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GLOBAL WELL-POSEDNESS OF THE ONE-DIMENSIONAL CUBIC

NONLINEAR SCHRÖDINGER EQUATION IN ALMOST CRITICAL

SPACES

TADAHIRO OH AND YUZHAO WANG

Abstract. In this paper, we first introduce a new function space MHθ,p whose norm
is given by the `p-sum of modulated Hθ-norms of a given function. In particular, when
θ < − 1

2
, we show that the space MHθ,p agrees with the modulation space M2,p(R) on the

real line and the Fourier-Lebesgue space FLp(T) on the circle. We use this equivalence
of the norms and the Galilean symmetry to adapt the conserved quantities constructed
by Killip-Vişan-Zhang to the modulation space and Fourier-Lebesgue space setting. By
applying the scaling symmetry, we then prove global well-posedness of the one-dimensional
cubic nonlinear Schrödinger equation (NLS) in almost critical spaces. More precisely, we
show that the cubic NLS on R is globally well-posed in M2,p(R) for any p <∞, while the
renormalized cubic NLS on T is globally well-posed in FLp(T) for any p <∞.

In Appendix, we also establish analogous global-in-time bounds for the modified KdV
equation (mKdV) in the modulation spaces on the real line and in the Fourier-Lebesgue
spaces on the circle. An additional key ingredient of the proof in this case is a Galilean
transform which converts the mKdV to the mKdV-NLS equation.
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1. Introduction

1.1. One-dimensional cubic nonlinear Schrödinger equation. In this paper, we

study the following Cauchy problem of the one-dimensional cubic nonlinear Schrödinger
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equation (NLS) on M = R or T = R/(2πZ):{
i∂tu = ∂2xu∓ 2|u|2u,
u|t=0 = u0.

(1.1)

The equation (1.1) arises in various physical situations for the description of wave propaga-

tion in nonlinear optics, fluids, and plasmas; see [53] for a general review. It is also known

to be one of the simplest partial differential equations (PDEs) with complete integrability

[58, 1, 2, 22]. Our main goal in this paper is to exploit the complete integrable structure

of the equation and prove global well-posedness of (1.1) in almost critical spaces.

The Cauchy problem (1.1) has been studied extensively by many mathematicians. Tsut-

sumi [56] and Bourgain [7] proved global well-posedness of (1.1) in L2(M) with M = R
and T, respectively. Before going over the known results for (1.1) below L2(M), let us first

recall two important symmetries that (1.1) enjoys. The scaling symmetry states that if

u(x, t) is a solution to (1.1) on M = R with initial data u0, then the λ-scaled function

u(x, t) 7−→ uλ(x, t) = λ−1u(λ−1x, λ−2t) (1.2)

is also a solution to (1.1) with the λ-scaled initial data u0,λ(x) = λ−1u0(λ
−1x). Associated

to this scaling symmetry, there is a scaling-critical Sobolev regularity scrit such that the

homogeneous Ḣscrit-norm is invariant under the scaling symmetry. In the case of the one-

dimensional cubic NLS (1.1), the scaling-critical Sobolev regularity is scrit = −1
2 and it is

known that (1.1) is ill-posed in Hs(M) for s ≤ scrit = −1
2 with M = R or T in the sense

of norm inflation [14, 36, 46, 44]; given any ε > 0, there exist a solution u to (1.1) on M
and tε ∈ (0, ε) such that

‖u(0)‖Hs(M) < ε and ‖u(tε)‖Hs(M) > ε−1. (1.3)

Note that this is a stronger notion of ill-posedness than the failure of continuity of the

solution map at u0 ≡ 0. The other symmetry of importance here is the Galilean symmetry;

if u(x, t) is a solution to (1.1) on R with initial condition u0, then

uβ(x, t) = Gβ(u)(x, t) := e−iβxeiβ
2tu(x− 2βt, t) (1.4)

is also a solution to (1.1) with the modulated initial condition uβ0 (x) = e−iβxu0(x). On the

Fourier side, the Galilean symmetry is expressed as

ûβ(ξ, t) = e−iβ
2te−2iβξtû(ξ + β, t),

basically corresponding to a translation in frequencies. In particular, we need to impose

β ∈ Z on the circle M = T. We point out that the Galilean symmetry induces another

critical regularity s∞crit = 0 since it preserves the L2-norm. In fact, there is a dichotomy

between the behavior of solutions to (1.1) in L2(M) and in negative Sobolev spaces. On

the one hand, (1.1) is known to be well-posed in L2(M). On the other hand, it is known

to be mildly ill-posed in negative Sobolev spaces in the sense of the failure of local uniform

continuity of the solution map: Φ(t) : u0 ∈ Hs(M) 7→ u(t) ∈ Hs(M); see [33, 9, 12].

Moreover, on the circle, (1.1) is known to be ill-posed below L2(T); see [13, 40, 28]. In

particular, in [28], the first author (with Z. Guo) showed non-existence of solutions to (1.1)

on T with initial data outside L2(T). This last result was proved by first establishing an
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existence result for the following renormalized cubic NLS on T:{
i∂tu = ∂2xu∓ 2(|u|2 − 2

ffl
T |u|

2dx)u

u|t=0 = u0,
(x, t) ∈ T× R, (1.5)

where
ffl
f(x)dx := 1

2π

´
T f(x)dx. In fact, it is known that, while it is equivalent to the

standard cubic NLS (1.1) within L2(T), this renormalized cubic NLS (1.5) on T behaves

better outside L2(T) and in fact share many common properties with the cubic NLS on R
outside L2; see a survey paper [45]. Note that there is no ill-posedness result below L2(M)

for the cubic NLS (1.1) on R or the renormalized cubic NLS (1.5) on T, contradicting

either existence, uniqueness, or continuous dependence, and the well-posedness of (1.1)

on R and (1.5) on T in negative Sobolev spaces (in particular uniqueness) has been a

long-standing challenging open question in the field. In [15, 37, 38], Christ-Colliander-Tao

and Koch-Tataru independently proved existence (without uniqueness) of solutions to the

cubic NLS (1.1) on R in negative Sobolev spaces. An analogous existence result for the

renormalized cubic NLS (1.5) on T was established in [28]. More recently, Koch-Tataru [39]

and Killip-Vişan-Zhang [34] exploited the complete integrable structure of the equation and

proved global-in-time a priori bounds on the Hs-norm of solutions in the scaling-subcritical

range: s > −1
2 . In the following, we combine the result in [34] with the scaling and Galilean

symmetries to prove global well-posedness of the cubic NLS (1.1) on R and the renormalized

cubic NLS (1.5) on T in almost critical spaces with respect to the scaling symmetry.

1.2. Fourier-Lebesgue spaces and modulation spaces. In this subsection, we first

recall the definitions of the Fourier-Lebesgue spaces and the modulation spaces. Then, we

go over the known well-posedness results for the cubic NLS (1.1) on R and the renormalized

cubic NLS (1.5) on T in these spaces. Lastly, we introduce a new function space MHθ,p and

show that this space coincides with the modulation spaces on R and the Fourier-Lebesgue

spaces on T in a certain regime (Lemma 1.2). This equivalence of the norms will be a key

ingredient for the proof of the main result (Theorem 1.4).

Our conventions for the Fourier transform are as follows:

f̂(ξ) =
1√
2π

ˆ
R
f(x)e−ixξdx and f(x) =

1√
2π

ˆ
R
f̂(ξ)eixξdξ

for functions on the real line R and

f̂(ξ) =
1√
2π

ˆ 2π

0
f(x)e−ixξdx and f(x) =

1√
2π

∑
ξ∈Z

f̂(ξ)eixξ

for functions on the circle T (with ξ ∈ Z). GivenM = R or T, let M̂ denote the Pontryagin

dual of M, i.e.

M̂ =

{
R if M = R,
Z if M = T.

When M̂ = Z, we endow it with the counting measure. Given s ∈ R and 1 ≤ p ≤ ∞, we

define the Fourier-Lebesgue space FLs,p(M) by the norm:

‖f‖FLs,p(M) = ‖〈ξ〉sf̂(ξ)‖
Lpξ(M̂)
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with the usual modification when p =∞. Here, 〈 · 〉 = (1 + | · |2)
1
2 . When s = 0, we simply

set FLp(M) = FL0,p(M). Note that we have FLp(T) ⊃ L2(T) on the circle for p ≥ 2.

Next, we recall the definition of the modulation spaces M r,p
s (R) on the real line; see

[19, 20]. Let ψ ∈ S(R) such that

suppψ ⊂ [−1, 1] and
∑
k∈Z

ψ(ξ − k) ≡ 1.

Then, the modulation spaceM r,p
s (R) is defined as the collection of all tempered distributions

f ∈ S ′(R) such that ‖f‖Mr,p
s

<∞, where the M r,p
s -norm is defined by

‖f‖Mr,p
s (R) =

∥∥〈n〉s‖ψn(D)f‖Lrx(R)
∥∥
`pn(Z)

. (1.6)

Here, ψn(D) is the Fourier multiplier operator with the multiplier

ψn(ξ) := ψ(ξ − n). (1.7)

When s = 0, we simply set M r,p(R) = M r,p
0 (R). In the following, we only consider r = 2.

In this case, we have

M2,p(R) ⊃ FLp(R)

for p ≥ 2.

Remark 1.1. The modulation spaces M r,p have an equivalent characterization via the

short-time (or windowed) Fourier transform (STFT). Given a non-zero window function

φ ∈ S(R), we define the STFT Vφf of a tempered distribution f ∈ S ′(R) with respect to φ

by

Vφf(x, ξ) =
1√
2π

ˆ
R
f(y)φ(y − x)e−iyξ dy.

Then, we have the equivalence of norms:

‖f‖Mr,p ∼φ |||f |||Mr,p :=
∥∥‖Vφf‖Lrx∥∥Lpξ , (1.8)

where the implicit constants depend on the window function φ. In view of the definition

(1.8) of the ||| · |||Mr,p-norm, it may be tempting to consider this norm on T. It is, however,

known that, for 1 ≤ r, p ≤ ∞, we have

M r,p(T) = FLp(T) (1.9)

on the circle; see [50].

Let us now discuss critical regularities for (1.1) and (1.5) in the context of the Fourier-

Lebesgue spaces and the modulation spaces. A direct computation shows that the homoge-

neous Fourier-Lebesgue space ḞLs,p(R) is invariant under the scaling symmetry (1.2) when

s = scrit(p) = −1
p with the understanding scrit(∞) = 0. In particular, when s = 0, the

cubic NLS (1.1) on R is scaling-critical in FL∞(R). While there is no scaling symmetry on

the circle, we say that the renormalized cubic NLS (1.5) on T is scaling-critical in FL∞(T).

On the other hand, the modulation spaces are based on the unit cube decomposition of

the frequency space and thus there is no scaling for the modulation spaces.1 At the same

1See [6] for modulation spaces adapted to scaling.
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time, a change of variables and interpolating the r = 2 and r =∞ cases yield the following

bound:

‖fλ‖Ṁr,p
s
. λ−s−

1
p ‖f‖Ṁr,p

s
(1.10)

any λ ≥ 1, provided that p ≥ r′ and r ≥ 2. See also [52] for a further discussion on

the scaling properties of the modulation spaces. This shows that s = scrit(p) = −1
p is

(essentially) a scaling-critical regularity for (1.1) in terms of the modulation spaces M r,p
s (R).

In particular, when s = 0 the cubic NLS (1.1) on R is (essentially) scaling-critical in

M2,∞(R). We point out that a typical function in these critical spaces FL∞(M) and

M2,∞(R) is the Dirac delta function and that (1.1) on R and (1.5) on T are known to be

ill-posed with the Dirac delta function as initial data; see [33, 21]. See also Banica-Vega

[4, 5] for the work on the cubic NLS (1.1) with the Dirac delta function as initial data.

The Cauchy problems (1.1) on R and (1.5) on T have been studied in the context of the

Fourier-Lebesgue spaces and the modulation spaces. In particular, local well-posedness in

almost critical spaces have been known. In [24], Grünrock studied the cubic NLS (1.1) on

R in the Fourier-Lebesgue spaces and proved local well-posedness in FLp(R), 1 < p < ∞,

almost reaching the critical case p =∞. He also proved global well-posedness for 2 ≤ p < 5
2 .

We also mention a precursor to this result by Vargas-Vega [57], establishing well-posedness

of (1.1) on R with infinite L2-norm initial data. In a recent paper, S. Guo [27] proved local

well-posedness of the cubic NLS (1.1) on R in M2,p(R) for 2 ≤ p < ∞. In the periodic

setting, Grünrock-Herr [25] proved local well-posedness of the renormalized cubic NLS

(1.5) in FLp(T), 1 < p < ∞. See also Christ [11] for a construction of solutions to (1.5)

(without uniqueness) via a power series expansion. In the same paper, Christ also refers to

an unpublished work with Erdoǧan, claiming small data global well-posedness in FLp(T),

p < ∞. We point out that, as a consequence of the local well-posedness result in [25],

the non-existence result in [28] also applies to the cubic NLS (1.1) in the Fourier-Lebesgue

setting: FLp(T) \ L2(T), p > 2.

While there are some global well-posedness results in the context of the modulation and

Fourier-Lebesgue spaces, it is very far from matching the local well-posedness regularities.

In the following, we close this gap and prove global well-posedness in almost critical spaces.

For this purpose, we first introduce the following modulated Sobolev space MHθ,p(R) by

the norm:

‖f‖MHθ,p(R) =

(∑
n∈Z
‖Mnf‖pHθ

) 1
p

=

(∑
n∈Z
‖〈ξ − n〉θf̂(ξ)‖p

L2
ξ

) 1
p

, (1.11)

where Mn denotes the modulation operator defined by

Mnf(x) = e−inxf(x). (1.12)

On the circle, we define MHθ,p(T) in an analogous manner. When θ ≥ 0, we have

‖f‖MHθ,p < ∞ if and only if f = 0. Hence, we focus on θ < 0 in the following. In

fact, when θ < −1
2 , it is easy to see that the MHθ,p-norm is equivalent to the M2,p-norm.
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Lemma 1.2. (i) Let θ < −1
2 and 2 ≤ p ≤ ∞. Then, we have

‖f‖MHθ,p ∼ ‖f‖M2,p

with the understanding that M2,p(T) = FLp(T) on the circle.

(ii) Let −1
2 ≤ θ < 0 and 2 ≤ q < p ≤ ∞. Then, we have

‖f‖M2,p . ‖f‖MHθ,p .

{
‖f‖M2,q ,

‖f‖
M2,p
s
,

(1.13)

provided that 1
q >

1
p + 1

2 + θ and s > 1
2 + θ.

The proof of this lemma is elementary and is presented in Section 2. This equivalence

of the norms for θ < −1
2 allows us to express the relevant modulation norms on R and the

Fourier-Lebesgue norms on T in terms of the `p-sum of the modulated Sobolev norms. On

the one hand, we introduce the MHθ,p-norm for a PDE purpose and use it for θ = −1.

On the other hand, when −1
2 ≤ θ < 0, it lies between M2,p and M2,q for q satisfying

1
q > 1

p + 1
2 + θ. Hence, it may be of interest to study finer properties of MHθ,p. One

may also replace the weight 〈ξ − n〉θ by a general weight function φ(ξ − n) and define the

modulated Sobolev space MHφ,p adapted to the weight function φ via the norm:

‖f‖MHφ,p(R) =

(∑
n∈Z
‖φ(ξ − n)f̂(ξ)‖p

L2
ξ

) 1
p

.

Arguing as in the proof of Lemma 1.2, one can easily prove that

‖f‖MHφ,p ∼ ‖f‖M2,p

for φ ∈ L2(R) which is bounded away from 0 on [−1
2 ,

1
2 ].

1.3. Main result. We briefly go over the main result in the work [34] by Killip-Vişan-

Zhang. See [34] for more details. The one-dimensional cubic NLS (1.1) is a completely

integrable PDE and it admits the following Lax pair formulation [58, 1]:

d

dt
L(t;κ) =

[
P (t, κ), L(t;κ)

]
,

where

L(t;κ) =

(
−∂x + κ iu
∓iu −∂x − κ

)
and P (t;κ) denotes some operator pencil whose precise form does not play any role in the

following. In [34], the authors studied the following perturbation determinant α(κ;u):

α(κ;u) = Re

∞∑
j=1

(∓1)j−1

j
tr
{[

(κ− ∂x)−
1
2u(κ+ ∂x)−1u(κ− ∂x)−

1
2
]j}

. (1.14)

Here, the operators (κ±∂x)−1 and (κ±∂x)−
1
2 are defined as the Fourier multiplier operators.

For an operator A on L2(M) with a continuous integral kernel K(x, y), we define its trace

by

tr(A) =

ˆ
M
K(x, x)dx.
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In particular, if A is a Hilbert-Schmidt operator with an integral kernel K(x, y) ∈ L2(M2),

then we have

tr(A2) =

¨
M2

K(x, y)K(y, x)dxdy.

We also set

‖A‖2I2 = tr(A∗A) =

¨
M2

|K(x, y)|2dxdy.

Recall from [34, Lemma 1.4] that

| tr(A1 · · ·Ak)| ≤
k∏
j=1

‖Aj‖I2 . (1.15)

In the following, we summarize three important properties of α(κ;u). Here, we only

state the real line case. For the periodic case, the corresponding statements are basically

true with a small change in (1.17) for the leading term in the series (1.14); see Lemma 3.3

below.

Lemma 1.3. The following statements hold:

(i) [34, Proposition 4.3]: For a Schwartz class solution u to (1.1), the quantity α(κ;u)

is conserved, provided that κ > 0 is sufficiently large such thatˆ
R

log
(
4 + ξ2

κ2

) |û(ξ)|2√
4κ2 + ξ2

dξ ≤ c0 (1.16)

for some absolute constant c0 > 0.

(ii) [34, Lemma 4.2]: The leading term of the series expansion (1.14) is given by

Re tr
{

(κ− ∂x)−1u(κ+ ∂x)−1u
}

=

ˆ
R

2κ|û(ξ)|2

4κ2 + ξ2
dξ (1.17)

for any κ > 0 and u ∈ S(R).

(iii) [34, Lemma 4.1]: We have∥∥(κ− ∂x)−
1
2u(κ+ ∂x)−

1
2

∥∥2
I2(R)

∼
ˆ
R

log
(
4 + ξ2

κ2

) |û(ξ)|2√
4κ2 + ξ2

dξ (1.18)

for any κ > 0 and u ∈ S(R).

In view of (1.15) and (1.18), this smallness condition (1.16) guarantees term-by-term

differentiation of the series (1.14). Using the properties (i) - (iii), Killip-Vişan-Zhang [34]

proved the following global-in-time bound (Theorem 1.3 in [34]) on the Hs-norm of smooth

solutions to (1.1) on M = R or T:

‖u(t)‖Hs . ‖u0‖Hs

(
1 + ‖u0‖Hs

) |s|
1−|s|

(1.19)

for −1
2 < s < 0. The main idea of the argument in [34] is to express the Hs-norms (and in

fact the Besov norms) as a suitable sum of the right-hand side of (1.17) as κ ranges over

dyadic numbers κ0 ·2N (for some κ0 > 0). See Lemma 3.2 and the Zκ0-norm in the proof of

Theorem 4.5 in [34]. The property (iii) above is then to control the error terms (i.e. j ≥ 2)
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in (1.14), which imposes the restriction s > −1
2 . Note that the restriction s > −1

2 is

necessary in view of the norm inflation at the critical regularity s = −1
2 [36, 46, 44].

We point out that the global-in-time bound (1.19) also holds for smooth solutions u

to the renormalized cubic NLS (1.5) on T since we can convert smooth solutions to the

cubic NLS (1.1) and to the renormalized cubic NLS (1.5) by the following invertible gauge

transform:

J (u)(t) := e∓4it
ffl
|u(t)|2dxu(t), (1.20)

while the gauge transform J preserves the Hs-norm. As mentioned above, uniqueness

of solutions to the cubic NLS (1.1) on R and the renormalized cubic NLS (1.5) on T in

negative Sobolev spaces remains as a very challenging open question. Hence, while the

global-in-time bound (1.19) may be used to prove global existence of solutions (without

uniqueness) in negative Sobolev spaces, it does not provide global well-posedness at this

point.

In the following, we establish global-in-time bound on the M2,p-norm of smooth solutions

to the cubic NLS (1.1) on R and the FLp-norm of smooth solutions to the renormalized

cubic NLS (1.5) on T. Then, the local well-posedness in these spaces [27, 25] yields the

following global well-posedness result.

Theorem 1.4. Let 2 ≤ p <∞.

(i) There exists C = C(p) > 0 such that

‖u(t)‖M2,p(R) ≤ C(1 + ‖u(0)‖M2,p(R))
p
2
−1‖u(0)‖M2,p(R) (1.21)

for any Schwartz class solution u to (1.1) on R and any t ∈ R. In particular, the

cubic NLS (1.1) on R is globally well-posed in M2,p(R).

(ii) There exists C = C(p) > 0 such that

‖u(t)‖FLp(T) ≤ C
(
1 + ‖u(0)‖FLp(T)

) p
2
−1‖u(0)‖FLp(T) (1.22)

for any smooth solution u to (1.1) on T and any t ∈ R. In particular, the renor-

malized cubic NLS (1.5) on T is globally well-posed in FLp(T).

Theorem 1.4 establishes global well-posedness of the cubic NLS (1.1) on R and the renor-

malized cubic NLS (1.5)on T in almost critical spaces, improving significantly the known

global well-posedness results [57, 24, 11]. Moreover, the range of p <∞ of Theorem 1.4 is

sharp in view of the ill-posedness results with the Dirac delta as initial data which lies in

M2,∞(R) and FL∞(T).2 See also Remark 1.6 below. In view of the local well-posedness

[27, 25], it suffices to establish a priori global-in-time bounds (1.21) on R and (1.22) on T,

controlling the M2,p-norms3 of smooth solutions to the cubic NLS (1.1) onM = R or T. In

the periodic setting, we then obtain the same global-in-time bound (1.22) for smooth solu-

tions to the renormalized cubic NLS (1.5) via the gauge transform (1.20), yielding global

well-posedness for the renormalized cubic NLS (1.5) on T. The main idea for proving

Theorem 1.4 is to use the equivalence of the norms for the modulation spaces M2,p and

2In [21], the ill-posedness result with the Dirac initial data on T was shown in a topology weaker than
FL∞(T). We also point out that FL∞(T) does not admit smooth approximations and hence an a priori
bound on the FL∞(T)-norm for smooth solutions would not yield the same bound for rough solutions.

3In view of (1.9) on the circle, we may use M2,p(T) for FLp(T) in the following.
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the modulated Sobolev spaces MH−1,p (Lemma 1.2). We then apply the result in [34] to

control the growth of the MH−1,p-norm. Here, both the scaling and Galilean symmetries

play an important role. It follows from (1.11), (1.14), and (1.17) that (the square of) the

MH−1,p-norm of a solution u is given by the `
p
2 -sum of the leading terms for α(12 ;Gn(u)),

n ∈ Z, where Gn is the Galilean transform defined in (1.4). On the one hand, the Galilean

symmetry and Lemma 1.3 imply the conservation of α(12 ;Gn(u)) in the small data case.

On the other hand, the scaling symmetry with the subcriticality of the underlying space

M2,p, p <∞, allows us to reduce the situation to the small data case and handle the error

terms in the series (1.14). Compare this with [34], where the main idea in this step is to

express the Hs-norm as a suitable sum of the leading terms of α(κ;u) as κ ranges over

dyadic numbers κ0 · 2N (for some κ0 � 1). Here, taking κ0 � 1 essentially has an effect of

scaling, reducing to the small data case (in the subcritical regularity s > −1
2). Lastly, we

note that, as in [34], we can control the error terms only in the subcritical range, i.e. p <∞
in our setting.

Remark 1.5. (i) In Appendix A, we consider the following complex-valued modified KdV

equation on M = R or T:

∂tu = −∂3xu± 6|u|2∂xu

and briefly discuss how to derive the same global-in-time bounds (1.21) and (1.22) for

Schwartz/smooth solutions to the mKdV. See Theorem A.2.

(ii) The global-in-time bounds (1.21) and (1.22) can be extended to the modulation spaces

M2,p
s (R) and the Fourier-Lebesgue spaces FLs,p(T) of higher regularities. See Appendix B.

Remark 1.6. In [27], S. Guo proved local well-posedness of the cubic NLS (1.1) on R in a

space whose norm is logarithmically stronger than the critical M2,∞(R)-norm. The space

is characterized by an Orlicz norm and contains functions whose Fourier transforms decay

only logarithmically, i.e. not belonging to M2,p(R) for any finite p <∞. It seems of interest

to study the global-in-time behavior of solutions in this logarithmically subcritical space.

We also remark that, in [34], Killip-Vişan-Zhang also established global-in-time bounds

for solutions to the cubic NLS (1.1) on R and T in negative Besov-type spaces which are

logarithmically stronger than the critical H−
1
2 , where the norm inflation (1.3) is known.

Remark 1.7. In [18], the first author (with Colliander) studied the renormalized cubic

NLS (1.5) on T with random initial data of the form:

uα0 (x) =
1√
2π

∑
n∈Z

gn
〈n〉α

einx, (1.23)

where {gn}n∈Z is a sequence of independent standard complex-valued Gaussian random

variables. It is easy to see that such uα0 almost surely belongs to Hα− 1
2
−ε(T) \Hα− 1

2 (T).

When α = 0, this corresponds to the white noise on T and is of significant importance to

study (1.5) with the white noise initial data. It is also easy to see that uα0 in (1.23) almost

surely belongs to FLp(T) for p > α−1. Therefore, Theorem 1.4 (ii) yields (a deterministic

proof of) almost sure global well-posedness of (1.5) with almost white noise initial data uα0 ,

α > 0. The α = 0 case remains as an important open problem.
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2. Equivalence of the norms

In this section, we present a proof of Lemma 1.2. In the following, we only consider the

real line case since the proof for the periodic case follows in a similar manner. Obviously,

we have

‖f‖M2,p . ‖f‖MHθ,p

since ψn(ξ) . 〈ξ − n〉θ, where ψn is as in (1.7).

Let Ik = [k − 1
2 , k + 1

2), k ∈ Z. By writing

‖f‖MHθ,p =
∥∥∥‖〈ξ − n〉θf̂(ξ)‖L2

∥∥∥
`pn

∼
∥∥∥∥∑
k∈Z
〈k − n〉2θ

ˆ
Ik

|f̂(ξ)|2dξ
∥∥∥∥ 1

2

`
p
2
n

,

it follows from Young’s inequality with p ≥ 2 that

‖f‖MHθ,p .

(∑
n∈Z
〈n〉2θ

) 1
2
∥∥∥∥ˆ

In

|f̂(ξ)|2dξ
∥∥∥∥ 1

2

`
p
2
n

. ‖f‖M2,p ,

provided that θ < −1
2 . This proves (i).

Next, we consider the case −1
2 ≤ θ < 0. In this case, we need to lose either integrability

or differentiability. By Young’s inequality with 2
p + 1 = 1

r + 2
q , we have

‖f‖MHθ,p .

(∑
n∈Z
〈n〉2θr

) 1
2r
∥∥∥∥ˆ

In

|f̂(ξ)|2dξ
∥∥∥∥ 1

2

`
q
2
n

. ‖f‖M2,q , (2.1)

provided that 2θr < −1, namely, 1
q >

1
p + 1

2 + θ. The second bound in (1.13) follows from

applying Hölder’s inequality to the right-hand side of (2.1).

3. Control on the modulation and Fourier-Lebesgue norms

In this section, we present the proof of Theorem 1.4. In view of the local well-posedness

results [24, 25], it suffices to establish global-in-time bounds for smooth solutions to (1.1)

on M = R or T.

3.1. On the real line. We first consider the real line case. Our main goal is to prove the

following global-in-time bound.

Proposition 3.1. Let 2 ≤ p <∞. Then, there exists C = C(p) > 0 such that

‖u(t)‖M2,p(R) ≤ C(1 + ‖u(0)‖M2,p(R))
p
2
−1‖u(0)‖M2,p(R)

for any Schwartz class solution u to (1.1) on R and any t ∈ R.

Proof. Let us first consider the small data case. The general case follows from the small data

case and the scaling property of the M2,p-norm. Fix 2 ≤ p <∞. Let u be a global-in-time

Schwartz class solution to (1.1), satisfying

‖u(0)‖M2,p ≤ ε� 1 (3.1)
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for some small ε > 0 (to be chosen later). Given n ∈ Z, define {un}n∈Z by

un(x, t) = Gn(u)(x, t) = e−inxein
2tu(x− 2nt, t), (3.2)

where Gn is as in (1.4). Note that we have

|ûn(ξ, t)| = |û(ξ + n, t)| (3.3)

for any n ∈ Z and ξ, t ∈ R. In view of the Galilean symmetry, un is the solution to (1.1)

with un|t=0 = Mnu(0), where Mn is as in (1.12).

In the following, we fix κ = 1
2 and set α(u) = α(12 ;u). From (1.14), (1.15), (1.17), and

(1.18) with (3.3), we have

∣∣∣∣α(un(t))−
ˆ
R

|ûn(ξ, t)|2

1 + ξ2
dξ

∣∣∣∣ ≤ ∞∑
j=2

1

j

∥∥∥∥(12 − ∂x)−
1
2 un(t) (12 + ∂x)−

1
2

∥∥∥∥2j
I2(R)

.
∞∑
j=2

(ˆ
R

|ûn(ξ, t)|2

(1 + ξ2)
1
2
−δ
dξ

)j
.
∞∑
j=2

(ˆ
R

|û(ξ, t)|2

(1 + (ξ − n)2)
1
2
−δ
dξ

)j
(3.4)

for any δ > 0. By Hölder’s inequality, we can choose sufficiently small δ = δ(p) > 0 such

that

ˆ
R

|û(ξ, 0)|2

(1 + (ξ − n)2)
1
2
−δ
dξ ∼

∑
k∈Z

1

(1 + (k − n)2)
1
2
−δ
‖û(0)‖2L2

ξ(Ik)

. ‖u(0)‖2M2,p (3.5)

uniformly in n ∈ Z, where Ik = [k − 1
2 , k + 1

2), k ∈ Z, as above. Then, in view of (3.1) and

(3.5), we can choose ε > 0 sufficiently small such that the series on the right-hand side of

(3.4) is convergent at time t = 0. Then, by continuity in time, there exists a small time

interval I around t = 0 such that the series on the right-hand side of (3.4) is convergent

uniformly for any t ∈ I. Moreover, by choosing ε > 0 sufficiently small, we may assume

that (1.16) is satisfied for all t ∈ I.

As a consequence, we have

∣∣∣∣α(un(t))−
ˆ
R

|ûn(ξ, t))|2

1 + ξ2
dξ

∣∣∣∣ . ( ˆ
R

|û(ξ, t)|2

(1 + (ξ − n)2)
1
2
−δ
dξ

)2
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for any t ∈ I and n ∈ Z. Now, compute the `
p
2
n -norm of both sides. Choose δ = δ(p) > 0

sufficiently small such that (12 − δ) ·
p
p−1 >

1
2 . Then, by Young’s inequality, we have∥∥∥∥α(un(t))−

ˆ
R

|ûn(ξ, t)|2

1 + ξ2
dξ

∥∥∥∥
`
p
2
n

.

∥∥∥∥ˆ
R

|û(ξ, t)|2

(1 + (ξ − n)2)
1
2
−δ
dξ

∥∥∥∥2
`pn

∼
∥∥∥∥∑
k∈Z

1

(1 + (k − n)2)
1
2
−δ
‖û(ξ, t)‖2L2

ξ(Ik)

∥∥∥∥2
`pn

.
∥∥∥‖û(ξ, t)‖2L2

ξ(In)

∥∥∥2
`
p
2
n

∼ ‖u(t)‖4M2,p (3.6)

for any t ∈ I. Therefore, from Lemma 1.2, (3.6), and the conservation of α(un), n ∈ Z,

‖u(t)‖2M2,p ∼ ‖u(t)‖2MH−1,p ≤ ‖α(un(t))‖
`
p
2
n

+ ‖u(t)‖4M2,p

. ‖u(0)‖2MH−1,p + ‖u(0)‖4M2,p + ‖u(t)‖4M2,p

. ‖u(0)‖2M2,p + ‖u(0)‖4M2,p + ‖u(t)‖4M2,p

for all t ∈ I. Namely, we have

‖u(t)‖2M2,p ≤ C0‖u(0)‖2M2,p + C0‖u(0)‖4M2,p + C0‖u(t)‖4M2,p

for all t ∈ I. By choosing ε > 0 sufficiently small, we can apply a continuity argument and

conclude that

‖u(t)‖M2,p . ‖u(0)‖M2,p

for all t ∈ R. This proves Proposition 3.1 for the small data case.

Next, we consider the general case. Given a global-in-time Schwartz class solution u to

(1.1), let uλ be as in (1.2). Then in view of (1.10), we can choose sufficiently large λ � 1

such that

‖uλ(0)‖M2,p ≤ Cλ−
1
p ‖u(0)‖M2,p ≤ ε� 1 (3.7)

as in (3.1). In particular, we may choose

λ ∼ (1 + ‖u(0)‖M2,p)p. (3.8)

Hence, by the small data case presented above, we obtain

‖uλ(t)‖M2,p . ‖uλ(0)‖M2,p (3.9)

for all t ∈ R. Finally, recall that

‖u(t)‖M2,p . λ
1
2 ‖uλ(λ2t)‖M2,p . (3.10)

By putting (3.7), (3.9), and (3.10) with (3.8), we conclude that

‖u(t)‖M2,p . (1 + ‖u(0)‖M2,p)
p
2
−1‖u(0)‖M2,p

for all t ∈ R. This completes the proof of Proposition 3.1 and hence the proof of Theo-

rem 1.4 (i). �
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3.2. On the circle. In the remaining part of this paper, we discuss the proof of Theo-

rem 1.4 in the periodic case. While the essential part of the argument remains the same, we

need to pay attention to the scaling argument since it modifies the spatial domain. Given

λ > 0, let Tλ = R/(2πλZ) and we use the following convention:

f̂(ξ) =
1√
2π

ˆ 2πλ

0
f(x)e−ixξdx and f(x) =

1√
2πλ

∑
ξ∈Zλ

f̂(ξ)eixξ (3.11)

for functions on the dilated torus Tλ, where Zλ = λ−1Z. In this setting, Plancherel’s

identity is expressed as

‖f‖L2(Tλ) = ‖f̂(ξ)‖L2
ξ(Zλ,(dξ)λ)

, (3.12)

where (dξ)λ is the normalized counting measure on Zλ:
ˆ
Zλ
f(ξ)(dξ)λ =

1

λ

∑
ξ∈Zλ

f(ξ).

Hence, we define the Fourier-Lebesgue space FLp(Tλ) by the norm:

‖f‖FLp(Tλ) = ‖f̂(ξ)‖Lpξ(Zλ,(dξ)λ).

For simplicity of the notation, we set Lpξ(Zλ) = Lpξ(Zλ, (dξ)λ). Under this convention, we

have the following scaling property:

‖fλ‖FLp(Tλ) = λ
− 1
p ‖f‖FLp(T),

where

fλ(x) = λ−1f(λ−1x). (3.13)

In particular, note that the FL∞-norm is invariant under the scaling symmetry. We also

record the following identity:

f̂g(ξ) =
1√
2π

ˆ
Zλ
f̂(η)ĝ(ξ − η)(dη)λ (3.14)

for ξ ∈ Zλ.

In the following, we restrict our attention to λ ≥ 1. On the standard torus, we have the

equivalence of the modulation spaces and the Fourier-Lebesgue spaces (see (1.9)). On a

dilated torus Tλ, λ� 1, however, these two spaces do not coincide. As in (1.6), we define

the modulation spaces on Tλ by the norm:

‖f‖Mr,p(Tλ) =
∥∥‖ψn(D)f‖Lrx(Tλ)

∥∥
`pn(Z)

.

Note that ψn(D) is basically a “smooth” projection onto the frequencies Jn = [n−1, n+1]∩
Zλ. On the one hand, when λ = 1, we have only O(1) many frequencies in Jn, giving rise to

the equivalence (1.9). On the other hand, when λ� 1, there are O(λ) many frequencies in

Jn and hence the M r,p(Tλ)- and the FLp(Tλ)-norms are not equivalent uniformly in period

λ ≥ 1. As we see below, for our purpose, it is more convenient to work on the modulation
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space M2,p(Tλ) on a dilated torus Tλ. In view of Plancherel’s identity (3.12), we have

‖f‖M2,p(Tλ) =
∥∥‖ψn(ξ)f̂(ξ)‖L2

ξ(Zλ)
∥∥
`pn(Z)

=

∥∥∥∥( ˆ
Zλ
|ψn(ξ)f̂(ξ)|2(dξ)λ

) 1
2
∥∥∥∥
`pn(Z)

.

Given a function f on T, let fλ be as in (3.13). Then, a straightforward computation

shows the following scaling relation:

‖f‖FLp(T) . λ
1
2 ‖fλ‖M2,p(Tλ), (3.15)

‖fλ‖M2,p(Tλ) . λ
− 1
p ‖f‖FLp(T) (3.16)

for 2 ≤ p ≤ ∞.

Lastly, we define the modulated Sobolev space MHθ,p(Tλ) on a dilated torus Tλ by the

norm:

‖f‖MHθ,p(Tλ) =
∥∥‖Mnf‖Hθ(Tλ)

∥∥
`pn(Z)

=

(∑
n∈Z
‖〈ξ − n〉θf̂(ξ)‖p

L2
ξ(Zλ)

) 1
p

,

where Mn is as in (1.12). Note that the outer summation ranges over n ∈ Z (and not over

Zλ). Then, arguing as in the proof of Lemma 1.2, we obtain the following equivalence when

θ < −1
2 and 2 ≤ p ≤ ∞:

‖f‖MHθ,p(Tλ) ∼ ‖f‖M2,p(Tλ). (3.17)

As in the real line case, the equivalence (3.17) with θ = −1 plays an important role in our

analysis.

We first state basic properties of the perturbation determinant α(κ;u) in (1.14) on a

dilated torus Tλ. The following three lemmas are just restatements of Lemma 1.3 on a

dilated torus.

Lemma 3.2. Let κ > κ0 for some κ0 > 0 and λ ≥ 1. Then, we have

∥∥(κ− ∂x)−
1
2u(κ+ ∂x)−

1
2

∥∥2
I2(Tλ)

∼
ˆ
Zλ

log
(
4 + ξ2

κ2

) |û(ξ)|2√
4κ2 + ξ2

(dξ)λ, (3.18)

∥∥(κ+ ∂x)−
1
2u(κ− ∂x)−

1
2

∥∥2
I2(Tλ)

∼
ˆ
Zλ

log
(
4 + ξ2

κ2

) |û(ξ)|2√
4κ2 + ξ2

(dξ)λ, (3.19)

for any smooth function u on Tλ, where the implicit constant depends on κ0 > 0.

Proof. We only consider the first estimate (3.18) as the second estimate (3.19) follows from

a similar computation. Let A = (κ− ∂x)−
1
2u(κ+ ∂x)−

1
2 . Then, with (3.11) and (3.14), we
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have

Af(x) = (κ− ∂x)−
1
2u(κ+ ∂x)−

1
2 f

=
1

2πλ2

∑
ξ∈Zλ

eiξx(κ− iξ)−
1
2

∑
η∈Zλ

û(ξ − η)(κ+ iη)−
1
2 f̂(η)

=
1

2πλ2

ˆ
Tλ

( ∑
ξ,η∈Zλ

eiξxe−iηy
û(ξ − η)√

2π(κ− iξ)(κ+ iη)

)
f(y)dy

for f ∈ L2(Tλ). Thus, the integral kernel K(x, y) of A is given by

K(x, y) =
1

2πλ2

∑
ξ,η∈Zλ

eiξxe−iηy
û(ξ − η)√

2π(κ− iξ)(κ+ iη)
.

Hence, from the definition of the I2-norm and Plancherel’s identity (3.12), we have

‖A‖2I2 =

¨
T2
λ

|K(x, y)|2dxdy

=
1

2πλ2

∑
ξ,η∈Zλ

|û(ξ − η)|2√
(κ2 + ξ2)(κ2 + η2)

. (3.20)

On the other hand, with ξ = n
λ and η = m

λ , n,m ∈ Z, we have

1

λ2

∑
η∈Zλ

1√
(κ2 + (ξ + η)2)(κ2 + η2)

=
∑
m∈Z

1√
((λκ)2 + (n+m)2)((λκ)2 +m2)

By separately estimating the contributions from (i) |n + m| � |n|, (ii) |n + m| ∼ |n|, and
(iii) |n+m| � |n|,

∼
(

log
(
1 + n2

(λκ)2

) 1√
(λκ)2 + n2

+
|n|

(λκ)2 + n2

)
∼ 1

λ
log
(
4 + ξ2

κ2

) 1√
4κ2 + ξ2

. (3.21)

Therefore, the first estimate (3.18) follows from (3.20) and (3.21). �

Next, we estimate the leading term in (1.14).

Lemma 3.3. Let κ > 0 and λ ≥ 1. Then, we have

Re tr
{

(κ− ∂x)−1u(κ+ ∂x)−1u
}

=
1 + e−2πλκ

1− e−2πλκ
·
ˆ
Zλ

2κ|û(ξ)|2

4κ2 + ξ2
(dξ)λ (3.22)

for any smooth function u on Tλ.

Proof. Recall from [34] that for κ > 0, the operators (κ− ∂x)−1 and (κ+ ∂x)−1, admit the

convolution kernels kκ−(x) = 1(−∞,0](x) · eκx and kκ+(x) = kκ−(−x). Define Kκ
∓(x) to be the

periodization of kκ∓(x) with period 2πλ:

Kκ
∓(x) =

∑
n∈Z

kκ∓(x− 2πλn).
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Then, the Fourier coefficients are given by

K̂κ
∓(ξ) =

1√
2π

ˆ 2πλ

0
Kκ
∓(x)e−ixξdx =

1√
2π

ˆ
R
kκ∓(x)e−ixξdx

=
1

κ∓ iξ

for ξ ∈ Zλ. Namely, Kκ
∓(x) represents the convolution kernels for (κ−∂x)−1 and (κ+∂x)−1

on Tλ, respectively. Also, note that Kκ
+(−x) = Kκ

−(x) and

Kκ
−(x) =

eκ(x−2πλd
x

2πλ
e)

1− e−2πλκ
,

where d·e denotes the ceiling function, i.e. dxe denotes the smallest integer n with n ≥ x.

In particular, we have (
Kκ
−
)2

(x) =
1− e−4πλκ

(1− e−2πλκ)2
· e

2κ(x−2πλd x
2πλ
e)

1− e−4πλκ

=
1 + e−2πλκ

1− e−2πλκ
·K2κ
−
(
x).

From these observations and Parseval’s identity, we have

LHS of (3.22) = Re

¨
T2
λ

K−(x− y)u(y)K+(y − x)u(x)dxdy

= Re

¨
T2
λ

(
K−(x− y)

)2
u(y)u(x)dxdy

=
1 + e−2πλκ

1− e−2πλκ
· Re

ˆ
Zλ

|û(ξ)|2

2κ− iξ
(dξ)λ

=
1 + e−2πλκ

1− e−2πλκ
·
ˆ
Zλ

2κ|û(ξ)|2

4κ2 + ξ2
(dξ)λ.

This proves the identity (3.22). �

The conservation of α(κ;u) follows as in the real line case.

Lemma 3.4. Let κ > κ0 for some κ0 > 0 and λ ≥ 1. For a smooth solution u to (1.1) on

a dilated torus, the quantity α(κ;u) defined in (1.14) is conserved, provided that
ˆ
Zλ

log
(
4 + ξ2

κ2

) |û(ξ)|2√
4κ2 + ξ2

(dξ)λ ≤ c0 (3.23)

for some absolute constant c0 > 0, depending on κ0 > 0.

The proof of Lemma 3.4 is mostly based on algebraic computations and thus we omit

details. See the proof of Proposition 4.3 in [34]. As in Lemma 1.3, the smallness condition

(3.23) guarantees term-by-term differentiation of the series (1.14). Note that the depen-

dence of c0 on κ0 comes from the dependence of the implicit constant on κ0 in Lemma 3.2.

As in the real line case, Theorem 1.4 (ii) on T follows once we prove the following

proposition.
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Proposition 3.5. Let 2 ≤ p <∞. Then, there exists C = C(p) > 0 such that

‖u(t)‖FLp(T) ≤ C
(
1 + ‖u(0)‖FLp(T)

) p
2
−1‖u(0)‖FLp(T)

for any smooth solution u to (1.1) on T and any t ∈ R.

Proof. Fix 2 ≤ p <∞. Let u be a global-in-time smooth solution to (1.1) on T. For λ ∈ N,

let uλ denote the scaled solution to (1.1) on the dilated torus Tλ defined by (1.2). Given

small ε > 0 (to be chosen later), it follows from (3.16) that we can choose sufficiently large

λ = λ(‖u(0)‖FLp(T))� 1 such that

‖uλ(0)‖M2,p(Tλ) ≤ Cλ
− 1
p ‖u(0)‖FLp(T) ≤ ε� 1. (3.24)

In particular, we may choose

λ ∼ (1 + ‖u(0)‖FLp(T))p. (3.25)

Given n ∈ Z, define {un}n∈Z by

uλ,n(x, t) = Gn(uλ)(x, t) = e−inxein
2tuλ(x− 2nt, t).

In view of the Galilean symmetry, uλ,n is the solution to (1.1) on Tλ with uλ,n|t=0 =

Mnuλ(0). Moreover, we have

|ûλ,n(ξ, t)| = |ûλ(ξ + n, t)|. (3.26)

for any n ∈ Z, ξ ∈ Zλ, and t ∈ R. Here, we used the fact that λ is an integer such that

Z ⊂ Zλ.

In the following, we fix κ = 1
2 and set α(u) = α(12 ;u) and

Cλ =
1 + e−πλ

1− e−πλ
.

Note that Cλ ∼ 1 for λ ≥ 1. From (1.14) with Lemmas 3.2 and 3.3 and (3.26), we have∣∣∣∣α(uλ,n(t))− Cλ
ˆ
Zλ

|ûλ,n(ξ, t)|2

1 + ξ2
(dξ)λ

∣∣∣∣ ≤ ∞∑
j=2

1

j

∥∥∥∥(12 − ∂x)−
1
2 uλ,n(t) (12 + ∂x)−

1
2

∥∥∥∥2j
I2(Tλ)

.
∞∑
j=2

(ˆ
Zλ

|ûλ(ξ, t)|2

(1 + (ξ − n)2)
1
2
−δ

(dξ)λ

)j
for any δ > 0. By Hölder’s inequality, we can choose sufficiently small δ = δ(p) > 0 such

that ˆ
Zλ

|ûλ(ξ, t)|2

(1 + (ξ − n)2)
1
2
−δ

(dξ)λ ∼
∑
k∈Z

1

(1 + (k − n)2)
1
2
−δ
‖ûλ(ξ, 0)‖2L2

ξ(Ik∩Zλ,(dξ)λ)

. ‖uλ(0)‖2M2,p(Tλ) (3.27)

uniformly in n ∈ Z, where Ik = [k − 1
2 , k + 1

2), k ∈ Z, as above. Then, in view of (3.24),

(3.27), and continuity in time, we can argue as in the real line case and conclude that there

exists a time interval I around t = 0 such that∣∣∣∣α(uλ,n(t))− Cλ
ˆ
Zλ

|ûλ,n(ξ, t))|2

1 + ξ2
(dξ)λ

∣∣∣∣ . ( ˆ
Zλ

|ûλ(ξ, t)|2

(1 + (ξ − n)2)
1
2
−δ

(dξ)λ

)2
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for any t ∈ I and n ∈ Z, by choosing ε > 0 sufficiently small. Moreover, we may assume

that (3.23) is satisfied for all t ∈ I so that Lemma 3.4 is applicable.

Now, compute the `
p
2
n -norm of both sides. By choosing δ = δ(p) > 0 sufficiently small,

Young’s inequality yields∥∥∥∥α(uλ,n(t))− Cλ
ˆ
Zλ

|ûλ,n(ξ, t))|2

1 + ξ2
(dξ)λ

∥∥∥∥
`
p
2
n

.

∥∥∥∥∑
k∈Z

1

(1 + (k − n)2)
1
2
−δ
‖ûλ(ξ, t)‖2L2

ξ(Ik∩Zλ,(dξ)λ)

∥∥∥∥2
`pn

.
∥∥∥‖ûλ(ξ, t)‖2L2

ξ(Ik∩Zλ,(dξ)λ)

∥∥∥2
`
p
2
n

∼ ‖uλ(t)‖4M2,p(Tλ) (3.28)

for any t ∈ I. Therefore, from (3.17), (3.28), and the conservation of α(uλ,n), n ∈ Z,

‖uλ(t)‖2M2,p(Tλ) ∼ ‖uλ(t)‖2MH−1,p(Tλ)

. ‖uλ(0)‖2MH−1,p(Tλ) + ‖uλ(0)‖4M2,p(Tλ) + ‖uλ(t)‖4M2,p(Tλ)

. ‖uλ(0)‖2M2,p(Tλ) + ‖uλ(0)‖4M2,p(Tλ) + ‖uλ(t)‖4M2,p(Tλ)

for all t ∈ I. Hence, by choosing ε > 0 sufficiently small, we conclude from the continuity

argument that

‖uλ(t)‖M2,p(Tλ) . ‖uλ(0)‖M2,p(Tλ)

for all t ∈ R. Combining this with (3.15) and (3.24), we obtain

‖u(t)‖FLp(T) . λ
1
2
− 1
p ‖u(0)‖FLp(T) (3.29)

for all t ∈ R. Finally, Proposition 3.5 follows from (3.29) with (3.25). �

Appendix A. On the modified KdV equation

In this appendix, we consider the complex-valued modified KdV equation (mKdV) on

M = R or T: {
∂tu = −∂3xu± 6|u|2∂xu,
u|t=0 = u0

(A.1)

and discuss how to derive the global-in-time bounds (1.21) and (1.22) for Schwartz solutions

to the mKdV (A.1). The equation (A.1) is known to be completely integrable and is closely

related to the cubic NLS (1.1) [29, 51, 30, 34]. When the initial data u0 is real-valued, the

corresponding solution u to (A.1) remains real-valued, thus solving the following real-valued

mKdV:

∂tu = −∂3xu± 6u2∂xu. (A.2)

The mKdV enjoys the following scaling symmetry

u(x, t) 7−→ uλ(x, t) = λ−1u(λ−1x, λ−3t),

inducing the same scaling-critical regularity as the cubic NLS (1.1). In terms of the homo-

geneous Fourier-Lebesgue space ḞLs,p(R), the critical regularity is given by scrit(p) = −1
p .
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The Cauchy problem (A.1) has been extensively studied; the complex-valued mKdV

(A.1) is known to be locally well-posed in Hs(M) for s ≥ 1
4 on the real line [32, 55] and for

s ≥ 1
3 on the circle [8, 54, 43, 42]. In the real-valued setting, the I-method has been applied

to prove global well-posedness of the mKdV (A.2) in Hs(M) for s ≥ 1
4 on the real line

and for s ≥ 1
2 on the circle [17, 35]. See also [16, 41] for global existence results in Hs(R),

s > −1
8 , and L2(T) in the real-valued setting. We point out that, in the periodic setting,

the well-posedness studies stated above have been performed on the following renormalized

mKdV on T:

∂tu = −∂3xu± 6(|u|2 −
ffl
T |u|

2dx)∂xu. (A.3)

As in the case of the cubic NLS (1.1) and the renormalized cubic NLS (1.5), it is easy to

see, via the transform:

u(x, t) 7−→ u(x± 6µt, t)

with µ =
ffl
T |u|

2dx, that the mKdV (A.1) and the renormalized mKdV (A.3) are equivalent

in L2(T). It is, however, known that the renormalized mKdV (A.3) behaves better outside

L2(T). Indeed, the (unrenormalized) mKdV (A.1) is known to be ill-posed in negative

Sobolev spaces Hs(T), s < 0, [41] and Fourier-Lebesgue spaces FLp(T), p > 2 [30].

In [34], Killip-Vişan-Zhang showed that Lemma 1.3 also holds for Schwartz solutions u

to the complex-valued mKdV (A.1). Therefore, while it is not explicitly stated in [34], their

result yields global well-posedness of the complex-valued mKdV (A.1) in Hs(M) for s ≥ 1
4

on the real line and for s ≥ 1
3 on the circle, thus matching the known local well-posedness

results.

In the real-valued and defocusing case (i.e. with the + sign in (A.1), (A.2), and (A.3)),

there are several further results exploiting the completely integrable structure of the equa-

tion. Before proceeding further, let us define the notion of sensible weak solutions. See

also [21, 47].

Definition A.1. Let B(T) be a Banach space of functions on T. Given u0 ∈ B(T),

we say that u ∈ C((t0, t1);B(T)) is a sensible weak solution to an equation on (t0, t1),

−∞ ≤ t0 < 0 < t1 ≤ ∞, if, for any sequence {u0,n}n∈N of smooth functions tending to u0
in B(T), the corresponding (classical) solutions un(t) with un|t=0 = u0,n converge to u(t)

in B(T) for each t ∈ (t0, t1).

We point that this notion of sensible weak solutions is rather weak. In particular, sen-

sible weak solutions do not have to satisfy the equation even in the distributional sense.

In [31], Kappeler-Topalov proved global well-posedness (in the sense of sensible weak solu-

tions) of the periodic real-valued defocusing mKdV (A.2) in L2(T). In a recent paper [30],

Kappeler-Molnar studied the periodic real-valued defocusing renormalized mKdV (A.3) in

the Fourier-Lebesgue spaces and proved, in the sense of sensible weak solutions, local well-

posedness and small data global well-posedness in FLp(T), 2 ≤ p <∞.4 On the one hand,

Molinet [41] applied the short-time Fourier restriction norm method and proved that the

solutions constructed in [31] are indeed distributional solutions. On the other hand, the

solutions outside L2(T) constructed in [30] are not yet known to be distributional solutions

at this point.

4The small data global well-posedness also applies to the focusing case. See Remark on p. 2217 in [30].
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We now state our result for the mKdV.

Theorem A.2. Let 2 ≤ p <∞.

(i) The global-in-time bound (1.21) in the modulation spaces M2,p(R) holds for any

Schwartz class solution u to the complex-valued mKdV (A.1) on R.

(ii) The global-in-time bound (1.22) in the Fourier-Lebesgue spaces FLp(T) holds for

any smooth solution u to the complex-valued mKdV (A.1) on T. In particular, the

same global-in-time bound (1.22) also holds any smooth solution u to the complex-

valued renormalized mKdV (A.3) on T.

On the circle, in view of the aforementioned local well-posedness (in the sense of sensi-

ble weak solutions) in the Fourier-Lebesgue spaces FLp(T), 2 ≤ p < ∞, in [30] and the

global-in-time bound (1.22) in Theorem A.2 (ii), one may be tempted to conclude global

well-posedness (in the sense of sensible weak solutions) of the real-valued defocusing renor-

malized mKdV (A.3), extending globally in time the sensible weak solutions constructed

in [30]. We, however, point out that the construction of the sensible weak solutions in [30]

is carried out through the Birkhoff coordinates and the local existence time is characterized

by the openness of the range of the Birkhoff map. In particular, the local existence time

in [30] is not given in terms of the size of initial data in an explicit manner and hence

we do not know how to conclude such global well-posedness (in the sense of sensible weak

solutions) of the real-valued defocusing renormalized mKdV (A.3) in FLp(T), 2 ≤ p <∞.

On the real line, there is no known local well-posedness in the modulation spaces M2,p(R),

p > 2, and hence the global-in-time bound does not lead to any global well-posedness at

this point. See Remark A.4 for a further discussion on this issue.

Theorem A.2 follows from a consideration analogous to the proof of Theorem 1.4 for the

cubic NLS but with one important difference. On the one hand, the Galilean symmetry (1.4)

played an important role in the proof of Theorem 1.4 for the cubic NLS. On the other hand,

it is known that the mKdV (A.1) does not enjoy the Galilean symmetry. Nonetheless, if

we define a Galilean transform Gβ, β ∈ R, by

uβ(x, t) = Gβ(u)(x, t) := e−iβxe2iβ
3tu(x− 3β2t, t), (A.4)

then a direct computation shows that if u is a solution to the mKdV (A.1), then v = Gβ(u)

satisfies the following mKdV-NLS equation:

∂tv = (−∂3xv ± 6|v|2∂xv) + 3β(−i∂2xv ± 2i|v|2v). (A.5)

Then, from the conservation of α(κ;u) in (1.14) for the mKdV flow and the cubic NLS

flow ([34, Propositions 4.3 and 4.4]), we conclude that α(κ;u) is also conserved under the

mKdV-NLS equation (A.5).

Lemma A.3. Let β ∈ R. For a Schwartz class solution u to the mKdV-NLS equation (A.5),

the quantity α(κ;u) defined in (1.14) is conserved, provided that κ > 0 is sufficiently large

such that the smallness condition (1.16) holds.

Once we have Lemma A.3 and observe that uβ = Gβ(u) in (A.4) satisfies

|ûβ(ξ, t)| = |û(ξ + β, t)|
(compare this with (3.3)), the global-in-time bounds (1.21) and (1.22) for the mKdV (A.1)

follow exactly in the same manner as in the proof of Theorem 1.4. Hence, we omit details.
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Remark A.4. There are local well-posedness results by Grünrock [23] and Grünrock-

Vega [26] on the modified KdV (A.1) in the Fourier-Lebesgue spaces on the real line. In

particular, it was shown in [26] that the mKdV (A.1) is locally well-posed in FLs,p(R) for

2 ≤ p < ∞ and s ≥ 1
2p . By taking p → ∞, we see that this yields local well-posedness

in almost critical Fourier-Lebesgue spaces. Unfortunately, our result does not allow us to

control the Fourier-Lebesgue norms on the real line and thus we do not know how to extend

the local-in-time solutions in [23, 26] globally in time at this point.

In terms of the modulation spaces M2,p
s (R), we recently proved local well-posedness of

the mKdV (A.1) for s ≥ 1
4 and 2 ≤ p < ∞ [48], thus extending the local well-posedness

in [32, 55].5 On the one hand, ḞL
1
4
,∞

(R) scales like Ḣ−
1
4 (R) and thus we may say that

M2,∞
1
4

(R) “scales like” Ḣ−
1
4 (R) in view of the embedding:

M2,p
s (R) ⊃ FLs,p(R)

for p ≥ 2. On the other hand, the M2,p
s (R)-norm is weaker than the FLs,p-norm and the

solution map to the mKdV (A.1) on R fails to be locally uniformly continuous in M2,p
s (R)

as soon as s < 1
4 . This is sharp contrast with the Fourier-Lebesgue case, where local well-

posedness was proved via a contraction argument even for some s < 1
4 [26]. Lastly, note

that a slight modification of the proof of Theorem A.2 then yields a global-in-time bound

in M2,p
s (R) for 2 ≤ p < ∞ and 1

4 ≤ s < 1 − 1
p , which yields global well-posedness of the

mKdV (A.1) in the same range. See Theorem B.1 below. Combining this global-in-time

bound and a persistence-of-regularity argument, we proved global well-posedness of the

mKdV (A.1) in M2,p
s (R) for s ≥ 1

4 and 2 ≤ p <∞. See [48] for details.

Remark A.5. As in the case of the cubic NLS, the Dirac delta function plays a special

role for the mKdV. On the one hand, there is an existence result for the mKdV (A.1) on

R with the Dirac delta function (with a small multiplicative constant) as initial data [49].

On the other hand, via a scaling analysis, one can easily see that continuous dependence

must fail at the Dirac delta function in the FLs,p(R)- and M2,p
s (R)-topologies for sp < −1.

See also [3] for an analogous ill-posedness at the Dirac delta function in the periodic case

(in the focusing case).6

Remark A.6. In the following, we briefly discuss an alternative proof of the global-in-

time bounds (1.21) and (1.22) in Theorems 1.4 and A.2. This alternative approach has

been brought to our attention by R. Killip. The main idea is to consider α(κ;u) in (1.14)

with a complex number κ ∈ C. Then, we have the following statements.

5See also a recent preprint [10] for analogous local well-posedness of (A.1), including p =∞.
6While the argument in [3] is carried out in Hs(T), it can be easily adapted to the Fourier-Lebesgue

setting FLs,p(T), sp < −1. We also point out that their result in the defocusing case (Theorem 6.3) seems
to be incorrect. In particular, the proof of Theorem 6.2 contains an error; the sech function in the proof
needs to be replaced by the csch function, which causes a breakdown of the proofs of Theorems 6.2 and 6.3.
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Lemma A.7. For κ ∈ C with Reκ > 0 and u ∈ S(R), we have

Re tr
{

(κ− ∂x)−1u(κ+ ∂x)−1u
}

=

ˆ
2(Reκ)|û(ξ + 2 Imκ)|2 dξ

4(Reκ)2 + ξ2
,

∥∥(κ− ∂x)−
1
2u(κ+ ∂x)−

1
2

∥∥2
I2(R)

∼
ˆ

log
(
4 + ξ2

(Reκ)2

) |û(ξ + 2 Imκ)|2 dξ√
4(Reκ)2 + ξ2

.

Moreover, for a Schwartz class solution u to the cubic NLS (1.1) or the mKdV (A.1), the

quantity α(κ;u) is conserved, provided that Reκ > 0 is sufficiently large such that

ˆ
R

log
(
4 + ξ2

(Reκ)2

) |û(ξ + 2 Imκ)|2√
4(Reκ)2 + ξ2

dξ ≤ c0

for some absolute constant c0 > 0.

Here, we stated the results only on the real line but similar statements hold on the circle.

Once we have Lemma A.7, we may use α(12 + in2 ;u) instead of α(12 ;un) in (3.4), where un
is defined in (3.2). In particular, this allows us to proceed and establish the global-in-time

bounds (1.21) and (1.22) without using the Galilean symmetry (1.4) for the cubic NLS (1.1)

and the Galilean transform (A.4) for the mKdV (A.1).

Appendix B. Controlling the modulation and Fourier-Lebesgue norms of

higher regularities

In this appendix, we briefly discuss how to derive the following global-in-time bounds on

the modulation and Fourier-Lebesgue norms of higher regularities.

Theorem B.1. Let 2 ≤ p <∞ and 0 ≤ s < 1− 1
p .

(i) There exists C = C(p) > 0 such that

‖u(t)‖
M2,p
s (R) ≤ C(1 + ‖u(0)‖

M2,p
s (R))

p
2
−1‖u(0)‖

M2,p
s (R)

for any Schwartz class solution u to the cubic NLS (1.1) or the mKdV (A.1) on R
and any t ∈ R.

(ii) There exists C = C(p) > 0 such that

‖u(t)‖FLs,p(T) ≤ C
(
1 + ‖u(0)‖FLs,p(T)

) p
2
−1‖u(0)‖FLs,p(T)

for any smooth solution u to the cubic NLS (1.1) or the mKdV (A.1) on T and any

t ∈ R.

One may use a differencing technique as in Section 3 of [34] to establish global-in-time

bounds for higher values of s but we do not pursue it in this paper. It is worthwhile to note

that when p = 2, Theorem B.1 yields global-in-time control on the Hs-norm of a solution

for 0 ≤ s < 1
2 without using a differencing technique. Compare this with Section 4 of [34],

where their argument (without a differencing technique) yields global-in-time control for

−1
2 ≤ s < 0.
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In order to prove Theorem B.1, we first introduce the following modulated Sobolev space

MHθ,p
s (R) with a weight by the norm:

‖f‖
MHθ,p

s (R) =

(∑
n∈Z
〈n〉sp‖Mnf‖pHθ

) 1
p

=

(∑
n∈Z
〈n〉sp‖〈ξ − n〉θf̂(ξ)‖p

L2
ξ

) 1
p

,

where Mn is the modulation operator defined in (1.12). On the circle, we define MHθ,p
s (T)

in an analogous manner. Then, we have the following equivalence of the norms.

Lemma B.2. Let s ≥ 0 and θ + s < −1
2 . Then, we have

‖f‖
MHθ,p

s
∼ ‖f‖

M2,p
s

with the understanding that M2,p
s (T) = FLs,p(T) on the circle.

The proof of Lemma B.2 is analogous to that of Lemma 1.2 and thus we omit details.

In the following, we only consider the cubic NLS (1.1) on the real line case and indicate

where a modification appears in proving Theorem B.1 (i). Since the s = 0 case is already

contained in Theorems 1.4 and A.2, we restrict our attention to s > 0.

In view of Lemma B.2 with θ = −1, we only need to control the following quantity:∥∥∥∥〈n〉2sα(un(t))− 〈n〉2s
ˆ
R

|ûn(ξ, t))|2

1 + ξ2
dξ

∥∥∥∥
`
p
2
n

for t ∈ I, where I is the time interval used in the proof of Proposition 3.1. Proceeding as

in (3.6), we have∥∥∥∥〈n〉2sα(un(t))− 〈n〉2s
ˆ
R

|ûn(ξ, t))|2

1 + ξ2
dξ

∥∥∥∥
`
p
2
n

.

∥∥∥∥〈n〉s ˆ
R

|û(ξ, t)|2

〈ξ − n〉1−2δ
dξ

∥∥∥∥2
`pn

∼
∥∥∥∥∑
k∈Z

〈n〉s

〈k − n〉1−2δ〈k〉2s
· 〈k〉2s‖û(ξ, t)‖2L2

ξ(Ik)

∥∥∥∥2
`pn

(B.1)

for any t ∈ I. When 〈k〉 & 〈n〉, we apply Young’s inequality as in (3.6) and obtain

LHS of (B.1) .

∥∥∥∥∑
k∈Z

1

〈k − n〉1−2δ
· 〈k〉2s‖û(ξ, t)‖2L2

ξ(Ik)

∥∥∥∥2
`pn

. ‖u(t)‖4
M2,p
s

(B.2)
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for s > 0, by choosing δ = δ(p) > 0 sufficiently small. When 〈k〉 � 〈n〉, it follows from

Young’s and Hölder’s inequalities: 1
p + 1 = 1

q + (1r + 2
p) that

LHS of (B.1) .

∥∥∥∥∑
k∈Z

1

〈k − n〉1−2δ−s
· 1

〈k〉2s
· 〈k〉2s‖û(ξ, t)‖2L2

ξ(Ik)

∥∥∥∥2
`pn

≤
∥∥∥∥ 1

〈n〉1−2δ−s

∥∥∥∥2
`qn

∥∥∥∥ 1

〈n〉2s

∥∥∥∥2
`rn

‖u(t)‖4
M2,p
s

. ‖u(t)‖4
M2,p
s
, (B.3)

provided that (i) 1−2δ−s > 1− 1
p −

1
r , (ii) 1

r + 2
p ≤ 1, and (iii) r > 1

2s . When s ≤ 1
2 −

1
p , by

choosing 1
r = 2s− and δ > 0 sufficiently small, we see that all the conditions (i) - (iii) are

satisfied. When s > 1
2−

1
p , by choosing 1

r = 1− 2
p and δ > 0 sufficiently small, the conditions

(i) - (iii) are satisfied for 2 ≤ p < ∞ and 1
2 −

1
p < s < 1 − 1

p . Therefore, putting the two

cases together, we conclude that the estimate (B.3) holds for 2 ≤ p <∞ and 0 < s < 1− 1
p .

Once we have (B.2) and (B.3), we can proceed as in the proof of Proposition 3.1, with

Lemma B.2 in place of Lemma 1.2. The proof for the periodic case follows in a similar

manner.
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[6] Á. Bényi, T. Oh, Modulation spaces with scaling symmetry, arXiv:1806.08587 [math.FA].
[7] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to

nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156.
[8] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to

nonlinear evolution equations II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209–262.
[9] N. Burq, P. Gérard, N. Tzvetkov, An instability property of the nonlinear Schrödinger equation on Sd,

Math. Res. Lett. 9 (2002), no. 2-3, 323–335.
[10] M. Chen, B. Guo, Local well and ill posedness for the modified KdV equations in subcritical modulation

spaces, arXiv:1811.05182 [math.AP].
[11] M. Christ, Power series solution of a nonlinear Schrödinger equation, Mathematical aspects of nonlinear

dispersive equations, 131–155, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007.
[12] M. Christ, J. Colliander, T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness

for canonical defocusing equations, Amer. J. Math. 125 (2003), no. 6, 1235–1293.
[13] M. Christ, J. Colliander, T. Tao, Instability of the periodic nonlinear Schrödinger equation,

arXiv:math/0311227v1 [math.AP].
[14] M. Christ, J. Colliander, T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations,

arXiv:math/0311048 [math.AP].



GWP OF THE 1-d CUBIC NLS IN ALMOST CRITICAL SPACES 25

[15] M. Christ, J. Colliander, T. Tao, A priori bounds and weak solutions for the nonlinear Schrödinger
equation in Sobolev spaces of negative order, J. Funct. Anal. 254 (2008), no. 2, 368–395.

[16] M. Christ, J. Holmer, D. Tataru, Low regularity a priori bounds for the modified Korteweg-de Vries
equation, Lib. Math. (N.S.) 32 (2012), no. 1, 51–75.

[17] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Sharp global well-posedness for KdV and
modified KdV on R and T, J. Amer. Math. Soc. 16 (2003), no. 3, 705–749.

[18] J. Colliander, T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below
L2(T), Duke Math. J. 161 (2012), no. 3, 367–414.
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[34] R. Killip, M. Vişan, X. Zhang, Low regularity conservation laws for integrable PDE, Geom. Funct.

Anal. 28 (2018), no. 4, 1062–1090.
[35] N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical

regularity, Differential Integral Equations 22 (2009), no. 5-6, 447–464.
[36] N. Kishimoto, A remark on norm inflation for nonlinear Schrödinger equations, Commun. Pure Appl.

Anal. 18 (2019), no. 3, 1375–1402.
[37] H. Koch, D. Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res.

Not. IMRN 2007, no. 16, Art. ID rnm053, 36 pp.

[38] H. Koch, D. Tataru, Energy and local energy bounds for the 1-d cubic NLS equation in H−
1
4 , Ann. Inst.
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Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 64 (2018), no. 1, 53–84.

[47] T. Oh, Y. Wang, Normal form approach to the one-dimensional periodic cubic nonlinear Schrödinger
equations in almost critical Fourier-Lebesgue spaces, J. Anal. Math. (2020), in press.

[48] T. Oh, Y. Wang, On global well-posedness of the modified KdV equation in modulation spaces,
arXiv:1811.04606 [math.AP].

[49] G. Perelman, L. Vega, Self-similar planar curves related to modified Korteweg-de Vries equation, J.
Differential Equations 235 (2007), no. 1, 56–73.

[50] M. Ruzhansky, M. Sugimoto, J. Toft, N. Tomita, Changes of variables in modulation and Wiener
amalgam spaces, Math. Nachr. 284 (2011), no. 16, 2078–2092.

[51] N. Sasa, J. Satsuma, New-type of soliton solutions for a higher-order nonlinear Schrödinger equation,
J. Phys. Soc. Japan 60 (1991), no. 2, 409–417.

[52] M. Sugimoto, N. Tomita, The dilation property of modulation spaces and their inclusion relation with
Besov spaces, J. Funct. Anal. 248 (2007), no. 1, 79–106.

[53] C. Sulem, P.L. Sulem, The nonlinear Schrödinger equations: Self-focusing and wave collapse, Applied
Mathematical Sciences, 139. Springer-Verlag, New York (1999) 350 pp.

[54] H. Takaoka, Y. Tsutsumi, Well-posedness of the Cauchy problem for the modified KdV equation with
periodic boundary condition, Int. Math. Res. Not. 2004, no. 56, 3009–3040.

[55] T. Tao, Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equa-
tions, Amer. J. Math. 123 (2001), 839–908.

[56] Y. Tsutsumi, L2-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac.
30 (1987), no. 1, 115–125.

[57] A. Vargas, L. Vega, Global wellposedness for 1D non-linear Schrödinger equation for data with an
infinite L2 norm, J. Math. Pures Appl. 80 (2001), no. 10, 1029–1044.

[58] V.E. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-
modulation of waves in nonlinear media, Soviet Physics JETP 34 (1972), no. 1, 62–69.; translated from
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