
 
 

University of Birmingham

A hierarchical neural hybrid method for failure
probability estimation
Li, Ke; Tang, Kejun; Li, Jinglai; Wu, Tianfan; Liao, Qifeng

DOI:
10.1109/access.2019.2934980

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Li, K, Tang, K, Li, J, Wu, T & Liao, Q 2019, 'A hierarchical neural hybrid method for failure probability estimation',
IEEE Access, vol. 7, pp. 112087 - 112096. https://doi.org/10.1109/access.2019.2934980

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 21. May. 2024

https://doi.org/10.1109/access.2019.2934980
https://doi.org/10.1109/access.2019.2934980
https://birmingham.elsevierpure.com/en/publications/9ecd59d7-500b-402f-85a3-ebb25870ea90


Received July 24, 2019, accepted July 31, 2019, date of publication August 15, 2019, date of current version August 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2934980

A Hierarchical Neural Hybrid Method
for Failure Probability Estimation
KE LI 1, KEJUN TANG1, JINGLAI LI2, TIANFAN WU3, AND QIFENG LIAO1
1School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
2Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K.
3Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA

Corresponding author: Qifeng Liao (liaoqf@shanghaitech.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 11601329 and Grant 11771289, and in
part by the Science Challenge Project under Grant TZ2018001.

ABSTRACT Failure probability evaluation for complex physical and engineering systems governed by
partial differential equations (PDEs) are computationally intensive, especially when high-dimensional
random parameters are involved. Since standard numerical schemes for solving these complex PDEs
are expensive, traditional Monte Carlo methods which require repeatedly solving PDEs are infeasible.
Alternative approaches which are typically the surrogate based methods suffer from the so-called ‘‘curse
of dimensionality’’, which limits their application to problems with high-dimensional parameters. For this
purpose, we develop a novel hierarchical neural hybrid (HNH) method to efficiently compute failure proba-
bilities of these challenging high-dimensional problems. Especially, multifidelity surrogates are constructed
based on neural networks with different levels of layers, such that expensive highfidelity surrogates are
adapted only when the parameters are in the suspicious domain. The efficiency of our new HNH method is
theoretically analyzed and is demonstrated with numerical experiments. From numerical results, we show
that to achieve an accuracy in estimating the rare failure probability (e.g., 10−5), the traditional Monte Carlo
method needs to solve PDEs more than a million times, while our HNH only requires solving them a few
thousand times.

INDEX TERMS Hierarchical method, hybrid method, PDEs, rare events.

I. INTRODUCTION
Due to lack of knowledge or measurement of realistic
model parameters, modern complex physical and engineer-
ing systems are often modeled by partial differential equa-
tions (PDEs) with high-dimensional random parameters.
For example, groundwater flow problems are modeled by
stochastic diffusion equations, and acoustic scattering prob-
lems are modeled by Helmholtz equations with random
inputs. When conducting risk management, it is essential to
compute failure probabilities of these stochastic PDE mod-
els. A standard method to compute the failure probability is
the traditional Monte Carlo sampling method [1]. However,
this method requires repeatedly solving complex PDEs to
generate a large number samples to capture failure prob-
abilities associated with rare events. There are two main
computational challenges: first, it is expensive to solve each
complex PDE using standard numerical schemes (e.g., finite

The associate editor coordinating the review of this article and approving
it for publication was Nagarajan Raghavan.

elements [2]); second, the complex PDEs need to be repeat-
edly solved many times for computing failure probabilities.

As alternatives, gradient-based methods and simulation-
based methods are developed and are briefly reviewed as
follows. Classical gradient-based methods are the first-order
reliability method (FORM) [3], second-order reliability
method (SORM) [4] and a statistical technical response
surface method (RSM) [5], [6]. Moreover, Simulation-based
method relies on Monte Carlo (MC) sampling and the failure
probability can be approximated by the ratio between number
of failure samples and the total amount. To deal with rare
events, conditional simulation [7] and importance sampling
(IS) [8] are efficient improvements of the traditional Monte
Carlo method.

However, the above methods suffer from the ‘‘curse of
dimensionality’’, which limits their applications for complex
problems with high-dimensional inputs.

In this work, we propose a novel hierarchical neu-
ral hybrid (HNH) method to resolve the challenges dis-
cussed above. Our method combines the advantages of MC,
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RSM and neural network to solve high-dimensional fail-
ure probability problems. The main advantages of HNH are
three-fold. First, HNH is a universal solver based on neu-
ral networks which can efficiently approximate any com-
plex system including PDEs with any given accuracy [9].
Second, multifidelity surrogates are constructed and expen-
sive fine-fidelity surrogates are adopted only for samples
close to the suspicious domain, which results in an overall
efficient computational procedure. Finally, only a few sam-
ples generated through solving given PDEs with standard
numerical schemes are required to construct the surrogates
and to modify the failure probability estimation.
Our Contributions are as Follows:
• Our method is based on a combination of neural net-
works and the hybrid method. The hybrid method is an
extremely effective approach which can capture failure
probability using a few samples without losing accu-
racy. And our new method utilizes the feature of neural
network as a universal approximation to solve complex
systems with high-dimensional inputs.

• We propose a novel hierarchical neural hybrid (HNH)
method. Given the fact that a sufficient deep neural
network surrogate is still expensive to approximate com-
plex systems, we employ multifidelity models to replace
the single fine-fidelity deep model. Our method uses
coarse-fidelity surrogates as a preconditioning scheme
and uses fine-fidelity surrogates to correct the estima-
tion. Our HNH method can significantly accelerate the
computational procedure for failure probability estima-
tion without sacrificing accuracy.

Paper Organization: The failure probability, the hybrid
method and multilayer neural network are briefly reviewed
in Section 2. Our method is presented in Section 3, where
the rigorous error analysis for HNH is conducted. In
Section 4, the efficiency of HNH is demonstrated with a
high-dimensional structural safety problem, stochastic diffu-
sion equations and Helmholtz equations. Finally some con-
cluding remarks are offered in Section 5.

II. PRELIMINARIES
A. FAILURE PROBABILITY
In practical engineering problems, the various uncertainties
ultimately affects the structural safety. Reliability analysis
has become increasingly attracted in engineering analysis,
and it can measure the structural safety by considering
these uncertainties [10], [11]. In a general setting, let Z be
a nz−dimensional random vector Z = (Z1,Z2, . . . ,Znz ) :
� → Rnz , where FZ (z) = Prob(Z ≤ z) is the distribution
function, � is the probability space. Given a (scalar) limit
state function g(Z ), g(Z ) < 0 defines a failure domain �f
and g(Z ) ≥ 0 defines safe domain. For some specific setting
in section 4, we give additional definitions of�f . The failure
probability Pf is defined

Pf =Prob(Z ∈ �f )=
∫
�f

dFZ (z)=
∫
χ�f (z)dFZ (z), (1)

where χ means the characteristic function

χ�f (z) =

{
1 if z ∈ �f ,

0 if z /∈ �f .
(2)

B. HYBRID METHOD
Hybrid method [12] can enhance the performance of Monte
Carlo sampling with surrogate models. Instead of comput-
ing (1) directly, we employ surrogate model ĝ to evaluate the
failure probability

P̂f =
∫
χ{ĝ(z)<0}(z)q(z)dz, (3)

where q(z) denotes an arbitrary distribution of variable z.
Specifically, we utilize MC to evaluate (3) by generating
samples {z(i)}Mi=1 from q(z)

P̂mcf =
1
M

M∑
i=1

χ{ĝ(z)<0}(z
(i)). (4)

where M denotes the number of samples.
Following the idea of the response surface method

(RSM) [13], [14] and design from [15], the procedure of fail-
ure probability estimation can be specified as follows.
Definition 1: For a given real parameter γ , a limit state

function g and its surrogate model ĝ, the failure probability
of g(Z ) < 0 can be represented as

Prob(g<0)≈ Prob(γ ; g, ĝ)

= Prob({ĝ<−γ })+Prob({|ĝ|≤γ }∩{g<0}),

(5)

where (−γ, γ ) is called the suspicious domain.
With MC method, we have

P̂rob(g < 0) ≈ P̂rob(γ ; g, ĝ) =
1
M

M∑
i=1

(χ (h)
{ĝ<0}(z

(i)))

=
1
M

M∑
i=1

[χ (h)
{ĝ<−γ }(z

(i))

+χ
(h)
{|ĝ|≤γ }(z

(i)) · χ{g<0}(z(i))]; (6)

where γ in the equation is an arbitrary positive number, which
denotes the range of re-verifying domain. It is clear that the
computational cost will increase with γ growing. So choosing
a small enough γ without sacrificing accuracy is a traditional
difficulty.

In this paper, we employ neural networks as the surrogate
model ĝ, and we call the method as a direct combination
of hybrid method and neural network as neural hybrid (NH)
method.

C. MULTILAYER NEURAL NETWORK SURROGATE
We employ full connected multilayer perceptron as the basic
of our surrogate, which is a feed-forward type network with
only adjoining layers connected. Network generally consists
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FIGURE 1. Schematic representation of a multilayer neural network
which contains 7 input units, 5 output units and 2 hidden layers.

of input, hidden and output layers, see Figure 1. For illus-
tration only, the network depicted consists of 2 layers with
10 neurons in each layer and σ denotes an element-wise
operator

σ (x) = (φ (x1) , φ (x2) , . . . , φ (x10)) , (7)

where φ is called activation function. We recall the network
space with given data according to [16]

Nn
i (σ )=

h(x) : Rk
→ R|h(x) =

n∑
j=1

βjσ
(
αTj x − θj

)
(8)

where σ is any activation function, x ∈ Rk is one set
of observed data, β ∈ Rn, α ∈ Rk×n and θ ∈ Rk×n

denote coefficients of networks. The learning rule called
back propagation algorithm [17] is widely used in neural net-
work. Multilayer perceptron is a mapping from n−dimension
Euclidean space tom−dimension Euclidean space if there are
n input units and m output units. We can also choose residual
neural networks [18] as surrogates for efficiency, but we just
present our idea of this work using the fully-connected neural
network for simplicity.

Via the comparison of the accuracy using neural networks
with different layers in [18], the results of deeper neural
networks are more accurate after sufficient training pro-
cedure. Therefore, we call deep networks fine-fidelity and
shadow networks coarse fidelity in the following. In order to
reduce the risk of overfitting, we employ cross validation and
dropout [19].

III. HIERARCHICAL NEURAL HYBRID METHOD
In the former part, we introduced the hybrid method to
speed up solving complex system by using an accurate
enough surrogate. However, the computational cost of using
a fine-fidelity model is also expensive, though it is much

cheaper than the original system. Here we propose a hier-
archical neural hybrid (HNH) method which constructs a
hierarchy surrogate model to accelerate the standard NH
method. The hierarchical surrogate models here are neural
networks with different layers. Let g(1), g(2), · · · , g(L) denote
L surrogates, with ` = 1 being the coarsest and ` = L being
the finest, each g(`)(` = 1, . . . ,L) is a feedforward neural
network with P` layers and can approximate the limit state
function g well, illustrated in Figure 2. It should be noticed
that training data are the same for constructing hierarchical
models off-line. Compared with NHmethod with single fine-
fidelity, the hierarchical surrogate models can reduce the
running time.

The idea of our method can be illustrated in Figure 3.
Discrete solutions from true PDE models are referred
as groundtruth, but the computational procedure can be
extremely expensive. In former part we introduce that solu-
tions from deeper networks are more accurate but more
expensive. If we use multifidelity to combine different net-
works, the cost can be reduced and the accuracy can be kept.
Our hierarchical neural hybrid method uses the true model to
improve the accuracy and the cost does not increase much,
because our method only needs to solve the discrete PDEs a
few times.

A. THE HNH METHOD
Hybrid method combines the robustness of MC and the
feasibility of RSM. However, the computation cost is still
expensive if an enough accurate surrogate model is repeat-
edly applied. Following the idea of multifidelity approaches
[20]–[23], we suppose that the cost can be reduced without
losing accuracy by using a hierarchy surrogate model in the
neural hybrid method. Our HNH method iterates through
the level ` = 0, · · · ,L, where with ` > 0 increasing
the accuracy increases except g(0) = g means the original
system. First, the HNHmethod evaluates the state function at
Z by using g(1) instead of neural hybrid method using g(L),
and then sorts {|g1(z(i))|}Mi=1 in an ascending order. Second,
the HNH method divides the data set into L parts according
to the value of {|g1(z(i))|}Mi=1. For part 1, · · · ,L − 1, HNH
employs g(L), · · · , g(2) to modify the prediction of failure
with a threshold εopt to stop the modification. The modifica-
tion procedure is presented in Algorithm 1. Third, our HNH
method uses the modified results of prediction to run the iter-
ative hybrid method introduced in III-B and Algorithm 2. A
detailed illustration of HNHmethod can be found in Figure 4.

B. ITERATION ALGORITHM OF HNH METHOD
Here, we provide our integrated iteration algorithm for
computing failure probability of high-dimensional problems
through HNH method.

The hybrid method is applied which utilizes surrogate
models to enhance the performance ofMonte Carlo sampling.
We present the probability formula defined in equation (5)
and (6).

VOLUME 7, 2019 112089
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FIGURE 2. Illustration of hierarchical training procedure.

FIGURE 3. The idea of our HNH method.

FIGURE 4. Illustration of hierarchical neural hybrid method.

Hybrid method with γ can enhance the performance of
MC, but it is often hard to get the threshold γ . So we use
iterative scheme to avoid choosing γ .

Let δM be the number of samples generated from g in each
iteration, εopt be a given tolerance. The formal description of
HNH method is presented in Algorithm 2.

112090 VOLUME 7, 2019
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Algorithm 1Modification Procedure of Hierarchical Neural
Hybrid Method

1: Input: g(1), g(2), · · · , g(L), Z = {z(i)}Mi=1, η.
2: Evaluate g(1)(z(1)), g(1)(z(2)), · · · , g(1)(z(M )) and get label
{χ{ĝ<0}(z(i))}Mi=1 = {χ{g1<0}(z

(i))}Mi=1.
3: Sort {z(i)}Mi=1 such that the value {|g(1)(z(i))|}Mi=1 is in

an ascending order, and the sorted order is denoted as
{z(j)}Mj=1.

4: Split dataset Z = {z(j)}Mj=1 into L parts and each part has
the same number of samples.

5: for i = 1 to L − 1 do
6: ε = 0.
7: for j = (i−1)M

L + 1 to iM
L do

8: 1 = [−χ{g(1)<0}z
(j)
+ χ{g(−i+L−1)<0}z

(j)].
9: χ{ĝ<0}(z(j)) = χ{g(1)<0}(z

(j))+1.
10: ε = ε + L

M [−χ{g(1)<0}z
(j)
+ χ{g(−i+L−1)<0}z

(j)].
11: end for
12: if ε < η then
13: break
14: end if
15: end for
16: Return: Label {χ{ĝ<0}(z(j))}Mj=1.

Algorithm 2 Iteration Algorithm of Hierarchical Neural
Hybrid Method

1: Input: g(1), · · · , g(L), Z = {z(i)}Mi=1, η, δM , εopt .
2: Initialize: Z (0)

= ∅, k = 0, ε = 10εopt .
3: Obtain {χ{ĝ<0}(z(j))}Mj=1 using algorithm 1.

4: P(k)f =
1
M

∑M
j=1 χ{ĝ<0}(z

(j)).
5: while ε > εopt do
6: k = k + 1.
7: δZ (k)

= {z(j)}kδMj=(k−1)δM+1.
8: Z (k)

= Z (k−1)
∪ δZ (k).

9: δP = 1
M

∑
z(j)∈δZ (k)

[−χ{ĝ<0}(z(j))+ χ{g<0}(z(j))].

10: Update the failure probability:
P(k)f = P(k−1)f + δP.

11: ε = |P(k)f − P
(k−1)
f |.

12: end while
13: Return: P(k)f .

C. THE COMPUTATIONAL PROCEDURE AND THE
COMPUTATIONAL COMPLEXITY OF HNH

We construct a hierarchy of neural network model denoted
as g(1),g(2),· · · ,g(L), where the number of layers are
P1,P2, · · · ,PL in a ascending order and there are N neu-
rons in each layer (see Algorithm 1). Our input data set is
Z ∈ RM×r , r � M . For the classical single-fidelity neural
network g(L), the computational complexity is (M×PL×N 2).
In our HNH method, the computational complex is (M ×
P1 × N 2

+
M
L PLN

2
+ · · · +

M
L PL+1−ξN

2) if the modifi-
cations finished after m-th iteration, where ξ = ceil(mLM ).

The computational cost of our HNH method will be reduced
significantly compared to NH method since m � M and
ξ � L for an acceptable surrogate model.

D. ANALYSES OF HNH METHOD
Assumption 1: Let C > 1, a > 1, 0 < ρ < 1, M is the

size of input data Z ,F`
= {z ∈ Z |{g(`)(z) > η}∩{g(z) < 0}}.

The models g(`) satisfy∫
�η

χF`dFZ (z) ≤ (
1
C

1
1+ exp(ax)

)`, (9)

where G is sorted {|g(1)(z(i))|}Mi=1, η = G`M/L , ηmax =
G(1−ρ)M , x = η/ηmax .
This assumption takes the formula of inverse of the Sig-

moid function. It is a reasonable assumption for it fitting the
numerical results well.
Assumption 2: For any ε > 0, given C and a, ηmax , ηt is a

threshold written as

ηt = ln(
1

C · ε
)
ηmax

a
. (10)

Theorem 1: Failure probability is Pf , Phf is calculated by
neural hybrid method, P̂f is the failure probability evaluated
by HNH, g(Z ) ∈ Lp�, p ≥ 1 is the given system function, ĝ(Z )
is the HNH surrogate in Lp− norm, g(`)(Z ) is a hierarchy of
surrogate models for ` = 1, · · · ,L, for any ε > 0, there
exists ηt , for any η > ηt ,

|Pf − P̂f | ≤ ε. (11)

Proof:

|Pf − P̂f | ≤ |Pf − Phf | + |P
h
f − P̂f |. (12)

For ` = 1, · · · ,L,

|Phf − P̂f |

=

∑
`=1,··· ,L−1

∫
�η`

χ{gL−`(z)>η}∩{gL (z)<0}dFz(z)

=

∑
`=1,··· ,L−1

∫
�η`

χ
{U−{gL−`(z)>η}{∪{gL (z)<0}{}dFz(z)

(13)

where U means the universal set, η1 > · · · > ηL−1.
Choose `, for any ε > 0, there exists ηt , for any η > ηt ,

we can obtain∫
�ηL−`

χ{g`(z)>η}∩{gL (z)<0}dFz(z)

=

∫
�ηL−`

χ
{U−{g`(z)>η}{∪{gL (z)<0}{}dFz(z)

= 1− (1−
1
C

1
1+ exp(ax)

)` − (
1
C

1
1+ exp(ax)

)L

≤ 1− (1−
1
C

1
1+ exp(ax)

)L − (
1
C

1
1+ exp(ax)

)L

≤ (
1
C

1
1+ exp(ax)

)− (
1
C

1
1+ exp(ax)

)L < ε. (14)
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Upon combining (13)-(14), we obtain

|Phf − P̂f | < ε (15)

Then, with the definition of failure probability, we have

|Pf − Phf |

=

∫
�η

χ{g(L)(Z )>η}∩{g(Z )<0}dFZ (z)

≤ (
1
C

1
1+ exp(ax)

)L < ε. (16)

So that

|Pf − P̂f | < ε. (17)

Before the estimation of expectation, we present the defi-
nition of multifidelity surrogate ĝ(z) obtained by HNH.
Definition 2: (HNH Surrogate) For input data Z =

{z(i)}Mi=1,M is the number of total samples, g(`), ` = 1, · · · ,L
is a hierarchy of surrogate models, m means the times of
modifications and ξ = ceil(mLM ), then ĝ can be presented as

ĝ =
1
L

ξ−1∑
i=1

g(L+1−i) +
mL − (ξ − 1)M

ML
g(L−ξ+1)

+
M − m
M

g(1), (18)

when ξ = 1, the first term at the right side equals zero.
Assumption 3: g(Z ) is given system function, g(`)(Z ) is

a hierarchy of surrogate models for ` = 1, · · · ,L, Z is
the dataset. While the models are trained with labeled data,
the neural networks can be regarded as unbiased approxima-
tors. The expectations are given as

E[g] = E[g(1)] = · · · = E[g(L)]. (19)

Theorem 2: The HNH surrogate ĝ(Z ) is an unbiased esti-
mator of g(Z ).

Proof: Suppose HNH modifications finish after m-th
iteration, ξ = ceil(mLM ),

E[ĝ] =
1
M

[
M
L
E[g(1) + (−g(1) + g(L))]

+ · · ·

+
M
L
E[g(1)]

+
mL −Mξ +M

L
E[(−g(1) + g(L−ξ+1))]

+
(L − ξ )M

L
E[g(1)]]

=
1
M

[
M
L
L · E[g]]

= E[g]. (20)

IV. NUMERICAL EXPERIMENTS
In this section we provide three numerical examples to test
the performance of our HNH method. For the multivariate
benchmark, we useMC to obtain the reference solution. In the
test of diffusion and Helmholtz equations, we employ finite
element method to calculate the solution. For these three stud-
ies, we trained hierarchical neural networks with 6, 15 and
30 layers, and each layer has 500 neurons. The selection
of the number of layers and neurons is empirical. All tim-
ings conduct on an Intel Core i5-7500, 16GB RAM, Nvidia
GTX1080Ti processor withMATLAB2018a and Tensorflow
under Python 3.6.5. The number of samples we generated in
the following tests is related to the limit of RAM. In the time
comparison, we set the runtime of HNH method as a unit.

In numerical tests, the numbers of training samples are
103, and the total cost includes these parts. While traditional
approaches are expensive or infeasible in high-dimensional
problems, we compare with the neural hybrid method pro-
posed in this work. It should be noted that after modifications
using fine-fidelity networks, the only difference between
HNH and NH is runtime, which means that the error plots
of two methods in the following are the same with respect to
the number of discrete PDE solves.

A. MULTIVARIATE BENCHMARK
Herewe consider a high-dimensional multivariate benchmark
problem in the field of structural safety from [24].

g(X ) = βn
1
2 −

n∑
i=1

Xi, (21)

where β = 3.5, n = 50 and Xi ∼ N (0, 1).
Then we construct our surrogate model using neural net-

work as

ĝ = φn(wnφn−1(· · ·φ1(w1x + b1)+ · · · )+ bn), (22)

where {φj}nj=1 are projections, {wj}nj=1 are weights, {bj}nj=1
are biases and x is input variable generated from the given
distribution.

We consider the failure probability Pf = Prob(g(X ) < 0).
With 5×106 MC sampling, the reference estimation is Pmcf =
2.218× 10−4.
We generated 5 × 106 samples for evaluating reference

estimation, so we set 106 samples for the error estimation.
In Figure 5(a), blue line is the error of Monte Carlo esti-
mation, and red line is the error of probability evaluated by
HNHmethod. The error decreases quickly and iteration stops
automatically since the ε between the last two iterations is
lower than the threshold εopt (last two red circles are too
close to identify in Figure 5(a)). The phenomenon per-
fectly fits ourAssumption 1 and 2, for the error decreasing
to zero when g(z) ≥ ηt . It means that there will be no more
modification when g(z) ≥ ηt , and the failure probability
estimation converges. So an acceptable probability (Pf =
2.25× 10−4) can be obtained with 2× 103 sample generated
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FIGURE 5. Performances on accuracy and time of HNH in multivariate
benchmark.

from origin system, where 103 samples are for training mod-
els. Compared with reference value which obtained by using
5 × 106 MC sampling, the absolute error is about 10−6 and
relative error is 1.443% with less than 0.4% training samples
generated from origin system g. In Figure 5(b), we show the
timing comparison between our HNH method and our NH
method. We set the running time of NH method as the unit
time in three orders of magnitude. With number of samples
growing, our HNH method is more efficient.

B. DIFFUSION EQUATION
In this numerical test, we consider a diffusion problem. The
governing equations of the diffusion problem are

−∇ · (a(x, ξ )∇u(x, ξ )) = 1 in D× 0

u(x, ξ ) = 0 on ∂DD × 0
∂u(x, ξ )
∂n

= 0 on ∂DN × 0. (23)

FIGURE 6. The plots show the values of the diffusion equation, where left
one is the contour.

where the equation setting can be found in [25]. We can
employ finite element method (FEM) and the weak form
of (23) is to find an appropriate u(x, ξ ) ∈ H1

0 (D) s.t. ∀v ∈
H1
0 (D), (a∇u,∇v) = (1, v). And the finite element solver is

from the former work [26], [27].
In our numerical study, the spatial domain is D(0, 1) ×

(0, 1). Dirichlet boundary conditions are applied on the left
(x = 0) and right (x = 1) boundaries. Neumann conditions
are applied on the top and bottom conditions. The problem is
discretized on a uniform 65× 65 grid, and Nh = 4225 is the
spatial degrees of freedom.

The coefficient a(x, ξ ) of the diffusion problem is regarded
as a random field, where a0(x) is mean function, σ is standard
deviation and covariance function,

Cov(x, y) = σ 2 exp
(
−
|x1−y1|

L
−
|x2−y2|

L

)
, (24)

where L is the correlation length. We employ Karhunen-
Loéve (KL) expansion [28], [29] to approximate the random
field

a(x, ξ ) ≈ a0(x) +
d∑
k=1

√
λkak (x) ξk , (25)

where ak (x) and λk are the eigenfunctions and eigenvalues
of (24), {ξk}dk=1 are random variables. We set a0(x) = 1,
σ = 0.42, and the number d we choose is large enough to
capture 95% of total variance of the exponential covariance
function [30]. In this paper, we set d = 48 for correlation
length L = 0.8.

The numerical results solved by FEM using IFISS [27] are
shown in Figure 6, and we choose X = [0.5; 0.5] as the
point sensor placed. For d = 48, with 106 MC sampling,
the reference failure probability for Prob(u(x, ξ ) > 0.19) is
Pf = 1.2× 10−3.

In Figure 7(a), our HNH method uses 2 × 103 samples
from origin model, and it captures the the failure probability
as 1.15×10−3, relative error is 4.17% (the reference solution
computed by MC using 106 samples). The result is better
than MC with around 105 samples. In Figure 7(b), our HNH
method is more than three times faster than NHmethod when
the magnitude is 106. Surrogate method is widely used in
hugemagnitude problem. NHmethod is an efficient surrogate
method, and our HNH method is more outstanding.
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FIGURE 7. Performances on accuracy and time of HNH in diffusion
equation for d = 48.

C. HELMHOLTZ EQUATION
We now consider the Helmholtz equation

−1u−k2u = 0, (26)

where k is coefficient, and we set the homogeneous term.
We employ MATLAB PDE solver to obtain accurate solu-

tions of Helmholtz equation shown in Figure 8. We choose
X = [0.7264; 0.4912] as the point sensor placed. The ref-
erence failure probability for Prob(u(x, k) > 1.09) is Pf =
2.08× 10−3 computed by MC using 105 samples.

Figure 9(a) shows the relative error compared with ref-
erence failure probability. Our method captures the failure
probability (Pf = 2.16 × 10−3) with only 1500 samples
generated from Helmholtz equation where 103 for training
and 500 for modification. The absolute error is about 8×10−5

and relative error is 3.85%. The result is more accurate than
MC with 104 samples. The estimation of standard MC does

FIGURE 8. A snapshot of the value of the Helmholtz equation.

FIGURE 9. Performances on accuracy and time of HNH in Helmholtz
equation.

not converge within 104 samples. Figure 9(b) shows the
speedup of our HNH approach compared with our former
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TABLE 1. Runtime for HNH method and its corresponding neural
hybrid (NH) method with different number of samples for three examples
in the former part.

neural hybrid method. Considering the performance in both
accuracy and efficiency, our HNH approach performs well.

V. CONCLUSION
Conducting adaptivity is a main concept for efficiently esti-
mating failure probabilities of complex PDE models with
high-dimensional inputs. In this work, our HNH procedure
adaptively fits the hierarchical structures for this problem.
To finally show the efficiency of HNH, we compare it with
a direct combination of neural network and hybrid method
(which is referred to as NH). Table 1 shows the running
times of HNH and NH to achieve the same given accuracy
for the three test problems. It can be seen that, as the sam-
ple size increases, the efficiency of HNH becomes more
clear, e.g., for the Helmholtz problem with M = 106, the
running time of HNH is around a quarter of the time of
NH. Moreover, our method employs neural network as a
surrogate to overcome the limitations of standard polyno-
mial chaos for high-dimensional problems. From the numer-
ical examples, to achieve the same accuracy, it is clear
that HNH only solves the PDEs several thousand times,
while traditional MC needs to solve PDEs more than 105

times. Due to the universal nature of the neural network, our
HNH method can be extend to general surrogate modelling
problems.
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