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Key Points 

 

• Mutant JAK2 induces a hitherto unrecognized metabolic phenotype, consisting of 

hypoglycemia, adipose tissue atrophy and early mortality 

• Increased energy demands of JAK2 mutant hematopoietic cells can be targeted by 

metabolic inhibitors to treat myeloproliferative neoplasms 

 

 

Abstract  

Increased energy requirement and metabolic reprograming are hallmarks of cancer cells. 

We show that metabolic alterations in hematopoietic cells are fundamental to the 

pathogenesis of mutant JAK2 driven myeloproliferative neoplasms (MPNs). We found that 

expression of mutant JAK2 augmented and subverted metabolic activity of MPN cells 

resulting in systemic metabolic changes in vivo, including hypoglycemia, adipose tissue 

atrophy and early mortality. Hypoglycemia in MPN mouse models correlated with 

hyperactive erythropoiesis and was due to a combination of elevated glycolysis and 

increased oxidative phosphorylation. Modulating nutrient supply through high fat diet 

improved survival, while high glucose diet augmented the MPN phenotype. 

Transcriptomic and metabolomic analyses identified numerous metabolic nodes in JAK2 

mutant hematopoietic stem and progenitor cells that were altered in comparison with 

wildtype controls. We studied the consequences of elevated levels of Pfkfb3, a key 

regulatory enzyme of glycolysis, and found that pharmacological inhibition of Pfkfb3 with 

the small molecule 3PO reversed hypoglycemia and reduced hematopoietic manifestations 

of MPN. These effects were additive with the JAK1/2 inhibitor, Ruxolitinib, in vivo and in 

vitro. Inhibition of glycolysis by 3PO altered the redox homeostasis, leading to 

accumulation of reactive oxygen species and augmented apoptosis rate. Our findings reveal 

the contribution of metabolic alterations to the pathogenesis of MPN and suggest that 

metabolic dependencies of mutant cells represent vulnerabilities that can be targeted for 

treating MPN. 

 

 

KEY WORDS  

myeloproliferative neoplasms, JAK2, hypoglycemia, lipolysis, reactive oxygen species, 

redox homeostasis, Ruxolitinib. 
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INTRODUCTION 

 
Myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells 

(HSCs) driven by gain-of-function mutations in JAK2, MPL or CALR genes.1-7 Additional 

mutations that modify the course of disease have also been described.8 Three phenotypic 

manifestations of MPN can be distinguished: polycythemia vera (PV), essential 

thrombocythemia (ET) and primary myelofibrosis (PMF).9 

 

Genetic and epigenetic changes associated with cancers are often coupled with 

reprogramming of cellular metabolism, a paradigm that has been recognized as one of the 

hallmarks of cancers.10 Transformed cells require increased supply of nutrients to fuel their 

augmented energy demands and produce macromolecules needed for unconstrained 

proliferation and differentiation capacities.11,12 Cancer cells can also reprogram metabolism 

of neighboring non-malignant cells through interactions with stromal cells and adipocytes 

by provoking them to secrete lipids, amino acids and other soluble factors, which can 

directly influence disease progression.13,14 This may lead to cachexia, a life-threatening 

pathological condition with adipose tissue atrophy and muscle wasting. Indeed, survival of 

cancer patients is inversely correlated with the severity of cachexia.15,16 Therefore, 

delineating differences in metabolic activities between normal and cancer cells is important 

and may open new therapeutic approaches. 

 

We studied conditional transgenic mouse models of MPN that can be induced by 

tamoxifen to express either JAK2-V617F (VF),17,18 or a JAK2 exon 12 (N542-E543del) 

mutation (E12) in hematopoietic cells.19 We have previously shown that these mouse 

models recapitulate the phenotypes of MPN patients including aberrant production of 

platelets and erythrocytes and the development of splenomegaly. These mice also show 

early mortality through incompletely understood mechanisms.18,19  

 

Here we show that expression of mutant JAK2 in hematopoietic cells leads to cell-

autonomous metabolic alterations such as increase in glycolysis and oxidative 

phosphorylation, as well as to systemic changes, including hypoglycemia and adipose 

atrophy. We found that these JAK2 dependent metabolic alterations can be targeted 

therapeutically in vivo by limiting nutrient supply and by inhibiting rate-limiting steps in 

glycolysis with beneficial effects on MPN manifestations and survival. 
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METHODS 
 
Mice used in this study were kept in accordance with Swiss federal regulations and all 

experiments were approved by the Cantonal Veterinary Office of Basel-Stadt. The 

collection of blood samples and clinical data from MPN patients was approved by the 

Ethik Kommission Beider Basel and the Ethics Boards of the University of Bonn and 

RWTH Aachen University, Germany and the Clinical Center of Serbia, University of 

Belgrade, Serbia. Written informed consent was obtained from all patients in accordance 

with the Declaration of Helsinki. The diagnosis of MPN was established according to the 

revised criteria of the World Health Organization.9 

 

 
Data Sharing Statement 
 
For detailed description of methods see supplement available with the online version of 
this article.  
 
For original data and reagents, please contact radek.skoda@unibas.ch. 
 
RNAseq data are available at GEO under accession number GSE 116571. 
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RESULTS 

 

Adipose tissue atrophy and severe hypoglycemia in mice expressing JAK2-V617F or 

JAK2 exon 12 mutant in hematopoietic cells 

SclCreER;JAK2-V617F (VF) and SclCreER;JAK2-N542-E543del exon 12 mutant mice 

(E12), develop MPN within 4-5 weeks after induction with tamoxifen.18,19 We noticed that 

these mice also displayed a marked reduction of fat tissues and a significant decrease in 

body weight that until now have gone unnoticed (Figure 1A and B). Epididymal white 

adipose tissue (eWAT) was dramatically reduced leading to an increase in lean body mass 

(Figure 1C and D), despite increased food intake and a trend towards reduced physical 

activity (Figure 1E and F). VF and E12 strains both displayed hypoglycemia (Figure 1G). 

Serum insulin levels were not suppressed, possibly reflecting a hyperactive insulin axis 

(Figure 1H). After induction of the mutant JAK2 by tamoxifen, hypoglycemia manifested 

earlier in E12 mice than in VF mice (Figure 1I) and preceded the reduction in body weight 

(Figure 1J). Glucose tolerance test showed that exogenous glucose was immediately 

utilized in both VF and E12 mice (Figure 1K). Ruxolitinib, a JAK1/2 tyrosine kinase 

inhibitor, normalized glucose levels in E12 mice, along with a reduction of red cell 

parameters (Figure 1L). The metabolic changes were also present in mice transplanted with 

VF or E12 bone marrow cells (Figure 1M), indicating that expression of mutant JAK2 

solely in hematopoietic cells is sufficient to transfer the metabolic alterations. 

 

To determine whether increased supply of glucose can correct the MPN associated 

hypoglycemia and influence disease manifestations, we exposed JAK2 mutant mice and 

controls to high glucose diet (HGD). However, HGD was unable to correct hypoglycemia 

in E12 mice (Figure 2A), while an increase in erythroid parameters in peripheral blood was 

noted in VF mice (Figure 2B) and an increase in spleen weight occurred in E12 mice 

(Figure 2C). Thus, HGD did not ameliorate hypoglycemia, but rather fueled erythrocytosis 

and splenomegaly.  

 

We next examined whether reducing glucose supply through intermittent fasting-feeding 

regimen may alter the disease course of MPN. Caloric restriction by intermittent fasting-

feeding regimen was shown to affect hematopoietic stem and progenitor cell frequencies 

and their differentiation capacity also in wildtype mice.20 Fasting-feeding regimen lowered 

blood glucose in VF recipients and in wildtype mice compared to uninterrupted feeding, 
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but glucose was uniformly very low in E12 mice irrespective of regimen (Figure 2D). 

However, E12 mice exposed to fasting-feeding displayed slightly lower red cell parameters 

and neutrophil numbers (Figure 2E) and also significantly reduced erythroid progenitors in 

bone marrow, while erythroid progenitors in spleen were increased (Supplemental Figure 

S1B). Spleen weight was markedly reduced in E12 mice (Figure 2F). Thus, reducing 

glucose and energy supply through intermittent fasting ameliorated MPN phenotypes 

including splenomegaly and blood counts in E12 mutant mice. The less prominent changes 

in VF mice are likely die to the slower kinetics of developing MPN after tamoxifen 

compared to the E12 mice. 

 

To assess whether elevated blood counts and increased hematopoietic activity correlates 

with hypoglycemia, we examined glucose levels in several additional knock-in or 

transgenic JAK2-V617F models of MPN that display various degrees of ET or PV 

phenotypes,21-23 and in a transgenic line (Tg6) that constitutively overexpresses 

erythropoietin (Epo) and displays massive erythrocytosis.24 A strong inverse correlation 

between blood glucose concentration and red cell parameters e.g. hemoglobin (R2=0.822) 

was noted, whereas no correlation was seen between glucose and platelets, neutrophils or 

monocytes (Figure 2G). Hypoglycemia was present in all JAK2-V617F models with PV 

phenotype and also in Tg6 mice with erythrocytosis, as previously reported.25 However, 

hypoglycemia was absent in JAK2-V617F mice with a pure ET phenotype. These results 

suggest that increased glucose consumption by hyperactive erythropoiesis could be 

responsible for hypoglycemia in these mouse models.  

 

To further examine glucose usage, we determined glucose uptake using the fluorescent 

tracer 2-NBDG. VF and E12 cells showed increased glucose uptake compared to wildtype 

controls (Figure 2H and I). Interestingly, the intensity of 2-NBDG showed bi-modal peaks, 

possibly indicating that a subset of VF and E12 cells is hyperactive in taking up glucose 

(Figure 2H). Erythroid cells of E12 mice from spleen showed higher uptake than cells from 

bone marrow. Uptake of 2-NBDG in subsets of erythroid precursors was highest in the 

fractions II and III, correlating with the highest proliferative activity of these fractions 

(Figure 2I). Thus, erythroid cells in MPN mice take up and avidly consume glucose. 

 

Since MPN mice showed severe loss of adipose deposits (Figure 1A-C), we tested whether 

high fat diet (HFD) may impact the MPN phenotype and survival. While wildtype mice on 
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HFD (60% fat) gained weight rapidly and after 24 weeks displayed a massive increase in 

body fat, E12 mice showed little or no weight gain or increase in body fat (Figure 3A and 

B). Female VF mice failed to gain weight similar to E12 mice, whereas male VF mice 

showed a moderate increase of weight. HFD increased leptin levels compared to normal 

chow, but the relative increase was greater in wildtype mice (Figure 3C). Hypoglycemia in 

VF and E12 mice was not corrected by HFD, although a trend towards slightly higher 

levels was noted (Figure 3D). Insulin levels increased under HFD in VF despite 

hypoglycemia, but remained unchanged in E12 mice (Figure 3E). Remarkably, survival of 

E12 mice was substantially prolonged by HFD (p<0.001) and allowed us to follow these 

mice for up to 30 weeks (Figure 3F). There was only a trend towards better survival in VF 

mice. HFD treatment has been shown to negatively impact hematopoietic differentiation 

capacity of HSPCs in the BM niche.26 We observed slightly reduced red cell parameters, 

but increased spleen size in JAK2 mutant mice on HFD (Figure 3G and H).  

 

On normal chow, adipocytes from VF and E12 mice showed significantly reduced size 

compared to wildtype (Figure 3I). On HFD, the size of adipocytes increased in all 

genotypes, but adipocytes from VF and E12 mice remained smaller than adipocytes from 

wildtype mice (Figure 3G). Fat tissue from VF and E12 mice also displayed elevated 

mRNA expression of several inflammatory cytokines as well as CD36, a fatty acid uptake 

mediator (Supplemental Figure S2A). Mutant JAK2 also altered brown adipose tissue 

(BAT) morphology, with increased numbers of small fat vacuoles. HFD partially 

normalized these alterations (Supplemental Figure S2B). In line with the elevated lipolysis, 

HFD treated VF and E12 mice displayed reduced accumulation of lipids in the liver 

(Supplemental Figure S2C), suggesting that these mice are less prone to hepatic steatosis 

upon an HFD challenge.  

 

Our data suggest that hematopoietic specific expression of mutant JAK2 induces 

hypoglycemia due to increased consumption of glucose by erythroid cells, which was 

normalized by Ruxolitinib, and increased energy demand and elevated inflammatory 

cytokines lead to lipolysis and adipose atrophy that was partially corrected by HFD.  

 

Since some of the metabolic alterations, in particular lipolysis, appears to be a counter-

regulatory adaptation to hypoglycemia involving non-hematopoietic tissues, we next 

sought to specific metabolic requirements that are unique to JAK2 mutant hematopoietic 
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progenitor and stem cells (HSPCs). We performed RNA sequencing in megakaryocyte 

and erythroid progenitors (MEPs) of JAK2 mutant and wildtype mice. The numbers of 

differentially expressed genes in MEPs from bone marrow of VF and E12 mice compared 

to wildtype MEPs and the heatmaps are shown in Figure 4A and B. Ingenuity Pathway 

Analysis based Gene Ontology enrichment revealed that most of the significantly 

up/down regulated genes in JAK2 mutant mice were related to metabolism, JAK/STAT 

signaling and inflammatory signaling pathways (Supplemental Figure S3A). By 

competitive gene set testing on the MSigDB hallmark gene sets,27 we also found that 

oxidative phosphorylation and JAK/STAT signaling target genes were among the four 

top gene sets (Supplemental Figure S3B). Consistent with the elevated glucose uptake 

(Figure 2E and F), we observed increased expression of glucose transporters (Glut1, 

Glut3, and Glut10), of glutamine transporter Asct2, and the Slc27a family of fatty acid 

transporters (Figure 4C). Furthermore, enzymes involved in regulation of glycolysis (e.g. 

Pkm1 and Pfkfb3) and their known transcriptional regulators (e.g. Hif-1α, nMyc, Ahr and 

Arnt) were also elevated in MEPs from VF and E12 mice (Figure 4D and E). These data 

suggest that activation of mutant JAK2 signaling alters the expression of genes involved 

the regulation of metabolic pathways. 

 

Analysis of mRNA expression was complemented with profiling of metabolite in purified 

bone marrow MEP cells using liquid chromatography coupled to mass spectrometry. We 

found altered concentrations of metabolites that were classified into groups using 

Metabolic Pathway Enrichment Analysis (Figure 4F).28 The observed changes in JAK2 

mutant MEPs were consistent with increased activities of glycolysis, pentose phosphate 

pathway and terpenoid backbones for steroid biosynthesis (Figure 4F) and the same 

changes were also observed in lineage-negative, Sca-1+ and cKit+ (LSK) cells 

(Supplemental Figure S4A). Combined analysis of data obtained by RNA sequencing and 

metabolite profiling also showed altered regulation of glycolysis and pentose phosphate 

pathway genes as the main alterations in MEPs from JAK2 mutant mice (Supplemental 

Figure S4B).  

 

To assess glycolytic activity and mitochondrial respiration, we performed metabolic flux 

studies. Aerobic glycolysis, indicative of Warburg effect,11,29 was elevated in LSK and 

MEP cells from VF and E12 mice (Figure 4G). The same results were obtained in total 

spleen cells (Supplemental Figure S4C). However, total bone marrow cells from E12 mice 
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unexpectedly showed slightly reduced rate of glycolysis compared to wildtype bone 

marrow. Mitochondrial respiration was assessed by determining the oxygen consumption 

rate (OCR) as an indicator of oxidative phosphorylation. Bone marrow LSK and MEP cells 

from VF and E12 mice showed an increased respiration rate compared with wildtype 

controls (Figure 4H). Likewise, unfractionated spleen cells from VF and E12 mice also 

showed increased basal respiration rate and a higher maximal respiration rate than wildtype 

controls (Supplemental Figure S4D). No differences in OCR between total bone marrow 

cells from VF, E12 and wildtype mice were detected (Supplemental Figure S4D). In line 

with the increased rate of glycolysis and oxidative phosphorylation, LSK and MEPs from 

VF and E12 mice showed increased glucose uptake (Figure 4I), similar to differentiated 

erythroid cells (Figure 2H and I).  

 

Since mitochondrial respiration was increased, we used several methods to determine 

mitochondrial numbers and mass. Transmission electron microscopy (TEM) showed that 

LSK and MEP cells of VF mice had reduced numbers of mitochondria, while the number 

of mitochondria of E12 mice were increased in MEPs (Figure 4J). Likewise, quantification 

of mitochondrial DNA copy number by qPCR in E12 showed a similar pattern of decrease 

in LT-HSCs and increase in MEPs (Figure 4K), while in VF mice no differences were 

noted to wildtype mice. A similar pattern was observed using the mitochondrial membrane 

specific dye MitoTracker Green (Supplemental Figure S4E). These results show an overall 

trend towards a decrease in mitochondrial numbers and mitochondrial mass in cells from 

JAK2 mutant mice. Thus, despite reduced mitochondrial mass, HSPCs from JAK2 mutant 

mice showed an increased rate of oxidative phosphorylation. We found decreased 

mitochondrial DNA copy number also in peripheral blood granulocytes from MPN patients 

(Figure 4L). 

 

Since hematopoietic cells of JAK2 mutant mice showed elevated expression of glucose 

transporters and increased glucose uptake, we examined in more detail the intracellular fate 

of glucose by tracking 13C-labeled D-glucose ([U-13C6] D-glucose) (Figure 5A). Purified 

MEP and LSK cells were cultured for 8 hours in serum free medium with [U-13C6] D-

glucose and the total abundance of metabolites as well as the abundance of 13C-labeled 

metabolites was determined by ion chromatography–Fourier transform mass 

spectrometry.30 The glycolytic intermediates showed a high percentage 13C labeling in both 

WT and JAK2 mutated cells, while the absolute amounts of glycolytic intermediates were 
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elevated only in cells from JAK2 mutant mice (Figure 5B), consistent with increased rate 

of glycolysis. The total amount of pyruvate in JAK2 mutant cells was higher than that of 

WT cells, in good correlation with the increased expression of pyruvate kinase (Pkm1). 

However, only 20-30% of pyruvate was labeled with 13C in cells from all genotypes, 

suggesting that a major proportion of pyruvate came from non-glucose sources, e.g. amino 

acid metabolism. Consequently, the percentage of contribution of the 13C labeled pyruvate 

to the TCA cycle was low (Supplemental Figure S5A). Cells expressing mutant JAK2 also 

showed strong 13C labeling of pentose phosphate pathway (PPP) intermediates, leading to 

increased biosynthesis of purine nucleotides (Figure 5B and Supplemental Figure S5B). 

Consistently, phosphoribosyl pyrophosphate synthetase 2 (Prps2), the rate-limiting 

enzyme for PRPP synthesis, was highly elevated in JAK2 mutant HSPCs (Supplemental 

Figure S5C).  

 

Taken together, these data suggest that expression of mutant JAK2 in hematopoietic cells 

reprograms metabolism by upregulating the expression of nutrient transporters and key 

regulatory enzymes of glucose metabolism resulting in increased glycolysis, mitochondrial 

respirations and nucleotide biosynthesis. 

 

Targeting the activity of Pfkfb3, an early rate-limiting enzyme in glycolysis reduces 

growth of human JAK2-V617F expressing cell lines 

We found that Pfkfb3, one of four Pfkfb isoforms, was significantly elevated in mutant 

HSPCs both on RNA and protein levels (Figure 5C and D). This enzyme catalyzes the 

conversion of fructose-6-phosphate (F6P) to fructose-2,6-bisphosphate (F2,6BP), which 

acts as an allosteric activator on phosphofructokinase (Pfk1) and thereby accelerates one of 

the rate-limiting steps in glycolysis (Figure 5E).31 Pfkfb3 can be inhibited by 3PO (3-(3-

pyridinyl)-1-(4-pyridinyl)-2-propen-1-one),32 a small molecule that was found to reduce 

the intracellular concentration of F2,6BP and thereby to suppresses glycolysis.31 We first 

tested 3PO alone or in combination with Ruxolitinib on growth, survival, and metabolic 

activity in human myeloid cell lines SET2, HEL and UKE1 that express JAK2-V617F, and 

in K562 cells that are transformed by BCR-ABL. We confirmed that the PFKFB3 was 

expressed in these cells (Supplemental Figure S6A). Treatment with 3PO alone increased 

apoptosis and attenuated the proliferation of all JAK2-V617F expressing cell lines in a 

dose dependent manner and this effect was additive with Ruxolitinib (Figure 6A and B and 

Supplemental Figure S6B). In contrast, K562 cells were susceptible to 3PO treatment only 
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at high concentrations (Figure 6A and B). JAK2-V617F expressing cell lines treated with 

3PO alone for 12 hours showed markedly reduced glycolytic rate in a dose-dependent 

manner and exhibited additive effects with Ruxolitinib (Figure 6C). Interestingly, 3PO also 

reduced mitochondrial oxygen consumption rate (Figure 6D), possibly due to reduced 

supply of glycolysis pathway intermediates to the TCA cycle. Under similar conditions, no 

effect of 3PO on glycolysis or oxygen consumption was observed in K562 cells. These 

results suggest that human cell lines expressing JAK2-V617F highly depend on glycolysis 

and are susceptible to apoptotic cell death when subjected to glycolytic blockade. 

 

Perturbation of glycolysis and mitochondrial respiration can lead to altered redox 

homeostasis and aberrant levels of reactive oxygen species (ROS). 3PO alone caused an 

increase in total ROS levels already at 6 hours after treatment (Supplemental Figure S6C). 

Elevated ROS levels in SET2 cells persisted for at least 24 hours (Figure 6E) and resulted 

in increased apoptosis and decreased proliferation (Figure 6F and G). This suggested that 

the blockade of glycolysis by 3PO in JAK2-V617F expressing cells rapidly depleted the 

cellular antioxidant capacities. Indeed, treatment with 3PO alone or in combination with 

Ruxolitinib reduced the ratio of glutathione (GSH) to glutathione disulfide (GSSG, the 

oxidized form of GSH) (Figure 6H). Consistent with diminished GSH/GSSG ratios, 3PO 

treatment alone or in combination with Ruxolitinib also substantially reduced NADPH 

levels (Figure 6I), suggesting that decreased flux through the pentose phosphate pathway 

contributed to exhaustion of reductive reserves and defects in redox homeostasis in JAK2-

V617F cells. The functional consequences of ROS-mediated actions are highly dose 

dependent: moderate increases in ROS may potentiate cell survival and proliferation, 

whereas high ROS levels that exceed cellular antioxidant capacity are detrimental to cell 

survival.33,34 The depleted antioxidant capacities of GSH or NADPH could be partially 

rescued by N-Acetyl-L-Cysteine (NAC), a potent ROS scavenger (Figure 6H and I).13 

NAC treatment in SET2 cells not only lowered ROS levels close to baseline (Figure 6e), 

but also rescued OCR (Supplemental Figure S6D) as well as cell survival and proliferation 

disadvantage caused by 3PO (Figure 6E-H). 3PO treatment also caused apoptosis of 

peripheral blood mononuclear cells from MPN patients with high JAK2-V617F allele 

burden, which was rescued by NAC pre-treatment (Supplemental Figure S7). These data 

suggested that inhibition of glycolysis through 3PO increased ROS levels above the 

cellular antioxidant capacity and thereby contributes to inhibiting proliferation and survival 

of JAK2-V617F expressing cells. 
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We then assessed the efficacy and tolerability of 3PO treatment in vivo in a cohort of VF 

or E12 mice. To allow monitoring of mutant JAK2 allele burden, competitive 

transplantation of bone marrow co-expressing mutant JAK2 with a GFP-reporter and 

wildtype mice in a 1:1 mixture were performed (Figure 7A). Recipient mice treated with 

3PO alone or in combination with Ruxolitinib for 8 weeks showed reduction of spleen 

weight, increase in eWAT, and improved glucose levels including normalization of 

glucose tolerance (Figure 7B-E). 3PO also restored body fat in JAK2 mutant mice 

(Supplemental Figure S8A) and combination with Ruxolitinib augmented these beneficial 

effects (Figure 7B-E). Consistently, MPN patients significantly gained body weight when 

treated with Ruxolitinib (Supplemental Figure S8B), in line with previous reports.35,36 In 

VF mice, 3PO treatment alone also reduced red cell numbers, hemoglobin levels, and 

neutrophils (Figure 7F). These reductions were accentuated in combination of 3PO with 

Ruxolitinib. 3PO alone had no effect on platelet counts, while Ruxolitinib alone or in 

combination with 3PO increased platelet numbers in VF and E12 mice. This paradoxical 

effect of Ruxolitinib on platelets has been reported previously.18,37 Our data obtained in 

human hematopoietic cell lines expressing JAK2-V617F and primary samples from MPN 

patients suggest that the same metabolic alterations as in mouse models are present in 

human MPN. Furthermore, PV patients under cytoreductive therapies showed higher 

glucose levels  (95.3 ± 13.5) as compared to PV patients on phlebotomy only (81.8 ± 6.1) 

(Figure 7G). Taken together, these data suggest that targeting metabolic alterations in MPN 

may open new therapeutic opportunities also for human MPN. 
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DISCUSSION 
 
We show that expression of mutant JAK2 in mouse models of MPN induces profound 

metabolic alterations that have been hitherto overlooked, with strongly increased energy 

demands and vital dependence on glucose. In mouse models of AML, leukemic cells 

expressing both BCR/ABL and NUP98/HOXA9, or MLL-AF9 alone imposed systemic 

metabolic changes resulting in mild hypoglycemia with markedly decreased insulin levels 

and insulin resistance.38 In contrast, our mutant JAK2 models displayed a more profound 

hypoglycemia without signs of insulin resistance, implying that AML and MPN cells differ 

in the type and extent of the metabolic reprograming. Hypoglycemia strongly correlated 

with the degree of increased erythropoiesis, consistent with the critical role of glucose 

metabolism in normal erythropoiesis.39 E12 mice, with predominantly erythroid 

hyperproliferation, had a more severe hypoglycemia than VF mice that display tri-lineage 

involvement and a milder erythroid phenotype. Hypoglycemia was also observed in Tg6 

mice that exhibit massive erythrocytosis due to transgenic overexpression of Epo under the 

control of the human PDGFR promoter.24,25 This suggests that excessive Epo signaling 

through wildtype JAK2 can lead to similar metabolic alterations as signaling through 

mutant JAK2.  

 

In addition to altered glucose metabolism, JAK2 mutant mice also exhibited increased lipid 

catabolism. The changes in lipid metabolism could be a consequence of the general energy 

crisis induced by hypoglycemia, but chronic inflammation mediated by elevated cytokine 

production may further contribute to lipolysis in a non-cell autonomous way. Cachexia in 

advanced PMF was also linked to increased levels of pro-inflammatory cytokines.40 Tg6 

mice also showed decreased fat stores,25 supporting a connection between excess 

erythropoiesis and lipolysis. However, Tg6 mice typically survive for 28-32 weeks,41 

whereas E12 mice die within 8-10 weeks. Thus, signaling through mutant JAK2 has more 

deleterious consequences than signaling through wildtype JAK2 due to overexpressing of 

Epo.  

 

Metabolic phenotyping and gene expression analyses of HSPCs revealed profound 

alterations in multiple metabolic pathways and allowed us to identify several potentially 

rate-limiting steps in glycolysis, pentose phosphate cycle and citrate cycle. Inhibiting 

glycolysis by 3PO in JAK2-V617F expressing human cell lines reduced proliferation and 
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increased apoptosis through a mechanism that involves greatly increased ROS levels 

(Figure 6). Although the extent of metabolic alterations in patients with MPN remains to 

be determined, the effectiveness of 3PO inhibition in JAK2 mutant human cell lines and 

primary samples from MPN patients is encouraging. 3PO also reduced blood counts and 

spleen size and normalized glucose levels and fat tissues in JAK2 mutant mice in vivo, 

further suggesting that lipolysis is primarily driven by increased glucose consumption and 

energy crisis (Figure 7H). Poor water solubility of 3PO makes this compound difficult to 

administer in patients. However, derivatives of 3PO, such as PFK15 and PFK-158 that also 

inhibit PFKFB3 are now in clinical trials for treating late-stage cancer patients.42 

 

Increased glutamine metabolism was reported in BaF/3 cells expressing JAK2-V617F 

mutation.43 It will be interesting to determine whether targeting glutamine metabolism 

alone or in combination with inhibition of glycolysis can improve the therapy of MPN. A 

recent study investigated the cell-autonomous metabolic changes in mutant IDH2/JAK2 

driven MPN (present in 2% of MPN patients) and demonstrated that JAK2/IDH-mutant 

cells are sensitive to an IDH2 inhibitor.44 While the presence of additional somatic 

mutation in MPN may be difficult to target therapeutically, the resultant metabolic 

abnormalities might be common for different driver mutations and could represent new 

therapeutic targets. 

 

Our findings underpin the potential of elucidating additional MPN cell specific metabolic 

properties and provide a rationale for testing metabolic inhibitors in MPN using a “two-

pronged” approach of co-targeting altered metabolic dependencies and mutant JAK2 

activity. 
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FIGURE LEGENDS 
 

Figure 1. Hematopoietic specific expression of mutant JAK2 induced adipose tissue 

atrophy, severe hypoglycemia and global metabolic changes in MPN mice. (A) 

Representative pictures of wildtype (WT), JAK2-V617F (VF) and JAK2;E12 (E12) mutant 

mice at 2-4 month after induction with tamoxifen. Red and blue asterisks indicate reduced 

subcutaneous and epididymal white adipose tissue (eWAT), respectively. (B) Body weight 

at 2-4 month after induction with tamoxifen (n= 8-12 mice per genotype). (C) Epididymal 

white adipose tissue weight (n= 8-12 mice per genotype). (D) Ratios of lean body mass to 

total body mass (solid colors) and ratio of fat mass to total body mass (transparent colors) 

at 2-4 month after induction with tamoxifen (n= 4-5 mice per group). (E and F) Food 

intake (E) and locomotor activity (on x-y-z axis) (F) as measured by comprehensive 

laboratory animal monitoring system (n=5 mice per genotype). (G) Non-fasting blood 

glucose levels at 12 weeks (VF) and 6 weeks (E12) after tamoxifen induction (n=5-6 mice 

per genotype). (H) Serum insulin levels at 12 weeks (VF) and 6 weeks (E12) after 

tamoxifen induction (n=5-6 mice per genotype) (n= 8 mice per genotype). (I and J) non-

fasting blood glucose levels (I) and time course of change in body weight (J) after 

tamoxifen induction (n=5 mice per genotype). (K) Glucose tolerance test (GTT) 6 hours 

after starvation at 12 weeks (VF) and 6 weeks (E12) after tamoxifen induction (n= 10-12 

mice per genotype). (L) Tamoxifen induced mice were treated with Ruxolitinib (90mg/kg, 

daily twice). Time course of fasting blood glucose levels, peripheral hemoglobin levels and 

reticulocyte counts (n= 5-6 mice per genotype). (M) GTT in recipients transplanted with 

bone marrow cells (2x106) from WT, VF or E12 donor mice (n=6 mice per genotype). All 

data are presented as mean ± SEM. One-way or two-way ANOVA analyses followed by 

Tukey’s multiple comparison tests were used for multiple group comparisons. *P < .05; 

**P < .01; ***P < .001.  

 

Figure 2. Mutant JAK2 induced MPN is vulnerable to modulation of nutrients in vivo. 

(A) Mice were induced by tamoxifen and treated with normal diet (ND) or HGD for 7 

weeks. Time course of non-fasting blood glucose levels (n=5-6 mice per treatment and 

genotype). (B) Peripheral blood counts of HGD and ND treated mice (n=5-6 mice per 

genotype). (C) Spleen weight after 7 weeks of ND or HGD (n=5-6 mice per treatment and 

genotype). (D) Non-fasting blood glucose levels in mice exposed to fed-fasting cycles or 

continuously fed with normal diet (n=4-5 mice per genotype and condition). (E) Peripheral 



	 21 

blood counts of mice exposed to fed-fasting cycles or continuously fed with normal diet. 

(F) Spleen weight in mice exposed to fed-fasting cycles or normal diet (n=4-5 mice per 

genotype and condition). (G) Correlation of non-fasting blood glucose levels with the 

peripheral blood counts. Six to eight weeks after tamoxifen injections peripheral blood 

counts and non-fasting blood glucose levels were monitored (n=4-5 mice per genotype). (H 

and I) Glucose uptake capacity of erythroid cells in spleen monitored by 2-NBDG 

fluorescence. After 4 hours starvation, cells from spleen or bone marrow were exposed to 

2-NBDG for 30 minutes and analyzed by flow cytometry. (H) Histograms show 2-NBDG 

fluorescence in splenic CD71+Ter119+ cells with quantification of the mean fluorescence 

intensity (MFI) presented as bar graphs (middle panel). Right panel shows 2-NBDG MFI 

in subsets of erythroid cells (I-V). (I) Glucose uptake capacity of erythroid cells in bone 

marrow (n=6 mice per genotype). All data are presented as mean ± SEM. One-way or two-

way ANOVA analyses followed by Tukey’s multiple comparison tests were used for 

multiple group comparisons. *P < .05; **P < .01.  

 

Figure 3. High fat diet treatment ameliorated early lethality phenotype of 

polycythemia vera exhibiting mutant JAK2 expressing mice. (A) Pictures of male 

wildtype (WT), VF and E12 mutant mice exposed to high fat diet (HFD) for 24 weeks. Red 

and blue asterisks mark reduced subcutaneous and epididymal white adipose tissue 

(eWAT) fat content, respectively. (B) Time course of body weight gain of HFD treated 

mice (n= 8-12 mice per genotype and gender). (C) Plasma leptin concentration in HFD and 

normal diet (ND) treated mice (n=5 mice per treatment and genotype). (D) Non-fasting 

blood glucose levels HFD or ND treated mice (n=5 mice per treatment and genotype). (E) 

Serum insulin levels in ND and HFD treated mice (n= 4-5 mice per treatment and 

genotype). (F) Survival of mice on ND or HFD (n=12 mice per treatment and genotype). 

(G) Hemoglobin levels, RBC, platelet and neutrophils counts in peripheral blood during 

HFD or ND treatment in indicated mice (n=6-8 mice per treatment and genotype). (H) Bar 

graph indicating spleen weight of HFD and ND treated mice (n=5-6 mice per genotype). 

(I) Representative images of hematoxylin and eosin (H&E) staining of eWAT from ND or 

HFD treated mice. Scale bars=100µm. Bar graph represents the median white adipocyte 

size of HFD treated mice (n=5 mice per). All data are presented as mean ± SEM. One-way 

or two-way ANOVA analyses followed by Tukey’s multiple comparison tests were used 

for multiple group comparisons. Significance in survival curves was estimated with the 

log-rank test. *P ≤ .05; **P ≤ .01; ***P ≤ .001.  
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Figure 4. Transcriptomic and metabolic profiling identified altered metabolic 

pathways in hematopoietic stem and progenitor cells expressing mutant JAK2. (A) 

Venn diagram shows number of distinct and overlapping genes expressed between VF and 

E12 mice as compared to wildtype (WT) controls (logFC>1.5 and FDR<0.05, n=3 per 

genotype). (B) Heat map showing differentially expressed genes in bone marrow MEPs as 

determined by mRNA sequencing. Data shows fold change to the mean. (C-E) Heat map 

showing expression of nutrient transporters (C), glycolysis pathway enzymes (D) and 

regulators of glycolysis pathway genes (E) in bone marrow MEPs as determined by mRNA 

sequencing. Data shown is normalized expression levels in VF and E12 versus wildtype 

cells (n=3 per genotype). (F) Metabolic Pathway Enrichment Analysis of significantly up-

regulated metabolites in bone marrow MEPs from VF and E12 compared to wildtype mice 

as determined by MetaboloAnalyst 3.0 (n=3 per genotype; >1.5 fold-change; p<0.05). (G) 

Measurements of glycolytic rates in bone marrow LSK and MEPs. Extracellular 

acidification rate (ECAR) values were normalized to cell numbers. Data are from 3 

independent experiments (n=6 mice per genotype). (H) Measurements of oxygen 

consumption rate (OCR), indicative of mitochondrial oxidative phosphorylation in bone 

marrow LSK and MEPs. OCR values were normalized to cell numbers. Data are from 3 

independent experiments, n=6 mice per genotype. (I) Glucose uptake capacity of LSK and 

MEPs in bone marrow and spleen as measured by mean fluorescence intensity (MFI) of 2-

NBDG fluorescence (n=6 mice per genotype). (J) Number of mitochondria per cell in bone 

marrow LSK and MEP cells as determined by transmission electron microscopy (TEM) 

(n=3 samples per genotype and 60-100 cells per genotype). (K) Mitochondrial DNA copy 

number in bone marrow LT-HSCs, MPPs and MEPs as measured by qPCR (n=3 per 

genotype). (L) Mitochondrial DNA copy number in peripheral blood of MPN patients as 

measured by qPCR presented as violin density plots. The horizontal width of the plots 

shows the density of the data along the y-axis. All data are presented as mean ± SEM. One-

way ANOVA analyses followed by Tukey’s multiple comparison tests were used for 

multiple group comparisons. *P < .05; **P < .01; ***P < .001. See also Supplemental 

Figure S4 and S5. 

 

Figure 5. Increased incorporation of glucose carbon through glycolysis and the 

pentose phosphate pathway in mutant JAK2 expressing hematopoietic stem and 

progenitor cells. (A) Schematic of glucose labeling and tracing in bone marrow LSK and 

MEP cells. FACS sorted LSK and MEPs were cultured with [U-13C6] D-glucose for 8 
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hours and analyzed by ion chromatography–Fourier transform mass spectrometry (IC-

FTMS) to determine the fate of labeled carbon atoms derived from glucose in various 

downstream metabolites. (B) Bar graphs depicting the levels (µmoles per gram protein) of 

glucose-derived 13C containing isotopologues of metabolites in glycolysis and pentose 

phosphate pathways. LSK and MEP cells are collected and pooled from 9-12 mice of 

matching genotype as one replicate. Data are from two independent experiments. Insert 

showing the key rate-limiting step in glycolysis in which the activity of Pfkfb enzyme 

potentiates activity of rate limiting enzyme phosphofructokinase (Pfk) through generation 

of fructose 2,6 biphosphate from fructose 6 phosphate. 3PO is a specific pharmacological 

inhibitor of Pfkfb3 isoform. (C) Pfkfb1-4 mRNA expression in MEP cells (n=3 per 

genotype). (D) Pfkfb3 protein expression in bone marrow LSK and MEP cells as measured 

by intracellular FACS (n=3 per genotype). (E) Graphical representation of increased 

glycolysis rate limiting step involving conversion of F6P to F 1,6 BP and its positive 

regulator PFKFB3, which can be inhibited by 3PO. All data are presented as mean ± SEM. 

*P < .05; **P < .01. See also Supplemental Figure S6. G6P, glucose 6-phosphate; F6P, 

fructose 6-phosphate; FBP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone 

phosphate; G3P, glyceraldehyde 3-phosphate; 6PGL, 6-Phosphogluconolactone; 6PG, 6-

phosphogluconate; Ru5P, ribulose 5-phosphate; R5P, ribose 5-phosphate; Xu5P, xylulose 

5-phosphate; PRPP, phosphoribosyl pyrophosphate; S7P, sedoheptulose 7-phosphate; E4P, 

erythrose 4-phosphate. 

 

Figure 6. Dual treatment with 3PO and Ruxolitinib induces cell proliferation arrest 

and apoptosis in human cell lines expressing JAK2-V617F by altering redox 

homeostasis. (A) Apoptosis rate was determined by percent of Annexin V+ cells in 

indicated human myeloid leukemia cells after treatment with 3PO and/or Ruxolitinib for 48 

hours (n=3 independent experiments). (B) Cell proliferation was determined by percent of 

Ki67+ cells in indicated human myeloid leukemia cells in the presence of 3PO and/or 

Ruxolitinib for 48 hours (n=3 independent experiments). (C) Measurements of 

extracellular acidification rate (ECAR), indicative of glycolytic rates, in SET2, HEL UKE1, 

K562 cells after treatment with 3PO and/or Ruxolitinib for 12-16 hours (n=3 independent 

experiments). (D) Measurements of oxygen consumption rate (OCR), indicative of 

mitochondrial oxidative phosphorylation, in indicated cells after treatment with 3PO and/or 

Ruxolitinib for 12-16 hours (n=3 independent experiments). (E) Total ROS levels in SET2 

cells after treatment with 3PO and/or Ruxolitinib for 24 hours. Cells were pretreated with 



	 24 

1.5 mM N-Acetyl-Cysteine (NAC) for 6 hours. Data was normalized to vehicle treated 

control (n=3 independent experiments). (F and G) Apoptosis rate (F) and cell proliferation 

(G) was determined in SET2 cells treated with 3PO and/or Ruxolitinib and/or NAC for 48 

hours. Cells were pre-treated with NAC for 6 hours. Normalized values to vehicle treated 

controls are shown. (H and I) Ratio of GSH/GSSG (H) and NADPH levels (I) in SET2 

cells treated with 3PO and/or Ruxolitinib for 12 hours. Cells were pre-treated with NAC 

for 6 hours. Normalized values to vehicle treated controls are shown. All data are presented 

as mean ± SEM. Two-way ANOVA with subsequent Bonferroni post-test was used. *P 

< .05; **P < .01; ***P < .001. See also Figure S7. 

 

Figure 7. Combined targeting of elevated glycolysis and mutant JAK2 activity elicited 

additive effects in vivo. (A) Schematic of long-term 3PO and Ruxolitinib treatment. 

Competitive bone marrow transplant recipient mice were induced with tamoxifen (TAM) 

to activate the JAK2-VF and JAK2-E12 mutations. 4 (for E12) or 8 (for VF) weeks later the 

treatment regimen was initiated. Mice were treated with vehicle, 3PO (50mg/kg, i.p) alone 

or in combination with Ruxolitinib (60mg/kg, oral) every day for 8 weeks. (B) 

Representative pictures and weights of spleen from mice treated with vehicle or 3PO 

and/or Ruxolitinib (n=6 mice per genotype). (C) Weight of eWAT in 3PO and/or 

Ruxolitinib treated mice (n=6 mice per genotype). (D) Time course of non-fasting blood 

glucose levels in 3PO and/or Ruxolitinib treated mice (n=6 mice per genotype). (E) 

Glucose tolerance test in 3PO and/or Ruxolitinib treated VF (left) and E12 (right) mice 

(n=6 mice per genotype). (F) Peripheral blood cell counts (upper panel) and frequencies of 

GFP positive hematopoietic cells in peripheral blood (lower panel) in 3PO and/or 

Ruxolitinib treated mice at indicated time points (n=6 mice per genotype). (G) Blood 

glucose levels in PV patients with or without cytoreductive therapy. Cytoreductive drugs 

were hydroxyurea (n=19), pegylated interferon-α (n=1), ruxolitinib (n=3), and anagrelide 

(n=1). (H) Schematic drawing depicting the metabolic changes in hematopoietic and non-

hematopoietic tissues induced by expression of mutant JAK2 in hematopoietic cells. 

Metabolic changes and MPN are primarily driven by the expression of mutant JAK2 in 

hematopoietic cells. High glucose diet (HGD) promotes proliferation of the JAK2 mutant 

clone and accelerates MPN phenotype, whereas Ruxolitinib, 3PO and high fat diet (HFD) 

reduce the MPN manifestations. Note that some changes in metabolism are directly 

affecting the JAK2 mutant hematopoietic cells, whereas other changes (e.g. lipolysis) are 

indirect consequences of the general energy crisis and/or the inflammatory mediators 
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secreted by the JAK2 mutant cells. One-way ANOVA analyses followed by Tukey’s 

multiple comparison tests were used for multiple group comparisons or Two-way ANOVA 

with subsequent Bonferroni post-test or two-tailed unpaired t-test (G) was used. All data 

are presented as mean ± SEM. *P < .05; **P < .01. See also Figure S8. 
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Figure 5

 Schematic of U-13C6 D-glucose labeling and tracing in bone marrow LSK and MEP cells
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Apoptosis rate of human myeloid leukemia cellsA

0

20

40

60

80

100
An

ne
xi

n 
V+

 c
el

ls
 (%

)

10 10 20 20 30 30- -
- + - + - + - +

0

20

40

60

80

100

10 10 20 20 30 30- -
- + - + - + - +

0

20

40

60

80

100

10 10 20 20 30 30- -
- + - + - + - +

0

20

40

60

80

100

10 10 20 20 30 30- -
- + - + - + - +

***

*

*
*

**

** **

***
**

**

**
***

***
***

***
***

*

ns

ns

SET2 HEL UKE1 K562

**
*

HEL

0 10 20 30 40 50 60 70 80 90
0

40
80

120

160
200 Gluc

os
e

Olig
o

2-D
G

90

Untreated 20uM-3PO
30uM-3PO

10uM-3PO
10uM-3PO+RRuxo

UKE1

0 10 20 30 40 50 60 70 80 90
0

20
40
60
80

100
120

Gluc
os

e
Olig

o
2-D

G
Glycolysis rate in  human myeloid leukemia cellsC

EC
A

R
 (m

pH
/m

in
)/1

06 
ce

lls

0 10 20 30 40 50 60 70 80
Time (minutes)

Gluc
os

e

Olig
o

2-D
G

0
20
40
60
80

100
120

Figure 6

Cell proliferation rate of human myeloid leukemia cells
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Schematic of pharmacological treatment and assessment
of MPN progression in bone marrow transplant recipients
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HSPC frequencies in bone marrow and spleen after 5 weeks of intermittent
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Supplemental Figure S1. Reducing energy supply through fasting has beneficial effects in reducing MPN 

progression in MPN mice. (A) MPN induction and prolonged fasting scheme.  Bone marrow transplant recipient 

mice were treated with tamoxifen (TAM) to activate the JAK2-VF and JAK2-E12 mutations. Four weeks after TAM 

injections, mice were fed normally or subjected to fasting with 17 cycles of 1d-fasting/1d-feeding regimen. (B) Bar 

graphs showing the frequency of donor derived HSPCs and megakaryocyte and erythroid committed progenitors 

in BM (upper panel) and spleen (lower panel) of indicated mice (n=4-5 mice per genotype). All data are presented 

as mean ± SEM. One-way ANOVA analyses followed by Tukey’s multiple comparison tests were used. *P < .05; 

**P < .01.
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Supplemental Figure S4: Transcriptomic and metabolomic profiles of mutant JAK2 expressing hematopoietic stem 
and progenitor cells unveiled altered metabolic regulators. (A) Metabolic pathway enrichment analysis of significantly 
up-regulated metabolites in bone marrow MEPs from VF (upper panel) and E12 (lower panel) compared to WT mice 
as determined by MetaboloAnalyst 3.0 (n=3 per genotype). (B) Integrated pathway analysis of differentially regulated 
genes and metabolites in MEP cells from VF and E12 compared to WT mice. (C) Measurements of glycolytic rates 
from total spleen (left graph) and bone marrow cells (right graph). Extracellular acidification rate (ECAR) values were 
normalized to cell numbers. Data are from 3 independent experiments (n=6 mice per genotype). (D) Measurements of 
oxygen consumption rate (OCR), indicative of mitochondrial oxidative phosphorylation from total spleen (left graph) 
and bone marrow cells (right graph). OCR values were normalized to cell numbers. Data are from 3 independent 
experiments, n=6 mice per genotype. (E) Mitochondrial abundance as determined by the mean fluorescence intensity 
of MitoTrackerGreen in total spleen and bone marrow cells (n=5 mice per genotype). All data are presented as mean ± 
SEM. One-way ANOVA analyses followed by Tukey’s multiple comparison tests were used for multiple group compari-
sons. *P < .05; **P < .01; ***P < .001.



A IC-TFMS based tracing of 13C from labelled U-13C6 D-glucose in LSK and MEP cells 
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B IC-TFMS based tracing of incorporated 13C from U-13C6 D-glucose 
in purine/ pyrimidine pathway metabolites in LSK and MEP cells 
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Supplemental Figure S6. Dual treatment with 3PO and ruxolitinib induces cell proliferation arrest and apoptosis in 

human leukemic cell lines by evoking ROS levels. (A) Pfkfb3 protein expression in human myeloid leukemia cells (SET2, 

HEL UKE1, and K562) as determined by flow cytometry after vehicle or ruxolitinib treatment for 24h and shown as 

representative histogram and bar chart. (B) Representative FACS plots showing the percentages of apoptotic cells after 

drug treatment for 48 hours (n=3). (C) Bar graph showing the ROS levels in indicated cells treated with 3PO and/or 

ruxolitinib for 6 hours. Data shown are normalized values of MFI (n=3). (D) Bar graph showing basal OCR levels in 

indicated cells treated with 3PO and/or ruxolitinib for 6 hours. Cells were pretreated with NAC for 6 hours where indicat-

ed. Data shown are normalized values of MFI (n=3 experiments).  All data are presented as mean ± SEM. Unpaired 

Student’s t tests (A) or One-way ANOVA analyses followed by Tukey’s multiple comparison tests were used for multiple 

group comparisons (C). *P < .05; **P < .01; ***P < .001.
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Supplemental Figure S7

Supplemental Figure S7. Inhibition of glycolysis with Pfkfb3 inhibitor 3PO induces apoptosis in peripheral blood mononuclear 

cells (PBMCs) from MPN patients (n=10). A) Bar graphs show the percentages of apototic cells (Annexin V+ Sytox+) in PMBCs 

treated with 3PO (30μM) or Ruxolitinib (250nM) alone, or in combination for 48hours. PBMCs were pretreated with 

N-Acetyl-Cystein (NAC) (1.5 mM) for 6 hours where indicated.  The MPN subtype and the JAK2-V617F (VF) allele burden (%) of 

each MPN patients are indicated in parenthesis. B) Plot showing the data of all patient samples combined. Data are presented 

as mean ± SD. One-way ANOVA followed by Tukey’s multiple comparison tests were used. n.s: not significant.
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