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ABSTRACT
We give a reformulation of the inverse shadowing property with respect to the
class of all pseudo-orbits. This reformulation bears witness to the fact that the
property is far stronger than might initially seem. We give some implications of
this reformulation, in particular showing that systems with inverse shadowing
are not sensitive. Finally we show that, on compact spaces, inverse shadowing
is equivalent to a finite version of it.
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1. Introduction

Let f : X → X be a continuous function on a compact metric space X. A δ-
pseudo-orbit is a sequence (xi)i∈ω ⊆ X such that d(f(xi), xi+1) < δ for all i ∈ ω.
Such sequences arise naturally during the computation of orbits of points in
dynamical systems, and so their study is of great importance, for example, in
computational models of dynamical systems. Indeed, through calculation one
often encounters rounding errors and so the generated sequence of points is not
actually a true orbit of the system, but instead a δ-pseudo-orbit with δ dependent
upon the degree of accuracy to which one can compute. One question that may
then be asked is, to what extent does this sequence reflect any of the original
dynamics in the system? Ultimately, this is a question regarding the stability of
a dynamical system and one line of enquiry is to determine if such sequences are
closely followed by true orbits of the system; thus leading directly to the notion
of shadowing. The sequence (yi)i∈ω ⊆ X is said to ε-shadow the sequence (xi)i∈ω
provided that d(yi, xi) < ε for all i ∈ ω. If (yi)i∈ω = (f i(y))i∈ω for some y ∈ X,
then this shadowing means that to some degree of accuracy ε > 0, the pseudo-
orbit is followed by a true orbit. If this happens for all pseudo-orbits of some
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given accuracy, then the system (X, f) is said to have the shadowing property.
This concept of shadowing has a natural interpretation when modelling a

system numerically and this has been studied in detail in the works of Cor-
less [9], Palmer [28] and Pearson [30]. It is also an important theoretical con-
cept. For example, Bowen [6] used shadowing implicitly as a key step in his
proof that the nonwandering set of an Axiom A diffeomorphism is a factor of
a shift of finite type. Since then it has been studied extensively as a key fac-
tor in stability theory [32, 34, 37], in understanding the structure of ω-limit
sets and Julia sets [2, 3, 4, 5, 7, 17, 25], and as a property in and of itself
[11, 13, 15, 16, 23, 26, 27, 31, 32, 36].

In this paper, we look at the related concept, inverse shadowing. First intro-
duced by Corless and Pilyugin [10] as something akin to the “dual” of shadowing,
and as part of the concept of bishadowing by Diamond et al [12], inverse shad-
owing in a system informally means that true trajectories may be recovered from
computed orbits (within some given accuracy). Kloeden, Ombach and Pokroskii
[20] later defined inverse shadowing using the notion of a δ-method which are
functions mapping points to δ-pseudo-orbits originating from the point. This
allows one to consider certain classes of maps from the space to the space of
pseudo-orbits through the imposition of extra structure on such mappings such
as continuity.

Such classes have been studied in a variety of different settings for example
[18, 19, 20, 22, 29, 33]. Of particular interest has been its relationship to struc-
tural stability. In [33], Pilyugin showed that if an Axiom A diffeomorphism on
a closed C∞ manifold is structurally stable, then it has the inverse shadowing
property with respect to classes of continuous methods. Meanwhile in [21], Kloe-
den and Ombach prove that a structurally stable homeomorphism on a compact
space has inverse shadowing with respect to the class of methods induced by
homeomorphism. Further results in this direction can be found in [8, 19, 22]. We
remark that inverse shadowing, particularly with regard to the class of methods
induced by homeomorphism, is closely related to Lewowicz’s notion of persistency
[24] (see also [35]).

Within this paper, we examine inverse shadowing with respect to the class of
all pseudo-orbits. In Section 3 we prove that inverse shadowing is equivalent to
a property which essentially involves a quantifier swap in the definition. We use
this reformulation to give a number of implications in Section 4, in particular
showing that a system exhibiting inverse shadowing is not eventually sensitive
(defined below). We conclude by showing that when the phase space is compact,
for the classes T0, Tc and Th, inverse shadowing is equivalent to a finite version.

Although many of our results hold for metric spaces in general1, we restrict
our attention to compact metric spaces since inverse shadowing is a dynamical
property, i.e. it is invariant under conjugacy, in this case. Thus (X, d) is a compact
metric space throughout this paper. We denote by Z the set of all integers; the
set of positive integers 1, 2, 3, 4, . . . is denoted by N whilst ω := N ∪ {0}.

1Theorems 3.1, 3.3, 4.1 and 4.2 together with Corollary 4.3 and Lemma 4.5 do not require the assump-

tion of compactness.
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2. Preliminaries

We firstly outline the notions of inverse shadowing that will be used here. Let
f : X → X be a homeomorphism (resp. a continuous function) on a compact
metric space (X, d). We call the pair (X, f) a dynamical system. The orbit of
x under f is the set of points {f i(x)}i∈A and is denoted by Orbf (x), with the
understanding that A = Z if f is a homeomorphism and a full version of inverse
shadowing is under consideration whilst A = ω when it is a positive version
of inverse shadowing under consideration. For δ > 0, we refer to a bi-infinite
sequence (xk)k∈Z such that d(f(xk), xk+1) < δ for all k ∈ Z as a δ-pseudo-orbit ;
and a mono-infinite sequence (xk)k∈ω such that d(f(xk), xk+1) < δ for all k ∈ ω
as a positive δ-pseudo-orbit.

Let XZ (resp. Xω) be the product space of all bi-infinite (resp. mono-infinite)
sequences, with the product topology (note that compactness of X implies com-
pactness of the product). Then for any given δ > 0, let Φf (δ) ⊆ XZ be the
set of all δ-pseudo-orbits with respect to f (resp. Φ+

f (δ) ⊆ Xω the set of all

positive δ-pseudo-orbits with respect to f). A mapping ϕ : X → Φf (δ) (resp.
ϕ : X → Φ+

f (δ)), such that, for each x ∈ X, ϕ(x)0 = x, is called a (resp. positive)

δ-method for f , where ϕ(x)k is used to denote the kth term in the sequence ϕ(x).
We denote by T0(f, δ) the set of all respective δ-methods with understanding from
the context whether this refers to positive methods or not. Similarly we denote by
Tc(f, δ) the set of all continuous (positive) δ-methods, and by Th(f, δ) the set of
all (positive) δ-methods induced by a homeomorphism, i.e., Th(f, δ) is the set of
(resp. positive) δ-methods ϕ for which there exists a homeomorphism h : X → X
such that d(f(x), h(x)) < δ for each x ∈ X and ϕ(x)k = hk(x), for all relevant
k ∈ Z (resp. k ∈ ω).

Definition 2.1. Let f : X → X be a homeomorphism (resp. continuous func-
tion). We say that f experiences (resp. positive) Tα-inverse shadowing if, for any
ε > 0 there exists δ > 0 such that for any x ∈ X and any ϕ ∈ Tα(f, δ) there
exists y ∈ X such that ϕ(y) ε-shadows x; i.e.

∀k ∈ Z (resp. k ∈ ω), d(ϕ(y)k, f
k(x)) < ε.

Definition 2.2. Let f : X → X be a homeomorphism (resp. continuous func-
tion). We say that f experiences (resp. positive) weak inverse shadowing with
respect to the class Tα if, for any ε > 0 there exists δ > 0 such that for any x ∈ X
and any ϕ ∈ Tα(f, δ) there exists y ∈ X such that

ϕ(y) ⊆ Bε
(
Orbf (x)

)
.

(NB. As stated in the preliminaries, Orbf (x) is only the positive trajectory of x
when considering the ‘positive’ version of the above statement).

Remark 1. Clearly if a system has Tα-inverse shadowing then it has weak inverse
shadowing with respect to the class Tα.
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3. An equivalent reformulation of inverse shadowing

Within the literature surrounding inverse shadowing, several authors [10, 22] have
commented on the importance of restricting one’s attention to certain admissible
classes of pseudo-orbits. Theorem 3.1 brings to light exactly why such a restriction
may be important; in particular, it demonstrates that T0-inverse shadowing is a
much stronger property than it may appear prima facie.

Theorem 3.1. A system (X, f) with f a homeomorphism (resp. continuous map)
has (resp. positive) T0-inverse shadowing if and only if for any ε > 0 there exists
δ > 0 such that for any x ∈ X there exists y ∈ X such that for any ϕ ∈ T0(f, δ)
and any k ∈ Z (resp. k ∈ ω) d(fk(x), ϕ(y)k) < ε.

Proof. Clearly the latter implies the former. Thus, suppose that f has (resp.
positive) T0-inverse shadowing and assume further that the latter is false, that is,
there exists an ε > 0 such that

∀δ > 0∃x ∈ X : ∀y ∈ X ∃ϕ ∈ T0(f, δ)∃k ∈ Z (resp. k ∈ ω) : d(fk(x), ϕ(y)k) ≥ ε.
(1)

Take such an ε and let δ > 0 correspond to this ε in the definition of inverse
shadowing. Now, fix x ∈ X corresponding to this ε and δ as in (1). Then by
(1), for each y ∈ X, there will exist a ϕy ∈ T0(f, δ) and a k ∈ Z (resp. k ∈ ω)
for which d(fk(x), ϕy(y)k) ≥ ε. Now, define a map ϕ : X → XZ : y 7→ ϕy(y). By
construction, ϕ ∈ T0(f, δ) and by (resp. positive) T0-inverse shadowing, there will
exist y ∈ X such that d(fk(x), ϕ(y)k) < ε for all k ∈ Z (resp. k ∈ ω). But by the
construction of ϕ, this can not be the case for all such k and thus one obtains a
contradiction.

The compactness of X ensures the uniform continuity of f which we use to
obtain the following corollary.

Corollary 3.2. A system (X, f) with f a homeomorphism (resp. continuous
map) has (resp. positive) T0-inverse shadowing if and only if for any ε > 0 there
exists δ > 0 such that for any x ∈ X there exists y ∈ X such that for any
ϕ ∈ T0(f, δ) and any k ∈ Z (resp. k ∈ ω) and any z ∈ Bδ(y), d(fk(x), ϕ(z)k) < ε.

Proof. That the latter entails the former is trivial. Therefore, suppose the for-
mer. Let ε > 0 be given. Then, by Theorem 3.1 there exists η > 0 (without loss
of generality η < ε

2) such that for any x ∈ X, there exists y ∈ X such that for

any ϕ ∈ T0(f, η) and any k ∈ Z (resp. k ∈ ω) d(fk(x), ϕ(y)k) <
ε
2 .

First consider the case when f is a homeomorphism. Using uniform continuity,
take δ > 0 such that, for any a, b ∈ X, if d(a, b) < δ then d(f(a), f(b)) < η

2 and
d(f−1(a), f−1(b)) < η

2 ; without loss of generality δ < η
2 . Now let (zk)k∈Z be a

δ-pseudo-orbit where z0 ∈ Bδ(y). Then, by the triangle inequality,

(. . . , z−k, . . . , z−1, y, z1, . . . , zk, . . .)

is a η-pseudo-orbit through y. It follows by the choice of y that d(fk(x), zk) <
ε
2

for all k ∈ Z \ {0}. Since d(x, z0) ≤ d(x, y) + d(y, z0) = ε
2 + η < ε, the sequence

(zk)k∈Z ε-shadows x and we are done.
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Now suppose that f is a continuous map; we are now considering positive T0-
inverse shadowing. We argue similarly to before. Using uniform continuity, take
δ > 0 such that, for any a, b ∈ X, if d(a, b) < δ then d(f(a), f(b)) < η

2 . Without
loss of generality δ < η

2 . Now let (zk)k∈ω be a δ-pseudo-orbit where z0 ∈ Bδ(y).
Then, by the triangle inequality, (y, z1, . . . , zk, . . .) is a η-pseudo-orbit through y.
It follows by the choice of y that d(fk(x), zk) <

ε
2 for all k ∈ ω \ {0}. Since

d(x, z0) ≤ d(x, y) + d(y, z0) <
ε

2
+ δ <

ε

2
+ η < ε,

the sequence (zk)k∈ω ε-shadows x and we are done.

Using the same technique as in the proof of Theorem 3.1 we come by the
following reformulation of weak inverse shadowing. We omit the proof.

Theorem 3.3. A map f : X → X has (resp. positive) weak inverse shadowing
with respect to the class T0 if and only if for any ε > 0 there exists δ > 0 such
that for any x ∈ X there exists y ∈ X such that for any ϕ ∈ T0(f, δ),

ϕ(y) ⊆ Bε
(
Orbf (x)

)
.

4. Implications

Before giving some implications of Theorem 3.1, we will need to recall some
standard definitions in dynamical systems. A dynamical system (X, f) is said to
be equicontinuous at a point x ∈ X if for any ε > 0 there exists δ > 0 such that,
for any y ∈ X, if d(x, y) < δ then, for any n ∈ ω, d(fn(x), fn(y)) < ε. The system
itself is said to be equicontinuous if it is equicontinuous at every point. We observe
that, since X is compact, equicontinuity is equivalent to uniform equicontinuity
(δ is chosen independently of the point x ∈ X). A dynamical system exhibits
sensitive dependence on initial conditions (or is sensitive) if there exists δ > 0
such that for any nonempty open set U there exist x, y ∈ U and k ∈ N such that
d(fk(x), fk(y)) ≥ δ. Such a δ is referred to as a sensitivity constant for (X, f).
A weakening of sensitivity was introduced in [14]; a dynamical system (X, f) is
eventually sensitive if there exists δ > 0 such that for any x ∈ X and any ε > 0
there exist n, k ∈ ω and y ∈ Bε(fn(x)) such that d(fn+k(x), fk(y)) ≥ δ. We refer
to such a δ as an eventual-sensitivity constant. Clearly sensitivity implies eventual
sensitivity but, as demonstrated in [14], the converse is not true. It is also easy
to see that neither sensitivity nor eventual sensitivity can be held in conjunction
with equicontinuity. Finally a system is expansive if there exists δ > 0 such that
for any x, y ∈ X there exists k ∈ ω with d(fk(x), fk(y)) ≥ δ. It is an easy exercise
to show that if a system is perfect, that is the space has no isolated points, then
an expansive system is sensitive.

In [19, Theorem 4] the authors show a homeomorphism with T0-inverse shad-
owing is not expansive. Whilst not explicitly stated there, we remark that this
result assumes that for any ε there exist distinct points x, y ∈ X with d(x, y) < ε.
Indeed, it is easy to see that a system consisting of a single periodic orbit has
T0-inverse shadowing but is also expansive. The reformulation given by Theorem
3.1 enables us to give the following much stronger result.
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Theorem 4.1. Let f : X → X be a continuous map. If f has the positive T0-
inverse shadowing property then the system (X, f) is not eventually sensitive. (If
f is a homeomorphism with T0-inverse shadowing, then neither (X, f) nor the
inverse system (X, f−1) are eventually sensitive.)

Proof. Suppose that f is eventually sensitive and let δ0 > 0 be a constant of
eventual sensitivity. Pick ε > 0 with ε < δ0

2 . Now take a δ > 0 corresponding
to this ε as in the reformulation of positive inverse shadowing in Theorem 3.1.
Pick x ∈ X. Then there exists y ∈ X such that every δ-pseudo-orbit through
y ε-shadows x. Consider f(y): By eventual sensitivity there exist n, k ∈ N and
z ∈ Bδ

(
fn+1(y)

)
such that d(fk(z), fn+k+1(y)) ≥ δ0. But the sequence

(y, f(y), . . . , fn(y), z, f(z), . . . fk(z), fk+1(z), . . .),

is a δ-pseudo orbit from y. Similarly so is the orbit sequence of y. Therefore, by

inverse shadowing, fn+k+1(y), fk(z) ∈ Bε
(
fn+k+1(x)

)
. It follows by the triangle

inequality that

d
(
fn+k+1(y), fk(z)

)
< 2ε < δ0,

which is a contradiction. Therefore f is not eventually sensitive.

Remark 2. Note that there is no need to make the assumption that for any
ε > 0 there are points ε-close in Theorem 4.1.

In [19, Theorem 3] the authors show that a chain transitive homeomorphism
on a compact metric space is minimal if and only if it has the weak inverse
shadowing property with respect to T0. With Theorem 3.3 this result, as well
as the following analogous one, becomes much more elementary. (NB. In the
statement of [19, Theorem 3] the authors assume the phase space is compact,
this assumption does not appear necessary for their proof nor ours.) Recall first
that a system (X, f) is said to be minimal if, for A ⊆ X closed, f(A) = A implies

that A = X or A = ∅. Equivalently it is minimal if Orbf (x) = X for all x ∈ X.

Theorem 4.2 (see [19]). Let f : X → X be a chain transitive continuous func-
tion. Then f is minimal if and only if f has positive weak inverse shadowing with
respect to the class T0.

Proof. Since the orbit of every point is dense under a minimal map, it is trivial
that such a map has positive weak inverse shadowing with respect to the class
T0.

Pick z ∈ X. Let ε > 0 and take δ > 0 as in Theorem 3.3. Then there exists
y ∈ X such that for any ϕ ∈ T0(f, δ),

ϕ(y) ⊆ Bε
(
Orb(z)

)
.

Since f is chain transitive there is a δ-chain from y to every point in X. It follows
then by the above that x ∈ Bε

(
Orb(z)

)
for all x ∈ X. Since ε > 0 was arbitrary

the result follows.
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Corollary 4.3. Let f : X → X be a chain transitive continuous function. If f
has the positive T0-inverse shadowing property then the system (X, f) is equicon-
tinuous. (If f is a homeomorphism with T0-inverse shadowing, then both (X, f)
and the inverse system (X, f−1) are equicontinuous.)

Proof. By Theorem 4.2 the system is minimal. A minimal system is either
equicontinuous or sensitive (see2 [1, Corollary 2]).

We conclude this paper by showing that inverse shadowing with respect to any
given class, is equivalent to what we call finite inverse shadowing, with respect
to the same class. This is akin to the result that shadowing is equivalent to finite
shadowing [32].

Definition 4.4. A system (X, f) exhibits finite (resp. finite positive) Tα-inverse
shadowing if for any ε > 0 there exists δ > 0 such that for any x ∈ X and
any ϕ ∈ T0(f, δ) and any n ∈ N there exists yn ∈ X such that for any k ∈
{−n, . . . , 0, . . . , n} (resp. k ∈ {0, . . . , n}) d(fk(x), ϕ(yn)k) < ε.

The proof of the lemma below is very similar to that of Theorem 3.1 and is
therefore omitted.

Lemma 4.5. A map f : X → X has finite (resp. finite positive) T0-inverse shad-
owing if and only if for any ε > 0 there exists δ > 0 such that for any x ∈ X
and any n ∈ N there exists yn ∈ X such that for any ϕ ∈ T0(f, δ) and any
k ∈ {−n, . . . , 0, . . . , n} (resp. k ∈ {0, . . . , n}) d(fk(x), ϕ(y)k) < ε.

Proposition 4.6. For any α ∈ {0, c, h}, a homeomorphism (resp. continuous
map) f : X → X has finite (positive) Tα-inverse shadowing if and only if it has
(positive) Tα-inverse shadowing.

Proof. We will prove the cases when f is a homeomorphism, with reference to
Tα-inverse shadowing. The cases when f is a continuous map, with reference to
positive Tα-inverse shadowing, are similar.

Clearly, for any α ∈ {0, c, h}, if f has it has (positive) Tα-inverse shadowing
then it has finite (positive) Tα-inverse shadowing.

Suppose that f : X → X has finite Tc-inverse shadowing. Let ε > 0 be given
and let δ > 0 correspond to ε

2 in finite inverse shadowing. Let x ∈ X and take

ϕ ∈ Tc(f, δ). For any n ∈ N, there exists yn ∈ X such that d(ϕ(yn)i, f
i(x)) < ε

2
for all i ∈ {−n . . . , 0, . . . , n}. By sequential compactness, (yn) has a convergent

subsequence; call it (yn) again. Let y = limn→∞ yn; y ∈ B ε

2
(x). Since ϕ : X → XZ

is continuous,

lim
n→∞

ϕ(yn) = ϕ

(
lim
n→∞

yn

)
= ϕ(y).

Moreover it follows that, for any k ∈ N there exists M ∈ N such that for any m >
M we have d(ϕ(y)i, ϕ(ym)i) <

ε
2 for all i ∈ {−k, . . . , 0, . . . , k}. For a fixed k and

corresponding M , we must also have, for all m > M that, d(ϕ(ym)i, f
i(x)) < ε

2
for all i ∈ {−k, . . . , 0, . . . , k}. Then, by the triangle inequality,

2The authors of [1] prove that compact metric minimal systems are either uniformly equicontinuous

or sensitive. Without the presence of compactness it is still an easy exercise to show that the system is

either equicontinuous or sensitive.
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∀k ∈ N∃M ∈ N : ∀m > M ∀i ∈ {−k, . . . , 0, . . . , k}, d(ϕ(y)i, f
i(x)) < ε.

From this it follows that for every k ∈ N we have d(ϕ(y)k, f
k(x)) < ε. Hence

f : X → X has Tc-inverse shadowing. The proof for the class Th is similar to the
above (as are the positive versions for the classes Tc and Th); these are therefore
omitted.

Now suppose that f : X → X has finite T0-inverse shadowing. Let ε > 0 be
given and let 2δ > 0 correspond to ε

2 in finite inverse shadowing; without loss of
generality taking δ < ε

4 . Then, by Lemma 3.1, for any n ∈ N there exists yn ∈ X
such that for any ϕ ∈ T0(f, 2δ), and any i ∈ {−n, . . . , 0, . . . , n}, d(ϕ(yn)i, f

i(x)) <
ε
2 . By sequential compactness, (yn) has a convergent subsequence; call it (yn)

again. Let y = limn→∞ yn; y ∈ B ε

2
(x). Because f and f−1 are continuous, there

exists N ∈ N such that d(f(yn), f(y)) < δ and d(f−1(yn), f−1(y)) < δ for all
n > N . Then for any n > N we have

Bδ
(
f(y)

)
⊆ B2δ

(
f(yn)

)
⊆ B ε

2

(
f(x)

)
,

and

Bδ

(
f−1(y)

)
⊆ B2δ

(
f−1(yn)

)
⊆ B ε

2

(
f−1(x)

)
.

Now let (zk)k∈Z be a δ-pseudo-orbit through y (so z0 = y), we will show this
ε-shadows x. Fix n > N . Then

(. . . , ..., z−k, . . . , z−2, z−1, yn, z1, z2, . . . , zk, . . .),

is a 2δ-pseudo-orbit through yn; by finite shadowing d(f i(x), zi) ≤ ε
2 for all i ∈

{−n, . . . ,−1, 1, . . . , n}. Additionally, d(x, z0) ≤ ε
2 < ε, as z0 = y. Since n >

N was arbitrary it follows that, for any n > N , d(f i(x), zi) ≤ ε
2 for all i ∈

{−n, . . . ,−1, 1, . . . , n}. This in turn entails that d(f i(x), zi) ≤ ε
2 for all i ∈ Z. As

this was an arbitrary δ-pseudo-orbit through y we are done.
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chaos. Tôhoku Math. J. (2), 32(2):177–188, 1980.

[2] Andrew D. Barwell, Gareth Davies, and Chris Good. On the ω-limit sets of
tent maps. Fund. Math., 217(1):35–54, 2012.

[3] Andrew D. Barwell, Chris Good, Piotr Oprocha, and Brian E. Raines. Char-
acterizations of ω-limit sets in topologically hyperbolic systems. Discrete
Contin. Dyn. Syst., 33(5):1819–1833, 2013.

[4] Andrew D. Barwell, Jonathan Meddaugh, and Brian E. Raines. Shadowing
and ω-limit sets of circular Julia sets. Ergodic Theory Dynam. Systems,
35(4):1045–1055, 2015.

8



[5] Andrew D. Barwell and Brian E. Raines. The ω-limit sets of quadratic Julia
sets. Ergodic Theory Dynam. Systems, 35(2):337–358, 2015.

[6] Rufus Bowen. Markov partitions for Axiom A diffeomorphisms. Amer. J.
Math., 92:725–747, 1970.

[7] Rufus Bowen. ω-limit sets for axiom A diffeomorphisms. J. Differential
Equations, 18(2):333–339, 1975.

[8] Taeyoung Choi, Keonhee Lee, and Yong Zhang. Characterisations of Ω-
stability and structural stability via inverse shadowing. Bull. Austral. Math.
Soc., 74(2):185–196, 2006.

[9] Robert M. Corless. Defect-controlled numerical methods and shadowing for
chaotic differential equations. Phys. D, 60(1-4):323–334, 1992. Experimental
mathematics: computational issues in nonlinear science (Los Alamos, NM,
1991).

[10] Robert M. Corless and S. Yu. Pilyugin. Approximate and real trajectories
for generic dynamical systems. J. Math. Anal. Appl., 189(2):409–423, 1995.

[11] Ethan M. Coven, Ittai Kan, and James A. Yorke. Pseudo-orbit shadowing
in the family of tent maps. Trans. Amer. Math. Soc., 308(1):227–241, 1988.

[12] Phil Diamond, Victor Kozyakin, Peter Kloeden, and Alexei Pokrovskii. Com-
puter robustness of semi-hyperbolic mappings. Random Comput. Dynam.,
3(1-2):57–70, 1995.

[13] Leobardo Fernández and Chris Good. Shadowing for induced maps of hy-
perspaces. Fund. Math., 235(3):277–286, 2016.

[14] Chris Good, Robert Leek, and Joel Mitchell. Equicontinuity, transitivity
and sensitivity: The Auslander-Yorke dichotomy revisited. Discrete Contin.
Dyn. Syst., 40(4):2441–2474, 2020.
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