumatoid arthritis (RA) via the production of cytokines, adipo-
cytokines and metabolic intermediates. These functions are metabolically demanding
and require the most efficient use of bioenergetic pathways. The synovial membrane
is the primary site of inflammation in RA and exhibits distinctive histological patterns
characterized by different metabolism, prognosis and response to treatment. In the
RA synovium, the high energy demand by stromal and infiltrating immune cells,
causes the accumulation of metabolites, and adipo-cytokines, which carry out signaling
functions, as well as activating transcription factors which act as metabolic sensors.
These events drive immune and joint-resident cells to acquire pro-inflammatory effector
functions which in turn perpetuate chronic inflammation. Whether metabolic changes
are a consequence of the disease or one of the causes of RA pathogenesis is still
under investigation. This review covers our current knowledge of cell metabolism in
RA. Understanding the intricate interactions between metabolic pathways and the
inflammatory and immune responses will provide more awareness of the mechanisms
underlying RA pathogenesis and will identify novel therapeutic options to treat
this disease.
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INTRODUCTION

Rheumatoid arthritis is an immune mediated inflammatory
disease characterized by autoantibody production [including
rheumatoid factor (RF) and anti–citrullinated protein antibody
(ACPA), anti-carbamylated proteins antibodies (anti-CarP) etc.,]
chronic synovial inflammation (synovitis) and hyperplasia,
cartilage and bone destruction, as well as systemic complications
such as cardiovascular, pulmonary, and neurological co-
morbidity. Progressive disability and systemic complications
are still a burden leading to socioeconomic costs and unmet
needs. Indeed, current conventional and biologic disease
modifying therapies produce good responses in only 60%
of patients (Humby et al., 2019). Predictive biomarkers of
prognosis, therapeutic response, and resistance to treatment,
which currently include ACPA, RF, C-reactive protein (CRP), and
erythrocyte sedimentation rate (ESR), remain inadequate from a
clinical decision making perspective (McInnes and Schett, 2011;
Dennis et al., 2014).

The loss of immune tolerance that precedes the onset of
inflammation in the joint is thought to represent a key process
in RA pathogenesis (McInnes and Schett, 2011; Smolen et al.,
2016) and is likely to occur at extra-articular sites (Tracy
et al., 2017). Synovitis, the hallmark of established RA, is
characterized by leukocyte infiltration, neo-angiogenesis and
increased expression of adhesion molecules and chemokines
which lead to increased leukocyte migration into the inflamed
site. In addition, inadequate lymphangiogenesis, which limits
cell egress, together with local fibroblast activation, promotes
the establishment of synovial inflammation (Croft et al., 2019).
Nutrient availability is also limited and immune and joint
resident cells compete for available nutrients at a rate which
exceeds their production thereby increasing the metabolic
demand (Figure 1; Goetzl et al., 1971; Treuhaft and MCCarty,
1971; Patella et al., 2015; Biniecka et al., 2016; Tsokos, 2016; Yang
et al., 2016; Zhou et al., 2016). All these events can, in the long-
term, induce an alteration of immune responses and promote a
continued breach of immune tolerance leading to inflammation
and autoimmunity.

METABOLITES: A FOCUS ON LACTATE

The study of intermediates and end-products of metabolism in
the context of immune cell functions is an emerging field that
has been termed immunometabolism (Pearce et al., 2013). It is
now clear that molecules such as succinate, lactate, acetyl-CoA,
fumarate are more than intermediate by-products in metabolic
pathways as they function as signaling molecules capable of
linking metabolic reprograming with immune and inflammatory
responses in immunity, inflammation and cancer (Figure 1; Haas
et al., 2016). Whether metabolic perturbations are causal or the
effect of the disease and how they can impact on the prognosis of
RA is an area of significant current research.

Nuclear magnetic resonance (NMR) spectroscopy–based
metabolomics on serum and urine samples from people with
RA has identified a metabolic signature of patients with active

established RA which differs from that of healthy controls
(Young et al., 2013). Among the metabolites investigated 3-
hydroxybutyrate and lactate were much higher in RA than
in the control group. In addition choline, lactate and low-
density lipoprotein (LDL) lipids strongly correlated with CRP
a marker of disease activity (Young et al., 2013). This
evidence suggests that NMR could be used as a tool to
predict the development of atherosclerosis and other metabolic
complications often associated with inflammatory disease.
Similarly, a gas chromatography–mass spectrometry (GC–MS)
study on serum samples, has shown a decrease in amino
acid and glucose metabolism in combination with increased
fatty acid metabolites such as palmitate, oleate and cholesterol
(Zhou et al., 2016).

In the same vein, a correlation between serum metabolites
and gene expression profiling in synovial tissue from patients
with active RA was recently found (Narasimhan et al., 2018).
The authors described an association of serine, glycine, and
phenylalanine metabolism with a lymphoid cell gene expression
signature in synovial tissue. In addition, amino acids (i.e., alanine,
aspartate, glutamate) and choline-derived metabolites correlated
with TNF-α synovial expression while circulating ketone bodies
associated with synovial gene expression of metalloproteinases.
These data pointed to a link between serum metabolite profiles
and synovial biomarkers further suggesting that NMR may be
a promising technique for mapping pathogenic pathways in RA
(Narasimhan et al., 2018).

In vitro studies have further highlighted the role of metabolites
as signaling molecules in mediating inflammatory responses.
Studies on succinate have shown that lipopolysaccharides
(LPS)-activated inflammatory (M1) macrophages accumulate
this metabolite intracellularly as a consequence of an altered
TCA cycle (Jha et al., 2015). Here succinate promotes the
activation of hypoxia-inducible factor (HIF)-1α and increases
pro-inflammatory interleukin (IL)-1β production. In addition,
when activated by inflammatory stimuli, macrophages release
succinate into the extracellular space and up-regulate G protein-
coupled receptor (GPR)91, which functions as a sensor for
extracellular succinate to enhance IL-1β production (Tannahill
et al., 2013). Notably, GPR91-deficient mice display decreased
macrophage activation and reduced IL-1β production during
antigen-induced arthritis as well as decreased dendritic cell
traffic and reduced differentiation of Th17 cells in the lymph
nodes (Tannahill et al., 2013; Saraiva et al., 2018). High levels
of succinate have been found in synovial fluid from RA
patients, where it induces IL-1β release from macrophages in a
GPR91-dependent manner. This evidence suggests that GPR91
antagonists may act as novel therapeutic molecules to treat
RA (Littlewood-Evans et al., 2016). Interestingly, intracellular
and extracellular succinate exhibit different functions. More
specifically, intracellular succinate induces angiogenesis through
HIF-1α, while extracellular succinate regulates GPR91 activation
(Li et al., 2018). The abolition of succinate dehydrogenase (SDH)
activity with dimethyl malonate limited succinate accumulation
and prevented angiogenesis via blocking the HIF-1α/VEGF
axis, revealing a new potential therapeutic strategy to attenuate
neo-angiogenesis in arthritis (Li et al., 2018). If succinate
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FIGURE 1 | The inflammatory environment in RA synovium. The RA tissue microenvironment is characterized by the accumulation of cytokines, adipo-cytokines and
metabolic intermediates produced by the accelerated metabolism of infiltrating and tissue resident immune cells. These events can promote or be the consequence
of a dysregulation in several metabolic pathways (red), including glycolysis, TCA cycle, PPP and lipid metabolism, which regulate many cell functions including
activation, differentiation, proliferation, autoantibody and cytokine production leading to pro-inflammatory immune responses and the exacerbation of chronic
inflammation.

exhibits pro-inflammatory activity, other metabolites such as
fumarate and itaconate, have been observed to mediate anti-
inflammatory effects (McGuire et al., 2016; Mills et al., 2018).
With regard to fumarate, the methyl ester dimethyl fumarate
(DMF) has been approved for the treatment of relapsing multiple
sclerosis (MS) (Fox et al., 2012; Gold et al., 2012). Interestingly
DMF has been reported to reduce osteoclastogenesis and bone
destruction via increasing the expression of nuclear factor
erythroid 2–related factor 2 (NRF2)-mediated antioxidant genes
and decreasing reactive oxygen species (ROS) levels (Yamaguchi
et al., 2018). The role of itaconate in RA is still debated.
Despite evidence suggests an anti-inflammatory role (Mills et al.,
2018) other studies have shown that reduced levels of itaconate
correlate with a decreased pro-inflammatory (M1) signature
in human macrophages isolated from healthy control subjects
(Papathanassiu et al., 2017) and with a reduced arthritis severity
in vivo (Michopoulos et al., 2016; Papathanassiu et al., 2017).
It would be valuable to investigate how these observations in
murine models translate into the human disease setting (i.e., OA
vs. RA macrophages).

For more than 50 years, the inflamed joint has been recognized
as a site with low levels of glucose and high amounts of
lactate (Goetzl et al., 1971; Treuhaft and MCCarty, 1971),
as a consequence of the intense cellular turnover in the
synovium. Accumulation of lactate in RA synovial fluid is in
part responsible for the acidic environment of RA synovitis.
Indeed, it is well established that the PH of synovial fluidis
significantly lower in inflamed arthritic joints than in healthy
joints (Cummings and Nordby, 1966).

The rheumatoid synovial environment is paradigmatic of
some of the lactate-induced features seen in T cells, including
IL-17 secretion and loss of antigen responsiveness (Croia et al.,
2013). In particular, lactate modulates specific T cell subsets
via the interaction with lactate transporters. Sodium lactate
selectively affects CD4+ T cell functions via the solute carrier
(SLC)5A12, while lactic acid was found to have an impact on
CD8+ T cell motility and cytolytic capability via its influx through
SLC16A1 (MCT1) (Haas et al., 2015; Pucino et al., 2017).

Solute carrier 5A12 is highly expressed in RA synovial tissues
and this expression significantly increases in association with the
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inflammatory T cell score (Haas et al., 2015; Pucino et al., 2017).
Notably we showed that SLC5A12 blockade promoted the egress
of CD4+ T cell from the inflamed tissue in an organ culture model
and improved clinical scores of disease in an experimental model
of arthritis (Pucino et al., 2019).

Another lactate transporter, the monocarboxylate transporter
4 (MCT4 or SLC16A3) was found to be up-regulated by RA
synovial fibroblast (FLS) compared to osteoarthritis (OA) FLS
(Fujii et al., 2015). Silencing MCT4, with MCT4-specific siRNA,
inhibited the proliferation of RA FLS and was able to reduce the
severity of arthritis in mice with collagen-induced arthritis (CIA)
(Fujii et al., 2015).

These findings have established lactate signaling as integral
feature of RA and open up the possibility of a new biomarker
for disease progression and response to treatment as well as
a novel target for therapeutic intervention. However, a better
understanding of how the different synovial cell types co-
ordinate their metabolism and the role of metabolites in cell-cell
communication will be required to fully appreciate how the
metabolic landscape in disease differs from that in health.

GLUCOSE METABOLISM

Proliferating cells mainly use aerobic glycolysis (Warburg
effect) to generate energy. Indeed, in inflammatory conditions
and tumors, aerobic glycolysis is preferred over oxidative
phosphorylation for the production of ATP and for the stock of
carbon sources necessary to build cell mass (Tsokos, 2016).

Both peripheral and tissue resident RA CD4+ T cells have
a unique metabolic signature (Weyand et al., 2017; Pucino
et al., 2019). Indeed, RA CD4+ T cells exhibit an impairment
in engaging glycolysis. This is due to a deficiency of 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3),
a glycolysis regulator enzyme, resulting in delayed glycolysis
and increased pentose phosphate pathway (PPP) via the up-
regulation of glucose-6-phosphate dehydrogenase (G6PD). As a
consequence, high levels of NADPH (reduced form nicotinamide
adenine dinucleotide phosphate) and ROS consumption were
observed. Moreover, altered activation of ataxia telangiectasia
mutated (ATM), an enzyme involved in the cell cycle, was
also reported. All these alterations result in increased cellular
proliferation, a switch toward pro-inflammatory CD4+ T cell
subsets (Th1 and Th17) and chronic inflammation (Yang
et al., 2013, 2016). Interestingly the replenishment of ROS was
able to reverse these phenomena (Yang et al., 2013, 2016).
Similarly, CD4+ T cell from naive-to-treatment RA synovial
tissues display a reduced expression of glycolytic genes coupled
with increased PPP and Kreb cycle genes (Pucino et al.,
2019). These findings correlate with increased Th17 cell tissue
infiltration and the formation of ectopic lymphoid structure
(ELS) (Pucino et al., 2019).

6-phosphofructo-2-kinase/fructose-2 deficiency also limits
the ability of RA T cells to engage autophagy with increased
susceptibility to apoptosis (Yang et al., 2013). This is linked with
the recent discovery that RA T cells lack N-myristoyltransferase
(NMT)-induced AMP-activated protein kinase (AMPK)

activation which is a positive regulator of autophagy by
suppressing the mammalian target of rapamycin (mTOR)
activity (Kim et al., 2013; Cassano et al., 2014; Wen et al., 2019).
Further studies are needed to better comprehend the intracellular
mechanisms linking metabolism, apoptosis, and autophagy in
RA to understand potential therapeutic implications.

In contrast to T cells, RA FLS display increased glycolytic
metabolism under metabolic stress (Falconer et al., 2018). Indeed,
glucose deprivation or glycolytic inhibitors [i.e., 2-deoxy-D-
glucose (2-DG)], reduced FLS cytokine secretion, proliferation,
and migration as well as disease severity in a mouse model
of arthritis (Garcia-Carbonell et al., 2016). In this context,
RA FLS show an higher expression of the inducible isoform
of hexokinase (HK)2, which catalyze the phosphorylation of
glucose to glucose 6 phosphate (G6P), in comparison to
OA FLS. Interestingly, HK2 silencing reduced RA FLS tissue
invasiveness; by contrast, the overexpression of HK2 increased
the levels of MMP, IL6, and IL8 along their migratory rate
(Bustamante et al., 2018). These data were further confirmed
in vivo, in a mouse model of arthritis, where the HK2
deletion in murine FLS ameliorated disease severity of arthritis
(Bustamante et al., 2018). Similarly, the HK2 inhibitor, 3-
bromopyruvate (BrPA), was found to modulate the Th17/Treg
ratio and suppress dendritic cells (DC) activation and cytokine
expression (Okano et al., 2017). In addition to its canonical
role in glucose metabolism, HK2 translocates to mitochondria
where it triggers an autophagic and anti-apoptotic responses
through its interaction with the voltage-dependent anion channel
(VDAC) (Tan and Miyamoto, 2015). Intriguingly we found
that lactate, which is abundant in the RA synovium, modulates
HK2 mitochondrial translocation suggesting a potential role of
this enzyme in promoting T cell survival. This provides an
important link between metabolism and apoptosis resistance
in the RA synovium that needs to be further explored
(Pucino et al., 2019).

Abnormal metabolism by RA FLS may be a consequence
of the hypoxic microenvironment found in inflamed sites.
Indeed, hypoxia by itself is able to induce a downregulation of
mitochondrial respiration and an increase of glycolysis in RA
fibroblasts, leading to synovial invasiveness, angiogenesis
and synovial hyperplasia (Biniecka et al., 2014, 2016).
Moreover stimulation in vitro of RA FLS with platelet derived
growth factor (PDGF) or TNF increased glucose metabolism
(Garcia-Carbonell et al., 2016).

Enhanced glycolysis is also observed in synovial monocytes
and macrophages in RA. RA macrophages express high levels
of the glycolytic enzyme α-enolase, which induces secretion of
pro-inflammatory cytokines through autoantibody recognition
(Bae et al., 2012). High concentrations of glucose have also
been shown to increase IL-1β secretion from RA monocytes
through an NOD-, LRR- and pyrin domain-containing protein
3 (NLRP3)/inflammasome-dependent mechanism (Ruscitti et al.,
2015) and the glycolytic enzyme HK1 is known to drive cleavage
and activation of pro–IL-1β in macrophages (Moon et al.,
2015). Following these results, a clinical trial (NCT02236481)
has recently been published showing the efficacy of IL-
1 inhibition, in terms of RA disease activity and glycated
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hemoglobin percentage (HbA1c%), as a targeted treatment in
patients with RA and type 2 diabetes (T2D). Notably patients
treated with TNF inhibitors did not achieve the same results
(HbA1c reduction) in this trial suggesting a different pathogenic
mechanism linking inflammation, T2D and RA. Further studies
are needed to dissect the implication of NLRP3 and the
risk of developing T2D in patients with RA (Ruscitti et al.,
2019) and to highlight the potential application of NLRP3-
targeted therapies for these diseases. Driven by surrounding
environmental conditions, glycolytic enzymes can translocate to
the nucleus (“moonlighting”), where they regulate the expression
of their target mRNAs and modulate immune responses (De Rosa
et al., 2015; Boukouris et al., 2016). For instance, the glycolytic
enzyme pyruvate kinase M2 (PKM2) plays a crucial role in the
regulation of transcription factors and cytokine production in
both coronary artery disease (CAD) and RA macrophages (Shirai
et al., 2016; Weyand et al., 2017). Specifically, increased ROS
production during inflammation, promotes PKM2 dimerization
enabling its nuclear translocation and transcription factor
STAT3 phosphorylation, thereby enhancing IL-6 and IL-1β

production (Shirai et al., 2016; Weyand et al., 2017). Reducing
glycolysis, limiting superoxide production and promoting PKM2
tetramerization, repaired the pro-inflammatory phenotype of
CAD macrophages (Shirai et al., 2016). Similarly we found that
lactate induces the nuclear translocation of PKM2 in activated
CD4+ T cells, boosting IL-17 production in a STAT3 dependent
manner (Pucino et al., 2019).

Emerging evidence suggests that hypoxia and HIFs play
a pivotal role in the regulation of several pathophysiological
features of RA including synovitis, angiogenesis, and cartilage
destruction (Hua and Dias, 2016). In particular, HIF-1α, a
master regulator of glycolysis, is highly expressed by macrophages
in the RA synovium, compared to macrophages in OA and
healthy control synovium (Hollander et al., 2001) suggesting
HIF-1α as novel potential therapeutic target. It will be interesting
to determine whether these observations reflect up or down
regulation of HIF-1α in the same macrophage subset in RA
and OA or alternatively is a reflection of different subsets of
macrophages in RA and OA (Croft et al., 2019).

Vascular endothelial growth factor-dependent HIF-1α

pathways play a key role in endothelial cell (EC) metabolism.
Indeed, in response to growth factor stimulation, such as by
vascular endothelial growth factor (VEGF), EC become highly
activated, proliferative, and acquire migratory capability (Potente
et al., 2011; Varricchi et al., 2018) with increased glycolysis
(Yeh et al., 2008; Parra-Bonilla et al., 2010; De Bock et al.,
2013). Blockade of the glycolytic enzyme, PFKFB3, inhibited
angiogenic tube formation in vivo and reduced the secretion
of pro-inflammatory/angiogenic mediators in RA FLS and EC
suggesting a key role of this glycolytic enzyme in promoting
angiogenesis and inflammation (Biniecka et al., 2016). G6PI was
also found to be important in the regulation of VEGF secretion
from RA FLS (Lu et al., 2017). Indeed, in hypoxic conditions,
both G6PI and HIF-1α were increased. This phenomenon
was accompanied by enhanced proliferation of RA FLS and
angiogenic tube formation of human dermal microvascular
endothelial cells (HDMECs) in vivo. These events were reversed

in G6PI loss-of-function experiments, thus confirming the
requirement for G6PI in promoting angiogenesis in RA
(Lu et al., 2017).

MITOCHONDRIAL METABOLISM

Mitochondrial functions in RA are still under investigation.
Mitochondrial DNA (mtDNA) mutations and ROS production
were found to be higher in RA compared to OA FLS (Da
Sylva et al., 2005). In addition, they correlated with elevated
MMP expression and a more invasive phenotype of FLS
(Harty et al., 2012). Another study showed that mitochondria
in macrophages isolated from the RA synovium, produced
more ATP, consumed more oxygen and developed inter-
organelle connections with the endoplasmic reticulum, forming
mitochondria-associated membranes (MAM). MAMs promote
mitochondrial hyperactivity and calcium transport, and induce
the inactivation of glycogen synthase kinase 3b (GSK3b). In
turn, the inactivation of GSK3b increases the production of
the collagenase cathepsin K, a macrophage effector molecule,
whose levels correlates with RA clinical disease activity (Zeisbrich
et al., 2018). Lipopolysaccharide (LPS) stimulated macrophages
(M1 macrophages) display a decreased TCA cycle. Moreover the
mitochondrial oxidative phosphorylation pathway is coupled to
the up-regulation of glucose transporter 1 (Glut1) to facilitate
efficient uptake of glucose (Corcoran and O’Neill, 2016). ROS
production is increased, partly as a consequence of reversed
electron transport in mitochondria, and the accumulation
of TCA cycle intermediates such as succinate, as previously
described. These events promote the expression of the pro-
inflammatory cytokine IL-1β by inhibiting prolyl hydroxylases
and activating the transcription factor HIF-1α. Succinate has
also been linked to changes in DNA methylation and associated
histone proteins which in turn modulate gene expression (Mills
and O’Neill, 2014). In animal models of arthritis, succinate has
been shown to induce synovial angiogenesis through VEGF-
dependent HIF-1α pathways (Li et al., 2018).

In RA, ROS are thought to directly contribute to destructive
and proliferative synovitis (Datta et al., 2014). High levels of
ROS accumulate in the synovial fluid and peripheral blood
of RA patients where they can modify (e.g., via oxidation)
major components of cartilage and bone, such as collagen
and hyaluronic acid, inducing bone and cartilage destruction
(Ishibashi, 2013; Chimenti et al., 2015). Moreover ROS levels
positively correlate with disease activity (Datta et al., 2014)
and contribute to osteoclast differentiation via RANK signaling
(Lee et al., 2005).

LIPID METABOLISM

Recent discoveries have highlighted the role of lipid metabolism
in the regulation of immune cells functions (Cucchi et al., 2019)
and targeting lipid mediators is becoming an attractive field in
autoimmune and allergic disorders (Marone et al., 2019).

It has been recently reported that the short chain fatty
acids (FAs) such as acetate, propionate and butyrate are able
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to orchestrate several CD4+ T cell functions by modulating
the activity of histone deacetylases (HDAC) (Park et al.,
2015) and via the peroxisome proliferator-activated receptor
(PPAR) signaling (Berger and Moller, 2002; Klotz et al., 2009;
Cipolletta et al., 2012). Lipid metabolism is also crucial for
T cell activation and proliferation. Indeed, T cell activation is
accompanied by the upregulation of sterol regulatory element
binding protein (SREBP). Lack of SREBP by genetic inactivation
is detrimental to T cells undergoing clonal expansion after
activation (Kidani et al., 2013).

T cells from patients with RA display increased fatty acid
synthesis (FAS) leading to their increased tissue invasiveness.
More specifically, reduced glycolytic flux due to PFKFB3
deficiency, promotes a shunt toward anabolic glucose utilization
(increased PPP and FAS) and the up-regulation of the podosome
scaffold adapter protein TKS5 (SH3PXD2A), which is involved
in the formation of cell membrane protrusions (Yang et al.,
2013; Shen et al., 2017). In addition, enhanced FAS causes the
accumulation of cytoplasmic lipid droplets, which are necessary
for T cell functions including cell growth, proliferation and
for naïve to memory T cell conversion. Interestingly, restoring
pyruvate level was able to replenish T cell locomotion and
limit tissue-invasiveness and inflammation in non-obese diabetic
(NOD) SCID mice (NSG mice) engrafted with human synovial
tissue. In addition, inhibition of FAS efficiently reduced tissue
inflammation, decreased the number of RANKL+ and IFN-
γ+ T cells and diminished the total number of T cell infiltrating
the synovial tissue (Shen et al., 2017). De novo FAS regulate
Th17 differentiation (Berod et al., 2014). Indeed the inhibition
of acetyl-CoA carboxylase (ACC) in vitro, using the specific
inhibitor Sorafen A, leads to an impaired differentiation of
Th17, favoring instead the differentiation of Foxp3+ Treg cells
(Berod et al., 2014). Consistent with these results, we have
recently shown that in the presence of lactate, at concentrations
comparable to those measured in the synovial tissue, CD4+ T
cells upregulate the de novo FAS, leading to increased IL-17 and
reduced cell motility (Pucino et al., 2019). Interestingly, these
events were restored after treating CD4+ T cells with a range of
FAS inhibitors and reducing the lactate-induced NADPH levels
(Pucino et al., 2019).

While de novo FAS has been shown to play an important
role in effector CD4+ T cell functions, cholesterol metabolism
is involved in the regulation of the anti-inflammatory response
in human CD4+ T cells (Perucha et al., 2019). Inhibition
of the cholesterol biosynthesis pathway with atorvastatin
or 25-hydroxycholesterol during switching from IFNγ+

to IL-10+ showed a specific block in immune resolution,
defined as a significant decrease in c-Maf/IL-10 expression
(Perucha et al., 2019).

Metabolomics profiling has shown alterations in the lipid
metabolism in RA versus OA FLS. In line with this evidence,
choline and choline like transporter (CTL)1 (high-affinity) and
CTL2 (low affinity), were found to be highly expressed by synovial
RA FLS (Ahn et al., 2016; Volchenkov et al., 2017) and their
functional inhibition promoted FLS cell death (Seki et al., 2017).
Supporting these findings, positron emission tomography (PET)
scanning with 11C-choline showed increased uptake in inflamed

arthritic joints (Seki et al., 2017). Further studies are needed
to understand the mechanisms linking lipid metabolism to FLS
effector functions and subset differentiation in RA.

TANSCRIPTION FACTORS AS
METABOLIC SENSORS

Catabolic and anabolic pathways are regulated by specific
transcription factors which act as metabolic sensors. In this
context, 5′ AMPK is a redox sensor, being activated by
increased AMP:ATP ratios (Shirwany and Zou, 2014). AMPK
modulates several metabolic functions, including glucose uptake,
mitochondrial biogenesis and lipid metabolism, as well as cellular
functions (i.e., transcriptional activity and cell cycle). Therapeutic
AMPK activation was reported to suppress experimental arthritis.
Moreover, methotrexate-induced activation of AMPK-dependent
pathway has been shown to protect the vasculature against
inflammation (Kang et al., 2013; Yan et al., 2015; Thornton et al.,
2016). AMPK activation is myristoylation dependent. Notably,
RA T cells display a defect in N-myristoyltransferase (NMT)
function, which prevents AMPK activation and enables mTORC1
signaling activation, resulting in pro-inflammatory Th1 and Th17
differentiation. NMT1 loss of function experiments induced an
inflammatory response both in vitro and in vivo; by contrast,
NMT1 overexpression restored AMPK activation and suppressed
synovial inflammation (Wen et al., 2019).

Finally, metformin, an anti-diabetic drug, which indirectly
activates AMPK, has been shown to mitigate disease in mouse
models of arthritis (Son et al., 2014) via the inhibition of mTOR
pathway, the suppression of NF-κB-mediated inflammatory
cytokine production as well as enhanced autophagic flux
(Yan et al., 2015).

Together with AMPK, mTOR is a central integrator of
environmental signals and nutrient availability with cellular
functions (Delgoffe and Powell, 2015; Pollizzi and Powell, 2015;
Pucino et al., 2016). Indeed, aberrant mTOR activation is
associated with cellular senescence, and rapamacyin, the mTOR
complex 1 inhibitor, has been investigated as a therapeutic
agent to treat degenerative, autoimmune and hyperproliferative
diseases (Perl, 2016). The ability of mTOR to integrate nutrient
supply, bioenergetics and T cell functions, makes it a promising
target for therapeutic intervention to suppress abnormal T cell
differentiation during the early stages of RA (Perl, 2016).

ADIPO-CYTOKINES

A link between the neuroendocrine and immune systems
has been shown to contribute to the pathogenesis of several
immune mediated inflammatory disorders (Cassano et al., 2014;
Procaccini et al., 2014). In this context adipo-cytokines, such
as leptin and adiponectin, hormones secreted mainly by the
adipose tissue, have been shown to play a role in RA pathogenesis
(Hamaguchi et al., 2012; Ruscitti et al., 2018). For instance, it has
been shown that ob/ob mice develop resistance to experimental
antigen-induced arthritis compared to wild-type mice (Busso
et al., 2002). In addition a decrease in serum leptin concentration
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following fasting, limited CD4+ activation, promoted a shift
toward Th2-type cytokine secretion, and improved clinical
disease in RA patients (Fraser et al., 1999). Leptin can also
directly modulate chondrocyte biology. Indeed, leptin induces, in
combination with IFN-γ and IL-1, nitric oxide synthases (NOS)
type II activation in cultured chondrocytes (Otero et al., 2003).
These events promote pro-inflammatory cytokine production in
joint cartilage, causing chondrocyte apoptosis, metalloproteases
activation and consequently inflammation (Otero et al., 2005).
However there is conflicting evidence regarding the role of leptin
in RA (Tian et al., 2014). Some studies have found elevated
leptin in serum from RA patients (Bokarewa et al., 2003; Xibille-
Friedmann et al., 2010; Yoshino et al., 2011) in particular in
patients with erosive RA (Targonska-Stepniak et al., 2010; Olama
et al., 2012). Conversely other reports have showed no difference
in serum leptin levels between RA patients and healthy controls
(Harle et al., 2006; Hizmetli et al., 2007; Oner et al., 2015). Leptin
has also been detected in RA synovial fluid and tissue. A study by
Seven et al. (2009) reported that serum and synovial fluid leptin
levels were higher in RA patients when compared to controls,
with positive correlation with disease activity. Another study
showed instead a negative correlation between leptin synovial
fluid levels and bone erosions. In addition, leptin levels were
higher in the serum than in the synovial fluid suggesting that
leptin may be consumed in the joints and have a protective role
against erosions (Bokarewa et al., 2003).

Similar to leptin, adiponectin has also been suggested to
play a role in the pathogenesis of RA, though again results
are inconsistent. Adiponectin is a 28–30 kDa collagen-like
protein predominantly secreted by adipocytes. In some studies,
increased levels of adiponectin were found in synovial fluid
and serum of patients with RA (Schaffler et al., 2003; Otero
et al., 2006) and were associated with the production of pro-
inflammatory mediators and arthritis (Ehling et al., 2006).
In other studies, serum adiponectin showed no association
or a negative correlation with disease activity in RA (Senolt
et al., 2006; Rho et al., 2009; Yoshino et al., 2011). In the
DBA/1 mouse model of collagen-induced arthritis, adiponectin
treatment significantly alleviated the severity of arthritis together
with a decrease in the expression of pro-inflammatory cytokines
such as TNF-α and IL-1, and the reduction of metalloproteinase
(MMP)-3 in synovial tissues (Lee et al., 2008). These latter
findings suggest that in RA the role of adiponectin is anti-
inflammatory rather than pro-inflammatory.

TREATMENTS AFFECTING METABOLIC
SIGNALING PATHWAYS IN RA

Several drugs currently in use to treat RA affect metabolic
signaling pathways. Glucocorticoids for example, inhibit the
glycolytic enzyme fructose 2,6-bisphosphate in rat tymocytes
and regulate respiratory rate in peripheral blood mononuclear
cells from patients with rheumatic diseases (Moreno-Aurioles
and Sobrino, 1991; Kuhnke et al., 2003). Methotrexate’s
anti-inflammatory effects depend on the modulation of purine
or pyrimidine nucleotide metabolism (Cronstein and Aune,

2020). Similarly, biologic disease modifying anti rheumatic
drugs (DMARDs) can modulate specific metabolic pathways.
For example, anti-TNF-α and JAK inhibitor (i.e. tofacitinib)
treatments decrease glycolysis in RA synovium (Biniecka et al.,
2016; McGarry et al., 2018).

In the context of tofacitinib, it significantly increased oxidative
phosphorylation, mitochondrial respiration in RA FLS, coupled
with a decrease in glycolysis and several key glycolytic enzymes
such as HK2, glycogen synthase kinase 3α (GSK-3α), lactate
dehydrogenase A, and HIF-1α both in RA FLS and synovial
explants (McGarry et al., 2018). It would be interesting to evaluate
if these events are associated with reduced lactate levels and
impaired lactate/STAT3 signaling as we have recently shown
(Pucino et al., 2019).

The anti IL-6 receptor antibody tocilizumab decreases
oxidative stress in RA leucocytes (Ruiz-Limon et al., 2017).
Over-expression of HK2 has been associated with resistance
to rituximab (anti-CD20) in aggressive lymphoma, whilst the
impact of rituximab on immune cell metabolism in RA patients
is still unknown (Gu et al., 2018).

CONCLUSION AND FURTHER
PERSPECTIVES

The tissue microenvironment plays a pivotal role in the pathology
of inflammatory diseases such as RA. A lack of nutrients, low
oxygen concentrations, accumulation of metabolic intermediates
as well as unbalanced metabolic pathways drive the local
immune response in such a way as to exacerbate chronic
inflammation (Figure 1).

TABLE 1 | Potential metabolic therapeutic targets in RA.

Cells Defective metabolic
Pathway

Potential
therapeutic targets

T cell Glycolysis (−)
PPP (+)
Lipid (+)

PFKFB3
G6PD
FASN
Lactate/SLC5A12
AMPK/mTOR

Monocytes/macrophages Glycolysis (+)
TCA (+)
AMPK (−)

PKM2
HIF
Succinate/GPR91
Lactate/MCT1 and 4

Fibroblasts Glycolysis (+)
Lipid (+)

GLUT1
HK2
PFKFB3
Choline/Chokα

Dendritic cells Glycolysis (+) HK2
iNOS
AKT/mTOR

AMPK, adenosine monophosphate-activated protein kinase; Chokα, choline kinase
alpha; FAS, fatty acid synthase; G6PD, glucose-6-phosphate dehydrogenase;
G6PI, glucose 6 phosphate isomerase; HK2, hexokinase 2; iNOS, inducible nitric
oxide synthase; HIF-1α, hypoxia-inducible factor 1-alpha; MCT, monocarboxylate
transporter; mTOR, mammalian target of rapamycin; PFKFB3, 6-phosphofructo-
2-kinase/fructose-2, 6-bisphosphatase; PKM2, pyruvate kinase muscle isozyme
2; PPP, pentose phosphate pathway; SLC5A12, solute carrier 5A12; (−)
decreased, (+) enhanced.
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Immunometabolism studies have recently highlighted
the possibilty of targeting metabolic pathways, metabolites,
transcription factors and enzymes that are altered in RA (Figure 1
and Table 1). Several drugs currently in use to treat RA affect
metabolic signaling pathways. However, we are now in a
position from which we can consider developing therapies to
specifically target pathogenetically relevant metabolic pathways.
For example, targeting specific metabolic pathways has been
demonstrated to reduce inflammation both in vitro and in vivo
models of arthritis (Yan et al., 2015; Biniecka et al., 2016; Okano
et al., 2017; Shen et al., 2017; Bustamante et al., 2018). In addition,
targeting metabolic intermediates such as lactate (Pucino et al.,
2018; Certo et al., 2019) or succinate (Littlewood-Evans et al.,
2016), is also becoming an attractive possibility. Animal models
remain a crucial tool for preclinical screening of new therapeutics
in pharmaceutical development. However, potential therapeutics,
which have been shown to be safe and effective in animal studies,
have in certain cases failed when tested in humans. Further
knowledge on human immunology and additional development
of animal models that bear more resemblance to the human
condition are needed (Hegen et al., 2008; Bevaart et al., 2010).
Another important area of investigation is the impact of sex
and gender on RA immunometabolism. Prevalence of RA is
higher in women than in men (van Vollenhoven, 2009). This
is partly ascribed to the effect of sex hormones on the immune
system and their interaction with environmental and genetic
factors (Alpizar-Rodriguez et al., 2017). Estrogenic control of
mitochondrial function and glycolysis metabolism has been
studied (Cai et al., 2013; Klinge, 2020), however what are the sex-
based differences in RA cell immunometabolism is still unknown
and needs further investigation.

Correlation studies between serum metabolites and synovial
and blood biomarkers suggests that NMR and mass-spectrometry
may be promising tools for predicting specific pathogenic
pathways altered in RA (Young et al., 2013; Zhou et al., 2016;
Narasimhan et al., 2018). In addition they may be useful in the
future to to identify which RA patients are at higher risk to
develop artheroslerosis. Metabolomics profiles in serum, plasma,
or urine do not necessarily correlate with joint metabolism as well

as synovial fluid metabolites may not identify metabolic pathway
alterations in the synovial tissues.

Further studies are needed to better determine whether
specific metabolic signatures can be used to stratify patients
with RA in terms of outcome, disease stage and response to
therapy. Single cell RNA-seq techniques will be of help to shed
light on metabolic pathways used by specific immune cells (i.e.,
macrophages, lymphocytes, fibroblast) in the context of the RA
inflammatory environment.

Advanced RNA-seq techniques are also developing. In this
context, the droplet-based single-cell RNA-seq has recently been
shown to be a promising tool for cellular profiling allowing
the analysis of thousands of individual cells simultaneously by
encapsulating them in tiny droplets (Salomon et al., 2019).
Similarly single cell metabolomic analysis will facilitate the
identification of new biomarkers and the development of novel
therapeutic molecules targeting abnormal metabolic signaling
pathways at single cell level without dampening homeostatic
immune responses.
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