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Interfacial instabilities due to immiscible fluid displacement in circular and non-

circular microchannels 

Yu Lu*1, Nina M. Kovalchuk1, Zhizhao Che2, Mark J. H. Simmons1

1School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, United Kingdom.

2Stage Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.

Abstract 

Interfacial instabilities caused by the displacement of one fluid by another were studied experimentally 

in three horizontal channels of different shape of cross section with hydraulic diameters ranging from 

100 – 200 µm.  Flow instabilities were induced by the displacement of a more viscous fluid (silicone 

oil) by an immiscible, less viscous fluid (aqueous solutions of glycerol) with viscosity ratios between 

the two fluids ranging from 20 to 100.  In addition, the effect of surfactant was studied by the addition 

of Sodium Dodecyl Sulfate to the displacing fluid.  Flow regime maps were developed for the different 

types of instability observed, with more complex 3-D instabilities shown to occur as the capillary 

number increases. Whilst fluid viscosities, channel shape and wall wettability were shown to affect the 

threshold capillary numbers for instabilities, the addition of SDS did not have a significant impact, 

which is believed to be a consequence of the long contact time between the two fluids during the whole 

displacement process. It was found that higher flow rates of the displacing fluid (resulting in more 

complex interfacial instabilities) did not cause a proportionally faster removal of the displaced fluid, 

which is an important finding for practitioners.

_____________________________

*Correspondence concerning this article should be addressed to Yu Lu at YXL413@alumni.bham.ac.uk

Keywords: Two-phase flow, microfluidic channel, instabilities, fluid displacement, surfactant, flow regime map.
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1. Introduction

Microfluidic technology is attractive to both academia and industry due to the ability to closely control 

multiphase flow behaviour. As the channel diameter is reduced to O(10-4 – 10-3) m or less, gravitational 

effects become insignificant and wall wettability and the interfacial properties of fluids become very 

important.  Whilst much work has been done to understand the behaviour of two-phase flows in pipes 

of larger diameter, such as the work by Hewitt and Hall-Taylor (1970), Mandhane et al. (1974) and 

Weisman et al. (1979), the characterisation of flow patterns in microchannels has lagged until recently.  

The categorisation of the flow regimes and thus of the types of interfacial instabilities and development 

of flow regime maps are the main approaches taken: for example, Serizawa et al. (2002) characterised 

flow regimes for a 25 μm silica microchannel, with further studies classifying the types of interfacial 

instabilities observed.  

Two phase flow by definition considers the concurrent transport of pairs of immiscible fluids.  

However, a related topic is the displacement of one immiscible fluid by another, the difference being 

that the fluid motion is caused by transport of the displacing fluid and its consequent entrainment of 

the previous fluid in the channel. Fluid displacement has an important role in industry both for 

manufacture e.g. the coating of capillaries, injection moulding, mechanical lubrication and ensuring 

hygiene (minimisation of contamination) in fluid changeover. Various geometries have been studied 

focussing on measurement of key features of the multiphase flow.  For example, Lu et al. (2018) carried 

out measurements of residual film thickness in circular, square and near-semicircular cross sections; 

the data obtained showed good agreement with existing correlations. Scoffoni et al. (2001) studied the 

displacement of a more viscous fluid by a miscible, less viscous fluid flowing downwards in a vertical 

cylindrical 2 mm diameter tube. The viscosity ratio ranged from 10 to 400 in their experiments and 

they observed two different types of interfacial instabilities: termed axisymmetric and corkscrew 

modes, shown in Figure 1.
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Figure 1 Instabilities from displacement experiment of a more viscous fluid by a less viscous 
miscible one in a vertical cylindrical tube: (from top to bottom) stable, axisymmetric mode and 
“corkscrew” mode. Figure reproduced from Scoffoni et al., 2001, with the permission of AIP 

Publishing.

Petitjeans and Maxworthy (1996) noted that fluid interfacial instabilities can sometimes cause an 

unfavourable mobility profile that leads to the reduction of the displacement efficiency. However, 

despite these experimental works and various 2-D and 3-D numerical studies of the fluid displacement 

process, for example using the Lattice Boltzmann method (Redapangu et al., 2012, 2013; Mishra et 

al., 2012; Swain et al., 2015), there are still a lack of systematic studies which examine interfacial 

topology/instability and velocity fields over a large range of critical parameters such as channel 

inclination, cross-sectional shape and fluid properties (density, interfacial tension, rheology).  Some 

attempts have been made to develop diagrams showing the appearance of different types of unstable 

flows during fluid displacement (e.g. Scoffoni et al., 2001), but the effects of surface activity, 

(including dynamic interfacial tension effects) and wall wettability have not been studied in depth.  

Considering the potential application of channel cleaning, whether the appearance of flow interfacial 

instabilities can assist the clear-out of the pre-filled fluid also remains to be explored.

In this paper, a systematic study of the interfacial instabilities induced by the displacement of a more 

viscous fluid by a less viscous fluid with viscosity ratios from 20 to 100 is made in the same three 

horizontal channels used by Lu et al. (2018).  From the interfacial instabilities observed, flow regime 

maps have been developed to reflect the influences of parameters such as the addition of surfactant, 

wall wettability, size and geometry of channel.  A frame by frame image analysis method was used to 
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study the dynamics of the interfacial film, which provides insight into the removal efficiency of the 

displaced fluid.  

2. Materials and methods

2.1 Microchannels

The microchannels used, identical to those used by Lu et al. (2018), had near-semicircular, circular 

and square cross-section. The near-semicircular channel used was the straight channel (Figure 2a) in a 

microfluidic chip from Dolomite® Microfluidics; the effect of wall wettability was studied using both 

hydrophilic and hydrophobic walls whilst keeping the geometry of the channel constant as shown in 

Figure 2a. Circular and square channels (Figure 2b), which contain the inner main channel inserted in 

the outer channel with the gap between the two filled with water, were made in-house. The schematics 

of the cross-section of these channels are shown in Figure 2c. Two sizes of circular channel were used, 

with diameters of 100 μm and 200 μm respectively. The detailed fabrication process for these two 

microchannel devices is described in Lu et al. (2018) and Table 1 lists the dimensions of the 

microchannels used. 
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(a)                                                                     (b)

   
(c)

Figure 2 (a) Near semi-circular channel (the straight channels in the microfluidic chip from 
Dolomite); (b) Schematic of in-lab made device (circular and square channels); (c) schematic of 
the cross-section of the in-lab made channel. (Figures adapted from Lu et al., 2018, used under 

CC BY 4.0 Licence) 

Table 1 Dimensions of microchannels used in this work

Near-
semicircular Circular Square

Size
205 µm width,

100 µm height
200 µm 
diameter

100 µm 
diameter 200×200 µm

Hydraulic 
diameter (µm) 124.6 200 100 200
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2.2 Materials

In each experiment a pair of immiscible fluids is used.  In this study, the fluid that is used to prefill the 

channel is referred to as fluid 1 and the displacing fluid then injected is referred as fluid 2. Fluid pairs 

with different viscosity ratios (η = ν1/ν2, where ν1 and ν2 are the kinematic viscosities of fluid 1 and 2) 

were chosen, as shown in Table 2. Silicone oils were supplied by Sigma-Aldrich and 99.5% glycerol 

was supplied by ReAgent. A cationic surfactant, Sodium Dodecyl Sulfate (SDS, ReagentPlus® Sigma-

Aldrich) was chosen to study the effect of interfacial tension on flow features. The concentration of 

SDS solution used was 4.7 g L-1, which is twice the critical micelle concentration (CMC).  

Table 2 Fluid pairs used in this study.

Fluid 1 Fluid 2 η

Water 100

Glycerol solution 1

(26.0% wt., ν2=2×10-6 m2 s-1)
50

Glycerol solution 2

(48.5% wt., ν2=5×10-6 m2 s-1)
20

Water + SDS 100

Glycerol solution 1 + SDS

(ν2=2 ×10-6 m2 s-1)
50

Silicone oil 

(ν1=10-4 m2 s-1)

Glycerol solution 2 + SDS

(ν2=5 ×10-6 m2 s-1)
20

Water 50
Silicone oil

(ν1=5×10-5 m2 s-1) Glycerol solution 3

(32.6% wt., ν2=2.5×10-6 m2 s-1)
20

Silicone oil

(ν1=2×10-5 m2 s-1)
Water 20
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Equilibrium interfacial tension values, s, were measured with the Wilhelmy plate method using a 

Krüss K100 tensiometer. Fluid 2 was dyed black with water-soluble Nigrosin (Sigma-Aldrich) for flow 

visualisation. The interfacial tension values between immiscible fluids are slightly affected by the dye 

(details can be found in Lu et al., 2018) and thus the interfacial tension values used in this study are 

the values obtained using fluid 2 dyed with 10 g L-1 Nigrosin. Table 3 lists the equilibrium interfacial 

tension values for fluid 2 dyed with Nigrosin (10 g L-1). 

Table 3. Equilibrium interfacial tension values between immiscible fluid pairs.

Fluid 1
Fluid 2

(Contains Nigrosin 10 g L-1)
Equilibrium interfacial 
tension , s, (mN m-1)

Water 28

Water + SDS 10

Glycerol solutions 25
Silicone oil

Glycerol solutions + SDS 10

To evaluate the dynamic interfacial tension effects of the surfactant-laden fluid 2, dynamic surface 

tensions of fluid 2 were first measured with maximum bubble pressure method using a SINTERFACE 

BPA-1S tensiometer. The dynamic interfacial tension was then estimated using the method proposed 

by Kovalchuk et al., (2018), using values of the surface tension of surfactant-free fluid 2, the 

equilibrium surface tension of surfactant-laden fluid 2, the interfacial tension between the fluid 1 and 

surfactant-free fluid 2 and the dynamic surface tension of surfactant-laden fluid 2. Details of the 

estimation method can be found in Lu et al., 2018.  

2.3 Experimental procedure

The experimental setup is identical to that used in our previous work (Lu et al., 2018), a schematic of 

the setup is shown in Figure 3a. The microchannel device, placed horizontally on a microscope (Nikon 
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TE2000-s inverted microscope, 4× lens), is first filled with fluid 1 through the inlet tubing, fluid 2 

needle is then connected to the inlet tubing ensuring no air goes into the tubing. The outlet of channel 

is vented to the atmosphere and the fluids drain into a waste beaker. Fluid 2 is injected at desired flow 

rate in the range 5 – 3600 μL/min using a syringe pump (Harvard PHD 2000) equipped with a 5 mL 

or a 1 mL (for small flow rates) syringe (BD Plastipak). According to the manufacturer’s specification 

the accuracy of the flow rate provided by the syringe pump is within ± 1%. 

The experimental images were recorded at the desired channel position using a high-speed camera 

(Photron FASTCAM SA3) attached to the microscope. An external white colour cold light source 

MFO-90 (Microtec) was used to illuminate the channel from above and images were recorded through 

the objective lens facing upwards towards the channel. The imaging position was fixed at about 2/3 of 

the total channel length away from the channel inlet. This position was decided on the basis of the 

entrance length given by Shah and Bhatti (1987). For laminar flow, Le = 0.06 Re D.  Thus, 

Le = 12.3 mm using the largest value of Re used in this study whilst still in laminar flow.  For turbulent 

flow, Le = 1.359 Re1/4, which gives a value of Le = 7.6 mm from the largest overall value of Re. Figure 

3b shows where images were typically recorded and an example image of fluid 2 displacing fluid 1. 

The frame rates used were between 500 - 4000 f.p.s. with the exposure time set between 1 to 2 × 10-4 

seconds. 
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(a)

(b)

Figure 3 (a) Schematic of experimental set-up and pictures of some experimental equipment. 
(b) Typical position where images where recorded along the channel and an example of the 

recorded image in which fluid 2 enters the field of view 

MATLAB codes were written to identify the interfaces between fluids 1 and 2 during fluid 

displacement, for which the strategy is shown in Figure 4. A line is first set at the position very close 

to the left end of the images (shown as a red line in the figure); then the grey scale values in each pixel 

are detected along this line across the width of the channel; the positions where maximum and 
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minimum in grey scale differences appear are recorded as the positions of the two interfaces.  By 

repeating this process for each frame, the time evolution of the interfacial topology is revealed.  

Figure 4 The position where the interfaces between fluid 1 and 2 is identified.

2.4 Dimensionless groups

The effect of interfacial tension, viscosity and injection flow rate are the important parameters 

considered in this study, capillary number was therefore chosen as the main characteristic 

dimensionless group.  Depending on the viscosity used, two capillary numbers are used in this study, 

either: 

 (1)1
1

uCa 




or 

 (2)2
2

uCa 




Where µ1 is the dynamic viscosity of fluid 1, µ2 is the dynamic viscosity of fluid 2, u is the mean 

velocity of injected fluid 2 and  is the interfacial tension between fluid 1 and 2. The fluid 2 mean σ

velocity, u, is calculated on the basis of the fluid travelling alone in the entire cross-section of the 

channel, i.e.

 (3)
c

Qu
A



Where Q is the injection flow rate of the fluid 2 and Ac is the cross-section area of channel.
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The uncertainty in the calculated values of capillary number depends on uncertainty of experimental 

parameters such as the liquid viscosity, flow rate, interfacial tension and the area of channel cross-

section. As mentioned in subsection 2.3 the uncertainty in the flow rate provided by the syringe pump 

is ± 1 %. The experimental error in the measurement of equilibrium interfacial tension has not 

exceeded 0.5 mN/m, giving a relative error ± 5 % at smallest measured value of the interfacial tension 

of 10 mN/m (see Table 3). The uncertainty in the viscosity values is mostly due to the temperature 

variations during the experiments (± 2 °C). For silicone oils the change in viscosity is around 1 %/°C 

(Lorenz and Kandelbauer, 2014) and for glycerol solutions in water in the studied range of 

concentrations it is around 4 %/°C (Glycerine Producers’ Association, 1963).

According to the manufacturer, for the Dolomite® Microfluidics chip the tolerance is 2 μm on the depth 

and 4 μm on the width, which gives a relative uncertainty for the area of 2.6 %. It is assumed that the 

same uncertainty is applicable for the other channels. Thus, the uncertainty for the capillary numbers 

used in this study  can be estimated as ΔCa1 ~ 6 % and ΔCa2 ~ 7 %.   ∆𝐶𝑎 = ∆2
𝜇 + ∆2

𝑄 + ∆2
𝜎 + ∆2

𝐴𝑐

3. Results and discussion

Different interfacial phenomena were observed depending upon the fluid pair used, fluid 2 injection 

condition, channel geometry and the addition of surfactant. In general, the interface between fluid 1 

and fluid 2 can be either stable, which appear in images as a straight line parallel to the channel wall, 

or unstable. The sections below describe how different flow regimes are defined depending on the 

interfacial phenomena, the characterisation of these interfacial phenomena against experimental 

variables and how different parameters influence the appearance of the flow regimes.

3.1 Identification of interfacial instabilities in experiment

Three regimes based on the types of instabilities observed during the displacement process are shown 

in Figure 5a. Stable regime is the flow regime when no oscillation or interfacial instabilities are 

observed at the interfaces between fluid 1 and fluid 2 at all times. Axisymmetric unstable regime 
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represents the flow behaviour of periodic and axisymmetric interfacial instability with the axis of 

symmetry being the streamline of channel along the flow direction. This instability results in an 

axisymmetric pinching of fluid 2 which is observed at all times after its first appearance following the 

finger shape tip and a short period of stable interface. Asymmetric unstable regime represents complex 

and asymmetric interfacial instabilities taking place between the two fluids. This type of instability 

was observed after the brief occurrence of the axisymmetric unstable flows. 

The three flow regimes proposed in this study and shown in Figure 5a are very similar to the unstable 

flows observed by Scoffoni et al. (2001) for displacement by a miscible fluid (Figure 1), which were 

believed to be caused by viscosity stratification. This may indicate that despite the difference in 

channel orientation and size, the fluid displacement using miscible and immiscible fluid pairs with 

similar viscosity ratios can result in very similar unstable flows. However, in the study by Scoffoni et 

al. (2001), an increase in the inlet flow rate causes the flow to destabilize into either axisymmetric or 

asymmetric corkscrew shapes. In some cases the “corkscrew” mode instability evolved from the 

axisymmetric instability and in some cases it appeared rapidly without observable axisymmetric 

unstable regions. In the present study, it was found that all asymmetric unstable flows evolved from 

axisymmetric instabilities. Note, the asymmetric unstable regime in this study may contain various 

flow patterns. Figure 5b shows other examples of the asymmetric instabilities observed using various 

fluid pairs and channel geometries. The fluids, flow condition and the channel used for these images 

are as follows (from top to bottom): Fluid 1: 10-4 m2 s-1 silicone oil, Fluid 2: 5 ×10-6 m2 s-1 glycerol 

solution+SDS, Ca2 = 0.64, in near-semicircular channel; Fluid 1: 2×10-5 m2 s-1 silicone, Fluid 2: 

Water+SDS, Ca2 = 0.04, in near-semicircular channel; Fluid 1: 10-4 m2 s-1silicone oil, Fluid 2: 

water+SDS, Ca2 = 3.2×10-2, in near-semicircular channel; Fluid 1: 10-4 m2 s-1 silicone oil, Fluid 2: 

water, Ca2 = 0.034, in 200 μm circular channel. The appearance of these patterns is highly time-

dependent and may change from one experiment to another. Therefore, all these patterns have been 

categorised into the asymmetric unstable flow regime. In addition, the first two flow patterns shown 
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in Figure 5b, the sharp-cornered asymmetric instabilities, were taken from experiments performed with 

the addition of surfactant SDS in the displacing fluids, these were never observed in experiments 

carried out without surfactant.

(a)

(b)

Figure 5 (a) Three flow regimes for immiscible fluid pairs, all three images are from the results 
of the displacement of 10-4 m2 s-1 silicone oil by water in the near-semicircular channel using 
different injection flow rate: Stable (Ca2 = 9.8×10-4), Axisymmetric Unstable (Ca2 = 9.7×10-3) 

and Asymmetric Unstable (Ca2= 1.9×10-2). (b) Different types of Asymmetric interfacial 
instabilities observed in immiscible fluid displacement experiment. Fluids and flow conditions 

are described in the text.

3.2 Flow regime maps

Flow regime maps have been developed to relate the effects of injection flow rate, channel geometry, 

channel size, interfacial tension and channel wall properties upon the interfacial regime observed.  
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3.2.1 Effect of fluid 2 viscosity

Figure 6 shows the flow regime maps obtained using three viscosities of fluid 1 in the near-semicircular 

channel.  These flow regime maps have been developed using the viscosity ratio of fluid 1 to fluid 2, 

η, on the abscissa and capillary number on the ordinate, the latter reflecting the important role of 

interfacial tension.  In each plot in Figure 6, the viscosity of fluid 1 is fixed, therefore, the capillary 

number using the viscosity of fluid 2, Ca2, is used here.  Firstly, it can be observed from Figure 6a and 

6b that by using a fixed viscosity of fluid 1 and varying the viscosity of fluid 2, the transition capillary 

number between flow regimes decreases with the decrease of the viscosity of fluid 2. 

The effect on transition conditions of the fluid pairs with the same viscosity ratios can be also seen 

from Figure 6. A viscosity ratio of 20 is achieved from three fluid pairs and viscosity ratio of 50 is 

achieved from two fluid pairs. There does not appear to be clear trend in behaviour at fixed viscosity 

ratio despite the use of non-dimensional parameters; hence the fluid viscosity of both phases has to be 

considered in the analysis.
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(a)                                                     (b)                                          (c)

Figure 6 Flow regime map using (a) 10-4 m2 s-1, (b) 5×10-5, (c) 2×10-5 m2 s-1 silicone oil as fluid 1. 
In each plot, different viscosity ratios were achieved by varying the viscosity of fluid 2.

3.2.2 Effect of fluid 1

In order to see the influence of fluid 1 on the appearance of interfacial instabilities, Figure 7a shows 

the results using a fixed fluid 2 (water) but three viscosities of fluid 1 (2×10-5, 2×10-5 and 10-4 m2 s-1 

silicone oil).  Together with the discussion above it is concluded that the decrease in fluid 2 viscosity 

or the increase in fluid 1 viscosity (whist keeping the viscosity of the other phase constant) results in a 

decrease in the regime transition capillary number Ca2. It can be also concluded from Figure 2 that, 

for a given displacing fluid 2, an increase of viscosity of fluid 1 results in a decrease of fluid 2 velocity 

at the transition to instability. 
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The flow regime map reflecting the effect of the viscosity of fluid 1 when the viscosity of fluid 2 is 

fixed drives the development of a flow regime map using the capillary number based on fluid 1 

viscosity, Ca1, which is shown in Figure 7b.

It can be seen from Figure 7b that the transition condition between regimes, characterised by Ca1, are 

very similar for different fluid 1 viscosities. It can therefore be hypothesised that when the viscosity 

of displacing fluid 2 is constant, for the conditions of viscosity ratio 20 ≤ η ≤ 100, the transition 

conditions between three flow regimes are similar. However, the range of viscosities tested in this 

work is somewhat limited. The transition Ca1 values between stable, axisymmetric unstable and 

asymmetric unstable flows are ~0.1 and ~1.

(a)                                                                        (b) 

            

Figure 7 (a) flow regime map from the results using the fixed fluid 2 (water) and three 
viscosities of fluid 1, depending on Ca2; (b) flow regime map reflecting the effect of fluid 1 

viscosity with fixed fluid 2 viscosity, depending on Ca1.
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3.2.3 Surfactant-laden fluid 2

The comparison between the results using surfactant-free and surfactant-laden fluid 2 are shown in 

Figure 8. It is noted that by overlapping these two regime maps, the transition conditions for these two 

cases (based on Ca2) are almost identical. Therefore, it can be concluded that for immiscible fluid 

displacement, by using the same fluid pairs, the effect of the addition of surfactant (in this case, a 

cationic surfactant SDS) in the displacing fluid can be expressed by the variation of equilibrium 

interfacial tension, which is reflected in the calculated values of capillary number. This suggests that 

dynamic interfacial tension does not play an important role given the timescales of adsorption at the 

interface for this surfactant and the timescales of the dynamics of this process.  However, the addition 

of surfactant does cause morphological variations in the forms of asymmetric unstable flows, as shown 

in Figure 5, whose occurrence appears to be somewhat random. 

Figure 8 Comparison between flow regime maps of using surfactant-free (empty markers, 
dashed transition line) and surfactant-laden fluid 2 (solid markers, solid transition line). 

Silicone oil 10-4 m2 s-1 was used as fluid 1, different viscosity ratios were achieved by varying the 
viscosity of fluid 2.   
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3.2.4 Effect of channel size and geometry

The effect of channel size was studied using two circular microchannels with diameters of 100 and 

200 μm respectively, with identical fluid pairs and operating procedures being used for both. The 

overlapped flow regime map obtained is shown in Figure 9a, with the filled markers and solid lines 

representing the 200 μm channel. 

It can be seen from Figure 9a that the values of capillary number at the transition between flow regimes 

for the 100 μm channel are shifted upwards from the 200 μm channel. This could be caused by the fact 

that the capillary number used here is calculated from the mean velocity of fluid 2, from the fluid 2 

injection flow rate and the cross-section area of the channel but the actual velocity of fluid 2 depends 

on the film thickness of fluid 1 left on the wall, which reduces the effective channel diameter and thus 

fluid 2 travels faster. From previous work (Lu et al., 2018), the film thickness for 200 μm channel is 

generally larger than that for 100 μm channel, under similar flow conditions. Therefore, when Ca2 

values are the same, the real velocity of fluid 2 is higher in the 200 μm channel. 

The flow regime maps using microchannels with the same hydraulic diameter (200 μm) but different 

cross-section shapes (circular and square) are shown in Figure 9b. It can be seen the change of channel 

geometry causes a significant shift in the transitions between flow regimes. Similar findings were 

reported for multiphase flows in small scale channels such as Sadatomi et al. (1982) and Coleman and 

Garimella (1999). 
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(a)                                                                         (b)

                         

Figure 9 (a) Overlapped flow regime maps for the circular channels with 200 and 100 μm 
diameter. Filled markers and solid lines for 200 μm channel, empty markers and dashed lines 
are for 100 μm channel. (b) Overlapped flow regime maps using 200 × 200 μm square channel 

(coloured markers and solid line) and 200 μm circular channel (empty markers and dashed 
line).

3.2.5 Effect of wall wettability

To study the effect of wall wettability on the fluid displacement processes, near-semicircular channels 

of identical geometry but with hydrophobic or hydrophilic walls (Figure 2a) were used.  Figure 10 

shows the overlapped flow regime map obtained where solid markers and solid transition lines are for 

hydrophilic channel. From Figure 10 there exists a decrease in the transition capillary number for the 

hydrophobic channel. This differs from the findings in our previous work (Lu et al., 2018) which 

investigated the film thickness left on the wall. It was found that there was no significant difference 

between the film thickness left on wall for hydrophilic and hydrophobic channels. The fact that the 
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only place the aqueous phase (fluid 1) actually touches the wall is at the channel inlet, where fluid 2 

first contacts the channel wall, is believed to be the cause of this difference.

Figure 10 Overlapped flow regime maps for hydrophilic (solid markers and solid transition 
lines) and hydrophobic (empty markers and dashed transition lines) near-semicircular 

channel, using 10-4 m2 s-1 silicone oil as fluid 1.

3.2.6 Interfacial film dynamics

Figure 11 shows an example of the evolution of the interface positions (red and blue curves) obtained 

using the MATLAB algorithm at a fixed spatial location of the channel marked with a red line in 

Figure 4. In order to show that this position chosen is representative of the flow patterns, the film 

thickness derived from the image processing results at this location is compared with another location 

as illustrated in Figure 12a. The flow condition was 10-4 m2 s-1 silicone oil displaced by water in near-

semicircular channel, Ca2 = 9.7 × 10-3. Figure 12b shows the result of the film thickness at both 

positions 1 and 2.  In both plots, time zero represents the frame just before the tip of fluid 2 crosses the 

positions marked in Figure 12a.  It can be seen that the flow features are equivalent at both positions. 

Position 1 was used for all further measurements.  



21

Figure 11 Temporal evolution of the interfaces. The video processed was from fluid 
displacement experiment of 1 × 10-4 m2 s-1 silicone oil displaced by 5 × 10-6 m2 s-1 glycerol 
solution in near-semicircular channel, Ca2 = 0.54. 0.2 second of real time recording was 

processed in the shown image.

(a)

(b)

Figure 12 (a) The film thickness from Matlab image processing at position 1 and 2 are 
compared. (b) The film thickness on one side of channel at position 1 and 2.  Flow condition: 

10-4 m2 s-1 silicone oil displaced by water, Ca2 = 9.7 × 10-3.

Figure 17a shows the film thickness derived from the image processing for the fluid pair of 10-4 m2 s-

1 silicone oil displaced by water in the near-semicircular channel at three different flow rates. The time 

axis shown in the figure starts from the first image processed, therefore time zero is the time just before 

fluid 2 enters the area of recording. Only the film thickness on one side (the top side in images) is 

shown because the flow is symmetric in the stable and axisymmetric unstable regimes. As shown in 
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Figure 17a, an initial sharp drop in film thickness can be seen due to the detection of the finger shape 

of the tip of fluid 2.  In all three flow conditions, the plots then show a period of unchanged film 

thickness. This is in line with the previous definition of axisymmetric unstable flows, where 

axisymmetric instabilities take place after a short period of stable interfacial flows (explained in section 

3.1).  In addition, for the initial stable regimes, an increase in fluid injection flow rate (represented by 

Ca2 here) results in higher film thickness. This is in good agreement with our previous work on the 

initial film thickness (Lu et al., 2018). 

In Figure 13a, for flow conditions of Ca2 = 3.9×10-3 and 9.7×10-3 in which axisymmetric instabilities 

were observed, the peaks of film thickness show the pinching parts of the unstable flows. When the 

capillary number increases, the extent of the shrinkage at the pinching parts of the flow increase. The 

average film thickness at the pinching parts is 62.3 μm for Ca2 = 9.7×10-3 and 46.9 μm for Ca2 = 

3.9×10-3. The average frequency of the appearance of these pinching parts can also be estimated: 11 

peaks appear for the higher capillary number flow with a period of 0.22 s, which corresponds to 50 Hz 

while for the flow of smaller capillary number condition, it is 35.7 Hz. The results shown in Figure 

17a also suggest that the appearance of the peaks is not strictly periodic, meaning the time interval 

between the occurrence of each pinching event is not constant. The graph also shows that, under all 

flow conditions, the film thickness right after the tip shows a downwards peak. This means the width 

of fluid 2 experiences an initial expansion in width before shrinking back to form the stable non-wavy 

interface.

The film thicknesses for fluid pairs of 10-4 m2 s-1 silicone oil displaced by 2×10-6 m2 s-1 and 5×10-6 m2 

s-1 glycerol solutions are plotted in Figure 17b and c. The height of peaks representing the instabilities 

decreases over time, along with the decrease of the overall film thickness, represented by the baseline 

of the peaks. In addition, for most of the results shown in Figure 17b and c there exists the downwards 

peak before the initial stable flows. 
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It is clear from Figure 14 that at higher flow rates, unstable flow oscillations persist for a longer time, 

i.e. it takes longer for the interface to reach a condition which indicates the equilibrium state of the 

displacement process. This suggests that the occurrence of interfacial instabilities or the increase in 

the frequency resulting from higher injection flow rates, does not result in reaching the final 

equilibrium stage of the displacement process more quickly. It is assumed that the equilibrium state is 

achieved when there is no change of the interface between the two phases on the recorded images. 

On the other hand, the final equilibrium value of the film thickness depends on injection flow rates 

and the viscosity ratios between the two fluids. Larger flow rates result in instabilities of larger 

amplitude leading to a larger difference between the initial and equilibrium film thicknesses. The 

relative effect increases with a decrease of viscosity ratio. When the viscosity ratio is large (Figure 

15a, η = 100), the equilibrium film thickness is effectively independent of the flow rate. When a smaller 

viscosity ratio is used, as shown in Figure 16b or c (η = 50 or 20), the thinning caused by the instability 

can result in a smaller equilibrium film thickness under larger injection flow rate. However, even in 

the case of these smaller viscosity ratios, the dependence of the equilibrium film thickness of flow rate 

is rather weak, i.e. the increase in the flow rate of the displacing fluid does not provide the 

proportionally larger removal of liquid film. 
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(a)

(b)

(c)

Figure 17 Film thickness for fluid pair of 10-4 m2 s-1 silicone oil displaced by (a) water (η = 100), 
(b) 2×10-6 m2 s-1 glycerol (η = 50) and (c) 5×10-6 m2 s-1 glycerol solution (η = 20) in the near-

semicircular channel. Three flow rates, represented by capillary numbers, are shown.
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4. Conclusions

The interfacial phenomena obtained during immiscible fluid displacement in microchannels were 

studied.  Immiscible fluid pairs with various viscosity ratios were used, together with the possible 

addition of a surfactant, SDS, in the displacing fluid 2. 

The unstable flows were characterised by the type of interfacial instabilities observed from recorded 

images.  Three flow regimes were categorised based on these interfacial instabilities and flow regime 

maps were developed to reflect the appearance of unstable flows under certain parameter settings. 

It was found that by fixing the viscosity of one of the phases, the transition capillary numbers between 

flow regimes decrease as the viscosity ratio (expressed by the viscosity of displaced fluid over 

displacing fluid) increases. 

By adding surfactant SDS into fluid 2, the flow regime map matches the map generated with surfactant-

free fluid 2 when the capillary number for surfactant-laden cases is calculated using the relevant 

equilibrium interfacial tension values. Thus, in this scenario, any effects due to dynamic interfacial 

tension are minimal, due to fast adsorption of surfactant to the interface over the timescale of the 

experiment.  

A significant impact on the flow regime maps was observed for a change of channel size for channels 

of the same cross-sectional shape and a change of channel cross-section shape for channels with the 

same hydraulic diameter. 

A hydrophobic treatment on the channel wall caused a shift of transitional capillary values in flow 

regime maps compared to the untreated channel, which is believed to be caused by the initial contact 

between the channel inlet and the displacing fluid. 

Image processing revealed information such as the frequency of the appearance of the pinching parts 

of the axisymmetric unstable flows and gave some insights into the influences of injection flow rate 

and viscosity ratio on the removal of displaced fluid.
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Nomenclature

Ac Channel cross-section area

Ca Capillary number 

D Hydraulic diameter of channel

Le Entrance length

Q Fluid 2 injection flow rate

Re Reynolds number

u Displacing fluid mean velocity (based on Ac)

γs Equilibrium surface tension

γst Surface tension with surfactant at surface age t

η Viscosity ratio (Fluid 1/Fluid 2)

γ0 Surface tension without surfactant

µ Dynamic viscosity 

ν Kinematic viscosity

σ Interfacial tension between two fluids

σs Equilibrium interfacial tension

σst Interfacial tension with surfactant at surface age t

σ0 Interfacial tension without surfactant

Δ Uncertainty
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• Interfacial instabilities were observed during fluid displacement in microchannels.

• The transition conditions of flow regimes are reflected in flow regime maps.

• Channel cross-section shape and size have significant impact on flow regime maps.

• The addition of surfactant did not bring significant variation to flow regime maps.

• High injection flowrate doesn’t always help the clear-out of fluid being displaced.


