
 
 

University of Birmingham

On the transient planar contact problem in the
presence of dry friction and slip
Gurrutxaga Lerma, Benat

DOI:
10.1016/j.ijsolstr.2020.02.031

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Gurrutxaga Lerma, B 2020, 'On the transient planar contact problem in the presence of dry friction and slip',
International Journal of Solids and Structures, vol. 193-194, pp. 314-327.
https://doi.org/10.1016/j.ijsolstr.2020.02.031

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 02. May. 2024

https://doi.org/10.1016/j.ijsolstr.2020.02.031
https://doi.org/10.1016/j.ijsolstr.2020.02.031
https://birmingham.elsevierpure.com/en/publications/e7501494-a555-451d-9607-5802ea4c7fd3


ON THE TRANSIENT PLANAR CONTACT PROBLEM IN THE PRESENCE OF DRY

FRICTION AND SLIP

B. GURRUTXAGA-LERMA

School of Metallurgy and Materials, University of Birmingham, B15 2SE Edgbaston, Birmingham, UK

Abstract. This article models a plane strain dynamic contact problem for an infinite elastic body. Contact
is established for x > 0 under the action of a time-dependent remote compressive load, and the system

is subjected to a time-dependent remote tangential load. The two faces of the contact interface can slide

relative to one other to accommodate mismatches between the shear stresses and the existing Coulomb
friction. This is shown to be a cause of interfacial waves of slip, which this article models by deriving the

general expression for the corrective traction due to an arbitrary slip distribution. This is achieved using

a variant of the Wiener-Hopf technique. Combined with existing closed-form expressions for the interfacial
tractions due to compressive and shear loads, this enables the formulation of the elastodynamic extension

to the stick-and-slip problem of the Cattaneo-Mindlin type. Exploiting self-similarity a simple numerical

algorithm is detailed for solving the resulting Volterra integral equations of the first kind. The solution is
shown to display a number of features entirely missed in static problems: slip waves are shown to exist

irrespective of the magnitude of the applied loads and the friction coefficient; a regime of reverse and forward

slip is also shown to exist for low friction coefficients, brought about by the interfacial Rayleigh waves. The
practical implications of these solutions are discussed.

1. Introduction

This article concerns the fundamental solution to the planar elastodynamic contact problem between two
elastically similar bodies subject to friction and slip. By elastodynamic contact, we mean contact where the
time-dependencies involved in the transmission of loads and displacements are fully accounted for. These time-
dependencies are brought about by the internal inertial forces acting in any material with mass, and manifest
themselves as elastic waves that propagate at the material’s speeds of sound, i.e., over finite timescales.
Because the speeds of sound in most solids typically exceed 1000m/s[1], ‘dynamic’ or ‘elastodynamic’ contact
of this sort is relevant over short timescales or when the representative time and lengthscales are comparable
to the material’s speeds of sound. This may be the case when the contacting bodies endure loading transients,
that is to say, when the loading (or the loading rate) changes quickly over short periods of time. Under such
circumstances, the contact interface may be subjected to rapidly varying time-dependent loads that deviate
considerably from the static, time-independent considerations that govern the classical problems of contact
mechanics (see [2, 3]).

Owing to the inherent complexities of contact mechanics in general, and of elastodynamics in particular,
the study of elastodynamic contact in the presence of friction has received considerably less attention than
it ought to. Indeed, there exist a considerable number of practical applications where loading transients
affect contacting interfaces. Such situations are found in the bearings of rotating machinery (e.g., gas turbine
shaft bearings[4, 5, 6, 7] or wind turbine shafts[8, 9]) and small devices[10, 11]; in structural applications
involving vibrations[12, 13, 14, 15, 16]; or in brakes, where dynamic contact is involved in frictional induced
vibrations[17, 18]. In all these applications, the loads at the contact interface can vary quickly in time, and
the conventional contact conditions that are known to dominate the steady state response (q.v.[2, 3]) need
to be re-examined under fully time-dependent, inertial considerations.

Problems involving planar moving contact in the absence of friction have been the subject of much work in
the past[2]. A number of noteworthy solutions include Galin’s study of the moving punch on a half-space[19],
and Thompson and Robinson’s[20] solution for the transient motion of a wedge-like uniformly moving indenter
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(see also [21, 22, 23, 24]), which effectively extend Hertzian contact problems to fully inertial settings[25, 26].
This approach has proven particularly useful in studying the role inertial forces may play in kinetic sliding
contacts under plane strain[27, 28], revealing the role the Rayleigh wave speed and the speeds of sound play
in the possibility of trans and supersonic sliding[24]. A number of studies accounting for the effect of friction
also exist. Building on the frictionless family of problems, Brock[29, 22, 30] and Brock and Georgiadis[31, 32]
introduced Coulombian friction to the study of uniformly driven wedge indentation problems, focusing on
the effect dry friction had in the singularities arising in the interfacial tractions. Similar problems involving
uniformly moving round indenters subjected to linear friction were studied by Borodich and Gomatam[33].

Furthermore, the study of the transient response of contacting bodies with (and without) friction has
a considerable corpus of work devoted to studying the instabilities affecting the contact interface under
dynamic loading. Rather than seeking explicit transient solutions, these studies aim at studying the ill-
posedness of the problem using stability analysis[34, 35, 36, 37]. Early insights from this approach focused
on frictionless studies, such as those by Achenbach and Epstein[38], who considered planar interfaces excited
by free time-harmonic waves, or by Comninou and Dundurs [39], who studied interfacial separation along
bimaterial interfaces. Subsequent studies of this sort, such as those by Renardy [40] and Martins et al. [41]
extended the approach to account for the presence of friction, showing that large frictional coefficients favoured
instabilities. Weertman [42], in analysing through perturbative approaches the effect a traveling distribution
of dislocations would have on the shear and normal interfacial tractions, found that self-sustained slip pulses
were possible even in the presence of Coulombian-like friction. These pulses were linked to the Schallamach
waves[43], i.e., the waves of detachment observed in the slip of rubber; similar waves of detachment have
also been observed along geological interfaces[44, 45, 46, 47]. Finally, in studying the stability of the steady
state solution to the planar contact between two dissimilar materials, Adams [48] showed the existence of
the so-called Adams instabilities, which can lead to separation and waves of stick and slip.

This article aims to extend the existing corpus of explicit elastodynamic solutions, in an attempt to gen-
eralise the classical ‘stick-and-slip’ Cattaneo-Mindlin[49, 50] style contact problems to fully time-dependent
settings. In this family of problems, a normal and a tangential load are applied over two contacting bodies.
Because tangential loads can only be transmitted across the interface via frictional forces, a frictional force
is required to act along the interface,[2] usually under the assumption that Amontons’ law (cf.[51]) holds.
In order to accommodate imbalances between the normal and tangential interfacial tractions, it is possible
that the interface itself be allowed to slip, i.e., undergo a shear deformation. To that end, the traditional
Cattaneo-Mindlin style approach introduces a ‘corrective’ interfacial traction generated by the distribution of
slip[3], the description of which can be provided in a number of ways, including as a continuous distribution of
straight dislocations (see for instance [52, 53, 54]). In [55], the author discussed how to express the interfacial
shear slip of an antiplanar contact subjected to inertial loads as a distribution of Burgers vectors. In so doing,
the contact problem was shown to resemble the classical Cattaneo-Mindlin[49, 50] problem, but owing to the
time dependencies implied by the inherently transient, elastodynamic contact loads, the problem could only
be solved numerically to highlight the presence of a regime of transient forward and reverse slip.

This article focuses on the non-trivial planar case, by which we mean the case when the normal and
tangential loads are co-planar with the normal vector of the contact interface. Thus, this article is structured
as follows. Section 2 describes the general characteristics of the elastodynamic planar contact problem,
highlighting the need to describe the interfacial shear tractions due to a remote load and due to an unknown
slip distribution. The interfacial normal and tangential tractions problem due to remote loading have well-
known [56, 57, 58] solutions, which are briefly outlined in section 3. The interfacial shear traction problem
due to a slip distribution is solved in section 4 by deriving the fundamental solution for the relevant problem.
Section 5 provides the full governing equation and outlines a numerical method for its solution, which is
solved in section 6. Section 7 closes this article with its concluding remarks.

2. Constitutive hypotheses

We will consider the system depicted in figure 1, comprising of two elastically similar infinite bodies of
Lamé parameter λ, shear modulus µ and density ρ. The infinite body is loaded by remote normal P and
shear Q loads, which will trigger compressive and shear waves at the contact interface, defined for x > 0. The
part of the bodies not in touch (x < 0) forms in effect a mode I/mode II elastodyamic crack. The two sides
of the contact interface can slip relative to each other when shear stresses reach the Coulomb limiting value.
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I. λ, µ, ρ

II. λ, µ, ρ
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Figure 1. Schematic of the contact problem under consideration. The problem consists of
two elastically similar bodies, I and II, of Lamé parameter λ, shear modulus µ and density
ρ. The two bodies are semi-infinite half planes. Contact is established on the x > 0 line as
a result of the action of the remote normal load P . This entails a normal contact traction
along the contact interface, and as a result a frictional force acting in the shearing direction.

In the sequel, the slip velocity will be assumed to be sufficiently small for the sliding to remain subcritical
(cf.[24]).

Contact is established through the mediation of the remote normal load P , and under the presence of a
remote tangential load Q. Each induce, respectively, a distributed normal traction p(x, t) and a distributed
shear traction q(x, t) along the contact interface, which propagate along the interface in the form of waves.
Hereafter, we shall assume that both loads are uncoupled. This means that the main role of the normal load,
P is to ensure that the two interfaces remain in contact throughout. However, the normal tractions induce
no slip along the contact interface and, therefore, in the absence of an external shear traction the normal
load is on its own unable to induce any kind of shear traction at the interface, so that the interface would
remain in conditions of perfect stick.

If both a normal and a shear traction are applied, the shear traction can only be transmitted across the
interface via frictional forces[2, 3]. These frictional forces arise in opposition to the applied shear traction
and the relative motion of the interface, for otherwise friction would not be dissipative. In the following,
we shall assume that the frictional forces obey Coulomb’s law, which is to say, they are proportional to the
normal load via a friction coefficient f [3]:

(2.1) Ffrict(x, t) = −fsign(f)p(x, t) = −f u̇(x, t)

|u̇(x, t)|
p(x, t)

where f is the coefficient of friction, which we shall assume is constant, and u̇(x, t) is the relative tangential
speed of the interfacial point x at time t. Although considerations involving the potential velocity dependence
of the friction coefficient itself would be pertinent in some applications (see for instance [59, 60]), these would
require more complex numerical approaches; hence this study focuses on the Coulombian frictional case alone.

In principle, the shear traction must be accommodated by the frictional force. This is because the role of
the frictional force is to ensure the transmission of the shear traction. However, due to the specificities of the
loading conditions and of the frictional forces at the interface, it is possible that the frictional force and the
shear tractions arising due to the external loading not balance one another. In that case, the interface will
tend to slip locally until the force balance is restored. Thus, we have a clear-cut distinction in the interfacial
force balance at the contact interface, depending on whether the interface is a region of stick or a region of
slip:

• In a stick region, |q(x, t)|≤ Ffrict(x, t), and u̇(x, t) = 0.
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• In a slip region, |q(x, t)|= Ffrict(x, t) and u̇(x, t) ≶ 0.

where hereafter we will denote the (in-plane) displacement vector ui(x, t) through its cartesian components
u(x, t) ≡ ux(x, t) and v(x, t) ≡ uy(x, t) for the horizontal and vertical displacement components, respectively.
Equally, the slip velocity u̇i(x, t) components are denoted with u̇(x, t) and v̇(x, t), respectively. We seek to
provide an expression for the interfacial loads at play. This is done in sections 3 and 4. In finding s(x, t), we
shall be able to describe the way the interface slips, as well as the spatial bounds of the region of slip. We
shall by default define the compressive normal load as positive.

3. Traction distribution due to the normal and tangential loads

The system is subjected to a remote normal load P and to a remote tangential load Q. We shall first
assume that P and Q are independent from one another, and that the time dependent and spatially dependent
parts can be separated, i.e., that P = P (x)n(t) and Q = Q(x)s(t). The normal load induces a certain
distribution of normal tractions p(x, t); the tangential load induces a certain distribution of shear tractions
q(x, t). Expressions for both such loads are available in the general literature[58, 61, 56].

3.1. General displacements due to point loads acting on the interface. In the interest of mirroring
the development of the classical Cattaneo-Mindlin problem (see [2, 3] for modern accounts), we will first
state the elastodynamic displacement fields due to the action of a normal point force Fy and tangential shear
force Fy on an elastic body. These displacement fields stand in direct analogy to the Flamant solutions[2] in
elastostatics, and were originally deduced by Lamb[62]. Here, we reproduce the displacement field components
acting along a flat surface. More complete versions of the Lamb solutions are collected by Eringen in
[1],pp.614-618.

Thus, we have that [1]

(3.1) ux(x, t) = −Fysign(x)

[
2b2

πµ
U2

(
t

x

)
−Kδ

(
t− |x|

cR

)]
+ Fx

b2

πµ

1

|x|
U1

(
t

x

)

(3.2) uy(x, t) = Fy
b2

πµ

1

|x|
V2

(
t

x

)
+ Fxsign(x)

[
2b2

πµ
V1

(
t

x

)
+Kδ

(
t− |x|

cR

)]
where a = 1/cl and b = 1/ct are the longitudinal and transverse slownesses of sound, respectively, and cl,
ct and cR, the longitudinal and transverse speeds of sound, and the Rayleigh wave speed, respectively; and
where

U1(u) =


−

√
u2−b2

(b2−2u2)2−4u2
√
u2−a2

√
u2−b2 u > b

4u2(b2−u2)
√
u2−a2

(b2−2u2)4+16u4(u2−a2)(b2−u2) a < u < b

0 otherwise

V1(u) =

{
− |u|(2u2−b2)

√
u2−a2

√
b2−u2

(b2−2u2)4+16u4(u2−a2)(b2−u2) a < u < b

0 otherwise

U2(u) = −V1(u)

V2(u) =

{
− (b2−2u2)2

√
u2−a2

(b2−2u2)4+16u4(u2−a2)(b2−u2) a < u < b

−
√
u2−a2

(b2−2u2)2−4u2
√
u2−a2

√
u2−b2 u > b

and

K = b2
2(cRb)

2 − 1

µcRχR
where u = t/x and χR is given in the Appendix.

For simplicity, it is useful to define planar half-space Green’s function Gij(x, t), with components:

G11(x, t) =
b2

πµ

1

|x|
U1

(
t

x

)
, G12(x, t) = −sign(x)

[
2b2

πµ
U2

(
t

x

)
−Kδ

(
t− |x|

cR

)]

(3.3) G21(x, t) = sign(x)

[
2b2

πµ
V1

(
t

x

)
+Kδ

(
t− |x|

cR

)]
, G22(x, t) =

b2

πµ

1

|x|
V2

(
t

x

)
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3.2. Displacement field due to a distributed load on the interface. The Lamb solutions can be em-
ployed to express the displacement fields due to general distributed loads. Let p(x, t)×q(x, t) be a compactly
supported distributed traction acting on a planar interface, with support A(t) = {(x, t) ∈ R2 : p(x, t) 6= 0},
and p(x, t) the normal component, q(x, t) the tangential component. Then the following representation
formula provides the displacement field acting along the interface as

ux(x, t) =

∫
A(t′)

G11(x− x′, t− t′)p(x′, t′) +G12(x− x′, t− t′)q(x′, t′)dx′dt′,(3.4)

uy(x, t) =

∫
A(t′)

G21(x− x′, t− t′)p(x′, t′) +G22(x− x′, t− t′)q(x′, t′)dx′dt′,(3.5)

As in the static problem, we seek to describe the contact surface via its displacement gradient,

(3.6)
∂uy
∂x

=

∫
A(t′)

[
∂G21

∂x
(x− x′, t− t′)p(x′, t′) +

∂G22

∂x
(x− x′, t− t′)q(x′, t′)

]
dx′dt′

Unfortunately, in this case the convolution does not result in kernels as simple it does in the static case
(q.v.[2]).

3.3. Statement of the general problem. The pressure distribution on a planar interface would set

(3.7)
∂uy
∂x

= 0

Say contact begins at t = 0 and is established only over the positive real line x > 0:

(3.8)

∫ t

0

∫ ∞
0

[
∂G21

∂x
(x− x′, t− t′)p(x′, t′) +

∂G22

∂x
(x− x′, t− t′)q(x′, t′)

]
dx′dt′ = 0

We presume that the interface remains fully stuck, so that:

(3.9)
∂ux
∂t

= 0

The combination of the equations 3.8 and 3.9 provides a complete account of the solution to the elastodynamic
solution to the fully stuck contact problem.

3.4. Normal loading. As stated above, here we assume that the normal and tangential tractions are fully
uncoupled. Contact is established by the application of a remote normal load P . At the contact interface,
this results in a normal traction distribution p(x, t) given by the normal traction acting along the crack path
of a mode I quiescent crack subjected to some remote loading P . In principle, this problem could be solved by
setting q(x, t) = 0 and solving equation 3.8. Given the inherent complexity of the elastodynamic convolution
kernels, it is simpler to regard this problem from the viewpoint of fracture, where it represents the sudden
loading of a mode I crack with the crack tip located on x = 0, and the crack faces on x < 0. This problem is
the main concerns of dynamic fracture, and a full account of its solution procedure can be found for instance
in Freund[58] or Broberg[61].

If the remote load is sudden and spatially homogeneous, P (x, t) = P0H(t), Freund[58] showed using
the Wiener-Hopf technique that the interfacial normal traction along the path of a mode I crack (and, by
extension, along our contact interface) is given by:

(3.10) p(x, t) = P0 −
1

πx

∫ t

ax

Im
[
Σ+

(
−τ
x

)]
dτH(t− ax)

where a = 1/cl is the longitudinal slowness of sound, b = 1/ct the transverse slowness of sound, and

(3.11) Σ+(k) =
P0

k

(
F+(0)

F+(k)
− 1

)
, F+(k) =

√
a+ k

(c+ k)S+(k)
,

where c = 1/cR is the inverse of the Rayleigh wave speed cR, and

(3.12) lnS+(k) = − 1

π

∫ b

a

1

u+ k
arctan

[
4u2
√
u2 − a2

√
b2 − u2

(b2 − 2u2)2

]
du
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P
0

p
(x
,t
)

1.0

1.2

1.4

1.6

(a) Normal interfacial traction.

Q
0

q
(x
,t
)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

(b) Tangential interfacial traction.

Figure 2. Temporal evolution of the normal and shear tractions due to a suddenly applied
remote normal and tangential suddenly applied loads.

Equation 3.10 provides a full field, closed-form solution to the interfacial elastodynamic normal traction.
It is nevertheless possible to examine the asymptotic near field, where the solution is reduced to[58]:

(3.13) p(x, t) ≈ KI(t)√
2πx

, KI(t) =
2P0

√
(1− 2ν)t

(1− ν)
√
πa

The 1/
√
x singularity at the edge of the contact zone is similar to the one present in the asymptotic contact

problems concerning similar geometries[63, 64].

3.5. Tangential loading. The tangential loading concerns the application of a remote tangential load
Q(x, t), which induces an interfacial tangential load q(x, t). If we assume that the contact interface remains
fully stuck so that |q(x, t)|≤ fp(x, t), then the stick condition that ∂tux(x, t) = 0 leads to∫ t

0

∫ ∞
0

∂2G21

∂t∂x
(x− x′, t− t′)q(x′, t′)dx′dt′ = 0

is satisfied. The combination of the stick condition ∂tux(x, t) = 0 and the remote loading is equivalent
to the loading conditions found in a mode II quiescent (non-propagating) dynamic crack subject to some
remote loading Q(x, t). This problem is also agreeable to a fully closed-form solution, which may be found
in Freund[58], sec.2.6. The interfacial tangential load q(x, t) is given by:

(3.14) q(x, t) = Q0 −
1

πx

∫ t

ax

Im
[
T+

(
−τ
x

)]
dτH(t− ax)

where in this case

(3.15) T+(k) =
Q0

k

(
G+(0)

G+(k)
− 1

)
, G+(k) =

√
b+ k

(c+ k)S+(k)
,

where S+(k) is given by eqn.3.12.
As in the normal case, an asymptotic near field solution may be given, expressed in terms of a dynamic

stress intensity factor KII(t):

(3.16) q(x, t) ≈ KII(t)√
2πx

, KII(t) =
2Q0

√
2t√

(1− ν)πb

Again, the asymptotic solution presents the expected 1/
√
x singularity at the edge of the contact zone.

3.6. Qualitative discussion of the elastodynamic contact problem. The solutions discussed in sections
3.4 and 3.5 can be interpreted as deviations from a steady state behaviour: if the loads are changed, then the
waves entailed by eqns.3.10 and eqns.3.14. It is therefore possible to model the time dependencies involved in
the elastodynamic contact problem by uncoupling the static behaviour from the time-dependent behaviour,
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and if required superposing them both. Thus, in the sequel only the time-dependencies involved in the contact
problem (i.e., the integrals in eqns.3.10 and 3.14) will be studied.

The asymptotic near fields of both the normal and shear tractions display a 1/
√
x singularity at the origin,

the magnitude of which increases over time with
√
t. However, the near fields do not propagate away from

the crack tip, so they appear unsuitable for the purposes of studying the elastodynamic contact problem:
both the shear and normal load would act instantaneously everywhere along the contact interface, which
defeats the point of an elastodynamic treatment. The reasons for this may be found in figures 2a and 2b,
which show, respectively, the time evolution of the full solution to the p(x, t) and q(x, t) loads. As can seen,
both solutions are 1/

√
x singular at the origin, but the normal load p(x, t) propagates at the longitudinal

speed of sound, whereas the tangential load q(x, t) propagates at the slower transverse speed of sound.

3.6.1. Stick and slip. For contact to be established, it is necessary that the normal load be applied. We will
assume that remote normal load is applied suddenly and homogeneously, i.e., that is of the form P = P0H(t).
In so doing, the interfacial normal traction is given by eqn.3.10, and will comprise a two-wave structure, with
a longitudinal head wave propagating away from the edge of the contact zone, followed by a slower transverse
wave component (see fig.2a).

Imagine that concurrently with the normal load, an additional tangential load is applied on the material,
and that is also of the form Q = Q0H(t). Irrespective of the magnitude (and indeed, irrespective of the
form) of the tangential load, any interfacial traction arising from the remote tangential load will necessarily
propagate only at the transverse speed of sound. This means that in the spatial strip defined by the head
wave, given by x ∈ [tcl, tct], ∀t > 0, only the normal traction (which is non-singular in this region, as may be
seen in fig.2a), has sufficient time to influence the interface.

As a result, the regions touched by the head wave will always remain trivially in full stick, because
q(x, t) = 0. It also follows that at any time, slip is only possible for x ∈ [0, tcl]. Stick is guaranteed so long
as |q(x, t)|≤ fp(x, t). In considering the asymptotic form of p(x, t) and q(x, t), we can infer that owing to the
magnitude of the singularities at the edge of the contact interface, it is not necessarily the case that p(x, t)
and q(x, t) will cancel one another. In particular, the near field, we ought to would expect a fully stuck
solution so long as

(3.17) KII(t) ≤ fKI(t)

which is a condition analogous to the one found by Dini and Hills for the similar static near field[63]. The
relation

(3.18)
a

b
=

√
1− 2ν√

2
√

1− ν
,

enables us to rewrite eqn.3.17 as

(3.19) Q0 ≤ fP0 =⇒ χ =
fP0

Q0
≥ 1

where χ is defined for convenience.
It is not immediately obvious that the asymptotic condition χ ≥ 1 will be identically satisfied in the far

field, owing to the fact that in the far field p(x, t) and q(x, t) are subjected to changes in sign relative to the
base level. Hence, there is room for local slip in the far field, which travels in wave form. These region of local
slip will be discussed in the sequel. We must also stress that the conditions of slip will be heavily dependent
on the way the remote loading is applied. In the following, we shall always assume that the contact is applied
as a result of a sudden shock load, whereby P = Q = 0 for t < 0, and P = P0, Q = Q0 for t > 0. This is done
in the interest of space, since there are infinitely many ways a steady state load of magnitude P0 (or Q0)
may be reached when time is an explicit field variable. More complex time-dependent loading is nevertheless
possible (e.g., the ramp loading considered in [55]). In the event the remote loading can be expressed as the
product of a time dependent function P = P0f(t), Q = Q0g(t), then the ensuing interfacial tractions (call
them p∗(x, t) and q∗(x, t)) can simply be obtained as time convolutions of the result we have presented here,
as

(3.20) p∗(x, t) = 〈P0∂tf(t), p(x, t)〉, q∗(x, t) = 〈Q0∂tg(t), q(x, t)〉

where 〈, 〉 denotes convolution. The rest of considerations we laid out here would remain largely unchanged.
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In the current shock loading scenario, if the remote load Q0 is sufficiently large and χ < 1, however, there
is no question that the interface will have to slip so as to be able to satisfy the slip condition that |q(x, t)|=
fsign(u̇(x, t))p(x, t). The magnitude of this relative slip can be calculated by introducing a corrective shear
strain, s(x, t), which helps ensure the slip condition that

(3.21) |q(x, t) + s(x, t)|= −fsign(u̇(x, t))p(x, t)

is satisfied. The corrective shear traction is the result of a certain slip distribution, u(x, t), acting along the
interface. Whilst expressions for q(x, t) and p(x, t) are available in the literature, the general expression for
the s(x, t) ‘corrective’ traction due to an arbitrary u(x, t) distribution of slip appears not to be available, and
is derived in the sequel.

4. Surface tractions due to a distributed displacement along the interface

This section aims at deriving the general expression for the interfacial tractions prompted by an arbitrary
displacement distributed along a contact interface. For generality and completion, we shall derive the tractions
due to a vertical displacement distribution uy(x, t) ≡ v(x, t), and due to a tangential displacement ux(x, t) ≡
u(x, t). That is, u(x, t) and v(x, t) are two arbitrary distributed displacements acting along the interface on
the horizontal x-direction (mode I) and the vertical y-direction (mode II), respectively. We wish to find the
interfacial tractions associated with each of them.

4.1. Governing equations and solution strategy. The problem we wish to solve is governed by the
equation of conservation of linear momentum acting along the interface. We place the interface along the
abscissae axis at y = 0, and the edge of the contact at x = 0. For a linear isotropic medium, conservation
takes the form of the Navier-Lamé equation[56]:

(4.1) (λ+ µ)uj,ji + µui,jj = ρüi

where λ and µ are respectively Lamé’s first and second parameters, ρ the density, ui the ith component of
the displacement field, ui,j = ∂jui and repeated index denotes summation.

For a planar problem, we may define the φ(x, y, t) and ψ(x, y, t) Kelvin-Helmholtz potentials such that
[1, 65, 66],

(4.2) ux =
∂φ

∂x
− ∂ψ

∂y
, uy =

∂φ

∂y
+
∂ψ

∂x

Applying these two potentials to eqn/4.1, one is able to separate it into two monochromatic wave equations:

(4.3)
∂2φ

∂x2
+
∂2φ

∂y2
= a2 ∂

2φ

∂t2
,

∂2ψ

∂x2
+
∂2ψ

∂y2
= b2

∂2ψ

∂t2

where a =
√
ρ/(λ+ 2µ) = 1/cl and b =

√
ρ/µ = 1/ct are the longitudinal and transverse slownesses of

sound, respectively, and cl and ct the longitudinal and transverse speeds of sound, respectively.
The problem we wish to solve consists of eqn.4.3 under boundary conditions

ux(x, 0, t) = u(x, t) x ∈ R+

uy(x, 0, t) = v(x, t) x ∈ R+(4.4)

where u(x, t) and v(x, t) are the interfacial displacements we wish to find, which as stated we shall assume
are sufficiently smooth (at least C2(R+)) and are supported over x ∈ R+.

Our solution strategy relies on two steps: First, we separate by superposition the two boundary value
problems, so that each may be solved independently:

ux(x, 0, t) = u(x, t) x ∈ R+(4.5)

and

uy(x, 0, t) = v(x, t) x ∈ R+(4.6)

Second, we seek the fundamental solution (i.e., the Green’s function) to each of these problems. This means
we need to find the solution to

(4.7) up
x(x, t) = δ(x− x0)δ(t− t0)δ(y)
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and

(4.8) up
y(x, t) = δ(x− x0)δ(t− t0)δ(y)

where x0 > 0, so that upx and upy are non-zero only for x ∈ R+.
In finding the solution to eqn.4.7 and 4.8, we only need to look for the interfacial tractions, which we

shall call pp(x, t) and tp(x, t) respectively. The actual interfacial tractions we wish to find are the solution
to eqn.4.4. Given that the fundamental solutions pp(x, t) and tp(x, t) are known, they can be obtained by
reaching the representation formula[67], whereby

(4.9) p(x, t) =

∫
R×R

u(x− x′, t− t′)pp(x′, t′)dx′dt′, t(x, t) =

∫
R×R

v(x− x′, t− t′)tp(x′, t′)dx′dt′

Thus, invoking this representation formula, the interfacial tractions due to u(x, t) and v(x, t) may be obtained
from the convolution of u(x, t) and v(x, t) with the tractions due to the point displacements up

x(x, t) and
up
y(x, t)) respectively, each acting along the interface.

The interfacial tractions due to up
x(x, t) and up

y(x, t) are the only unknowns, and correspond to deformations
in mode I and mode II respectively, which we derive in the following.

4.2. Fundamental solution to mode I. We begin with up
y(x, t) – exactly the same procedure would be

followed for up
x(x, t). The solution procedure will follow the usual Wiener-Hopf method (see [68]). The

boundary value problem prescribed by eqn.4.8 acts only on the positive real line. Most integral solution
methods require the boundary conditions be applied on the whole real line. Following the Wiener-Hopf
strategy, we shall extend by continuity uy(x, 0, t) to R−. Given that the value of uy(x, 0, t) for x < 0 is
unknown, this is achieved by introducing an unknown function u−(x, t) supported on x ∈ R−, that will now
form part of the solution sought.

Equally, the boundary value problem is incomplete without detailing the stress state at the interface. In
general, we shall require that

(4.10) σyy(x, 0, t) = 0 x ∈ R−, σxy(x, 0, t) = 0 x ∈ R

which defines the free surface in the area not under contact. Again, as per Wiener-Hopf, we shall extend
σyy(x, 0, t) by continuity to x ∈ R+.

The boundary value problem we wish to solve is

σyy(x, 0, t) = p+(x, t) x ∈ R
uy(x, 0, t) = u−(x, t) + δ(x− x0)δ(t− t0)δ(y) x ∈ R
σxy(x, 0, t) = 0 x ∈ R(4.11)

where p+(x, t) denotes the (unknown) normal stress along the contact interface, with compact support for
x ∈ R+; and u−(x, t) denotes the unknown displacement at the free surface, offering compact support on
x ∈ R−.

We define the following integral transforms, that will be applied in succession on eqn.4.3 and the boundary
conditions:

(4.12) f̂(x, y, s) =

∫ ∞
0

f(x, y, t)e−stdt, F (k, y, s) =

∫ ∞
−∞

f̂(x, y, s)e−skxdx

We first transform the boundary conditions, leading to

µ

[
(b2 − 2a2)s2Φ + 2

∂2Φ

∂y2
− 2sk

∂Ψ

∂y

]
y=0

=
P+(k)

s2

µ

[
2sk

∂Φ

∂y
+
∂2Ψ

∂y2
− s2k2Ψ

]
y=0

= 0[
∂Φ

∂y
− skΨ

]
y=0

=
1

s3
U−(k) + e−s(t0+kx0)(4.13)
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where

P+(k) = s2

∫ ∞
−∞

p̂+(x, y, s)e−skxdx

U−(k) = s3

∫ ∞
−∞

û−(x, y, s)e−skxdx(4.14)

The governing equations 4.3 are also transformed, rendering

(4.15)
∂2Φ

∂y2
= α(k)2s2Φ,

∂2Ψ

∂y2
= β(k)2s2Ψ

where α(k) =
√
a2 − k2 and β(k) =

√
b2 − k2.

The solutions to eqn.4.15 will be of the form Φ(k, y, s) = Cφ(s, k)e−sα(k)y and Ψ(k, y, s) = Cψ(s, k)e−sβ(k)y,
where Cφ(k, s), Cψ(k, s) are the integration constants, in principle to be determined through the boundary
conditions.

Upon substituting the solutions into the system of equations established by the boundary conditions
(eqn.4.13), we find ourselves with three equations and four unknowns. We can nonetheless reduce the system
to an equation relating U−(k) with P+(k) – the two unknown variables we are most interested in:

(4.16) P+(k) = − µ
b2
R(k)

α(k)

(
U−(k) + s3e−s(t0+kx0)

)
where

(4.17) R(k) = (b2 − 2k2)2 + 4αβk2

is the Rayleigh function (cf.[56]). This is the Wiener-Hopf equation of the problem.
The Wiener-Hopf method will now attempt to factorise this equation into sectionally analytic functions

over the positive and negative real lines. This is done because if the factorisation is successful, then eqn.4.16
will establish an equality between sectionally holomorphic functions in x ∈ R− and in x ∈ R+. If that is
the case, then by Liouville’s generalised theorem (see [69]) each part of the equality must be equal to a
polynomial, which facilitates the solution we seek.

The Wiener-Hopf factorisation procedes as follows. We first perform a product factorisations for the α(k)
and R(k) functions, which is standard (cf.[56, 70]). Thus, if we write

(4.18) α(k) = α+(k) · α−(k), α±(k) =
√
a± k

We achieve a successful factorisation of α into sectionally analytic functions, since α+(k) is analytic for |k|> a
and α−(k) for |k|< a.

The factorisation of R(k) is also standard[56, 58]. We introduce the auxiliary function

(4.19) S(k) =
R(k)

2(b2 − a2)(c2 − k2)

with c = 1/cR. This is factorised as S(k) = S+(k) · S−(k), where[56]

(4.20) lnS±(k) = − 1

π

∫ b

a

arctan

[
4u2
√

(u2 − a2)(b2 − u2)

(b2 − 2u2)2

]
du

u± k

Thus,

(4.21) R±(k) = 2(b2 − a2)(c± k)S±(k)

Substituting into eqn.4.16,

(4.22) P+(k) = − µ
b2

2(b2 − a2)(c+ k)S+(k)(cR − k)S−(k)

α+(k)α−(k)

(
U−(k) + s3e−s(t0+kx0)

)
leading to

(4.23)
P+(k)

F+(k)
= −2µ(b2 − a2)

b2
F−(k)

(
U−(k) + s3e−s(t0+kx0)

)
where

(4.24) F±(k) = (cR ± k)
S±(k)

α±(k)
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Thus, eqn.4.16 has almost completely be factorised into sectionally analytic functions. What remains is the
additive factorisation of F−(k)s3e−s(t0+kx0), which would be trivial to achieve were not for the exponential
term in the expression. The exponential term e−s(t0+kx0) pertains to the t0 > 0 delay and the x0 > 0
offset in the application of the point displacement. This term has the unfortunate property of making
the F−(k)s3e−s(t0+kx0) term unbounded for |k|→ −∞. This is because S+(k) → 1 in that limit, so the
convergence of the integrand is therefore dominated by this exponential term. A similar situation was noted
by Georgiadis and Charalambakis [71] in their study of mode I crack face loading in thin strips, but although
equally present in his derivation of the interfacial stress field due to a point load applied on the crack
face. Broberg[61] p.454 incorrectly assessed that this sort of exponential terms did not lead to unbounded
behaviour, and proceeded to invoke Liouville’s generalised theorem in a derivation that must therefore be
regarded as suspect.

If any of the terms in the Wiener-Hopf equation is not bounded, Liouville’s generalised theorem is not
satisfied, which bars a direct application of the analytic continuation argument used in the Wiener-Hopf
technique. The solution in this case can still be attained as described by Georgiadis and Charalambakis[71],
by direct integration of the semi-factorised equation. Thus, we divide each term in eqn.4.23 by 2πi(z − k)
and integrate over z ∈ (−i∞,+i∞),
(4.25)

1

2πi

∫ i∞

−i∞

P+(z)

F+(z)

dz

z − k
= −2µ(b2 − a2)

b2

[
1

2πi

∫ i∞

−i∞
F−(k)U−(k)

dz

z − k
+

1

2πi

∫ i∞

−i∞
s3F−(z)e−s(t0+zx0) dz

z − k

]
We can formally find the value of each of these integrals. The integral in the left hand side may be

evaluated by closing an integration contour along the imaginary axis with a semi-circle along the positive
half plane the radius of which we set tending to infinity. The sole pole due to F+(x) is k = −cR, located on
the negative half plane, as are all branch cuts. Hence, pole and branch cuts are avoided by the closed contour
formed by the semi-circle and the imaginary axis. Finally, the asymptotic behaviour of P+(k) at infinity may
be guessed from the expectation that p+(x, t) ∼ 1/

√
x for x→ 0+; invoking the Tauberian theorem(cf.[72]),

we have that P+(k) ∼ 1/k for |k|→ ∞. This means that the contribution of the circular segments vanishes
by Jordan’s lemma. Thus, Cauchy’s theorem holds and

(4.26)
1

2πi

∫ i∞

−i∞

P+(z)

F+(z)

dz

z − k
=

1

2πi

∮
P+(z)

F+(z)

dz

z − k
=
P+(k)

F+(k)

The first integral in the right hand side follows similarly. In this case, u−(x, t) ∼ x1/2 for x→ 0+, so that
by the Tauberian theorem, U−(k) ∼ k−3/2 vanishes for |k|→ ∞. This enables us to close the integration
contour along the imaginary axis with a semi-circle tending to infinity along the negative half plane, so that
the semi-circle’s contribution vanishes as well. The integrand has a pole at k = +a, and a branch cut is
defined for Re[k] > a. Thus, the branch cut and both the k = +a and the z = k poles are avoided when
closing the contour along the negative half plane, which leads us to conclude that by virtue of Cauchy’s
integral theorem

(4.27)
1

2πi

∫ i∞

−i∞
F−(k)U−(k)

dz

z − k
= 0

The only remaining integrand may be evaluated as follows. Take

(4.28)
1

2πi

∫ i∞

−i∞
s3F−(z)e−s(t0+zx0) dz

z − k
We begin by considering the closed contour on the positive half plane schematically represented in fig.3. In
the positive half plane, the integrand vanishes for |z|→ ∞, so the contribution of the Jordan contours ΓJ
vanishes (note this is not the case in the negative half plane). The only complication is that the integrand
has poles at z = k and z = a with a branch cut along Re[z] > a. Thus, we need to avoid the branch cut along
the real axis as indicated in fig.3, with a dual contour above and below the real axis from Re[z] ∈ [a,∞). In
closing the contour of integration and invoking Cauchy’s integral theorem(cf. [69]), only the pole at z = k
remains inside the integral, whereupon

(4.29)
1

2πi

∫ i∞

−i∞
s3F−(z)e−s(t0+zx0) dz

z − k
= s3e−s(t0+kx0)F−(k)− 1

2πi

∫
Γ−+Γ+

s3F−(z)e−s(t0+zx0) dz

z − k
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Re[z]

Im[z]

Γ
J

Γ
-

Γ
+

z=+a

z=k

Γ
J

Figure 3. Integration contour

Re[k]k=a

(a) Γ
±
 contour for A(k)

Re[k]k=b

(b)  Γ
±
 contour for B(k)

Figure 4. Integration contours for the Cagniard-de Hoop inversion of eqn.4.31 and x− x0 < 0.

where Γ− = (∞, a], Γ+ = [a,∞).
The integrals along Γ± cancel one another. Indeed, if we set z − a = reiθ for θ = 0 along Γ− and θ = 2π

along Γ+, so that Γ− ≡ r ∈ (∞, 0], Γ+ ≡ r ∈ [0,∞), we find that
(4.30)∫

Γ−

cR + a− r(cos θ + i sin θ)

a+ r(cos θ + i sin θ)− z
r−1/2

(
cos

(
θ

2

)
+ i sin

(
θ

2

))
S−(a+ r(cos θ + i sin θ))dr =⇒

∫
Γ−

= −
∫

Γ+

upon changing θ = 0 for θ = 2π.
Thus, we finally recover the following sectionally analytic equation:

(4.31)
P+(k)

F+(k)
= −2µ(b2 − a2)

b2
s3e−s(t0+kx0)F−(k) =⇒ P+(k) = −2µ(b2 − a2)

b2
s3e−s(t0+kx0)F (k)

where

(4.32) F (k) =
1

2(b2 − a2)

R(k)

α(k)
=

1

2(b2 − a2)

 (b2 − 2k2)2

α(k)︸ ︷︷ ︸
A(k)

+ 4β(k)k2︸ ︷︷ ︸
B(k)

 =
1

2(b2 − a2)
[A(k) +B(k)]

The inversion of eqn.4.32 may be achieved using the Cagniard-de Hoop technique [73, 74] as follows.
Consider the first (spatial) inversion integral (in Laplace space):

(4.33) p̂(x− x0, s) = − µ
b2
se−st0

1

2πi

∫ i∞

−i∞
F (k)esk(x−x0)sdk

The A(k) term in the integrand (see eqn.4.32) has poles at k = ±a and branch cuts for |Re[k]|< a. The
second term, containing B(k), has no poles, but it does have a branch cut for |Re[k]|> b. The integration
path may be closed with a semi-circular contour along the negative half plane for (x− x0) > 0 and along the
positive half plane for (x− x0) < 0 (see fig.4).
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Closure of the contour is provided on either the positive or negative half plane depending on the value of
x relative to x0 (i.e.,(x− x0)) so that we can ensure that Jordan’s lemma guarantees that the integral along
the semi-circular contours vanish in the R→∞ limit; this requires that (x−x0) > 0. Irrespective of whether
the contour is closed along the positive or negative half plane, the branch cuts (and the pole) of each of the
two terms in the integrand must be avoided in a manner analogous to how the branch cut was avoided in
fig.3. In so doing, there are no poles remaining inside the closed contour, so by Cauchy’s theorem (cf.[69])
the integral along the imaginary axis is of the same value as that encircling the branch cuts.

The integral along the branch cuts may be evaluated by setting τ = −k(x− x0), with dτ = −(x− x0)dk,
so that Γt ≡ τ ∈ [+a|x − x0|,∞) for A(k), and Γt ≡ τ ∈ [+b|x − x0|,∞) for B(k). Applying Schwarz’s
reflection principle (see [69]), we find that
(4.34)

p̂(x− x0, s) = − s2e−st0

π(x− x0)

[∫ ∞
a(x−x0)

Im

[
A

(
− τ

x− x0

)]
e−sτdτ +

∫ ∞
b(x−x0)

Im

[
B

(
− τ

x− x0

)]
e−sτdτ

]
Applying the Bromwich integral and the properties of the Laplace transform, we finally obtain that

(4.35) p(x, t) =
µ

b2π

1

x4

[
a2b2x6

(
b2 − 8a2

)
− 60a2t4x2 + 2t2x4

(
24a4 − 2a2b2 + b4

)
+ 24t6

(t2 − a2x2)
5/2

H(t− a|x|)+

+
4
(
2b4x4 − 9b2t2x2 + 6t4

)
(t2 − b2x2)

3/2
H(t− b|x|)

]
where x− x0 and t− t0 have been substituted for x and t respectively for brevity.

4.3. Fundamental solution to mode II. In this case, up
x = δ(x−x0)δ(t− t0)δ(y). Using exactly the same

strategy as for mode I, the boundary value problem to solve is:

σxy(x, 0, t) = t+(x, t) x ∈ R
ux(x, 0, t) = u−(x, t) + δ(x− x0)δ(t− t0)δ(y) x ∈ R
σyy(x, 0, t) = 0 x ∈ R(4.36)

where t+(x, t) is the unknown interfacial shear traction we wish to find, offering compact support for x ∈ R+,
and u−(x, t) the unknown free surface displacements, with compact support over x ∈ R−. The solution
procedure is analogous to mode I, and will not be repeated here. As before, Liouville’s theorem cannot be
directly applied and an analogous reasoning to mode I’s must be followed to reach the equation

(4.37) T+(k) = − µ
b2
R(k)

β(k)
s3e−s(t0+kx0)

which may be inverted using Cagniard-de Hoop to get:
(4.38)

t(x, t) =
µ

b2πx4

[
−7b6x6 + 46b4t2x4 − 60b2t4x2 + 24t6

(t2 − b2x2)
5/2

H(t− b|x|) +
4
(
2a4x4 − 9a2t2x2 + 6t4

)
(t2 − a2x2)

3/2
H(t− a|x|)

]

4.4. Distribution of slip. The kernel functions p(x, t) and t(x, t) enable us to express the interfacial normal
and shear tractions due to the u(x, t) and v(x, t) displacement distributions as the convolutions sI(x, t) =
p(x, t) ? u(x, t) and sII(x, t) = t(x, t) ? v(x, t) where ? denotes temporal and spatial convolution. The kernel
functions in both cases are hypersingular. In order to regularise them, we first express the displacements as
a convolution of step functions[57],

u(x, t) =

∫ ∞
0

∫ ∞
0

∂2u

∂t′∂x′
H(x− x′)H(t− t′)dx′dt′, v(x, t) =

∫ ∞
0

∫ ∞
0

∂2v

∂t′∂x′
H(x− x′)H(t− t′)dx′dt′

By the properties of the convolution, and setting u′′xt(x, t) = bx(x, t) and v′′xt = by(x, t), and P (x, t) =∫ ∫
p(x, t)dxdt and T (x, t) =

∫ ∫
T (x, t)dxdt, we can write sI(x, t) = P (x, t)?bx(x, t) and sII(x, t) = Q(x, t)?
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bx(x, t), that is
(4.39)

sI(x, t) =
µ

b2π

∫ x

0

∫ t

0

[
−
(
b2x′2 − 2t′2

)2
t′x′3
√
t′2 − a2x′2

H(t′ − ax′)− 4t′
√
t′2 − b2x′2
x′3

H(t′ − bx′)

]
by(x− x′, t− t′)dt′dx′

(4.40)

sII(x, t) =
µ

b2π

∫ x

0

∫ t

0

[
−
(
b2x′2 − 2t′2

)2
t′x′3
√
t′2 − b2x′2

H(t′ − bx′)− 4t′
√
t′2 − a2x′2

x′3
H(t′ − ax′)

]
bx(x′ − x, t− t′)dt′dx′

We note that bx(x, t) and by(x, t) are a velocity density gradient for the slip along the y and x directions,
respectively.

4.4.1. Corrective shear traction at the contact interface. It would appear that the integrals remain hypersin-
gular at the origin. However, some simple manipulations facilitate dealing with the kernels. Given that the
core concern of the method lies on the sII(x, t) distribution, we shall focus on its regularisation; the one for
sI(x, t) can be achieved in a similar fashion.

Let us therefore introduce the following transformation:

(4.41) x 7→ x, t 7→ u · x
with Jacobian

|J |=
∣∣∣∣∂x∂x ∂x

∂u
∂t
∂x

∂t
∂u

∣∣∣∣ = x

so that dt = xdu.
Applying the transformation on sII(x, t) we find that the kernels become

(4.42) Kb(x, u) = − (b2 − 2u2)2

u
√
u2 − b2

H(x(u− b)), Ka(x, u) = −4u
√
u2 − a2H(x(u− a))

Note that the kernel functions do not depend on x for x > 0. It can therefore be written that:

sII(x, u) =
µ

b2π

[∫
Γa

Ka(u− u′)B(u′;x′)du′ +

∫
Γb

Kb(u− u′)B(u′;x′)du′
]

(4.43)

where

(4.44) Γa = [0, u− a] , Γb = [0, u− b]
and

(4.45) B(u;x) ≡ u̇(u;x) =

∫ x

0

bx(u, x− x′)dx′

is the particle velocity. This regularises the problem and, furthermore, simplifies the convolution integral by
making the kernels depend solely on u ‘velocity’ variable. The ability to write down the kernels in this fashion
comes down to the fact that the interfacial problem is in effect self-similar, i.e., homogeneous to degree 0 in x
and t[1] – similar results were observed by Kostrov for antiplanar problems[75], and are discussed at greater
length by Eringen[1].

5. Solution to the contact problem

Having derived the interfacial tractions due to the shearing load, the normal load, and the interfacial
slip, we am in a position to study the resulting mechanical equilibrium across the interface, for the region
about the edge of the contact zone. Given the hyperbolic nature of the system, the solution will consist of
propagating loads in and from the interface.

Under slip conditions, the force balance at the interface requires

(5.1) |q(x, t) + sII(x, t)|= −fsign(f)p(x, t)

subject to the provisions described in section 2, so that

sign(f) =
u̇(x, t)

|u̇(x, t)|
is the sign of the friction force. An analytic solution to eqn.5.1 does not appear to be available[76].
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Figure 5. Interfacial slip velocity for χ > 1, which demarcates the anomalous slip wave
traveling through the contact interface (in this case, at t = 0.01).

5.1. Numerical algorithm. A detailed implementation of the numerical algorithm employed to solve the
integral eqn.5.1 is given in Appendix B. There we detail how, using a Nyström-collocation method[77, 78],
upon discretising the problem, it is possible to solve the equation as a matricial problem of the form

(5.2) Fk = bjLjk

where Fk is a vector of forces, bj the unknown coefficients of some basis set, and Ljk the time-dependent
kernel. Both Fk and Ljk can be computed a priori: Fk are the values of the q(u)−fsign(v̇)p(u) interfacial force
vector evaluated at the collocation point uk, and Ljk the nodal values of the convolution of Ka(u) + Kb(u)
with a triangular basis function (see the Appendix B for further details). The system in eqn.5.2 is solved for
bj , whereupon the desired solution can be reconstructed as

(5.3) Bx(u) =

nu∑
i=0

nu∑
b=0

bjNj(u)

for

(5.4) NΛ
j (u) =


u−uj−1

uj−uj−1
u ∈ [uj−1, uj ]

uj+1−u
uj+1−uj

u ∈ [uj , uj+1]

0 otherwise

a standard triangular basis function[78].

6. Results and discussion

The aim of this section is to study how the slip region evolves over time as a result of the dynamic loading
conditions. We consider only the time-dependent part of the elastodynamic solutions — any time-independent
contribution could be added by superposition to the time-dependent part. We use the χ = fP0/Q0 parameter
to discriminate between different loading regimes, and draw distinctions between known loading regimes in
the static case[2]. Thus, in the following we will examine the form and evolution of the slip region, which
as outlined in section 3.6 speaking should be expected to evolve if χ ≤ 1. Unless otherwise stated, we will
take a = 0.1, b = 0.05 (implying cl = 10, ct = 5, cR = 4.662, and a Poisson ratio of ν = 1/3), f · P0 = 1,
and Q0 = 1/χ. The aim of this section is to elucidate how the slip region evolves over time as a result of the
sudden loading of the interface. The χ parameter is used to demarcate different loading regimes.

6.0.1. Anomalous slip for χ > 1. In principle, for χ > 1 we should expect a fully stuck solution[2]. How-
ever, owing to the transient nature of both q(x, t) and p(x, t), it appears unlikely that |q(x, t)|≤ −fp(x, t)
throughout the interface as the tangential and normal loads propagate inward. In particular, we find that in
the environs of the shear wave front (i.e., for values of x close to ctt), fp(x, t) is likely to be smaller than the
corresponding q(x, t), thereby violating the stick requirement. Under these conditions, an anomalous region
of slip –in reality, a slip wave– arises. This anomalous slip wave can be inferred from fig.5, which depicts
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(a) Interfacial slip velocity for t = 0.01.
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Forward slip

Reverse slip (χ<0.1)

Head wave (full stick)

(b) Interfacial slip for t = 0.01.

Figure 6. Interfacial slip velocities and displacements for χ < 1 at t = 0.01. The head wave
region encompasses x ∈ [0.05, 0.1], and the Rayleigh wave is located in x ∈ [0.0466, 0.05],
where for sufficiently low χ a region of reverse slip can be observed.

the interfacial tangential velocity needed to accommodate the imbalance. As can be seen, as the friction
coefficient is increased, this region of imbalance behind the shear wave front appears to narrow to a stable
region which for sufficiently high χ, is bounded to around x ≈ b

actt to x = ctt.
The anomalous slip wave travels away from the edge of the contact zone, where stick is reestablished as

expected from the asymptotic analysis provided in section 3.6. Thus, over sufficient timescales full stick is
achieved, and the expected quasistatic fully stuck solution (cf.[53, 79, 80, 63]) is restored. However, under
the dynamic loading conditions under consideration here, the anomalous slip wave appears unavoidable
irrespective of the magnitude of the friction coefficient, or of how small Q0 might be. Thus, this result
suggests that changes in the tangential loads under full stick conditions will inevitably be accompanied by
a transient slip wave that travels away from the edge of the contact zone. The conditions leading to it are
nonetheless heavily dependent on the frictional law and on the lack of additional damping mechanisms that
may result in its attenuation or full dissipation. If such conditions are not present, the anomalous slip wave
would entail surface vibrations and, as a result of the presence of additional slip, negatively impact the wear
performance of the contacting interfaces.

6.0.2. Partial slip for χ < 1. Conventional partial slip is observed for values of χ < 1. The region of slip is
confined to the strip between the edge of the contact zone and the rear of the head wave (i.e., x ∈ [0, tct]). As
stated, this is because the longitudinal head wave is not accompanied by a tangential load, so for x ∈ [tct, tcl]
the interface remains trivially under full stick. As can be seen in fig.6, the slip region is marked by the presence
of a maximum slip that considerably lags behind the shear wave front, and is also dependent on the χ ratio.
The maximum of slip is present strictly for χ < 1, as that changes the character of the fp(x, t)− q(x, t) from
convex to concave in the shear wave region. It is observed to increase in magnitude (alongside the rest of the
slip distribution, fig.6b) as χ decreases in magnitude, which is reasonable as the latter entails increasingly
large tangential loads (or lower friction coefficients) that need larger slip to be accommodated.

Under the current loading, no natural limit to the slip zone is observed. This is because the magnitude of
the elastodynamic loads is unbounded in time: as was noted in the asymptotic analysis of the normal and
tangential stress distributions (section 3.6), the intensity of the interfacial loads is monotonically increasing
with

√
t at the edge of the contact zone, and this extends to the rest of the solution (cf.[61]). This means

that over time the normal and tangential loads keep increasing in magnitude and, as would also be the case
in quasistatic problems, the width of the slip zone keeps increasing. In this case this happens not because
χ has varied, but because the interfacial tractions have, irrespective of χ. Paradoxically, this entails that
the t → ∞ limit does not recover the quasistatic solution — this can only be achieved through rarefaction
(cf.[61]). For that to happen, we would need to allow for the interface to interact with remote boundaries
that are not present in a semi-infinite plane. This means that the solutions presented in this semi-infinite
interfacial analysis are of interest mainly for short time-scales, as would be attained in finite bodies for which
the initial waves emitted from the edge of the contact zone have not been allowed to reach other free surfaces,
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be reflected inwards (‘rarefaction’) and reach the interface anew. Such problem is part of the more complex
problem that would be posed by the presence of free surfaces. The elastic waves originally radiated away from
the contact interface would eventually reach the free surfaces of the bodies, whereupon they would be reflected
back towards the interface. This rarefaction phenomenon would potentially result in the relaxation of the
interfacial stresses. This problem would be solvable as a superposition of the current problem alongside the
interfacial tractions due to the rarefaction waves.Thus, rarefaction events would repeat themselves over time,
increasing the mathematical complexity of the analysis, whilst the fundamental insights achieved through
the solution to the current problem would remain in place.

The present results show that in the elastodynamic contact problem, slip propagates as a transverse wave
across the interface. These slip waves exist irrespective of the values taken by the remote loads and the
friction coefficient, although for χ > 1 they lead to a fully stuck solution over time. This is because shear
and frictional loads are never fully balanced away from asymptotic considerations that only apply in the
near field of the edge of the contact zone. No instability inherent to these slip wave is observed. This is in
agreement with prior observations that Adams-like instabilities are promoted only for fully coupled and/or
dissimilar materials[48, 81]: neither is the case in the present analysis, so such instabilities should not be
expected. Furthermore, in this case the driving force for the interfacial motions is remotely applied loads,
not a prescribed uniform motion of the contacting blocks — to put it otherwise, the present problem is
force controlled, not displacement controlled, so the slip wave is allowed to contribute to the relaxation of
remote loading, and does not arise because of the need to relax singularities and tractional imbalances at
a moving interface, which may lead to instability. The significance that the contact interface elastically
runs along elastically similar bodies cannot be understated, since it in fact appears to prevent fully coupled
deformations. Indeed, if one examines the mathematical form of the half space Green’s functions (eqn.3.3 for
the case when y = 0, but reproduced fully in [1],p.615), we noted that ux(x, y, t) (obtained from eqn.3.5) must
be odd in y, and uy(x, t) even. This means that ux,y is even in y, and so is σxy. It also follows that σxx and
σyy must be odd in y. Crucially, σyy is odd and σyy = 0 at the interface, which entails that a ux displacement
is unable, by symmetry, to induce a σyy displacement. That is to say, the problem is uncoupled because the
materials at either side of the interface are the same. Future work will focus on extending the approach to
dissimilar materials, in the expectation that in so doing the fully coupled problem will be studied. In the
present analysis, because the interface runs along elastically similar materials no Schallamach waves[43] will
be formed[82].

6.0.3. Reverse slip regime. A remarkable feature of the transient slip region captured here is that reverse
slip (relative to reference) is observed to occur, as is shown in fig.6b, which depicts a region of reverse slip,
alongside the companion slip velocity in fig.6a, which also displays the expected sign reversal for reverse slip
to happen. The presence of reverse slip is observed to happen in particularly unfavourable conditions, as the
χ parameter decreases below χ < 0.1. In these particular calculations, the limit is found to be at χ = 0.0575;
below this value the slip interface is observed to divide between two distinct regions (see fig.6b for χ = 0.01):
for x ∈ [0, tcR], conventional or forward slip governs the interfacial mechanics. In this region, both slip and
velocities are positive. For x ∈ [tcR, tct], i.e., in the region between the Rayleigh wavefront and the transverse
wave front, the interface undergoes reverse slip: both slip and interfacial velocities are negative (relative to
reference, see fig.6).

Although dependent on the χ parameter, the reverse slip region is an inherent feature of the interfacial
mechanics. This is because the sign of the interfacial velocity is reversed due to the kernel of the corrective
traction: so long as the balance between the applied normal and tangential forces is such that the tangen-
tial load is considerably larger (in relative terms) to the frictional force, the arrival of the Rayleigh wave
will be marked by a sign reversal in the interfacial tractions that is transferred to the interfacial slip and
velocities. This situation is mathematically analogous to the sign reversal observed in the fields of moving
edge dislocations [83, 84, 65], where the stress fields of dislocations reverse their sign when the dislocations
move with speeds higher than the Rayleigh wave speed. In both cases, it is the elastodynamic kernel that
causes the sign reversal because of the need to accommodate for the slower Rayleigh (surface) waves. Sign
reversals associated with the Rayleigh wave speed were also reported by Brock and Georgiadis[31] in their
study of interfacial tractions involved in the uniformly moving wedge-like indenter; although in both cases
the sign reversal exists to accommodate the Rayleigh waves, in their case the indenter was externally driven
to penetrate the body at that speed, whereas in our case the two contacting bodies are driven by external
forces, and there is no inherent sliding.
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The reverse slip region will invariably broaden in space as time advances, but as the Rayleigh wave arrives
at the interfacial points thus subjected to the reverse slip regime will come to be subjected to forward slip
again, as expected owing to the remote loading. This means that any material point at the interface will be
subjected over time to both reverse and forward slip. The physical implications of this finding are that the
wear performance of an interface subjected to varying loads may be worse than expected if the interface’s χ
parameter is sufficiently low – in practice, this reverse slip regime can be avoided if the friction coefficient
is large, which paradoxically suggests that lubrication strategies relying on lowering the frictional coefficient
to improve wear may in turn have a detrimental effect in the wear performance during transient loading.
Owing to the potential relevance and specific loading conditions involved, this effect will be the subject
of future in-depth work examining how non-linear frictional coefficients (e.g., velocity dependent frictional
coefficients[59, 60]), as well different loading regimes and contact geometries affect the existence of the reverse
slip regime.

7. Conclusions

This article has focused on analysing the conditions of stick and slip under the transient elastodynamic
contact of two elastically similar semi-infinite bodies loaded with sudden remote shock loads of constant
magnitude in the normal and tangential directions. This loading launches interfacial normal and shear
tractions, that propagate away from the edge of the contact zone at the longitudinal and transverse speeds of
sound, respectively. As a result, the normal load that establishes the contact always precedes the tangential
load. The head wave region influenced only by the normal load is a region of full stick, no shear tractions
being present.

Depending on the loading conditions, it is possible that the imbalance between the applied interfacial
tangential traction and the frictional forces may only be accommodated if the interface is allowed to slip.
In such cases, we have offered a complete mathematical derivation of the elastodynamic ‘corrective’ traction
acting at the interface. This corrective traction would allow for Coulomb’s dry frictional law to be satisfied
in the regions of interfacial slip. The corrective traction has been derived employing the Wiener-Hopf and
Cagniard-de Hoop techniques. Albeit the approach is mathematically involved, the resulting expressions for
the transformation kernels at the interface are relatively simple once they are regularised as proposed in this
work.

The resulting mathematical expressions enable the extension of the classical Cattaneo-Mindlin problem
to elastodynamics. However, owing to the inherent complexities of the formulation, the study of the stick
and slip regions arising from the problem could only be approached numerically, for which a simple Nyström
collocation method has been used.

The numerical solution has shown that the arrival at any point along the interface of the shear wave marks
the onset of interfacial slip. This paper has argued that slip is necessary to accommodate the imbalance
between shear and normal loads irrespective of the ratio between the remote tangential load, Q0, and the
frictional load fP0. This is because away from the asymptotic near field at the edge of the contact interface,
both loads follow distinct temporal evolutions that prevent fully stuck solutions from existing. However,
for χ = fP0/Q0 > 1, it is observed that the fully stuck solution is naturally achieved over time: the
anomalous slip wave front that arises in this case tends to travel away from the edge of the contact zone,
where conditions of full stick are achieved over time. Given the specific nature of the elastodynamic solutions,
further investigations are required as to the significance of this slip wave — and investigating the specific
effects of the contact geometry will be the subject of future work. However, the anomalous slip wave is
expected to be a source of vibrations and interfacial wear arising when the loading conditions at an interface
are suddenly changed.

For conditions of partial slip, the elastodynamic contact problem reveals the existence of a transient regime
of reverse slip if the tangential load is sufficiently large, or the friction coefficient sufficiently small. In either
such case, the interfacial region between the shear wave and the Rayleigh wave will invariably be subjected
to a regime of reverse slip that is later on restored to forward slip. Because this entails a change in the
sign of the interfacial loads, it is expected that this transient would impact the wear performance of contact
interfaces when present. Owing to the uncoupled nature of the problem, the imbalance between shear and
normal loads cannot be accommodated through loss-of-contact. This does not prejudice the possibility of
loss of contact if the normal load becomes tensile over a certain period of time, as could happen under purely
harmonic vibrations.
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Therefore, the findings of this article showcase the existence of a number of transient effects affecting
contact interface that are missed in static treatments of the contact problem, but that as we have shown
can now be captured explicitly and without recourse to stability analyses — in fact, many of these effects do
not appear to entail an instability. The article provides a coherent mathematical formulation that enables
the extension of most elastostatic contact problems of the Cattaneo-Mindlin type to time-dependent, fully
transient situations. This formulation can be applied to study loading conditions different to those explored
here. So long as the uncoupled assumption remains reasonable, it is possible to employ the same kernel
functions and numerical approach to study mixed loading conditions, either between different dynamic loads
(e.g, ramp or harmonic loading in the normal and/or shear loads), or between combinations of static and
dynamic loading (e.g., constant normal loads but time-dependent shear loads, or viceversa). The effect of
different geometries and of rarefaction waves incoming from free surfaces on the contact interface can also
now be accounted for by simple superposition or convolution of the basic solutions reached in this article.

This study opens news lines of inquiry in a wide range of applications. On the one hand, the existence of
temporally varying loads affecting the bearings of turbines, shafts or rotating machinery is well-known, and the
proposed formulation enables the study the transients induced when loading and unloading said machinery.
In such transients, this article has showed that interfacial vibrations are possible and an unavoidable feature
of the transient, and that strategies relying on lowering friction via lubrication result in worse-than-expected
wear performance. Equally so, contacting bodies subject to friction are a known feature of geophysical faults;
in such cases, the formulation presented here offers a simple and exact way of tackling the modelling of
seismological signals produced by said frictional faults.
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Appendix

A. The mathematical expression of χR is the value [1]

χR =
a2
(
4b2 − 6c2

)
+ 8k

(√
a2 − c2

√
b2 − c2 + c2

)
− 6b2c2

√
a2 − c2

√
b2 − c2

− 4b2

where a = 1/cl, b = 1/ct, c = 1/cR, and cR is the Rayleigh wave speed, given by
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B. We may rewrite the contact problem as

sII(x, t) = −fsign(f)p(x, t)− q(x, t) ≡ F (x, t)

where p(x, t) and q(x, t) are prescribed, and sII(x, t) is regularised to

(7.2) sII(x, t) = 〈Ka, bx〉+ 〈Kb, bx〉
In principle, the unknown is bx(x, t) – the slip velocity density —, found as 〈bx,Ka + Kb〉. The problem
therefore can be thought of as a deconvolution problem, and is agreeable to a treatment similar to the
antiplanar case given in [55].

However, for numerical regularity purposes, it becomes easier to use the coordinate transformation intro-
duced in section 4.4. In that event, we note that if x > 0 and we set τ/x = u′, we obtain:

(7.3) p(x, t) =⇒ p(u) = − 1

π

∫ u

a

Im [Σ+ (−u′)] du′H(u− a)

(7.4) q(x, t) =⇒ q(u) = − 1

π

∫ u

a

Im [T+ (−u′)] du′H(u− a)

The ensuing problem can then be solved as a 1D equation dependent on u, so that the x, t spatio-temporal
variables may be reconstructed into (x, t) upon solution in u. Thus, we shall concern ourselves with the
equation:

(7.5) F (u) = sII(u) = 〈Ka, B〉+ 〈Kb, B〉
We shall solve this problem using a simple collocation method[77, 78] of the sort commonly employed to
solve Volterra integral equations of the first kind[85, 76]. We thus define the discrete grid Sj = [uj , uj+1]
and define some well-posed basis function set {Nj(u)} with compact support over [uj , uj+1] such that the
velocity vector may be expressed as

(7.6) Bx(u) =

nu∑
i=0

nu∑
b=0

bjNj(u)

where bj ∈ R is a number, and nu the total number of subintervals.
We insert eqn.7.6 into the convolution integral to obtain

(7.7) sII(u) =
∑
j

bj

[∫
Γa

Ni(u
′)Ka(u− u′)du′ +

∫
Γb

Nij(u
′)Kb(u− u′)du′

]
We define a triangular basis function[78]:

(7.8) NΛ
j (u) =


u−uj−1

uj−uj−1
u ∈ [uj−1, uj ]

uj+1−u
uj+1−uj

u ∈ [uj , uj+1]

0 otherwise

Crucially, with such simple form it is possible to perform an explicit integration of eqn.7.7 with eqn.7.8.
A similar advantage to collocation methods in dynamic problems was observed by Martin and Rizzo[85]
and in [55], whereupon we reach an analytic form for the convolution of the kernel with Nij . By calling

Lj = 〈NΛ
j ,Ka〉+ 〈NΛ

j ,Kb〉 = L
(a)
j + L

(b)
j , we find

(7.9) L
(a)
j (u) =

4

3

(
u2 − a2

)3/2
(7.10) L

(b)
j (u) =

4

3

(
b2 − u2

)2
√
u2 − b2

+ arctan

(√
u2 − b2
b

)
Thus, we seek to solve

(7.11) F (u) =
∑
j

bj(L
(a)
j (u) + L

(b)
j (u)) =

∑
j

bjLj(u)

for which we collocate nu collocation points uk mid-interval, so that uk = uj +∆uj/2, with ∆uj = uj+1−uj .
The choice of the collocation points mid-interval is done by inspection, although it is noted that given the
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nature of the basis functions, any other point would render the results open to further numerical instabilities.
In any event, this leads to a linear system of nu equations with nu unknowns (the bj nodal values), which
can be solved numerically using conventional linear algebra techniques (q.v.[86]):

(7.12) Fk = bjLjk

The slip condition that sign(u̇) ≡ sign(u̇) is checked for each j and if, necessary, the sign is reversed.
This provides a map of the forward and reverse slip regions in the contact interface, if any. The resulting
numerical model is solved in the (u) space. The (x, t) results are then obtained by converting node by node
the u coordinate back to t as t 7→ u · x.


