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Abstract—Searching for active modules, i.e., regions showing
striking changes in molecular activity in biological networks
is important to reveal regulatory and signaling mechanisms of
biological systems. Most existing active modules identification
methods are based on protein-protein interaction networks or
metabolic networks, which require comprehensive and accu-
rate prior knowledge. On the other hand, weighted gene co-
expression networks (WGCNs) are purely constructed from
gene expression profiles. However, existing WGCN analysis
methods are designed for identifying functional modules but
not capable of identifying active modules. There is an urgent
need to develop an active module identification algorithm
for WGCNs to discover regulatory and signaling mechanism
associating with a given cellular response.

To address this urgent need, we propose a novel algo-
rithm called active modules on the multi-layer weighted (co-
expression gene) network, based on a continuous optimization
approach (AMOUNTAIN). The algorithm is capable of iden-
tifying active modules not only from single-layer WGCNs but
also from multilayer WGCNs such as cross-species and dy-
namic WGCNs. We first validate AMOUNTAIN on a synthetic
benchmark dataset. We then apply AMOUNTAIN to WGCNs
constructed from Th17 differentiation gene expression datasets
of human and mouse, which include a single layer, a cross-
species two-layer and a multilayer dynamic WGCNs.

The identified active modules from WGCNs are enriched
by known protein-protein interactions, and more importantly,
they reveal some interesting and important regulatory and
signaling mechanisms of Th17 cell differentiation.

1. Introduction

One of the most important problems in network biology
is searching for active modules, i.e. connected regions of
the molecular interaction network showing striking changes
in molecular activity or phenotypic signatures that are asso-
ciated with a given cellular response [1]. The activities of
a network are usually measured by high-throughput omics
data, e.g., microarray or NGS gene expression data. By
identifying the activated parts of multiple functional mod-
ules and their interrelationships, active modules are able to

reveal regulatory and signaling mechanisms [2]. In recent
years, many active module identification algorithms have
been developed [2], [3], [4], [5], [6], [7], [8].

However, most of the existing active module identifica-
tion algorithms, including our own work [7], [8] can only
work with protein-protein interaction (PPI) or metabolic
networks. These networks are constructed from prior knowl-
edge databases, which might not be comprehensive and
accurate. Moreover, for some non-model species or some
new model species such as Daphnia, their PPI or metabolic
networks are not available, which limited the application of
active module identification algorithms.

In contrast, gene co-expression network is a pure data-
driven gene network, which only relies on gene expres-
sion profile. Given a gene expression profile, a similarity
matrix is calculated, in which each element measures the
correlation of a pair of genes, i.e., how similar their ex-
pression levels change together. In this paper, we focus
on the weighted gene co-expression networks (WGCNs),
fully connected graphs where the weights correspond to the
correlations between pairs of genes.

However, there are no active module identification algo-
rithms for WGCNs. Most of the existing WGCNs module
detection algorithms are based on clustering, i.e., grouping
similar genes based on their correlations or edge weights
into modules [9], [10]. These identified modules are con-
sidered to participate in some biological process [9], and
those with significant biological meaning are regarded as
functional modules. Since the genes are clustered with-
out considering their activity, unlike active modules, these
functional modules cannot reveal the dynamic mechanisms
associating with a given cellular response.

We develop the first active module identification algo-
rithm AMOUNTAIN for WGCNs. The aim of this algorithm
is to identify active modules to reveal not only the dynamic
biological processes but also the regulatory and signaling
mechanisms underlying a given cellular response. To this
end, we propose a new definition of the active module in
a WGCN. Based on the definition, we formally formulate
the active modules identification problem in single-layer
WGCNs and generalize the problem to multilayer WGCNs.

Apart from formulating the active module identification



problem in single and multilayer WGCNs, another main
contribution of this paper is the new continuous optimization
formulation based on the elastic net penalty. This continuous
formulation can be solved more efficiently than the original
combinatorial optimization formulation.

We evaluate the proposed framework on both simulated
data and real-world data, including multiple species and
time-course gene expression datasets. These results indicate
that the identified active modules can reveal not only the
dynamic biological processes but also the regulatory and sig-
naling mechanisms that underlie a given cellular response.

2. Methods

2.1. Defining active module in WGCNs

To identify active modules from WGCNs, which are
essentially weighted and fully connected graphs, we need to
define what is an active module. Our core criterion is that it
should be significantly different from random subnetworks
in two perspectives: 1) From the topological point of view,
the nodes in the active module should be densely connected
with each other, i.e., significantly co-expressed, which is
quantified by the module score based on edge weights.
2) From the regulatory and signaling mechanism point of
view, an active module should show a significant change in
molecular activity which can be measured by the module
score based on the activities, i.e., expression levels of the
genes (node scores).

2.2. Single-layer network

2.2.1. Problem definition. Based on the above criteria,
for a single-layer network, our active module definition
considers 1) the node scores of the genes as the measures
their activities under certain conditions; 2) the edge weights
which represent the topology or co-expression relationship
among those genes.

More specifically, we aim to find an active module or
subgraph of size k (otherwise it corresponds to a trivial case
containing all top-scored nodes) that has both maximal ag-
gregated node score and maximum aggregated edge weight,
which can be formally defined as:

Problem 1. Given a complete graph G = (V,E), with
vertex weight zv ∈ R for each v ∈ V and non-negative edge
weights W = [wij ] for each edge (i, j), find a subgraph T
of size k with large vertex weights

∑
i∈T zi and also edge

weights
∑

i,j∈T wij .

A module is represented by a membership vector x ∈
{0, 1}n, where n is the total number of nodes and xi = 1
means the i-gene belongs to the module. Thus the optimiza-

tion is naturally expressed as:

max
x

F (x) = x>Wx + λz>x

Subject to
n∑

i=1

xi = k

xi ∈ {0, 1}, i = 1, ..., n,

(1)

where parameter λ controls the trade-off between edges
score and nodes score.

2.2.2. Continuous optimization formulation with elastic
net penalty. The NP-hardness of equation (1) can be proved
by reducing it to the well-known k-clique problem (See
supplementary text S1 section 1), which is NP-complete. To
solve this NP-hard problem, similar to [6], one might apply
linear relaxation and then use integer programming methods.
However, the running time is not guaranteed, especially for
large-scale networks.

In this paper, we relax the integer constraints of x to
continuous constraints [11], [12] and control the module
size by introducing a vector norms of x. Specifically, in
solution x ∈ Rn

+ when xi > 0 means the i-th node
is in the module, it becomes a nonnegative and equality
constrained quadratic programming (QP) problem (2), which
can be solved by various existing continuous optimization
techniques in polynomial time.

max
x∈Rn

+

F (x) = x>Wx + λz>x

Subject to,
f(x) = 1,

(2)

where f(x) is the vector norm. The `p-norm (p > 0) of x
is defined as (

∑
i |xi|p)1/p.

The choice of vector norm affects the structure of the
solution (2). For example, the `0-norm and `1-norm can
produce a sparse solution which corresponds to modules
with small size. This is desirable since we aim to identify
smaller modules which are easy to verify in the follow-
up experiments. Since the optimization of `0-norm is also
an NP-hard combinatorial problem, the `1-norm has been
widely used as an alternative [13]. However, `1-norm tends
to produce too sparse solutions which are again not desired.

Recently, elastic net penalty [14], which is a linear com-
bination of `1-norm and `2-norm, i.e., α‖x‖1+(1−α)‖x‖22,
has been introduced. In the context of the least square prob-
lem with elastic net penalty, α = 1 corresponds to lasso [15]
and α = 0 corresponds to ridge regression. Therefore, the
elastic net is considered to enjoy the advantages of both
lasso and ridge regression, i.e., the sparsity and accuracy,
by tuning the parameter α.

In AMOUNTAIN, we use the elastic net penalty [14] to
control the sparsity and improve the efficiency of our module



identification algorithm. Therefore, the problem (2) becomes

max
x∈Rn

+

F (x) = x>Wx + λz>x

Subject to,
f(x) = α‖x‖1 + (1− α)‖x‖22 = 1.

(3)

2.2.3. Optimization method. We use a projected gradient
method to solve (3) since the objective function is smooth
and differentiable and the constraint, i.e., elastic net, is
strictly convex. In addition to gradient ascend to find the
local maximum, the projected gradient method employs
projection operation to project the current candidate solution
to the nearest point in the convex feasible region [16], [17].
The projected gradient method is guaranteed to converge to
the stationary points of the problem (3) [18]. Specifically,
We use the following sequence to approximate the final
solution:

x(k+1) = ΠC

(
x(k) + β(k)∇F (x(k))), (4)

where β(k) is the step size which can be fixed or tuned
to improve the convergence rate [16]. ΠC is the Euclidean
projection of a vector g = x(k) + β(k)∇F (x(k)) on the
convex set C, and the subproblem is thus defined as:

ΠC(g) = arg min
x∈Rn

+

1

2
‖x− g‖22

Subject to,
α‖x‖1 + (1− α)‖x‖22 = 1.

(5)

Solving subproblem (5) involves a root finding proce-
dure [17] which can be done in linear time, and the details
can be found in section 2 of Supplementary text S1.

The Euclidean projection based optimization for prob-
lem (3) is summarized as algorithm 1.

Algorithm 1 Euclidean projections optimization

Input: Network edge weight W ∈ Rn×n, node score z ∈
Rn and initial solution x(0) ∈ Rn

+ which is randomly
sampled from the uniform distribution [0,1] and then
projected to the feasible region.

Output: Module indicator vector x
1: Update g in equation (5) by the gradient of F (x) in

equation (3).
2: Solve optimal x in equation (5) by Algorithm 1 in

supplementary text S1. Convergence or reach maximal
iterations

In order to identify N modules from one network, simi-
lar to [19], [20], we run the algorithm 1 N times. Each time
the algorithm extracts a module and subsequently deletes the
module from background network. The general procedure
for identifying N modules from given gene expression
profile is summarized in Algorithm 2.

Algorithm 2 Active modules identification of GCN

Input: Gene expression profile X ∈ Rn×p, number of
modules M

Output: M modules
1: Construction: Construct a weighted gene expression

network G.
2: Nodes scores: Perform gene differential analysis to

calculate fold-changes or p-values and assign to the
genes as node scores. iterations less than M

3: Optimization: Find solution x for (1) using algo-
rithm (1)

4: Extraction: Extract nodes in x and corresponding
edges from G and delete them from G afterwards.

2.3. Multilayer network

We start from a simple case where inter-layer interac-
tions only exist between neighborhood layers, then derive
a compact form for multilayer networks without interlayer
links.

2.3.1. Multilayer network with inter-layer interactions.
We first generalize the single layer active module identi-
fication problem to two-layer WGCNs. We define a two-
layer active module as two modules in two different net-
works G1 = (V1, E1) and G2 = (V2, E2) connected by
inter-layer edges. The inter-layer edges were defined by
A = [a]ij ∈ Rn1×n2 where n1 and n2 are the numbers of
nodes in G1 and G2. The two-layer WGCN active module
identification problem is formally defined as

Problem 2. Given two complete graphs G1 = (V1, E1) and
G2 = (V2, E2), with vertex weights z1v ∈ R for each v ∈
V1 and z2v ∈ R for each v ∈ V2, and non-negative edge
weights W1 ∈ Rn1×n1 for edges in G1 and W2 ∈ Rn2×n2

for edges in G2. The intensity of inter-layer interactions
were measured by A = [a]ij ∈ Rn1×n2 . The goal is to
find two subgraphs T1 ∈ G1 and T2 ∈ G2 which both have
large vertices weights and edges weights as well as intensive
inter-layer interactions with each other.

We use two variables x ∈ Rn1 and y ∈ Rn2 to represent
the memberships of active modules in two different net-
works, and xi > 0 means the i-th node in the first network
is in the module. Thus the optimization problem can be
expressed as an extension to (2),

max
x∈Rn1

+ ,y∈Rn2
+

F = x>W1x + λ1z
>
1 x + y>W2y

+λ2z
>
2 y + λ3x

>Ay

Subject to
f1(x) = 1

f2(y) = 1,
(6)

where f1(x) and f2(y) are the vector norms on two vectors
respectively. For simplicity we use the same elastic net
penalty f(x) = α‖x‖1 + (1− α)‖x‖22 for both x and y.



There is an additional parameter λ3 in (6) controlling
how much the inter-layer links in the resulting modules.
Large λ3 leads to conserved modules across two layers.

Optimization method. In order to solve (6) we use
alternating optimization, i.e., iteratively optimizing one vari-
able while fixing another each time [16]. Dealing with one
variable has the same form as in (2), so at each iteration in
Algorithm 2, the optimization (Line 4) is replaced with:

• Find x(k+1) such that F (x(k+1),y(k)) ≤
F (x(k),y(k))

• Find y(k+1) such that F (x(k+1),y(k+1)) ≤
F (x(k+1),y(k)),

while other parts of the algorithm remain the same.
Similar to the two-layer case, we can formulate the iden-

tification problem for multilayer WGCNs with interlayer
links. Alternating optimization can be used as the same way.

2.3.2. Multilayer network without inter-layer interac-
tions. For multilayer WGCNs without inter-layer links, we
formulated the module identification problem based on the
tensor computational paradigm in [12] . However, different
from [12], we use node activity to search for modules and
our method is based on elastic net regularization. Formally,
the multilayer WGCN module identification problem is de-
fined as

Problem 3. Given an L-layers network with each layer
a complete graph G = (V,E) where |V | = n. The
vertices weight and non-negative edges weight in the i-
th layer are z(i) ∈ Rn, W (i) ∈ Rn×n respectively.
The goal is to find a conserved subgraph T with large
vertices weight

∑L
k=1

∑
i∈T z

(k)
i and also edges weights∑L

k=1

∑
i,j∈T w

(k)
ij .

The corresponding objective function becomes

max
x∈Rn

+

F =

L∑
k=1

(x>W (k)x + λkz
(k)>x)

Subject to
f(x) = 1

(7)

where λk controls the trade-off between edges weights and
nodes activity in the k-th layer and f(x) is the vector norm
such as elastic net penalty f(x) = α‖x‖1 + (1 − α)‖x‖22.
We can solve the optimization problem using Algorithm 1.

2.4. Parameters selection

The parameter λ in equation (3) represents the trade-off
between the aggregated edges and nodes scores, the larger
λ would include more high scored genes in the module.
If there is no prior knowledge or preference about edge
scores and nodes scores, we suggest using the default value
λ = 1. We use a binary search method to select α for
the elastic net penalty which controls the sparsity of the
results, which determines the size of the modules. A suitable
size of modules will facilitate their biological interpretation

and validation. We empirically set the module size to be
around 50-100 and 50-500 for single layer WGCN. See
supplementary text S1 section 6 for usage of parameter
selection to search the desired size module.

2.5. Implementation

AMOUNTAIN is implemented in R as a Bioconductor
package. The principle is to provide all functions mentioned
above with minimal dependencies. It turns out that pure R
runs slowly for large-scale networks. Therefore we provide
C implementation of core modules identification functions,
in which the matrix operations are based on the GNU
Scientific Library (GSL). Overall, C libraries called by R run
10x faster than pure R functions when identifying modules
on a single network with 10,000 nodes.

2.6. Data collecting

2.6.1. Synthetic data. Several related works have used arti-
ficially generated data [10], [12], [21] to test their algorithms
in single network module identification. We follow [12] to
construct gene co-expression networks for simulation study
(See supplementary text S1 section 3.2). Our simulated
networks have a clear topological structure as well as node
scores.

2.6.2. Real-world data: Th17 cell differentiation gene
expression. Datasets and experimental procedure. We
downloaded the gene expression profiles of human Th17 cell
differentiation (GSE35103) from Gene Expression Omnibus
(GEO) [22]. The dataset was collected to identify tran-
scriptional changes induced by vitro polarization of human
cord blood CD4+ cells towards Th17 subtype with the
combination of IL6, IL1b, and TGFb [23]. There are 57
samples, consisting of 3 biological replicates of time series
data (0, 0.5, 1, 2, 4, 6, 12, 24, 48 and 72 hours) of Th17
polarized cells and control Th0 cells [24].

Inspired by xHeinz [25], in addition to Homo sapiens
dataset GSE35103, we use Mus musculus Th17 cell differen-
tiation dataset (GSE43955) for the multilayer cross-species
co-expression study. The original papers [26] and [23] re-
ported the expression profiles identification controlled by the
differentiation of Th17 cell.

Miroarray preprocessing. To deal with missing or
invalid values, we discarded probes with more than 20%
missing values or NAs, and replaced them with positions in
a valid probe with k-nearest neighbors (KNN, k = 10) [27]
output of the rest samples of that probe. We did not filter out
genes by only selecting significantly expressed genes using
a linear model, as xHeinz does [25], because the algorithm
2 requires as more information about genes correlation rela-
tionship to construct co-expression networks. Furthermore,
the whole objective in (2) consists of two parts, and the gene
activities only contribute half of it.

Single layer co-expression network construction. Al-
gorithm 1 requires a weighted gene co-expression network
as input. Here we just use the co-expression matrix as the



edge score, where each entry Wij in the symmetric means
the correlation value of gene i and j, using all samples.
In particular, we use the Pearson correlation coefficient
estimate, which is widely used in co-expression network
construction [28]. And we remove the negative correlation
values since positive correlation are preferred to the objec-
tive of equation (3) as well as biological relevance [29].
The node score vector z is computed using limma [30]
by comparing the specific group with the control group. In
each time point, the expression level measurement p-values
represent gene activities for Algorithm 1. As we want to
maximize the objective, p-values are replaced by z-scores
in practice. Correlation-based similarity requires as many
samples while gene activities are closely related to certain
conditions, including the exposed time period.

Multilayer cross-species co-expression network con-
struction. To evaluate the performance of our algorithm on
multilayer WGCNs with interlayer links, we test it on a
cross-species co-expression network, with the aim to find
evolutionarily conserved modules. Following the case study
in xHeinz [25], we use GSE35103 and GSE43955 to
construct a two-layer cross-species network, of which each
layer is the WGCN of a species. For both layers, we select
the gene expression profiles at time point 1h because of
two reasons: 1) there are more activities in the early phase
of Th17 differentiation in both in mouse [26], [31] and
human [23]; and 2) there are enough replicates for both
species at this time point.

After gene expression data pre-processing, we obtained
28870 genes in the human layer and 22192 genes in the
mouse layer. We then performed the orthologous map-
ping between human and mouse genes to obtain inter-
layer connections using from Ensembl [32]. The orthologous
mapping resulting 11039 interlayer links and their weights
represent the confidence of the mapping.

Multilayer dynamic co-expression network construc-
tion. To evaluate the performance of our algorithm on
multilayer networks without interlayer links, we applied
AMOUNTAIN to a dynamic co-expression network to iden-
tify the conserved and time-point specific active modules.
The dynamic co-expression network was constructed from
the human Th17 differentiation gene expression time course
dataset GSE35103. The network consists of multiple layers
and each layer represent the co-expression network of a
time point. Ideally, layer x should be constructed from the
samples belong to time point x. But there are only three
replicates of each time point which makes the correlation
values suspicious. Therefore we use all samples of all the
time points to construct the co-expression network for each
layer and calculate gene activities from corresponding time
points. In other words, each layer shares the same edges
scores but with different nodes scores.

The node scores of our dynamic co-expression network
are calculated from the gene expression profiles at three
later time points, i.e., 12h, 24h, and 48h. This is because
Th17 differentiation showed that the effective secretion of
Th17 hallmark cytokines only happens after several days of
polarization [23], [26]. In essence, we constructed a three-

layer dynamic co-expression network of three later time
points during human Th17 differentiation.

3. Results and discussion

3.1. Results from Synthetic data

We first evaluated the accuracy of our algorithm on
the single-layer WGCN constructed from the synthetic data
(See Materials). We compared the accuracy of our algorithm
with that of the Multi-Stage Convex Relaxation (MSCR)
algorithm [12]. The details of the MSCR algorithm [12]
and parameter setting can be found in Section 3 of supple-
mentary text S1.

Our results (See Table S2 in supplementary text S1)
show that the proposed method outperformed the MSCR al-
gorithm [12], especially when network size is larger. We also
found that AMOUNTAIN is less sensitive to the parameters,
i.e., it can accurately identify the ground true modules with
a range of different parameters (See Table S3-S4 and Figure
S1). We also test the robustness of the proposed method by
introducing small perturbations to the edge scores and node
scores. Our results (See Table S5) show that even with small
perturbations to the network, the proposed method can find
the ground module with the same parameters.

3.2. Modules of the single-layer human Th17 co-
expression network

We first applied AMOUNTAIN with default λ = 1 to
the Th17 single layer WGCN, using the time point 2h
to compute the node score (see Materials). We provided
the identified modules as gene lists in Supplementary files
“Table SS1.xlsx” in S4.

Since cellular signaling mechanisms involve protein-
protein interactions (PPIs) that transmit information, we first
investigate whether the co-expression active module mod-
ules identified by AMOUNTAIN are enriched by PPIs. To this
end, we use PPI enrichment analysis provided by database
STRING [33]. These PPIs include curated databases and
experimentally determined and predicted interactions such
as gene neighborhood and gene co-occurrence. Our results
show that 33 of 100 modules have significant PPI enrich-
ment (p<0.05). If we relax the maximal module size to
500, the number of AMOUNTAIN modules with significant
PPI enrichment is 50 (Supplementary file Table SS2.xlsx
in S4). These results indicate that AMOUNTAIN was able to
find co-expression modules that are enriched by known PPI,
which might reveal some signaling mechanisms of a given
cellular response.

In addition to PPI enrichment analysis, we also conduct
KEGG pathways enrichment analysis to check whether the
identified modules are enriched by known signaling path-
ways. The numbers of modules significantly enriched by
KEGG pathways are 88 and 90 out of 100 identified mod-
ules, for maximal size 50 and 500 constraints respectively.
The top enriched KEGG pathways include 1) Influenza A,



which inhibits Th17 pathway activation by secondary bacte-
rial challenge [34]; 2) Hepatitis C, a common virus infection
that could introduce Th17 cells [35]; 3) Prolactin signaling,
which may induce the production of Th17 [36] and 4) JAK-
STAT signaling, which plays a central role in orchestrating
of immune system, especially for cytokines involved in T
helper cell differentiation [37], [38]. (See supplementary file
”Table SS4.xlsx” (size 50-100) and ”Table SS4.xlsx” (size
50-500) in S4 for all modules).

We investigate the biological function of the identi-
fied modules using functional enrichment analysis with
STRING [33]. Our results show that 55 out of 100 identified
modules (with module size 50-100) are enriched by at least
one GO term (biological processes) at a given FDR (≤0.05)
cutoff. If we relax the maximal module size to 500, 62
modules that are significantly enriched (FDR ≤0.05) by GO
terms are found.

We list the first 10 modules with the PPI and GO
enrichment information in Table 1. We can see except for the
10th module, all the top 9 modules were enriched by PPIs
and biological processes (See supplementary file “Table
SS3.xlsx” (size 50-100) and “Table SS4.xlsx” (size 50-
500) in S4 for all modules). We also find that there is a
strong correlation between PPI and biological processes, i.e.,
modules enriched by more protein interactions tend to have
more significant GO terms.

Among these 10 modules, the first identified module is
enriched by biological processes and pathways related to
Th17 differentiation in the early stage [23]. For example,
we find that this module consisted of several important tran-
scription factors such as STAT1/STAT2/STAT3, which are
known regulators of the Th17 differentiation process [39].
These regulators were surrounded by other genes in the same
cytokine signaling pathway (See Table SS1).

It is worth mentioning that the first identified module
overlaps with the 29 differentially expressed genes (DEGs)
identified by limma [30], (See in Table SS1). As shown in
Figure 1, there are 26 nodes (annotated with green color)
shared between the first module identified by AMOUNTAIN
and the DEGs. There are 3 DEGs were not included in the
first identified module (annotated with red color). However,
they were included in the second module identified by
AMOUNTAIN. We speculate the reason for the significant
overlap is partly because Th17 differentiation exhibits a high
level of activity in the early stage [23]. However, from a
two-layer cross-species network below or another study on
ankylosing spondylitis disease samples (See Supplementary
S2), the first identified module was different from DEGs.

3.3. Active module identification in cross-species
networks

We applied our algorithm to the cross-species network
of human and mouse Th17 differentiation at 1 hour (See
Materials), with default value λ1 = λ2 = 1. We set
λ3 = 1000 (Details of tuning λ3 are listed in supplementary
text S1, section 4). The identified 100 modules with their
size and shared inter-layer links information are stored in

Figure 1: The first identified active module of single layer
co-expression network, and the DEGs. We applied the cuff-
off threshold (correlation coefficient ≤ 0.8) to delete those
edges with low correlations. In the module, node sizes are
proportional to the intensities of gene activities and edge
widths to the correlation coefficients. The green nodes are
shared by identified module and DEGs, and the red nodes
are only in DEGs.

supplementary “Table SS5.xlsx”. Due to the space limit,
we select the first identified conserved module for further
analysis.

In the first identified conserved module, there are 52 and
57 genes in human and mouse layers, respectively. There are
52 conserved genes which include several key genes such
as STAT2/SOCS3/IRF1 in Th17 cell differentiation [40],
[41], [42]. The complete gene list of the 2-layer modules
is provided in supplementary file “Table SS1.xlsx”.

In order to illustrate the potential conserved signaling
mechanisms, we overlaid known interactions from STRING
to the (nodes) genes extracted from the two layers as shown
in Figure 2 and 3. (See the corresponding co-expression
modules in Figure S6 and Figure S7 in supplementary text
S1). We can see that genes in both layers centered around
STAT2/Stat2 and IRF1/Irf1, which are the key transcrip-
tional regulators of Th17 cell differentiation [40], [41], [42].

Our functional and KEGG pathway enrichment results
show that both modules share some common pathways such
as the JAK-STAT signaling pathway [37], [38] and those
pathways are relevant to Th17 differentiation. The detailed
top enriched biological functions and KEGG pathways en-
riched by modules from both species are listed in Table S6
in supplementary text S1.

3.4. Results from the dynamic multilayer networks

In order to unveil the dynamic regulatory and signaling
mechanisms of the Th17 differentiation, we applied our
AMOUNTAIN algorithm to the Th17 dynamic multilayer
network (See Materials). AMOUNTAIN can readily identify
conserved modules. Also, to depict the dynamic changes



TABLE 1: Overview of top 10 modules identified from single layer WGCN of human, at 2 hour time point. “PPI P-value”
indicates if there are any significant known protein interactions in the module. “P-value” is for the corresponding GO term.

ID Size PPI P-value Representative GO term (BP) and description P-value
1 161 0 GO:0019221, cytokine-mediated signaling pathway 2.03E-18
2 190 0 GO:0044711, single-organism biosynthetic process 1.43E-9
3 294 4.02E-3 GO:0032479, regulation of type I interferon production 9.51E-6
4 150 1.54E-6 GO:0050860, negative regulation of T cell receptor signaling pathway 1.66E-6
5 234 0 GO:0000278, mitotic cell cycle 3.31E-21
6 301 0 GO:0000122, negative regulation of transcription from RNA polymerase II promoter 3.12E-8
7 248 4.88E-5 GO:0051726, regulation of cell cycle 1.77E-10
8 182 9.13E-3 GO:0006955, immune response 4.04E-8
9 73 3.31E-13 GO:0002764, immune response-regulating signaling pathway 1.01E-5
10 54 0.37 None None

Figure 2: The first identified module in the human layer at 1
hour time point, plotted by STRING, where edges represent
the known interactions. Colored nodes standard for query
proteins and first shell of interactors, and white nodes for
the second shell of interactors.

Figure 3: The first identified module in the mouse layer at 1
hour time point, plotted by STRING, interactions are denser
compared with human layer. Key transcriptional factors
Stat2/Irf1 are densely surrounded by interactions.

of co-expression networks, we identified time point specific

modules by applying AMOUNTAIN to each layer. Figure ??
shows the first identified conserved module and Figure S8-
S10 in the supplementary text S1 show the three-time point
specific modules respectively.
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Figure 4: The first identified conserved module for a three
layer network where each layer represents nodes from 12h,
24h and 48h respectively. The red nodes are two probes of
gene RORC, a signature gene w.r.t. Th17 lineage commit-
ment. Plotted by igraph [43].

The conserved module identified from the three-layers
dynamic network across the later time points (12h, 24h,
and 48h) includes several signature genes of Th17 lineage
commitment, e.g., RORC and RUNX1 [44], [45]. These
genes showed significantly different expression profile com-
pared with the Th0 group (See Sheet 1 of “Table SS6.xlxs”
in supplementary files). We found that in the conserved
module, RORC gene always interacted with VDR (Vitamin
D Receptor), which is very relevant to T cell development
and differentiation [46], [47]. Another interesting finding is
that, in the conserved module, RORC gene also interacted
with BHLHE40, a transcription factor that controls cytokine
production by T cells [48].

By comparing the conserved modules with the three-
time point specific modules, we found that some genes only
connected to RORC at specific time points. For example,
RBPJ was only identified in the time point specific module
from the network at 24h, which is a known regulator of the
Notch signaling pathway [49] and plays an important role



in lineage fate decisions in cells. The above result indicates
that our algorithm can identify co-expression active modules
from the multilayer dynamic network to provide insights
into the dynamics of Th17 lineage commitment.

3.5. Discussion

In addition to the Th17 datasets, we have applied
AMOUNTAIN to gene expression profiles of ankylosing
spondylitis samples [50] as another case study. Our results
indicate the identified modules consists of enriched biologi-
cal processes and pathways which are consistent with the
results of the original study [50]. We provide the detail
results in Supplementary text S2.

We have demonstrated the performance of AMOUNTAIN
using WGCNs constructed using the Pearson correlation co-
efficient, which is a standard way for constructing WGCNs.
However, the users can apply it on WGCNs constructed
from Spearman correlation or other association meth-
ods [51].

Related works. Although algorithms in [25], [52] can
identify evolutionarily conserved modules from two-layer
cross-species PPI networks, to our best knowledge, general
active module identification algorithms for multilayer gene
co-expression networks do not exist. The most relevant
algorithm is the algorithm in [12], which was proposed
to identify heavy recurrent modules from multiple gene
co-expression networks. However, this algorithm differs
from AMOUNTAIN in the following perspectives: 1) The
algorithm in [12] is specifically designed for multi-slice
(multiplex) networks, which share exactly the same set of
nodes, while the AMOUNTAIN algorithm is designed for
more general multilayer networks. For example, different
layers could have different sets of nodes and the inter-layer
interactions can be considered. 2) The algorithm [12] only
considers edge weights while AMOUNTAIN considers both
edge weights and node scores (hence the modules are called
active modules). 3) the algorithm in [12] is based on a non-
convex regularization while AMOUNTAIN algorithm adopts
a convex regularization which is more efficient to achieve
sparsity of solutions.

The optimization problem. Maximizing the constrained
quadratic function (3) with indefinite matrix is NP-hard [53].
In a different context, i.e., shape matching in computer
vision, Rodola et al. [54] solved the same problem as the
objective function (3) using a projected gradient method.
The only difference is the procedure to solve the subproblem
(5) since their target solution was not sparse as here.

In [12], Li et al. solved a similar problem using power
method, followed by a normalization step. We found our
projected gradient method performed better than the power
method in terms of convergence rate and accuracy (See
Figure S11 in supplementary text S1).

Difference with WGCNA. Although both WGCNA [10]
and AMOUNTAIN can analyze WGCNs, there is a crucial
difference between them: WGCNA partitions the whole net-
work and groups the genes with similar biological functions
into co-expression modules (hence functional modules),

while AMOUNTAIN extracts active modules with significant
node activities. These active modules could be used to gener-
ate hypotheses of the signaling and regulatory mechanisms
of a given cellular response [1]. By controlling the size,
AMOUNTAIN can identify small modules which facilitate
follow-up experiments to test the hypotheses.

Another technical difference between WGCNA and
AMOUNTAIN is the network construction. WGCNA uses ab-
solute value of the correlation while AMOUNTAIN only uses
the positive correlations. To see the effect of this difference,
we executed the WGCNA algorithm on the same single
layer network constructed from GSE35103. As discussed
in supplementary text S3 and presented in supplementary
file ”Table SS7.xlsx”), WGCNA identified 38 modules with
average size 760, of which 12 had significant PPI enrichment
(p-values<0.05. These modules also consists of a large
proportion of isolated genes. In comparison, AMOUNTAIN
identified more modules with significant PPI enrichment and
less genes (See Table 1).

Limitations of AMOUNTAIN. Although the
AMOUNTAIN is robust to the noise in the WGCNs (See
Table S5) and not sensitive to the parameters (See Table
S4), deciding the size of the active modules will affect the
identification performance. In our current implementation
of AMOUNTAIN, the users need to determine the module
size according to the preference or prior knowledge. It is
our future work to find a way to determine the module size
rigorously and automatically.

Another limitation of AMOUNTAIN is that it can only
identify non-overlapping modules. This is due to the sim-
plicity of our algorithm which keeps the optimization proce-
dure unchanged by deleting each module from the network
once it is identified. Since in real networks modules do over-
lap, our future work will extent AMOUNTAIN to overlapping
modules identification.

4. Conclusion

This paper presents AMOUNTAIN, a general and efficient
active modules identification algorithm for single layer and
multilayer WGCNs. Our algorithm is based on a new defi-
nition of active modules in WGCNs. This definition enables
us to formulate the module identification problem that not
only considers the correlation between genes but also their
activity. We also generalized the active module identification
problem in single layer WGCNs to multilayer WGCNs.
Another main contribution of our paper is the continuous
optimization formulation of the problem, which achieves
better efficiency when dealing with large-scale networks.

We provide AMOUNTAIN as an R package which
is freely available at Bioconductor. We expect our
AMOUNTAIN algorithm can be applied to a wide range of
problems that involve identifying dynamic and evolutionary
mechanisms associating with a cellular response.
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[18] P. H. Calamai and J. J. Moré, “Projected gradient methods for linearly
constrained problems,” Mathematical programming, vol. 39, no. 1, pp.
93–116, 1987.

[19] Y. Zhao, E. Levina, and J. Zhu, “Community extraction for social
networks,” Proceedings of the National Academy of Sciences, vol.
108, no. 18, pp. 7321–7326, 2011.

[20] Y. Liu, D. A. Tennant, Z. Zhu, J. K. Heath, X. Yao, and S. He, “Dime:
a scalable disease module identification algorithm with application to
glioma progression,” PloS one, vol. 9, no. 2, 2014.

[21] D. Rajagopalan and P. Agarwal, “Inferring pathways from gene
lists using a literature-derived network of biological relationships,”
Bioinformatics, vol. 21, no. 6, pp. 788–793, 2005.

[22] R. Edgar, M. Domrachev, and A. E. Lash, “Gene expression om-
nibus: Ncbi gene expression and hybridization array data repository,”
Nucleic acids research, vol. 30, no. 1, pp. 207–210, 2002.

[23] S. Tuomela, V. Salo, S. K. Tripathi, Z. Chen, K. Laurila, B. Gupta,
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