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Abstract

Parametrised state space models in the form of recurrent networks are often used in machine
learning to learn from data streams exhibiting temporal dependencies. To break the black
box nature of such models it is important to understand the dynamical features of the input-
driving time series that are formed in the state space. We propose a framework for rigorous
analysis of such state representations in vanishing memory state space models such as echo
state networks (ESN). In particular, we consider the state space a temporal feature space
and the readout mapping from the state space a kernel machine operating in that feature
space. We show that: (1) The usual ESN strategy of randomly generating input-to-state, as
well as state coupling leads to shallow memory time series representations, corresponding
to cross-correlation operator with fast exponentially decaying coefficients; (2) Imposing
symmetry on dynamic coupling yields a constrained dynamic kernel matching the input
time series with straightforward exponentially decaying motifs or exponentially decaying
motifs of the highest frequency; (3) Simple ring (cycle) high-dimensional reservoir topology
specified only through two free parameters can implement deep memory dynamic kernels
with a rich variety of matching motifs. We quantify richness of feature representations
imposed by dynamic kernels and demonstrate that for dynamic kernel associated with
cycle reservoir topology, the kernel richness undergoes a phase transition close to the edge
of stability.

Keywords: Recurrent Neural Network, Echo State Network, Dynamical Systems, Time
Series, Kernel Machines

1. Introduction

When dealing with time series data, techniques of machine learning and signal processing
must account in some way for temporal dependencies in the data stream. One popular
option is to impose a parametric state-space model structure in which the state vector is
supposed to dynamically code for the input time series processed so far and the output
is determined through a static readout from the state. Recurrent neural networks (e.g.
(Downey et al., 2017)), Kalman filters (Kalman, 1960) or hidden Markov models (Baum
and Petrie, 1966) represent just a few examples of this approach. In some cases the state
space and transition structure is (at least partially) imposed based on the relevant prior
knowledge (Yoon, 2009), but usually it is learnt from the data along with the readout
map. In the case of uncountable state space and non-linear state dynamics, the use of
gradient methods in learning the state transition dynamics is hampered by the well known
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“information latching problem” (Bengio et al., 1993). As temporal sequences increase in
length, the influence of early components of the sequence have less impact on the network
output. This causes the partial gradients, used to update the weights, to (exponentially)
shrink to zero as the sequence length increases. Several approaches have been suggested to
overcome this challenge, e.g. (Bengio et al., 1994; Hochreiter and Schmidhuber, 1997; Jing
et al., 2019).

One possibility to avoid having to train the state transition part in a state space model
is to simply initialise it randomly to a ‘sensible’ fading memory dynamic filter and only
train the static readout part of the model. Models following this philosophy (Jaeger, 2001;
Maass et al., 2002; Tino and Dorffner, 2001) have been termed “reservoir computation (RC)
models” (Lukosevicius and Jaeger, 2009). Perhaps the simplest form of a RC model is the
Echo State Network (ESN) (Jaeger, 2001, 2002a,b; Jaeger and Hass, 2004). Briefly, ESN
is a recurrent neural network with a non-trainable state transition part (reservoir) and a
simple trainable linear readout. Connection weights in the ESN reservoir, as well as the
input weights are randomly generated. The reservoir weights are scaled so as to ensure the
“Echo State Property” (ESP): the reservoir state is an “echo” of the entire input history and
does not depend on the initial state. Scaling reservoir weights so that the largest singular
value is smaller than 1 makes the reservoir dynamics contractive and guarantees the ESP. In
practice, sometimes it is the spectral radius that guides the scaling. In this case, however,
spectral radius < 1 does not guarantee the ESP.

ESNs has been successfully applied in a variety of tasks (Jaeger and Hass, 2004; Skowron-
ski and Harris, 2006; Bush and Anderson, July 2005; Tong et al., 2007). Many extensions
of the classical ESN have been suggested in the literature, e.g. deep ESN (Gallicchio et al.,
2017), intrinsic plasticity (Schrauwen et al., 2008; Steil, 2007), decoupled reservoirs (Xue
et al., 2007), leaky-integrator reservoir units (Jaeger et al., 2007), filter neurons with delay-
and-sum readout (Holzmann and Hauser, 2009) etc. However, there are properties of the
reservoir that are poorly understood (Xue et al., 2007) and specification of the reservoir and
input connections require numerous trails and even luck (Xue et al., 2007). Furthermore,
imposing a constraint on spectral radius or largest singular value of the reservoir matrix is
a weak tool to properly set the reservoir parameters (Ozturk et al., 2007). Finally, random
connectivity and weight structure of the reservoir is unlikely to be optimal and such a set-
ting prevents us from providing a clear and systematic insight into the reservoir dynamics
organisation (Ozturk et al., 2007; Rodan and Tino, 2010). Rodan and Tino (2010) demon-
strated that even an extremely simple setting of a high-dimensional state space structure
governed by only two free parameters set deterministically can yield modelling capabilities
on par with other ESN architectures. However, a deeper understanding of why this is so
has been missing.

In order to theoretically understand the workings of parametrised state space models
as machine learning tools to process and learn from temporal data, there has been a lively
research activity to formulate and assess different aspects of computational power and infor-
mation processing capacity in such systems (e.g. (Dambre et al., 2012; Obst and Boedecker,
2014; Hammer, 2001; Hammer and Tino, 2003; Siegelmann and Sontag, 1994; Tino and
Hammer, 2004)). For example, tools of information theory have been used to assess infor-
mation storage or transfer within systems of this kind (Lizier et al., 2007, 2012; Obst et al.,
2010; Bossomaier et al., 2016). To specifically characterise capability of input-driven dy-
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namical systems to keep in their state-space information about past inputs, several memory
quantifiers were proposed, for example “short term memory capacity” (Jaeger, 2002a) and
“Fisher memory curve” (Ganguli et al., 2008; Tino, 2018). Even though those two measures
have been developed from completely different perspectives, deep connections exist between
them (Tino and Rodan, 2013). The concept of memory capacity, originally developed for
univariate input streams, was generalised to multivariate inputs in (Grigoryeva et al., 2016).
Couillet et al. Couillet et al. (2016) rigorously studied mean-square error of linear dynami-
cal systems used as dynamical filters in regression tasks and suggested memory quantities
that generalise the short term memory capacity and Fisher memory curve measures. Fi-
nally, Ganguli and Sompolinsky (2010) showed an interesting connection between memory
in dynamical systems and their capacity to perform dynamical compressed sensing of past
inputs.

In this contribution, we suggest a novel framework for characterising richness of dynamic
representations of input time series in the form of states of a dynamical system, which is the
core part of any state space model used as a learning machine. Our framework is based on
the observation that the idea of fixed dynamic reservoir with simple static linear mapping
build on top of it strikingly resembles the philosophy of kernel machines (Legenstein and
Maass, 2007). There, the inputs are transformed using a fixed mapping (usually only
implicitly defined) into a feature space that is ”rich enough” so that in that space it is
sufficient to train linear models only. The key tool for building linear models in the feature
space is the inner product. One can grasp workings of a kernel machine by understanding
of how the data is mapped to the feature space and what ”data similarity” in the original
space means when expressed as the inner product in the feature space. We will view the
reservoir state space as a ”temporal feature space” in which the linear readout is operating.
In this view, the input time series seen by the reservoir model results in a state that codes
all history of the presented input items so far and thus forms a feature representation of
the time series. Different forms of coupling in the reservoir dynamical system will result in
different temporal feature spaces with different feature representations of input time series,
implying different notions of similarity between time series, expressed as inner products of
their feature space representations. We will ask if and how the feature spaces differ in cases
of traditional randomly generated reservoir models, as well as more constrained reservoir
constructions studied in the literature.

Since RC models are input-driven non-autonomous dynamical systems, theoretical stud-
ies linking their information processing capabilities to the reservoir coupling structures have
been performed mostly in the context of linear dynamics, e.g. (Ganguli et al., 2008; Couil-
let et al., 2016; Couillet et al., 2016; Tino, 2018). While such studies are of interest by
themselves, in the context of the present work, studying linear dynamics can shed light
on a wide class of RC models whose approximation capabilities equal those of non-linear
systems. In particular, Grigoryeva, Gonon and Ortega recently proved a series of important
results concerning universality of RC models (Grigoryeva and Ortega, 2018b,a; Gonon and
Ortega, 2019). The universality can be obtained even if the state transition dynamics is
linear, provided the readout map is polynomial (or a neural network)1. However, univer-

1. Universal approximation capability was first established in the L∞ sense for deterministic, as well as
almost surely uniformly bounded stochastic inputs (Grigoryeva and Ortega, 2018b). This was later
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sality is a property of a whole family of RC models. For appropriate classes of filters2 and
input sources, it guarantees that for any filter and approximation precision, there exists a
RC model approximating the filter to that precision. This is an existential statement that
does relate individual filters to their approximating RC models. Our new framework will
enable us to reason about what kind of RC model setup is necessary if filters with deeper
memory were to be approximated. In particular, we will first investigate properties of linear
dynamical readout kernels obtained on top of linear dynamical systems. Crucially, memory
properties of such kernels can not be enhanced by moving from linear to polynomial static
readout kernels. Loosely speaking, if feature representation x of a time series u captures
properties of u only up to some look-back time t− τ0 from the last observation time t, then
no nonlinear transformation γ of x can prolong memory τ0 in the feature representation
γ(x) of u. Hence, we will be able to make statements regarding appropriate settings of the
linear dynamics that are necessary for universal approximation of deeper memory filters.

The paper has the following organisation: In section 2 we set the scene and outline the
main intuitions driving this work. Section 3 formally introduces the notion of temporal
kernel and provides some useful properties of the kernel to be used further in our study.
In section 4 we will setup basic tools for characterising dynamic kernels - motifs and their
corresponding motif weights. Starting from section 5, we will analyse dynamic kernels
corresponding to different settings of the dynamical system. In particular, dynamical kernels
associated with fully random, symmetric and highly constrained coupling of the dynamical
system are analysed in sections 5, 6 and 7, respectively. We provide examples illustrating
the developed theory and compare the motif richness of different parameter settings of the
dynamical system in section 8. The paper finishes with discussion and conclusions in section
9.

2. Preliminary concepts and intuitions

We consider fading memory state space models with linear input driven dynamics in an N -
dimensional state space and univariate inputs and outputs. Note that in the ESN metaphor,
the state dimensions correspond to reservoir units coupled to the input u(t) via an N -
dimensional weight vector w ∈ RN . Denoting the state vector at time t by x(t) ∈ RN , the
dynamical system evolves as

x(t) = W x(t− 1) + w u(t), (1)

where W ∈ RN×N is an N ×N weight matrix providing the dynamical coupling. In state
space models, the output y(t) is often determined solely based on the current state x(t)
through a readout function h:

y(t) = h(x(t)). (2)

The readout map h is typically trained (offline or online) by minimising the (normalised)
mean square error between the targets and reservoir readouts y(t).

extended in (Gonon and Ortega, 2019) to Lp, 1 ≤ p < ∞ and not necessarily almost surely uniformly
bounded stochastic inputs.

2. transforming semi-infinite input sequences into outputs

4
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Denote the set of natural numbers (including zero) by N0. In this contribution, we study
how the dynamical system (1) extracts potentially useful information about the left infinite
input time series ..., u(t− 2), u(t− 1), u(t), u(−j) ∈ R, j ∈ N0, in its state x(t) ∈ RN , since
it is only the state x(t) that will be used to produce the predictive output y(t) upon seeing
the input time series up to time t. In particular, we will consider readout maps constructed
in the framework of kernel machines. For example, in the case of linear Support Vector
Machine (SVM) regression, the readout from the state space at time t has the form

y(t) = h(x(t)) =
∑
i

βi 〈x(ti),x(t)〉+ b, (3)

where βi ∈ R and b ∈ R are weight coefficients and bias term, respectively and x(ti) are
support state vectors observed at important “support time instances” ti. In the spirit
of state space modelling discussed above, we consider the state x(t′) ∈ RN reached after
observing the time series ..., u(t′ − 2), u(t′ − 1), u(t′), the feature state space representation
of that time series. Hence (3) can also be written as

y(t) =
∑
i

βi K([...u(ti − 1), u(ti)], [...u(t− 1), u(t)]) + b, (4)

where K(·, ·) is a time series kernel associated with the dynamical system (1),

K([...u(ti − 1), u(ti)], [...u(tj − 1), u(tj)]) = 〈x(ti),x(tj)〉 . (5)

In this context, the support time instances ti can be viewed as end times of the “support
time series” ..., u(ti − 2), u(ti − 1), u(ti) observed in the past and deemed “important” for
producing the outputs by the training algorithm trained on the history of the time series
before the time step t.

The suggested viewpoint is illustrated in figure 1. There are three support time series
(..., u(t1−2), u(t1−1), u(t1)), (..., u(t2−2), u(t2−1), u(t2)) and (..., u(t3−2), u(t3−1), u(t3))
represented through the states x(t1), x(t2) and x(t3), respectively. To evaluate the output at
time t, the current feature space representation x(t) of ..., u(t−2), u(t−1), u(t) is compared
with feature space representations x(ti), i = 1, 2, 3, of the support time series through dot
products.

We will next formalise these intuitions and then investigate the properties of state
space feature representations of time series by dynamical systems. In particular, we will be
interested in how different forms of dynamic coupling W influence richness of such feature
representations and how they map to properties of the corresponding temporal kernel.

3. Temporal kernel defined by dynamical system

Without loss of generality, we will study feature state space representations under the
dynamical system (1) of left-infinite time series ..., u(−2), u(−1), u(0), u(−j) ∈ R, j ∈ N0.
We will assume that the largest singular value ν of the dynamic coupling W is strictly less
than 1, making the dynamics (1) contractive. This means that the echo state property is
fulfilled and for sufficiently long past horizons τ � 1, the influence of initial state x(−τ) on
the feature representation of

u(−τ + 1), u(−τ + 2), ..., u(−1), u(0)

5



Peter Tino

time
t3t2t1

x(  )
x(  ) x(  )

t
t t

tx(  )

t

1

2 3

Figure 1: Illustration of the workings of kernel machine producing an output at time t after
observing ..., u(t − 1), u(t). The time series ..., u(t − 1), u(t) is compared with
the three support time series (..., u(ti − 1), u(ti)), i = 1, 2, 3, by evaluating dot
products between their feature space representations x(t) and x(ti).

is negligible. Note that ν < 1 is a sufficient condition for the echo state property, but the
property may actually be achieved under milder conditions, especially when particular input
streams are considered (for formal treatment and further details see e.g. (Yildiz et al., 2012;
Manjunath and Jaeger, 2013)). In this contribution we use ν < 1, since it allows us (1) to
consider arbitrary input streams over a bounded domain (the ESP is always guaranteed)
and (2) to explicitly bound, in terms of properties of W, the norm of dynamical states, as
well as the extent to which the initial state influences the temporal kernel.

More formally, given a past horizon τ � 1, we will represent the time series u(−τ +
1), u(−τ + 2), ..., u(−1), u(0) as a vector u(τ) = (u1, u2, ..., uτ )> ∈ Rτ , where ui = u(−i +
1), i = 1, 2, ...τ . In other words u(τ) = (u(0), u(−1), ..., u(−τ + 1))>.

Consider a state x(−τ) ∈ RN at time −τ . After seeing the input series u(−τ+1), u(−τ+
2), ..., u(−1), u(0), the new state of the dynamics (1) will be3

x(0) = Wτx(−τ) +
τ∑
j=1

u(j − τ)Wτ−jw.

As discussed in the previous section, the state x(0) reached from the initial condition x(−τ)
after seeing u(τ) codes for information content in u(τ) and will be considered the “feature
space representation” of u(τ) through the dynamical system (1):

φ(u(τ); x(−τ)) = x(0)

= Wτx(−τ) +
τ∑
i=1

u(1− i)Wi−1w

= Wτx(−τ) +

τ∑
i=1

uiW
i−1w. (6)

Given two time series at past horizon τ represented through u(τ) = (u1, u2, ..., uτ )> and
v(τ) = (v1, v2, ..., vτ )>, the temporal kernel defined by dynamical system (1) evaluated on

3. W0 = IN×N , the N ×N identity matrix.

6



Dynamical Systems as Temporal Feature Spaces

u(τ) and v(τ) reads:

K(u(τ),v(τ); x(−τ)) = 〈φ(u(τ); x(−τ)), φ(v(τ); x(−τ))〉 . (7)

We will now show that, as expected given the contractive nature of (1), for sufficiently
long past time horizons τ � 1 on input streams over bounded domain4, the kernel evaluation
is insensitive to the initial condition x(−τ). This will allow us to simplify the presentation
by setting x(−τ) to the origin in the rest of the paper.

Theorem 1 Consider the dynamical system (1) driven by time series over a bounded do-
main [−U,U ], 0 < U <∞, with a past time horizon τ > 1. Assume that the largest singular
value ν of the dynamic coupling W is strictly smaller than 1 and that the norm of the input
coupling w satisfies ‖w‖ ≤ B. Assume further that the norm of the initial condition is
upper bounded by ‖x(−τ)‖ ≤ A(τ) = c · ζ−τ , where ν < ζ < 1 and c > 0 is a large enough
positive constant satisfying

c ≥ B · U

(1− ν) ·
(

1− ν
ζ

) . (8)

Then, for any u(τ),v(τ) ∈ [−U,U ]τ , it holds

K(u(τ),v(τ); x(−τ)) = K(u(τ),v(τ); 0) + ε,

where

−ητ
[

2c

1− ν
·B · U

]
≤ ε ≤ ητ

[
c2 ητ +

2c

1− ν
·B · U

]
, (9)

with η = ν/ζ < 1.

Proof Note that

φ(u(τ); x(−τ)) = Wτx(−τ) + φ(u(τ); 0)

and therefore, denoting

φ(u(τ); 0) =

τ∑
i=1

uiW
i−1w (10)

by φ0(u(τ)), we have

K(u(τ),v(τ); x(−τ)) = 〈Wτx(−τ) + φ0(u(τ)),Wτx(−τ) + φ0(v(τ))〉
= ‖Wτx(−τ)‖22 + 〈Wτx(−τ), φ0(u(τ)) + φ0(v(τ))〉
+ K(u(τ),v(τ); 0),

4. It is common in the ESN literature to consider input streams over a bounded domain (e.g. Jaeger
(2001)). In the recent work on universality of ESNs Grigoryeva and Ortega (2018b) consider almost
surely uniformly bounded stochastic inputs. This is further relaxed in (Gonon and Ortega, 2019).
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where

K(u(τ),v(τ); 0) = 〈φ0(u(τ)), φ0(v(τ))〉

is the dynamic kernel evaluated using initial condition x(−τ) set to the origin 0. We have,

‖Wτx(−τ)‖22 ≤ ν2τ · (A(τ))2. (11)

Note that

〈Wτx(−τ), φ0(u(τ))〉 ≤ ‖Wτx(−τ)‖ · ‖φ0(u(τ))‖

and (see (10))

‖φ0(u(τ))‖ ≤
τ∑
i=1

νi−1 · U · ‖w‖

≤ B · U · 1

1− ν
, (12)

yielding

〈Wτx(−τ), φ0(u(τ))〉 ≤ ντ

1− ν
·A(τ) ·B · U.

We thus have

K(u(τ),v(τ); x(−τ)) = K(u(τ),v(τ); 0) + ε,

with

ε ≤ ντ
[
ντ (A(τ))2 +

2

1− ν
·A(τ) ·B · U

]
.

To evaluate the lower bound on ε, note that

〈Wτx(−τ), φ0(u(τ))〉 ≥ −‖Wτx(−τ)‖ · ‖φ0(u(τ))‖

≥ −ντ

1− ν
·A(τ) ·B · U.

Since, trivially, ‖Wτx(−τ)‖22 ≥ 0, we have

ε ≥ − 2ντ

1− ν
·A ·B · U.

We have thus obtained,

−ντ
[

2

1− ν
·A(τ) ·B · U

]
≤ ε ≤ ντ

[
ντ (A(τ))2 +

2

1− ν
·A(τ) ·B · U

]
,

which is equivalent to (9).
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In order to reconcile this setting with the dynamics (1), consider a past horizon τ + τ0
for some additional look-back time τ0 ≥ 1. We require,

‖x(−τ)‖ ≤ A(τ) = c · ζ−τ and ‖x(−τ − τ0)‖ ≤ A(τ + τ0) = c · ζ−τ−τ0 .

But from the dynamics (1), we also have (see eqs.(6), (11) and (12)),

‖x(−τ)‖ ≤ ‖Wτ0 x(−τ − τ0)‖+
B · U
1− ν

≤ ντ0 ·A(τ + τ0) +
B · U
1− ν

. (13)

We would like the norm of the state x(−τ) reached from the initial state x(−τ−τ0) (bounded
in norm by A(τ + τ0)) to be within the required bound A(τ). In other words, we would like

A(τ + τ0) · ντ0 +
B · U
1− ν

< c · ζ−τ (14)

to hold. Using A(τ + τ0) = c · ζ−τ−τ0 , we conclude that the inequality (14) holds when

c > ζτ · B · U
(1− ν)

· 1

1−
(
ν
ζ

)τ0 . (15)

Since 0 < η = ν/ζ < 1, for τ, τ0 ≥ 1,

ζτ · B · U
(1− ν)

· 1

1− ητ0
<

B · U
(1− ν) · (1− η)

we have that the inequality (15) is definitely satisfied when

c >
B · U

(1− ν) · (1− ν
ζ )
.

Theorem 1 formally states that because the dynamical system (1) is contractive, the
influence of the initial condition x(−τ) on the kernel value K(u(τ),v(τ); x(−τ)) decays
exponentially with the past time horizon τ . For sufficiently long past time horizons τ � 1 we
can thus set x(−τ) = 0. Hence, in the rest of this study we will assume τ ≥ N and (unless
necessary) we will drop specific reference to τ by writing u instead of u(τ) ∈ Rτ . In fact, it
will be easier to think of time horizons in units of N , so that τ = ` ·N , for some sufficiently
large integer ` > 1. Furthermore, we will refer to φ(u(τ); 0) and K(u(τ),v(τ); 0) simply
as φ(u) and K(u,v), respectively.

9
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4. Temporal kernel and its motifs

In the previous section we established that the temporal kernel associated with dynamical
system (1) and acting on time series with past time horizon τ � 1 is defined as

K(u,v) = 〈φ(u), φ(v)〉 . (16)

In order to analyse the action of K(u,v) on time series u,v, we need to find its expression
directly in terms of u and v. The next theorem shows that there exists a matrix Q of rank
at most N that acts as a metric tensor on a subspace of Rτ (of dimensionality at most N),
so that K(u,v) can be expressed as a quadratic form u>Q v. This will allow us to study
properties of K(u,v) by analysing the associated metric tensor Q.

Theorem 2 Consider the dynamical system (1) of state dimensionality N and a dynamic
coupling W with largest singular value 0 < ν < 1. Let K(u,v) (16) be the temporal kernel
associated with system (1). Then for any u,v ∈ Rτ ,

K(u,v) = u>Q v = 〈u,v〉Q ,

where Q is a symmetric, positive semi-definite τ × τ matrix of rank Nm = rank(Q) ≤ N
and elements

Qi,j = w>
(
W>

)i−1
Wj−1 w, i, j = 1, 2, ..., τ. (17)

The upper bound on absolute values of Qi,j decays exponentially with increasing time indices
i, j = 1, 2, ..., τ , as

|Qi,j | ≤ νi+j−2 ‖w‖22. (18)

Proof First, we write

K(u,v) = 〈φ(u), φ(v)〉

=

〈
τ∑
i=1

uiW
i−1w,

τ∑
j=1

vjW
j−1w

〉
(eq. (10))

=

τ∑
i,j=1

ui vj
〈
Wi−1w,Wj−1w

〉
=

τ∑
i,j=1

ui vj Qi,j

= u>Q v.

Second, φ(u) can be written as φ(u) = Φu, where Φ is an N × τ matrix whose i-th
column is equal to Wi−1w. Hence, K(u,v) = u>Φ>Φ v and Q = Φ>Φ is symmetric
positive semi-definite with rank at most N ≤ τ .

10
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Finally, since ‖Wiw‖ ≤ ‖Wi‖‖w‖ ≤ νi‖w‖, we have

|Qi,j | = |
〈
Wi−1w,Wj−1w

〉
|

≤ ‖Wi−1w‖2 · ‖Wj−1w‖2
≤ νi+j−2 ‖w‖22.

Note that K(·, ·) is a semi-inner product on Rτ . In other words, time series u ∈ ker (Q)
from the kernel of the linear operator Q have zero length. It acts as an inner product in the
quotient of Rτ by ker (Q), Rτ/ ker (Q) (image of Q). Since this distinction is not crucial
for our argumentation, in order not to unnecessarily complicate the presentation, (slightly
abusing mathematical terminology) we will refer to K(·, ·) as temporal kernel and to Q as
the associated metric tensor.

Theorem 2 tells us that K(·, ·) is a fading memory temporal kernel and we can unveil
its inner workings through eigen-analysis of Q:

Q = MΛM>, (19)

where the columns of M are the eigenvectors m1,m2, ...,mτ ∈ Rτ of Q with the corre-
sponding real non-negative eigenvalues λ1 ≥ λ2 ≥ ... ≥ λτ arranged on the diagonal of
the diagonal matrix Λ. Based on theorem 2, there are Nm ≤ N ≤ τ eigenvectors mi with
positive eigenvalue λi > 0.

Given two time series u,v ∈ Rτ of past time horizon τ , the temporal kernel value is

K(u,v) = u> Q v

=
(

Λ
1
2 M>u

)>
Λ

1
2 M>v. (20)

This has the following interpretation. In order to determine the kernel based “similarity”
K(u,v) of two time time series u,v ∈ Rτ , both time series are first represented through a
series of matching scores with respect to a potentially small number of filters mi (Nm ≤
N ≤ τ) , weighted by λ

1/2
i :

ũ =
(
λ
1/2
1 〈m1,u〉 , λ1/22 〈m2,u〉 , ..., λ1/2Nm

〈mNm ,u〉
)>
∈ RNm (21)

and

ṽ =
(
λ
1/2
1 〈m1,v〉 , λ1/22 〈m2,v〉 , ..., λ1/2Nm

〈mNm ,v〉
)>
∈ RNm .

Similarity between u ∈ Rτ and v ∈ Rτ is then evaluated as the degree to which both u and
v match in the same way the highly weighted filters mi. Hence, instead of direct matching
of u and v, as would be the case for 〈u,v〉, we consider u,v “similar” if 〈ũ, ṽ〉 is high, in
other words, if both u and v match well a number of significant filters mi of high weight

λ
1/2
i .

11
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The matching scores 〈mi,u〉 can be viewed as projections of the input time series u
unto ”prototypical” time series motifs mi that characterise what features of the input time
series are used by the kernel to assess their similarity. Loosely speaking, a temporal kernel
employing a rich set of slowly decaying high-weight (”significant”) motifs with deep memory
will be able to perform more nuanced time series similarity evaluation than a kernel with a
small set of highly constrained and fast decaying short memory motifs. In what follows we
refer to m1,m2, ...,mNm ∈ Rτ as motifs of the temporal kernel K(·, ·) with the associated

motif weights given by λ
1/2
1 ≥ λ

1/2
2 ≥ ... ≥ λ

1/2
Nm

> 0. In the light of the comments above,
K(·, ·) acts as semi-inner product on Rτ and as inner product on the span of the motifs,
span{m1,m2, ...,mNm}.

In the case of SVM regression, the readout output for a time series v ∈ Rτ , based on
the state space representation of v through (1) would have the form (see eq.(4))∑

i

βi K(ui,v) + b,

where ui ∈ Rτ are the support vectors (“support time series”). This can be rewritten as a
linear model a>v + b with weight vector a ∈ Rτ :

a> =
∑
i

βi u>i Q

=
∑
i

βi

M∑
j=1

λj 〈mj ,ui〉 m>j . (22)

Free parameters of the output-producing function are the coefficients βi corresponding to

the support time series ui. In contrast, motifs mj and motif weights λ
1/2
j are fixed by the

dynamical system (1). Hence, whatever setting of the free parameters βi one can come up
with, the inherent memory and time series structures one can access in past data in order
to produce the output for a newly observed time series are determined by the richness and
memory depth characteristics of the motif set {mj}Nm

j=1. In what follows we will take this
viewpoint when analysing temporal kernels corresponding to the dynamical system (1) for
different types of state space coupling W ∈ RN×N .

5. Random dynamic coupling W with zero-mean i.i.d. entries

It has been common practice in the reservoir computation community to generate dynamic
coupling W of ESNs randomly (Lukosevicius and Jaeger, 2009), typically with elements of
W generated independently from a zero-mean symmetric distribution and then normalised
so that W has a desirable scaling property (e.g. certain spectral radius or largest singular
value). In this section we investigate temporal kernels associated with such an ESN setting.
We will see that the nature of motifs is remarkably stable (small set of shallow memory
motifs), even though the couplings W are generated from a wide variety of distributions.

Consider a random matrix W̃ with elements W̃i,j , i, j = 1, 2, ..., N , generated i.i.d. from
a zero-mean distribution with variance σ20 > 0 and finite fourth moment. Such a realisation

W̃ ∈ RN×N will be rescaled to the desired largest singular value ν ∈ (0, 1):

W =
ν

σmax(W̃)
W̃,

12
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where σmax(W̃) is the maximum singular value of W̃.

For large N , the largest eigenvalue of N−1W̃>W̃ converges to 4σ20 almost surely (Rudel-

son and Vershynin, 2010; Tino, 2018). Hence, the largest singular value of N−1/2 W̃ ap-

proaches 2σ0. It follows that for large N , σmax(W̃) approaches 2
√
Nσ0. Rescaling

W =
ν

2
√
Nσ0

W̃

can be equivalently thought of as generating Wi,j i.i.d. from a zero-mean distribution with
standard deviation

σ = σ0
ν

2
√
Nσ0

=
ν

2
√
N
. (23)

We would like to reason, under the assumption of high state space dimensionality N of
the dynamical system (1), about the properties of the metric tensor Q with elements Qi,j
given by eq. (17).

To ease the mathematical notation, we denote the matrix (W>)i Wj by A(i,j). Hence,

Qi,j = w> A(i−1,j−1) w. (24)

5.1. Diagonal elements of Q

The first diagonal element of Q, Q1,1, is trivially equal to ‖w‖22, so let us first concentrate
on A(1,1) corresponding to Q2,2.

A
(1,1)
j,j = N

[
1

N

N∑
i=1

W 2
i,j

]
≈ Nσ2

=
ν2

4
. (see eq. (23)) (25)

The off-diagonal terms of A(1,1) get asymptotically small as

A
(1,1)
i,j = N

[
1

N

N∑
k=1

Wk,i Wk,j

]
≈ 0

since for i 6= j, Wk,i and Wk,j are uncorrelated and generated from zero-mean distribution
with standard deviation σ = O(1/

√
N) (see (23)). For large N we can thus approximate

A(1,1) as

A(1,1) ≈ ν2

4
IN×N , (26)

where IN×N is the identity matrix of rank N .

13
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To approximate A(2,2), we write

A(2,2) = (W>)2 W2

= W> A(1,1) W

≈ ν2

4
W> W

=
ν2

4
A(1,1)

≈
(
ν2

4

)2

IN×N . (27)

Proceeding inductively, we obtain

A(k,k) = W> A(k−1,k−1) W

≈ ν2

4

(
ν2

4

)k−1
IN×N

=

(
ν2

4

)k
IN×N , k = 2, 3, ..., τ − 1. (28)

We can thus approximate Qj,j as

Qj,j = w> A(j−1,j−1) w

≈
(
ν2

4

)j−1
w> w

=
(ν

2

)2(j−1)
‖w‖22. (29)

Hence, the diagonal elements of Q, necessarily non-negative since A(j,j) are positive semi-
definite, decay much faster (exponentially so, by the factor of 4−(j−1)) than the upper bound
(18) of theorem 2,

Qj,j ≈ 4−(j−1) ν2(j−1) ‖w‖22. (30)

In particular, if all elements of the input coupling w have the same absolute value w
(with possibly different signs), we have

Qj,j ≈ Nw2
(ν

2

)2(j−1)
. (31)

5.2. Off-diagonal elements of Q

We now investigate terms Qi,j for i 6= j. Since Q is symmetric, without loss of generality
we can assume j > i. Then,

A(i−1,j−1) = (W>)i−1 Wi−1 Wj−i

= A(i−1,i−1) Wj−i

≈
(ν

2

)2(i−1)
Wj−i (32)

14
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The elements of A(i−1,j−1) decay exponentially with increasing i (deeper past in the
time series). We will now approximate Wj−i.

Concentrate first on the sub- and super-diagonal elements of Q. We have

A(j,j+1) ≈
(ν

2

)2(j−1)
W

and so besides the main diagonal elements Qj,j ≈ (ν/2)2(j−1) ‖w‖22 we have sub- and super-
diagonal elements

Qj+1,j = Qj,j+1 ≈
(ν

2

)2(j−1)
w>Ww,

which, depending on W and w, can be substantially smaller than Qj,j . For example, if both
W and w are generated element-wise independently from zero mean distributions, then for
large N , Ww ≈ 0. This is because each row of W contains i.i.d. realisations of a random
variable uncorrelated with random variable whose realisations are stored as elements of w.
Then w>Ww is negligible.

For elements Qi,j further away from the diagonal, we first analyse properties of the
matrix B = W2.

Bi,i =
N∑
k=1

Wi,k Wk,i

= W 2
i,i +

∑
k 6=i

Wi,k Wk,i

≈ W 2
i,i,

because of uncorrelated Wi,k and Wk,i for k 6= i. Similarly, for i 6= j,

Bi,j =
N∑
k=1

Wi,k Wk,j ≈ 0.

We have

Qj+2,j = Qj,j+2 ≈
(ν

2

)2(j−1)
w> B w

≈
(ν

2

)2(j−1) N∑
i=1

W 2
i,i w

2
i . (33)

Note that in order to scale a large matrix W̃ generated i.i.d. from a zero-mean distribution
to spectral radius less than one, the individual elements Wi,j of the scaled matrix W need
to be necessarily small, increasingly so for increasing dimensionality N . In particular, based
on (23), the mean of W 2

i,i is approximately ν2/(4N). Comparing (see eq. (29))

Qj,j ≈
(ν

2

)2(j−1) N∑
i=1

w2
i

15



Peter Tino

with eq. (33), we see that there will be an increasing gap (with increasing state space
dimensionality N) between the diagonal elements Qj,j of Q and the corresponding elements
Qj+2,j = Qj,j+2 two places off the diagonal.

Continuing the preceding argumentation inductively, we can conclude that compared to
the diagonal terms Qj,j of Q, for the approximation purposes, the off-diagonal terms can
be neglected and the metric tensor can be approximated by a diagonal matrix

Q ≈ Q̂ = ‖w‖22 diag

(
1,
(ν

2

)2
,
(ν

2

)4
, ...,

(ν
2

)2(τ−1))
. (34)

5.3. Temporal kernel motifs generated by random W

The eigen-decomposition of Q̂ is straightforward: The eigenvectors form the standard basis
{ei}, each vector ei containing zeros, except for the i-th element, which is equal to 1. The
corresponding eigenvalues are equal to the diagonal elements of Q̂,

λ̂i = ‖w‖2
(ν

2

)2(i−1)
. (35)

This means that the motif mi = ei extracts the i-th element from the history of the time
series and weights it with the weight ‖w‖ (ν/2)i−1.

Perhaps surprisingly, the temporal kernel defined by the dynamical system (1) with
random coupling W generated i.i.d. from a zero mean distribution has a rigid Markovian
flavor with shallow memory. In particular, the kernel

K(u,v) =

N∑
i=1

λi 〈mi,u〉 〈mi,v〉

≈
N∑
i=1

λ̂i 〈ei,u〉 〈ei,v〉

≈ ‖w‖2
N∑
i=1

(ν
2

)2(i−1)
ui vi,

compares the corresponding recent entries of the time series and weights down comparisons
of past elements with rapidly decaying weights.

To illustrate this approximation, as well as the rapidly decaying memory of such tem-
poral kernels, we considered 100-dimensional state space (N = 100) and generated 100

realisations of W̃ with elements Wi,j randomly distributed according to the standard nor-

mal distribution N(0, 1). Each W̃ was renormalised to W of largest singular value ν = 0.995
and an input coupling vector w was generated as a random vector with elements generated
i.i.d. according to N(0, 1) and then renormalised to unit vector (length 1). We then imposed
a past horizon τ = 200 and calculated the metric tensor Q, as well as its approximation Q̂
(eq. (34)). In figure 2 we show the true motifs mi (eigenvectors of Q for the first four dom-
inant motifs (motifs with the largest 4 motif weights) as the mean and standard deviations
across the 100 realisations. For clarity, we only show the first 10 dimensions. It is clear that
the motifs approximately correspond to the first four standard basis vectors ei, i = 1, 2, 3, 4,
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Figure 2: The first 10 elements of the four most dominant kernel motifs corresponding to
W ∈ R100×100 generated element-wise i.i.d. from N(0, 1) and renormalised to
largest singular value ν = 0.995. The input coupling w was generated element-
wise i.i.d. from N(0, 1) and renormalised to unit length. Shown are the means
and standard deviations across 100 joint realisations of W and w.

as predicted by our theory. Figure 3 presents the corresponding eigenvalues - solid bars cor-
respond to the means of the actual eigenvalues λi across the 100 realisations (also shown
are standard deviations). The theoretically predicted values (eq. (35)) are shown as the
red line. Again, there is a strong agreement between the theoretical approximations λ̂i and
the real eigenvalues λi. We illustrate generality of this result in appendix A, where motifs
and their weights were obtained under the same conditions, but with the input coupling
vector w generated as a vector of all 1s with randomly flipped signs (with equal probability

0.5 in each dimension). We also tried setting where both W̃ and w consist of all 1s with
signs flipped independently element-wise with probability 0.5. In both cases the Markovian
motifs and their weights are almost indistinguishable from those shown in figures 2 and 3.

It is notable that even though the state space dimensionality is quite high (N = 100),
the rapidly decaying motif weights basically prevent the kernel to be able to dig deeper into
the history of the time series u, v when creating a quantitative evaluation of their similarity,
K(u,v). If the time series are zero-mean, the kernel is estimating a weighted covariance of

u and v with weights
(
ν
2

)2(i−1)
exponentially decreasing at the rate much faster than the

upper bound (ν)2(i−1), given the contractive dynamics of (1) with spectral radius ν.

We conclude this section by noting that for large random W, the spectral radius ρ ≈ ν/2.
Hence, the resulting temporal kernel can be readily interpreted from the standpoint of
spectral radius: The Markovian motifs ei have weights ‖w‖ ρi−1, leading to temporal
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eigenvalues of Q
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Figure 3: Eigenvalues (squared motif weights) of the metric tensor Q for random setting
of the dynamical system (1) as described in fig. 2. Solid bars correspond to the
means of the actual eigenvalues λi across the 100 realisations of W and w (also
shown are standard deviations). The theoretically predicted values (eq. (35)) are
shown as the red line.

kernel

K(u,v) ≈ ‖w‖2
N∑
i=1

ρ2(i−1)ui vi.

Zhang et al. (2012) studied echo state networks with i.i.d. random weights in W. They
showed that the dynamic mapping (1) can be contractive with high probability even when
only the spectral radius ρ (as opposed to maximum singular value ν) is less than one.

6. Symmetric dynamic coupling W

In this section we investigate how the nature of the temporal kernel changes if we impose
symmetry on the dynamic coupling W of system (1): Wi,j = Wj,i, i, j = 1, 2, ..., N . In this
case, the largest singular value ν of W is equal to its spectral radius. Memory capacity
of such systems was rigorously analysed in (Tino and Rodan, 2013; Tino, 2018). In terms
of memory capacity, the role of self-couplings in large systems was shown to be negligible.
In (Couillet et al., 2016) systems with symmetric coupling were shown to lead to inferior
performance on memory tasks, when compared with unconstrained dynamic coupling. Sim-
ilar observation was made in the context of forecasting realised variances of stock market
indices (Ficura, 2017).

Recall that given Nk kernels K(a)(·, ·) operating on a space X and positive real numbers
αa > 0, a = 1, 2, ..., Nk, the linear combination K(·, ·) =

∑Nk
a=1 αaK

(a)(·, ·) is a valid kernel
on X . We will show that in case of symmetric W, the corresponding temporal kernel can
be understood as a linear combination of simple kernels, each with a unique exponentially
decaying motif.
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Theorem 3 Consider the dynamical system (1) of state dimensionality N with symmetric
coupling W of rank Nk ≤ N . Let s1, s2, ..., sNk

, be the eigenvectors of W corresponding to
non-zero eigenvalues σ1 ≥ σ2 ≥ ... ≥ σNk

. Denote by w̃a = s>a w the projection of the input
coupling w onto the eigenvector sa. Then the temporal kernel K(·, ·) associated with system
(1) is a linear combination of Nk kernels K(a)(·, ·),

K(·, ·) =

Nk∑
a=1

w̃2
a K

(a)(·, ·), (36)

each kernel K(a) with a single motif

m(a) = (1, σa, σ
2
a, ..., σ

τ−1
a )> ∈ Rτ . (37)

Proof Since W is symmetric, it can be decomposed as

W = S Σ S>,

where S = [s1, s2, ..., sNk
] is an N × Nk matrix storing the eigenvectors of W as columns,

with the associated eigenvalues organised along the diagonal of Σ = diag(σ1, σ2, ..., σNk
).

The powers of W can be then expressed simply through powers of Σ: Wi = S Σi S>. We
thus have

Qi,j = w> (W>)i−1 Wj−1 w

= w> Wi+j−2 w (by symmetry of W)

= w>S Σi+j−2 S>w

= w̃> Σi+j−2 w̃, (38)

where w̃ = S>w is the projection of input coupling w onto the orthonormal eigen-basis of
W.

Writing (38) as a quadratic form, we obtain

Qi,j =

Nk∑
a,l=1

w̃a w̃l Σi+j−2
a,l

=

Nk∑
a=1

w̃2
a σ

i+j−2
a , (39)

because Σ is a diagonal matrix.
Let us define Nk matrices Q(a) ∈ Rτ×τ , a = 1, 2, ..., Nk, as

Q
(a)
i,j = σi+j−2a .

Then,

Q =

Nk∑
a=1

w̃2
a Q(a). (40)
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Note that Q(a) are rank-1 positive semi-definite matrices Q(a) = m(a) (m(a))>. Since

Q(a) m(a) = m(a) (m(a))> m(a) = ‖m(a)‖22 m(a),

we have that m(a) is the only eigenvector of Q(a) with a non-zero eigenvalue, i.e. m(a) is
the only motif of the kernel

K(a)(u,v) = u> Q(a) v

with non-zero motif weight. From (40) it follows that K(u,v) =
∑Nk

a=1 w̃
2
a K

(a)(u,v).

Theorem 3 states that the temporal kernel of a system (1) with symmetric coupling
is a linear combination of several kernels, each of which corresponds to a single non-zero
eigenvalue σa of W. Each such kernel has a unique motif m(a) ∈ Rτ associated with
it. The motifs m(a) can only be of two kinds: Either an exponentially decaying profile
(1, σa, σ

2
a, σ

3
a, σ

4
a, ...), if σa is positive, or an exponentially decaying profile with high oscilla-

tion frequency (1,−|σa|, σ2a,−|σ3a|, σ4a, ...), if σa is negative. This is obviously quite limiting,
precluding the component kernels K(a)(·, ·) to capture more diverse range of possible dy-
namic behaviours.

A word of caution is in order. The individual motifs m(a) are indeed motifs of the
component kernels K(a)(·, ·), but they are not motifs of the kernel K(·, ·). Even though one
can write

Q = V ΣW V>,

where the matrix V = [m(1),m(2), ...,m(Nk)] stores component motifs m(a) as columns and
ΣW = diag(w̃2

1, w̃
2
a, ..., w̃

2
Nk

), the component motifs m(a) are not orthogonal. Hence, in
general there is no non-zero number κ, such that

Q m(a) = V ΣW V> m(a) = κ m(a).

Unlike in the previous section, because of the imposed symmetry on W, it is much
more difficult to approximate the structure of Q. We can recover the upper bound (18) of
theorem 2 on absolute values of Qi,j . From Theorem 2 and eq. (39) we have

Qi,j =
N∑
a=1

w̃2
a σ

i+j−2
a

and

|Qi,j | ≤
N∑
a=1

w̃2
a |σi+j−2a |

≤ νi+j−2a

N∑
a=1

w̃2
a (41)

≤ νi+j−2 ‖w‖22. (42)

Here (42) follows from (41) since the norm of the input coupling w is invariant with respect
to orthonormal change of basis. The inequality in (42) becomes equality if W is full rank.
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7. W as a scaled permutation matrix

We will now consider a strongly constrained dynamical coupling W in the form of cyclic
N ×N permutation matrix P, scaled by ν, so that the largest singular value, as well as the
spectral radius of W = ν ·P is equal to ν. This follows from a theorem by Frobenius that
states that for a non-negative matrix W, its spectral radius is lower and upper bounded by
the minimum and maximum row sum, respectively (e.g. (Minc, 1988)). Since in our case
all rows of W sum to ν, the spectral radius must be5 ν.

Without loss of generality6 we will consider cyclic permutation {1 → 2, 2 → 3, ..., N −
1 → N,N → 1}, represented by Pi+1,i = 1, i = 1, 2, ..., N − 1 and P1,N = 1, all the other
elements of P are zero. Dynamic couplings in the form of scaled cyclic permutation matrix
correspond to the setting of simple cycle reservoir (Rodan and Tino, 2011), where the
reservoir units are connected in a uni-directional ring structure, with the same weight value
on all connections in the ring. Analogously, setting of the input coupling w can be very
simple, controlled again by a single amplitude value w > 0 for all input weights. Intuitively,
all the input weights should not have the same value w, as this would greatly symmetrise
the ESN architecture. To break the symmetry, Rodan and Tino (2011) suggest to apply
an a-periodic sign pattern to the input weights (e.g. according to binary expansion of an
irrational number). While such a reservoir structure has the advantage of being extremely
simple and completely deterministic, the predictive performance of the associated ESNs
in a variety of tasks on time series of different origins and memory structure was shown
to be on par (and sometimes even better) with the usual random reservoir constructions
(Rodan and Tino, 2011). Similar observations were made in (Strauss et al., 2012). This is
of great practical importance, since many optics-based physical constructions of reservoir
models follow the ring topology structure, which can be implemented using a single unit
with multiple delays (Röhm and Lüdge, 2018; Tanaka et al., 2019; Appeltant et al., 2011).
Yet, it has been unclear, why such a simple setting can be competitive in real word tasks, or
why indeed the breaking of symmetry through a-periodic sign pattern in the input weights
is so crucial. In this section, we will study the nature of motifs associated with ring reservoir
topologies and the consequences of adopting periodic, rather than a-periodic input weight
sign patterns.

Given a time horizon τ = `N , for some positive integer ` > 1, we will now show that the
temporal kernel motifs corresponding to the dynamical system (1) with scaled permutation
coupling W = ν ·P have an intricate block structure.

Theorem 4 Consider the dynamical system (1) of state space dimensionality N , with cou-
pling W = ν · P, where ν ∈ (0, 1) and P is the N × N cyclic permutation matrix. Let
m̃i ∈ RN , i = 1, 2, ..., N , be motifs of the temporal kernel associated with (1) under past
time horizon equal to N . Denote the corresponding motif weights by ω̃i. Then, given a
different past time horizon τ = ` · N , for some positive integer ` > 1, the temporal kernel
motifs mi ∈ Rτ associated with (1) have the following block form:

mi =
(
m̃>i , ν

Nm̃>i , ν
2Nm̃>i , ..., ν

(`−1)Nm̃>i

)>
, i = 1, 2, ...N.

5. Alternatively, this can be shown by arguing that W is a normal matrix.
6. We can always renumber the state space dimensions.
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The corresponding motif weights are equal to

ωi = ω̃i

(
1− ν2τ

1− ν2N

) 1
2

.

Proof Note that because P is a permutation matrix, for any non-negative integer i ∈ N0,
we have

Pi = PN ·(i\N) Pi modN ,

where mod and \ denote the modulo and integer division operations. Since PN ·(i\N) =
IN×N , we have Pi = PimodN . Consequently,

Wi = νi ·Pi modN .

Furthermore, since P is orthogonal, P−1 = P>. We can now write the elements of Q as
(see eq. (17)),

Qi,j = w> (W>)i−1 Wj−1 w

= νi+j−2 w> (P>)i−1 Pj−1 w

= νi+j−2 w> Pj−i w.

= νi+j−2 w> P(j−i) modN w. (43)

For k ∈ {−N + 1,−N + 2, ...,−1, 0, 1, ...N − 1}, if k is positive, Pkw is the vector with
elements of w rotated k places to the right. In case k is negative, the rotation is to the left.
From (43) it is clear the Q ∈ Rτ×τ has the following block structure:

Q =


Q(1,1) Q(1,2) · · · Q(1,`)

Q(2,1) Q(2,2) · · · Q(2,`)

· · · · · · · · · · · ·
Q(`,1) Q(`,2) · · · Q(`,`)

 ,
where each matrix Q(a,b) ∈ RN×N , a, b = 1, 2, .., , `, has elements

Q
(a,b)
i,j = ν(a+b−2)N νi+j−2 w> Pj−i w, i, j = 1, 2, ..., N.

Define an N ×N matrix R with elements

Ri,j = νi+j−2 w> Pj−i w, i, j = 1, 2, ..., N, (44)

yielding Q(a,b) = ν(a+b−2)N R. Note that R is the metric tensor of the temporal kernel
associated with (1) under the past time horizon N . Let m̃i ∈ RN be the i-th eigenvector of
R with eigenvalue λ̃i. Then,

Q(a,b) m̃i = ν(a+b−2)N λ̃i m̃i,
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and so

[
Q(a,1),Q(a,2), · · · ,Q(a,`)

]
m̃i

m̃i

· · ·
m̃i

 = λ̃i

∑̀
j=1

ν(j−1)N

 ν(a−1)N m̃i. (45)

It follows that for each a ∈ {1, 2, ..., `},

[
Q(a,1),Q(a,2), · · · ,Q(a,`)

]
m̃i

νN m̃i

· · ·
ν(`−1)N m̃i

 = λ̃i

∑̀
j=1

ν2(j−1)N

 ν(a−1)N m̃i. (46)

We can thus conclude that the vector

mi =
(
m̃>i , ν

Nm̃>i , ν
2Nm̃>i , ..., ν

(`−1)Nm̃>i

)>
is an eigenvector of Q with eigenvalue

λi = λ̃i

`−1∑
j=0

(
ν2N

)j
= λ̃i

1− ν2N`

1− ν2N
.

= λ̃i
1− ν2τ

1− ν2N
.

7.1. Periodic input coupling w

It has been empirically shown in (Rodan and Tino, 2011) that when the dynamic coupling
W is formed by a scaled permutation matrix, a very simple setting of input coupling w
is sufficient: all elements of w can have the same absolute value, but the sign pattern
should be aperiodic. Intuitively, it is clear that for such W a periodic input coupling w will
induce symmetry in the dynamic processing of (1) and such a symmetry should be broken.
However, in this section we would like to ask exactly what representational capabilities are
lost by imposing a periodicity in w.

We will start by considering a general case of periodic w ∈ RN formed by k > 1 copies
of a periodic block s ∈ Rp, w = (s>, s>, ..., s>)>. Obviously, N = k · p.

Denote by P ∈ Rp×p the top left p × p block of the right shift permutation matrix
P ∈ RN×N . In other words, P is the right shift permutation matrix operating on vectors
from Rp. Furthermore, we introduce matrix T ∈ Rp×p with elements

Ti,j = νi+j−2
〈
s,P

|j−i|
s
〉
, i, j = 1, 2, ..., p. (47)
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Theorem 5 Consider the dynamical system (1) of state space dimensionality N , with cou-
pling W = ν · P, where ν ∈ (0, 1) and P is the N × N cyclic permutation matrix. Let
the input coupling w ∈ RN consist of k > 1 copies of a periodic block s ∈ Rp. Denote by
mi ∈ Rp, i = 1, 2, ..., p, eigenvectors of the matrix T (47) with the corresponding eigenval-
ues λi. Then, given a past time horizon τ = ` · N , for some positive integer ` > 1, there
are at most p temporal kernel motifs mi ∈ Rτ associated with (1) of non-zero motif weight.
Furthermore, the kernel motifs have the following block form,

mi = (m>i , ν
p m>i , ν

2p m>i , ..., ν
τ−p m>i )>, i = 1, 2, ...p,

with the corresponding motif weights

ωi =

(
λi

1− ν2τ

1− ν2p

) 1
2

.

Proof By Theorem 4, to determine motifs of the temporal kernel associated with (1), it is
sufficient to perform eigen-analysis of the block matrix Q(1,1) = R (eq. (44)).

For a = 0, 1, 2, ..., N − 1,

〈w,Paw〉 = k ·
〈
s,P

a
s
〉

= k ·
〈
s,P

a mod p
s
〉

and since R is symmetric, from (eq. (44)) we have

Q
(1,1)
i,j = k · νi+j−2 ·

〈
s,P

|j−i| mod p
s
〉
, i, j = 1, 2, ..., N. (48)

Therefore, Q(1,1) can be decomposed into blocks of p× p matrices

Q(1,1) =


C(1,1) C(1,2) · · · C(1,k)

C(2,1) C(2,2) · · · C(2,k)

· · · · · · · · · · · ·
Ck,1) C(k,2) · · · C(k,k)

 ,
where

C(c,d) = ν(c+d−2)p C(1,1), c, d = 1, 2, ..., k

and

C
(1,1)
i,j = νi+j−2 ·

〈
s,P

|j−i|
s
〉
, i, j = 1, 2, ..., p.

Now, let mi ∈ Rp be the i-th eigenvector of C(1,1) = T with eigenvalue λi. Then,

C(c,d) mi = ν(c+d−2)p C(1,1) mi = ν(c+d−2)p λi mi.

We have

[
C(c,1),C(c,2), · · · ,C(c,k)

]
mi

νp mi

· · ·
ν(k−1)p mi

 = λi

 k∑
j=1

ν2(j−1)p

 ν(c−1)p mi (49)
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for c = 1, 2, ..., k. Hence,

m̃i = (m>i , ν
p m>i , ν

2p m>i , ..., ν
(k−1)p m>i )>

is an eigenvector of Q(1,1) with eigenvalue

λ̃i = λi

k−1∑
j=0

(
ν2p
)j

= λi
1− ν2pk

1− ν2p
.

= λi
1− ν2N

1− ν2p
.

By Theorem 4, the corresponding eigenvector mi of Q reads:

mi = (m̃>i , ν
Nm̃>i , ..., ν

(`−1)Nm̃>i )>

= (m>i , ν
p m>i , ..., ν

(k−1)p m>i , ν
N m>i , ν

N+p m>i , ..., ν
(`−1)N+(k−1)p m>i )>

= (m>i , ν
p m>i , ν

2p ..., ντ−p m>i )>.

The last equality holds since from τ = `N and N = kp, we have (`−1)N +(k−1)p = τ −p.
We can calculate the corresponding eigenvalue as

λi = λ̃i
1− ν2τ

1− ν2N

= λi
1− ν2N

1− ν2p
1− ν2τ

1− ν2N
= λi

1− ν2τ

1− ν2p
.

Theorem 5 formally specifies consequences for the dynamical kernel of having a periodic
input coupling w of period p in the system (1). First, the number of potentially useful
kernel motifs of non-zero weight is reduced from N (the state space dimensionality) to p.
Second, the motif structure is even more restricted than in the case of general w. If the
past horizon is τ = `N , then in general, by theorem 4, each motif mi ∈ Rτ consists of a
series of ` copies of the same “core motif” m̃i ∈ RN , down-weighted by exponential decay.
In the case of periodic w, motifs mi ∈ Rτ are formed by a series of `k copies of the same
small block mi ∈ Rp, down-weighted by exponential decay.

We will now investigate special settings of the periodic input coupling w ∈ RN . Consider
first the binary setting, i.e. the core periodic block is s = (1, 0, 0, ..., 0)> ∈ {0, 1}p. Assume
w contains k such blocks (N = k · p). Then, since for a = 0, 1, 2, ..., p− 1,

〈
s,P

a
s
〉

=

{
1, if a = 0
0, otherwise,

the matrix T ∈ Rp×p (eq. (47)) will have a diagonal form, T = diag(1, ν2, ..., ν2(p−1)). The
eigenvectors mi ∈ Rp of T, i = 1, 2, ..., p, correspond to the standard basis ei of Rp, i.e.
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all elements of ei are zeros, except for the i-th element, which is 1. The corresponding
eigenvalues are λi = ν2(i−1). By theorem 5, each motif

mi = (e>i , ν
p e>i , ν

2p e>i , ..., ν
τ−p e>i )>, (50)

with motif weight

ωi = νi−1
(

1− ν2τ

1− ν2p

) 1
2

. (51)

is a periodic exponentially decaying motif that picks up elements of time series driving (1)
with periodicity p and initial lag i. Given a time series u ∈ Rτ ,

〈mi,u〉 =
`·k∑
j=1

ν(j−1)p ui+(j−1)p.

In the representation of (eq. (21)) we then have

ũ =

(
1− ν2τ

1− ν2p

) 1
2

· (〈m1,u〉 , ν 〈m2,u〉 , ..., νp−1 〈mp,u〉)> ∈ Rp.

Given another time series v ∈ Rτ , the temporal kernel gives

K(u,v) = 〈ũ, ṽ〉

=
1− ν2τ

1− ν2p
p∑
i=1

ν2(i−1) 〈mi,u〉 〈mi,v〉 . (52)

In the case of all-ones w with a periodic sign pattern, the core periodic block is s =
(+1,−1,−1, ...,−1)> ∈ {−1,+1}p. For a = 0, 1, 2, ..., p− 1, we have

〈
s,P

a
s
〉

=

{
p, if a = 0
p− 4, otherwise,

From (eq. (47)), the matrix T ∈ Rp×p with elements

Ti,j =

{
ν2(i−1) p, if i = j
νi+j−2 (p− 4), otherwise,

can yield a richer set of eigenvectors mi than the standard basis ei in Rp. An exception
is the case of period-4 sign pattern, p = 4. In that case, T is a diagonal matrix T =
p · diag(1, ν2, ..., ν2(p−1)), exactly the scaled version of T analysed above, when w was the
binary vector composed of a series of k blocks of e1 ∈ Rp. Hence the four motifs mi will
have the form suggested by eq. (50) and the motif weights (51) will be scaled by

√
p = 2.

We have thus established:
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Corollary 6 Under the assumptions of Theorem 5, assume that the input coupling w ∈
{0, 1}N consists of k > 1 copies of the binary standard basis block s = e1 ∈ {0, 1}p. Then
there are p non-zero wight motifs of the dynamic kernel associated with (1),

mi = (e>i , ν
p e>i , ν

2p e>i , ..., ν
τ−p e>i )>,

with motif weights

ωi = νi−1
(

1− ν2τ

1− ν2p

) 1
2

.

Each mi is thus a periodic exponentially decaying motif that picks up elements of input time
series with periodicity p and initial lag i.

Furthermore, if the bipolar input coupling w ∈ {−1,+1}N consists of k > 1 copies of
the block s = 2e1−1 ∈ {−1,+1}4 of period p = 4, then there are four non-zero wight motifs
mi (50) with motif weights 2ωi.

8. Illustrative examples

In this section we will illustrate the results obtained so far showing the influence of the
dynamic and input coupling, W and w, respectively, on the strength and richness of motifs
of the temporal kernel associated with the dynamical system (1). In all illustrations we
will use state space dimensionality N = 100 and re-normalise the dynamic coupling W ∈
R100×100 to largest singular value ν = 0.995. The input coupling w is renormalized to unit
length. The past horizon will be set to τ = 200. We will show motifs with motif weights
up to 10−2 of the highest motif weight.

Figure 4 (left) shows motifs of the temporal kernel given by random coupling W, where
all elements Wi,j were generated i.i.d. from normal distribution N(0, 1). The motifs are
shown in a column-wise fashion, i.e. the x-axis indexes the individual motifs, while the
motif values are shown along the y-axis. The associated motif weights are presented in the
right plot.

As explained in section 5, each of the Markovian motifs picks an element from the recent
time series history, yielding a shallow memory involved in the kernel evaluation, with rapidly
decaying motif weights. Almost identical results were obtained for Wi,j and wi generated
i.i.d. from other distributions (e.g. uniform over [−1,+1], Bernoulli over {−1,+1} or
{0, 1}), as well as for many other settings of w, including the all-ones vector w = 1.

Introduction of a structure into random W by imposing symmetry (Wigner W) leads
to a slightly richer motif set, albeit still with shallow memory (see figure 5). Note the high
frequency nature of some motifs, as discussed in section 6. Again, the number and nature
of the motifs stayed unchanged across a variety of generative mechanisms for W and w
described above.

The situation changes dramatically when W is set to the scaled permutation matrix of
section 7. Figure 6 shows an example of motif and motif weight structure for w generated
randomly i.i.d. from N(0, 1). To demonstrate that what really matters, as argued in section
7, is the aperiodicity of w, we show in figures 7 and 8 motifs and motif weights when w
is simply a vector of ones with signs prescribed by the first N = 100 digits of binary
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Figure 4: Temporal kernel motifs and the corresponding motif weights for randomly gener-
ated W and w.
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Figure 5: Temporal kernel motifs and the corresponding motif weights for random symmet-
ric Wigner W and random w.

expansion of π and e, respectively. This was suggested in (Rodan and Tino, 2011) as a
simple controlled way of generating aperiodic input couplings. Such settings admit a full
set of N = 100 highly variable motifs. The scaled block structure of motifs proved in section
7 is clearly visible. In striking contrast, as suggested in section 7, we present in figure 9
motifs and motif weights for the case of periodic w with period p = 10. As predicted by
the theory, the shrunk motif set contains p = 10 simple periodic motifs given by repeated
blocks of permuted standard basis ei (with possibly flipped sign).

As an example, in figure 10 we show in greater detail six temporal kernel motifs from
figure 7, all with high motif weights. Compared with the setting of random or symmetric
W, besides the sheer number of motifs with higher weight, there is a much richer motif
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Figure 6: Temporal kernel motifs and the corresponding motif weights for scaled permuta-
tion matrix W and random w.
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Figure 7: Temporal kernel motifs and the corresponding motif weights for scaled permu-
tation matrix W and aperiodic all-ones vector w with signs following binary
expansion of π.

variety and longer memory. Note that in accordance with theorem 4, since the state space
dimensionality and past horizon are set to N = 100 and τ = 200, respectively, the second
half of each motif mi is the scaled version of the first half, mi,101:200 = ν100 · m̃i, m̃i =
mi,1:100. In order to quantify “motif richness”, we perform Fast Fourier Transform (FFT)
of motifs mi with motif weights ωi up to 10−2 of the highest motif weight. We collect the
Fourier coefficients zi,k ∈ C of each motif mi along with the corresponding motif weight
qi,k = ωi in a set Fi = {(zi,k, qi,k)}k. The total coefficient set is then F =

⋃
i Fi. Figure 11

presents distribution of motif Fourier coefficients from F for different settings of spectral
radius ν ∈ {0.96, 0.99, 0.996, 1.0}.
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Figure 8: Temporal kernel motifs and the corresponding motif weights for scaled permu-
tation matrix W and aperiodic all-ones vector w with signs following binary
expansion of e.
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Figure 9: Temporal kernel motifs and the corresponding motif weights for scaled permuta-
tion matrix W and periodic binary vector w with period p = 10.

We designed two measures to characterise distribution of Fourier coefficients from F .
The first is simply the area occupied by the coefficients zi,k. In particular, the coefficient
space [−7, 7]2 in the complex plane was covered by regular grid of cells with side length
0.05. The relative area covered by F is then the ratio of the number of cells visited by the
coefficients zi,k to the total number of cells. Figure 12 shows the relative area occupied
by motif Fourier coefficients, as a function of the scaling largest singular value ν. It is
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Figure 10: Selection of motifs (τ = 200) of temporal kernel associated with dynamical
system (1) of state space dimensionality N = 100. Dynamic coupling W was
the scaled permutation matrix with spectral radius ν = 0.995 and the input
coupling w was formed by vector of all 1s with signs distributed according to
the first N = 100 digits of the binary expansion of π.

remarkable how stable the behaviour of the relative area is for the scaled permutation
matrix W (black lines), as long as the input coupling w is aperiodic: we tried vector of
all 1s with signs distributed randomly (stars), according to the first N digits of the binary
expansion of π (circles) and e (crosses), i.i.d. elements wi of w from N(0, 1) (squares) and
uniform distribution over [−1,+1] (diamonds). In all cases, the motif richness (measured by
relative area covered by Fourier coefficients) monotonically increases with ν up to ν = 0.99
(dashed red vertical line), where there is a phase transition marking the onset of a rapid
decline in motif richness. No such behaviour can be observed for random W (Wi,j generated
i.i.d. from N(0, 1) (dashed green lines), where the motif richness is consistently low.

Our second measure of motif richness takes into account motif weights, instead of simply
noting whether a particular small cell in the complex plane of Fourier coefficients was visited
or not. To that end the motif weights were first normalised to the total sum 1. In each cell
c we calculate the mean q̄c of the weights qi,k of coefficients zi,k that landed in that cell.
The relative weighted area covered by F is the ratio of the accumulated mean weight in cells
visited by the coefficients zi,k,

∑
c q̄c, to the total number of cells. Figure 13 shows that

the relative weighted area exhibits the same universal behaviour as a function of spectral
radius ν of W as that followed by the relative area (figure 12).

9. Discussion and Conclusion

Parametrised state space models have been used extensively in the machine learning com-
munity, e.g. in the form of recurrent neural networks. Since learning of the dynamic part
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Figure 11: Fourier coefficient distribution of motifs of the temporal kernel associated with
dynamical system (1) of state space dimensionality N = 100. Dynamic coupling
W was the scaled permutation matrix with spectral radius ν = 0.96 (a), 0.99
(b), 0.996 (c) and 1.0 (d). The input coupling w was formed by vector of all
1s with signs distributed according to the first N = 100 digits of the binary
expansion of π. Motifs used have motif weights from the maximal motif weight
ωmax to 10−2ωmax.

is known to be difficult, the key idea of reservoir computation is to restrict learning only to
the static readout part from the state space, while keeping the underlying dynamical system
fixed. Furthermore, the readout is usually a simple linear mapping. This is very similar in
spirit to the idea of kernel machines: Transform the inputs using a fixed mapping (usually
only implicitly defined) into another ”rich” feature space and only train a linear model
in that space, with the dot product as the canonical tool. The key to understanding the
workings of kernel machines is to understand the feature space: How are the data mapped
from the original space into the ”richer” feature space? What similarity notions does the
inner product in the feature space express in terms of the original data space? This paper
is the first study suggesting to formalise and rigorously analyse the connection between
fixed dynamics in reservoir computation models and fixed kernel-based transformations to
feature spaces in kernel machines. So far, theoretical tools at our disposal that would allow
us to make statements regarding appropriateness of different settings of dynamic coupling
in reservoir computation models have been rather limited. The new framework introduced
in this paper allows us to investigate richness of internal representations of input time series
in terms of dynamic states and how they operate to produce desired outputs in terms of
matching with a set of temporal motifs defined by the structure of the dynamic coupling.
Our investigations lead to several rather surprising results:
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Figure 12: Relative area covered by Fourier coefficients of the temporal kernel motifs as
a function of largest singular value of W. Dimensionality of the dynamical
system (1) was set to N = 100 with dynamic coupling W formed by the scaled
permutation matrix (black lines) or random matrix with individual elements
generated i.i.d. from N(0, 1) (dashed green lines). The input coupling w was
formed by vector of all 1s with signs distributed randomly (stars), according to
the first N = 100 digits of the binary expansion of π (circles) and e (crosses). We
also show the case where the elements of w were generated i.i.d. from N(0, 1)
(squares) and uniform distribution over [−1,+1] (diamonds). The vectors w
were renormalised to unit length. In case of deterministic w but stochastic
generation of W, the experiment was repeated 30 times. When both W and
w were generated randomly, the experiment was repeated 60 times. In those
cases, we show the means and standard deviations of the relative area covered
by the Fourier coefficients. In each experimental run, the motifs used have their
weights ranging from the maximal motif weight ωmax to 10−2ωmax.
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Figure 13: Relative area measured using local mean motif weight of Fourier coefficients of
temporal kernel motifs. All other settings are equal to those of figure 12.

1. The usual strategy of random generation (i.i.d.) of input and dynamic coupling
weights in the reservoir of ESN leads to shallow memory time series representations,
corresponding to cross-correlation operator with fast exponentially decaying coeffi-
cients. This finding is quite robust with respect to distributions with which the ESN
parameters are generated.

2. Imposing symmetry on coupling weights of the dynamical system yields a constrained
dynamic kernel that is a linear combination of trivial kernels matching the input time
series with either a straightforward exponentially decaying motif or an exponentially
decaying motif of the highest frequency.

3. The simple cycle reservoir topology has been empirically demonstrated to have the
potential to equal the performance of more complex reservoir settings (Rodan and
Tino, 2010). The dynamical system can have high state space dimensionality, but it
is specified only through two free parameters, namely a constant coupling weight r > 0
between consecutive reservoir units in the cycle topology7 and a constant weight v > 0
of the input-to-state coupling. The crucial constraint is that the input coupling vector,
while all its elements have the same absolute value v, has a-periodically distributed
signs. In this paper we have provided rigorous arguments for the need of aperiodic sign
distribution in the input coupling, showing that compared with periodic sign patterns,
the feature representations of time series in case of a-periodically distributed signs are
much richer. In addition, even though such settings of the dynamical system are
extremely simple (two free parameters) and completely deterministic8, the number

7. Note that this also automatically makes the spectral radius ν of W equal to r, so no separate tuning of
ν is needed.

8. The sign distribution can follow binary expansion of an irrational number, such as π or e.

34



Dynamical Systems as Temporal Feature Spaces

and variety of dynamic motifs of the associated dynamic kernel are far superior to the
standard configurations of ESN that rely on stochastic generation of coupling weights.

4. By quantifying motif richness of the dynamic kernel associated with cycle reservoir
topology, we showed that there is a phase transition in motif richness at spectral radius
values close to, but strictly less than 1. This confirms previous findings in the ESN
literature on the importance of tuning the dynamical system at the edge of stability
(Bertschinger and Natschlger, 2004).

The arguments in this paper were developed under the assumption of linear dynamical
system with linear readout map. However, it has been proved that even linear dynamical
systems can be universal, provided they are equipped with polynomial readout maps (Grig-
oryeva and Ortega, 2018b,a; Gonon and Ortega, 2019). In our setting, this corresponds to
considering instead of the linear kernel (eq. (16)) a polynomial kernel (of some degree d),

K(u,v) = (〈φ(u), φ(v)〉+ a)d. (53)

Clearly, memory characteristics of such a kernel will not change with offset a ∈ R or
increasing polynomial degree d. By eqs. (20-21), the polynomial kernel can be written as

K(u,v) = (〈ũ, ṽ〉+ a)d, (54)

where the elements ũi, ṽi, i = 1, 2, ..., Nm, of ũ, ṽ ∈ RNm are projections of u,v ∈ Rτ
onto motifs mi ∈ Rτ , scaled by the motif weight. Non-linear manipulation of ũi, ṽi can
increase the capacity of the readout mapping but only at the level of memory and feature
set defined by the motifs. Randomly generated or symmetric reservoir couplings will still
lead to constrained shallow memory kernels. We have shown that simple cycle reservoirs
tuned at the edge of stability, with aperiodic sign patterns in input coupling are among the
ESN architectures capable of approximating deep memory processes when linear dynamical
system and polynomial readout are used. Of course, when non-linearity is allowed in the
dynamical system (for example, by employing a logistic sigmoid transfer function), even
randomly generated reservoirs may be able to capture deeper memory.

Our study contributes to the debate about what characteristics of the dynamical system
are desirable to make it a ‘universal’ temporal filter capable of producing rich representations
of input time series in its state space. Such representations can then be further utilised
by readouts, purpose-build for a variety tasks. Ozturk et al. (2007) hypothesised that
the distribution of reservoir activations should have high entropy and suggested that it
was desirable for the reservoir weight matrix to have eigenvalues uniformly distributed
inside the unit circle. In this way the system dynamics would include uniform coverage
of time constants (related to the uniform distribution of the poles) (Ozturk et al., 2007).
Our work suggests a counterargument when linear reservoirs and non-linear readouts are
used: Uniform distribution of eigenvalues inside the unit circle can be achieved by random
generation of the reservoir matrix. However, this leads to a highly constrained set of shallow
memory motifs of the associated dynamic kernel that describes how features of time series
seen in the past contribute to the production of the model output. On the other hand, a very
simple setting of high dimensional dynamical system governed by just two free parameters
can achieve a much richer and deeper memory motifs of the dynamic kernel. Note that in
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this case, the eigenvalues of the reservoir coupling matrix are distributed uniformly along a
circle with radius equal to the spectral radius of the reservoir matrix.
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Appendix A. Markovian motifs resulting from random dynamical
coupling W

In this appendix we demonstrate that the approximations in section 5 of motifs and their
weights in the case of random dynamic coupling W hold for diverse distributions used to
generate elements of W. In particular, in figure 14 we show kernel motifs obtained from W ∈
R100×100 generated element-wise i.i.d. from N(0, 1) and renormalised to largest singular
value ν = 0.995 (the setting used in section 5) and input coupling vector w generated as a
vector of all 1s with randomly flipped signs (in each dimension with equal probability 0.5),
renormalised to unit vector. The associated squared motif weights are presented in figure
15. We also show in figures 16 and 17 the kernel motifs and eigenvalues of Q when both W̃
and w consist of all 1s with signs flipped independently element-wise with probability 0.5
(dynamical coupling renormalised to largest singular value ν = 0.995 and w to unit vector).
In both cases, the Markovian motifs and their weights are almost indistinguishable from
those shown in section 5 (figures 2 and 3).
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Figure 14: The first 10 elements of the four most dominant kernel motifs corresponding to
W ∈ R100×100 generated element-wise i.i.d. from N(0, 1) and renormalised to
largest singular value ν = 0.995. The input coupling w was generated as a vector
of all 1s with randomly flipped signs (in each dimension with equal probability
0.5). Shown are the means and standard deviations across 100 joint realisations
of W and w.
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Figure 15: Eigenvalues (squared motif weights) of the metric tensor Q for random setting
of the dynamical system (1) as described in fig. 14. Solid bars correspond to the
means of the actual eigenvalues λi across the 100 realisations of W and w (also
shown are standard deviations). The theoretically predicted values (eq. (35))
are shown as the red line.
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Figure 16: The first 10 elements of the four most dominant kernel motifs corresponding to
W ∈ R100×100 and w, both consisting of all 1s with signs flipped independently
element-wise with probability 0.5. W was renormalised to largest singular value
ν = 0.995. Shown are the means and standard deviations across 100 joint
realisations of W and w.

eigenvalues of Q

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

Figure 17: Eigenvalues (squared motif weights) of the metric tensor Q for random setting
of the dynamical system (1) as described in fig. 16. Solid bars correspond to the
means of the actual eigenvalues λi across the 100 realisations of W and w (also
shown are standard deviations). The theoretically predicted values (eq. (35))
are shown as the red line.
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