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Abstract: Linguistic convention typically allows speakers several options.
Evidence is accumulating that the various options are preferred in different
contexts, yet the criteria governing the selection of the appropriate form are
often far from obvious. Most researchers who attempt to discover the factors
determining a preference rely on the linguistic analysis and statistical modeling
of data extracted from large corpora. In this paper, we address the question of
how to evaluate such models and explicitly compare the performance of a
statistical model derived from a corpus with that of native speakers in selecting
one of six Russian TRY verbs. Building on earlier work we trained a polytomous
logistic regression model to predict verb choice given the sentential context. We
compare the predictions the model makes for 60 unseen sentences to the choices
adult native speakers make in those same sentences. We then look in more
detail at the interplay of the contextual properties and model computationally
how individual differences in assessing the importance of contextual properties
may impact the linguistic knowledge of native speakers. Finally, we compare the
probability the model assigns to encountering each of the six verbs in the 60 test
sentences to the acceptability ratings the adult native speakers give to those
sentences. We discuss the implications of our findings for both usage-based
theory and empirical linguistic methodology.
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1 Introduction

A particular idea can often be coded linguistically in several different ways: that
is to say, linguistic convention allows speakers various options. At the lexical
level, speakers can choose from sets of near synonyms (walk, march, stride,
strut…). Similarly, at the grammatical level, there are often several options for
encoding slightly different construals of the same situation: for instance, in
English, there are several ways of marking past events (was walking, walked,
had walked), two indirect object constructions (give him the book vs. give the
book to him), and so on. Cognitive linguists have long been claiming that
languages abhor (complete) synonymy and evidence is accumulating showing
that in the vast majority of cases, the various options are preferred in different
contexts.

However, the criteria governing the selection of the appropriate form are
often far from obvious, and hence, there is now a considerable amount of
empirical work attempting to describe the differences between near synonymous
lexemes or constructions (for book-length treatments see Arppe 2008; Divjak
2010; Klavan 2012 and references therein). Most researchers who attempt to
discover the factors influencing a speaker’s decision to use a particular form
rely on the analysis of large corpora. A typical analysis involves extracting a
large number of examples from a corpus and coding those for a number of
potentially relevant features (Klavan 2012) or even as many potentially relevant
features as possible (Arppe 2008; Divjak 2010). The usage patterns obtained can
then be analyzed statistically to determine which of the candidate features are
predictive of the form which is the focus of the study. The most rigorous studies
also fit a statistical model to the data and test it on a new set of corpus examples
(the testing set) to see how well it generalizes to new data.

One problem faced by researchers in this area is how to evaluate such
models. A model that supplies the target form 85% of the time may be regarded
as better than one that predicts it 80% of the time – but can this be regarded as
adequate? After all, such a model still gets it wrong 15% of the time. The answer,
of course, depends partly on (1) how many options there are to choose from (51%
correct is very poor if there are only two options, but would be impressive if
there were ten), but also on (2) the degree to which the phenomenon is pre-
dictable (100% correct is not a realistic target if the phenomenon is not fully
predictable), as well as (3) what is being predicted: individual choices or rather
proportions of choices over time. As Kilgariff (2005) and many others have
observed: language is never ever random; however, it is also rarely, if ever,
fully predictable.
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The obvious solution for cognitive linguists is to compare the model’s
performance to that of native speakers of the language. Such a comparison
could, in principle, result in three possible outcomes. First, the model may
perform less well than humans. If this is the case, then the model is clearly
missing something, and this tells us that we must go back to the data and find
out what we have not coded for, add new predictors to the model, and test it
again. Secondly, the model may perform as well as humans. This is clearly an
encouraging outcome, but if we are interested in developing a psychologically
realistic model (as opposed to simply describing the corpus data), we would
want to make sure that the model is relying on the same criteria as the speakers.
We could conclude that this was the case if the pattern of performance was
similar, that is to say, if the model gave clear predictions (i. e. outputs a high
probability for one particular option) when the speakers consistently choose that
same option, and, conversely, if uncertainty in the model (several options with
roughly equal predicted probabilities, of, for example, 0.2–0.3 in the case of 3–5
alternatives, as opposed to one clear favourite) corresponded to variability in
human responses. Finally, the model may perform better than humans.
Statistical models have been found to outperform human experts in a number
of areas including medical diagnosis, academic and job performance, probation
success, and likelihood of criminal behaviour (Dawes et al. 1989; Grove et al.
2000; Stanovich 2010). To our knowledge, no model of linguistic phenomena
currently performs better than humans (for instance, is able to choose the form
that actually occurred in a particular context in a corpus more accurately than
the average human informant) but it is perfectly possible that, as our methods
improve, such models will be developed.

2 Previous studies

There are now a number of published multivariate models that use data,
extracted from corpora and annotated for a multitude of morphological, syntac-
tic, semantic and pragmatic parameters, to predict the choice for one morpheme,
lexeme or construction over another. However, most of these studies are con-
cerned with phenomena that involve binary choices (Gries 2003; De Sutter et al.
2008) and only a small number of these1 corpus-based studies have been cross-

1 There are a number of early studies that employ multiple explanatory variables but do not use
these to construct multivariate models. Instead, they consider all possible unique variable-value
combinations as distinct conditions (e. g. Gries 2002; Featherston 2005).
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validated (Keller 2000; Wasow and Arnold 2003; Sorace and Keller 2005; Roland
et al. 2006; Arppe and Järvikivi 2007; Divjak and Gries 2008).2 Of these cross-
validated studies, few have directly evaluated the prediction accuracy of a
complex, multivariate corpus-based model on humans using authentic corpus
sentences (with the exception of Bresnan 2007; Bresnan and Ford 2010; Ford
et al. 2013a; Ford et al. 2013b), and even fewer have attempted to evaluate the
prediction accuracy of a polytomous corpus-based model in this way (but see
Arppe and Abdulrahim 2013 for a first attempt). Below we will review the latter
two types of cross-validated studies.

Bresnan (2007) was the first to evaluate a multivariate corpus-based model
(Bresnan et al. 2007) designed to predict the binary dative alternation. A scalar
rating task was used to evaluate the correlation between the naturalness of the
alternative syntactic paraphrases and the corpus probabilities. Materials con-
sisted of authentic passages attested in a corpus of transcriptions of spoken
dialogue; the passages were randomly sampled from the centers of five equally
sized probability bins, ranging from a very low to a very high probability of
having a prepositional dative construction. For each sampled observation the
alternative paraphrase was constructed. Both options were presented as choices
in the original dialogue context. Contexts were edited for readability only by
shortening and by removing disfluencies. Items were pseudo-randomized and
construction choices were alternated to make up a questionnaire. Each of the 19
subjects received the same questionnaire, with the same order of items and
construction choices. Subjects were asked to rate the naturalness of alternatives
in a given context by distributing 100 points over both options. Responses were
analysed as a function of the original corpus model predictor variables by using
mixed effects logistic regression. Bresnan found that subjects’ scores of the
naturalness3 of the alternative syntactic paraphrases correlate well (R2 = 0.61)
with the corpus probabilities and can be explained as a function of the same

2 Note that Grondelaers and Speelman (2007) and Kempen and Harbusch (2005) work the other
way around and validate and refine experimental findings using corpus data.
3 Arppe and Järvikivi (2007) criticize Bresnan’s set-up of operationalizing naturalness as a zero-
sum game, with naturalness between the two alternatives always adding up to the same value,
i. e. 100, as their own study shows that even strong differences in terms of preference might
nevertheless exhibit relatively small differences in acceptability. However, Bresnan’s results
would seem to indicate that the human participants were agreeing with the corpus-based
estimates of the proportions of choice (in the long run) between the two alternatives (rather
than with their naturalness). Of course, we cannot be sure what participants in a experiment are
doing, regardless of how the instructions are formulated (cf. Penke and Rosenbach 2004).
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predictors. Individual speakers’ choices matched the choice attested in the
corpus in 63–87% of all cases (with a baseline of 57% correct by always
choosing the most frequently occurring option). Bresnan concluded that lan-
guage users’ implicit knowledge of the dative alternation in context reflects the
usage probabilities of the construction.

Bresnan and Ford (2010) and Ford and Bresnan (2013a, 2013b) investigated
the same question across American and Australian varieties of English. Relevant
here is that they ran a continuous lexical decision task (Ford 1983) to check
whether lexical-decision latencies during a reading task reflect the corpus
probabilities. In a continuous lexical decision task subjects read a sentence
word by word at their own pace, and made a lexical decision as they read
each word (participants were presented with a sentence one word at a time and
must press a “yes” or “no” button depending on whether the “word” is a real
word or a non-word). The participants were instructed to read the contextual
passage first and then make a lexical decision for all words from a specific
starting point. That starting point was always the word before the dative verb.
There were 24 experimental items, chosen from the 30 corpus items used in
the scalar rating task (Bresnan 2007). A mixed effects model fit to the data
confirmed that lexical-decision latencies during the reading task reflect the
corpus probabilities: more probable sentence types require fewer resources
during reading, so that reading times measured in the task decrease in high-
probability examples.

Arppe and Abdulrahim (2013) contrast corpus data and forced-choice
data on four near-synonymous verbs meaning come in Modern Standard
Arabic to assess the extent to which regularities extracted from a corpus overlap
with collective intuitions of native speakers. A model of the corpus data was
built using polytomous logistic regression based on the one-vs-all heuristic
(Arppe 2008, 2013a) and was compared to data from a forced-choice task
completed by 30 literate Bahraini native speakers of Arabic who read 50 sen-
tences and chose the missing verb from a given list of verbs. The 50 experi-
mental stimuli were chosen to represent the full breadth of contextual richness
in the corpus data and the entire diversity of probability distributions, ranging
from near-categorical preferences for one verb to approximately equal probabil-
ity distributions for all four verbs. Arppe and Abdulrahim (2013) found that as
the probability of a verb, given the context, rises, so does the proportion of
selections of that verb in the context in question (proportion being the relative
number of participants selecting the particular verb). Importantly there were
hardly any cases where a low-probability verb received a high proportion of
choices, and only a few in which high-probability verb received a low proportion
of choices.
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3 Russian verbs of trying

In this paper, we explicitly compare the performance of a statistical model
derived from a corpus with that of native speakers. The specific phenomenon
that we will investigate concerns six Russian verbs (probovat’, silit’sja, pytat’sja,
norovit’, starat’sja, poryvat’sja) which are similar in meaning – they can all be
translated with the English verb “try” – but which are not fully synonymous. As
explained in Divjak (2010: 1–14), these verbs were selected as near-synonyms on
the basis of a distributional analysis in the tradition of Harris (1954) and Firth
(1957), with meaning construed as contextual in the Wittgensteinian sense.
Synonymy was thus operationalized as mutual substitutability or interchange-
ability within a set of constructions forming a shared constructional network.
This is motivated by a Construction Grammar approach to language in which
both constructions and lexemes are considered to have meaning; as a conse-
quence, the lexeme’s meaning has to be compatible with the meaning of the
construction in which it occurs and of the constructional slot it occupies to yield
a felicitous combination. Therefore, the range of constructions a given verb is
used in and the meaning of each of those constructions are indicative of the
coarse-grained meaning contours of that verb. The results can then be used to
delineate groups of near-synonymous verbs. On this approach, near- synonyms
share constructional properties, even though the extent to which a construction
is typical for a given verb may vary and the individual lexemes differ as to how
they are used within the shared constructional frames.

To study verbal behavior within a shared constructional frame we build on
earlier work by Divjak (2003, 2004, 2010), who constructed a database contain-
ing 1351 tokens of these verbs. The source of the data was the Amsterdam
Corpus, supplemented with data from the Russian National Corpus, which
contains written literary texts. About 250 extractions per verb were analysed in
detail, except for poryvat’sja, which is rare and for which only half that number
of examples could be found. Samples of equal size were chosen for two reasons:
(1) interest was in the contextual properties that would favour the choice of one
verb over another, and by fixing the sample size, frequency was controlled,
(2) the difference in frequency of occurrence between these verbs is so large (see
Table 6 below) that manually annotating a sample in which the verbs would be
represented proportionally would be prohibitively expensive. The sentences
containing one of the six TRY verbs were manually annotated for a variety of
morphological, semantic and syntactic properties, using the annotation scheme
proposed in Divjak (2003, 2004). The tagging scheme was built up incrementally
and bottom-up, starting from the grammatical- and lexical-conceptual elements
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that were attested in the data. This scheme captures virtually all information
provided at the clause (in case of complex sentences) or sentence level (for
simplex sentences) by tagging morphological properties of the finite verb and
the infinitive, syntactic properties of the sentences and semantic properties of
the subject and infinitive as well as the optional elements. There were a total of
14 multiple-category variables amounting to 87 distinct variable categories or
contextual properties. Divjak and Arppe (2013) used this dataset to train a
polytomous logistic regression model (Arppe 2013a, 2013b) predicting the choice
of verb. As a rule of thumb, the number of distinct variable combinations that
allow for a reliable fitting of a (polytomous) logistic regression model should not
exceed 1/10 of the least frequent outcome (Arppe 2008: 116). In this case, the
least frequent verb occurs about 150 times, hence the number of variable
categories should be approximately 15. The selection strategy they adopted
(out of many possible ones) was to retain variables with a broad dispersion
among the 6 TRY verbs. This ensured focus on the interaction of variables in
determining the expected probability in context rather than allowing individual
distinctive variables, linked to only one of the verbs, to alone determine the
choice. As selection criteria they required the overall frequency of the variable in
the data to be at least 45 and to occur at least twice (i. e. not just a single chance
occurrence) with all six TRY verbs. Additional technical restrictions excluded
one variable for each fully mutually complementary case (e. g. the aspect of verb
form – if a verb form is imperfective it cannot at the same time be perfective and
vice versa) as well as variables with a mutual pair-wise Uncertainty Co-Efficient
UC value (a measure of nominal category association; Theil 1970) larger than 0.5
(i. e. one variable reduces more than ½ of the uncertainty concerning the other).
Altogether 18 variable categories were retained (11 semantic and seven struc-
tural), belonging to seven different types. These are listed in Table 1.

Using the values of these variables as calculated on the basis of the data in
the sample, the model predicts the probability for each verb in each sentence.
More interestingly from an analyst’s perspective, the model tells us how strongly
each feature individually is associated with each verb (e. g. norovit’ and espe-
cially poryvat’sja are strongly preferred when the infinitive describes a motion
event while pytat’sja, starats’ja and silit’sja are dispreferred in this context;
probovat’ does not have a preference one way or the other). This enables us to
characterize each verb’s preferences (Divjak 2010; Divjak and Arppe 2013; Arppe
2013b).

Assuming that the model “chooses” the verb with the highest predicted
probability (though strictly speaking a logistic regression model is attempting
to represent the proportions of possible alternative choices in the long run), its
overall accuracy was 51.7% (50.3% when tested on unseen data). This is well
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above chance: since there are six verbs, chance performance would have been at
16.7%. This overall accuracy may, however, still seem disappointingly low until
we remember that the verbs have very similar meanings and are often inter-
changeable: that is to say, most contexts allow several, if not all, verbs. So the
more interesting question is how the model’s performance compares with that of
humans. We explore this question in three studies.

4 Study 1 – Forced choice task

In this study, we investigate Russian speakers’ preferences for verbs of trying in
specific sentential contexts using a forced-choice task. We then compare the
speakers’ preferences to those of the model, asssuming that the model “prefers”
the verb with the highest predicted probability. Choosing a verb to go in a
particular sentence is a fairly artificial task: it is not what speakers do during
normal language use. However, a forced-choice task provides useful information
about speakers’ preferences, and for this reason such tasks are routinely used in
psycholinguistic research as well as in language testing. From our point of view, its
major advantage is that it allows us to obtain comparable data from the model and
from native speakers.

Table 1: Predictors used in the Divjak and Arppe (2013) model.

Property Type

 declarative sentence Structural
 TRY verb in main clause
 TRY verb in perfective aspect
 TRY verb in indicative mood
 TRY verb in gerund
 TRY verb in past tense
 subordinate verb in imperfective aspect

 human agent Semantic
 infinitive involves high control

 infinitive designates an act of communication
 infinitive designates an act of exchange
 infinitive designates a physical action involving self
 infinitive designates a physical action involving another participant
 infinitive designates motion involving self
 infinitive designates motion involving another participant
 infinitive designates metaphorical motion
 infinitive designates metaphorical exchange
 infinitive designates metaphorical action involving another participant

8 Dagmar Divjak et al.
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4.1 Method

4.1.1 Materials

We extracted 60 sentences from the Divjak (2010) dataset. The sentences were
selected to represent the whole spectrum of the probability distributions. The
probabilities of the selected sentences are visualized in Figure 1 where each
colour represents a different verb (colours represent sentence-specific probabil-
ities rather than verbs, i. e. red is always used to mark the verb that has the
highest probability of occurring, regardless of which of the six verbs it is; green
is always used for the second most likely verb, etc.) and the height of each
coloured portion of the bar represents the probability of the verb’s occurrence as
predicted by the Divjak and Arppe (2013) model. As we move from left to right,
we see that the predominance of one verb over all other options diminishes,
until we end at the right hand side with a number of cases in which the
distribution of probabilities starts to equal out over all 6 verbs.

Four of the sentences were close to categorically biasing contexts according
to the Divjak and Arppe (2013) model, i. e. the model assigned a probability of
0.70 or above to one verb, and the predicted probabilities for all other verbs

Figure 1: Probability distribution for TRY verbs across the 60 sentences.
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were ≤0.10. Thirty-one experimental sentences were strongly biasing, i. e. the
model predicted a probability value of more than 0.50 for one of the verbs. In
the remaining 25 sentences, there was no clear winner, with up to five verbs with
predicted probabilities ≥0.10. Because the sentence selection was driven by
concerns about the probability distribution, not all six target verbs are repre-
sented in equal numbers in the experimental sentences. Table 2 specifies the
number of sentences used for each of the six TRY verbs.

We then created four experimental lists, each with a different random order. In
each sentence, the TRY verb was replaced with a blank, and the six possible
verbs were printed below it in alphabetical order.

4.1.2 Participants

One hundred and fifty nine adult native speakers of Russian were recruited via
e-mail announcements and through personal contacts. The participants were
randomly assigned to one of the four lists. Twenty-five participants did not
supply responses for all verbs and were excluded. The data for the remaining
134 participants (28 males, 106 females) was entered into the analysis. The
participants ranged in age from 17 to 64 (mean 30, SD= 10). The vast majority
either held a university degree or was studying for one.

4.1.3 Procedure

The participants were given the following instructions (in Russian):

You will be presented with 60 sentences from which a verb has been deleted. Read the
sentences and the answer options and choose the verb that fits the context best from the
list of six options. Work at a quick pace, don’t think too long over one answer, don’t go

Table 2: Number of sentences per verb.

Verb Sentences

norovit’ 

probovat’ 

silit’sja 

poryvat’sja 

pytat’sja 

starat’sja 

10 Dagmar Divjak et al.
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back and change things: there are no right or wrong answers and we are interested in your
first choice.

The experiment was administered online using Google Forms, and took about 15
minutes to complete.

To obtain comparable data from the model, we excluded the 60 test sen-
tences from the Divjak (2010) dataset and trained the model on the remaining
sentences. We then used the model to compute the probability for each of the six
verbs in each of the test sentences.

4.2 Results and discussion

4.2.1 Analysis 1: Model vs. average participant

In order to compare the model and the participants, we assumed that the
model’s response on the forced choice task would be the verb with the highest
predicted probability for a given context. In the analysis that follows, we take
the verb which actually occurred in the corpus to be the “correct” response. Of
course the attested corpus example may be an unrepresentative one, so this is
not necessarily the best way to evaluate the model. We will return to this issue in
sections 4.2.2 and 6.

Since there were 60 sentences and six verbs, chance performance would be
about 10/60; given the skewed distribution of verbs over experimental sentences
discussed above, always choosing the same verb would result in a correct choice
for between 4 and 20 out of 60 sentences, depending on the verb (see Table 2).
Always selecting the TRY verb most frequently used in corpus data, pytat’sja,
would have yielded a correct choice in 10 out of 60 sentences (see Table 2). The
model predicted the verb that actually occurred in the corpus for 23 of the 60 test
sentences – i. e. 38% of the time. This is considerably lower than the perfor-
mance on randomly chosen sentences (50% – see above), and reflects the fact
that the testing set intentionally contained a larger proportion of verbs in highly
ambiguous, or variable, contexts than would be the case in a random sample.
The mean number of “correct” choices for the participants was 27.7, i. e. 46% of
the time (SD 4.7) and the median was 28; the scores ranged from 13 to 38. Thus,
there is considerable individual variation in humans (no doubt reflecting the fact
that the participants often guessed), and the model performed about a standard
deviation less well than the average human. In other words, although both
model and speaker perform 2.5 to 3 times better than chance, they still make
the “wrong” choice in more than half of all cases.
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Tables 3, 4 and 5 provide summaries of the results by verb. Table 3 specifies
the number of trigger sentences in which the verb that was used in the original
corpus sentence was correctly retrieved by the model or by the human respon-
dents. While the model performs particularly poorly on pytat’sja and starat’sja,
the human respondents struggle with silit’sja, which is unsurprising as the
verb is relatively infrequent (see Table 6 below for further discussion) and
obsolescent.

Table 4 summarizes the choices made by our respondents for each verb. Each
row in the table summarizes the participants’ responses to sentences containing
one of the six verbs. The numbers across the diagonal provide information about
“correct” responses, i. e. proportion of times when participants supplied the verb
that actually occurred in the corpus (e. g. 58% of the time for norovit’); the other
figures in the same row give us the proportion of the time that other verbs were
used in the same contexts. Thus, row 1 tells us that, on average, for corpus
sentences that originally contained norovit’, participants supplied that verb 58%
of the time, probovat’ 3% of the time, silit’sja 5% of the time, and so on.

It is clear from the table that the participants used all the verbs in each type of
context, although they also had a strong preference for one of the verbs (and in the

Table 4: Results by verb: Human choices across sentences.

Humans

norovit’ probovat’ silit’sja poryvat’sja pytat’sja starat’sja

Corpus norovit’ . . . . . .
probovat’ . . . . . .
silit’sja . . . . . .
poryvat’sja . . . . . .
pytat’sja . . . . . .
starat’sja . . . . . .

Table 3: Target responses by verb for model and humans.

Verb Model (correct out of total) Humans (correct out of total)

norovit’ / /
probovat’ / /
silit’sja / /
poryvat’sja / /
pytat’sja / /
starat’sja / /

12 Dagmar Divjak et al.
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case of starat’sja contexts, for two verbs, pytats’sja and starat’sja). Moreover, as we
can see, the highest values (in boldface) are not always on the diagonal. The verb
silit’sja for example, was frequently replaced with pytat’sja by native speakers, and
starat’sja is nearly equally often predicted as pytat’sja than as starat’sja.

For ease of comparison, we present the results for the model in a format
similar to Table 4, containing the data provided by the respondents. Yet, it must
be borne in mind that the 60 sentences were selected so as to contain a
substantial number of cases with inherent variability, allowing virtually all of
the six TRY verbs. Therefore, the average probabilities mask a substantial
amount of variability in the sentence-wise verb-specific probability estimates.
Thus, the first row in Table 5 gives us the predicted probability of norovit’ in
norovit’ contexts (averaged across all sentences with norovit’), followed by the
probabilities for the other verbs in norovit’ contexts. Here the highest values are
not always on the diagonal either, and pytat’sja and starat’sja as well as
poryvat’sja are often replaced with silit’sja by the model.

As we can see, the results for the model and the participants are broadly similar,
but there are also some differences. The model has particular problems with
starat’sja and especially pytat’sja. The average predicted probability of pytat’sja
in relevant contexts is 0.23 (Table 5), yet in the 60-sentence test sample, the
model chose it as the most probable option (by a very narrow margin) in only
one out of ten contexts in which pytat’sja was expected (Table 3). The corre-
sponding figures for human participants, on the other hand, are considerably
higher: the average predicted probability of pytat’sja in relevant contexts is 0.50
(Table 4) and humans chose it in 8/10 cases (Table 3). Furthermore, as can be
seen by looking at the figures in column 5 of Table 4, participants often over-
generalized pytat’sja, using it in contexts where other verbs occurred in the
corpus: in fact, for 20 out of the 50 sentences with verbs other than pytat’sja, the
majority of the participants chose pytat’sja; the model did this much less

Table 5: Results by verb: Model predictions across sentences.

Model

norovit’ probovat’ silit’sja poryvat’sja pytat’sja starat’sja

Corpus norovit’ . . . . . .
probovat’ . . . . . .
silit’sja . . . . . .
poryvat’sja . . . . . .
pytat’sja . . . . . .
starat’sja . . . . . .
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frequently (in only 8 out of 50 cases). In contrast, the human participants
struggled with the verb silit’sja, while the model did quite well with this verb.
These differences are likely to be due to frequency effects. As shown in Table 6
that contains the frequencies with which the TRY verbs appear followed by an
infinitive, the verbs differ considerably in their frequencies: pytat’sja is the most
frequent verb by a large margin, while silit’sja is one of the least frequent and is
in fact becoming obsolete.

We know that humans are highly sensitive to frequency information (for reviews,
see Ellis 2002; Divjak and Caldwell-Harris 2015), so it is not surprising that they
tended to select the most frequent (and hence most general) verbs when they had
no strong preference for a verb with a more specific meaning, i. e. when the
contextual factors were not strong enough to clearly favour one outcome. This
is especially the case in an experimental setting with only a small number of
contexts, which limits the possibility of the effect of the estimated probabilities to
emerge; (estimated) probabilities show their effect in the long run, and this
typically requires more than a few dozen sentences. The model, in contrast,
makes its predictions entirely on the basis of how often the sentence-wise combi-
nation of the variables discussed earlier (Table 1) is associated with each verb, as
it had no access to information about the token frequencies of individual verbs
(recall that the frequencies in the sample used for training were roughly equal by
design to level the playing field for the contextual properties of interest).
Moreover, the model considers relative frequencies of the outcome verbs, given
the particular contexts, not overall proportions in general language usage.

To accommodate frequency information, we multiplied the predictions of
the original model by the square root of each verb’s relative frequency. Using the
square root is a common practice when dealing with skewed distributions (Field
et al. 2012); it is also psychologically realistic in that frequency effects are most
noticeable at lower frequencies. Table 7 presents a summary of predictions for
each verb; for ease of comparison with Tables 3 and 4, the figures given in

Table 6: Frequencies of the verbs followed by an infinitive in the Russian National Corpus
(1992–2013).

Verb Tokens in RNC Relative frequency

norovit’  .
probovat’  .
silit’sja  .
poryvat’sja  <.
pytat’sja  .
starat’sja  .
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Table 7 were converted to probabilities by dividing the frequency adjusted
values for each verb in each sentence by the sum of the frequency adjusted
values for all six verbs.

The frequency-adjusted model predicted the target verb correctly in 28 of the
60 sentences – in other words, overall, it performed at exactly the same level as
the average human participant. As expected, the frequency adjustment made the
performance more human-like on pytat’sja and starat’sja. Moreover, like human
participants, the frequency-adjusted model tended to overgeneralize pytat’sja,
which is now the most frequently chosen option for all verbs except probovat’. It
also undergeneralizes silit’sja and instead predicts it to be pytat’sja or starat’sja.
On the other hand, it performed less well than both original model and human
participants on sentences with norovit’ and poryvat’sja.

Thus, adding frequency information improved performance, but the overall
improvement was relatively modest, and performance on some verbs actually
deteriorated. This signals that the trade-off between frequency information and
contextual information with which native speakers operate is more sophisticated
than we can capture with a logistic regression model that runs on contextual
features enriched with the frequency of the TRY verb in the targeted syntactic
context.

4.2.2 Analysis 2: Model vs. participants as a group

All the analyses so far assumed that the verb which actually occurred in the
corpus was the “correct” response. This is the fairest way to compare the
model’s performance to that of humans, but it is problematic in the sense that
not all corpus examples are necessarily representative. In fact, since the corpus
includes a high proportion of literary texts, it is possible that a number of the
uses involved the author deliberately using an unusual verb for special effect. To

Table 7: Results by verb: Model predictions adjusted for frequency.

Model

norovit’ probovat’ silit’sja poryvat’sja pytat’sja starat’sja

Corpus norovit’ . . . . . .
probovat’ . . . . . .
silit’sja . . . . . .
poryvat’sja . . . . . .
pytat’sja . . . . . .
starat’sja . . . . . .
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determine whether this is the case, we conducted a second analysis to see how
often the participants, the model, and the corpus “agreed” (i. e. both partici-
pants and the model choose the verb that occurred in the corpus) and how often
they “disagreed.” For this analysis, the verb that was selected by the largest
number of participants was deemed to be preferred: in other words, we treated
each individual response as a “vote” for a particular verb in a particular
sentence, and the verb that got the most votes was the winner. Logically,
there are five possibilities:
(1) the corpus, the model and the participants all agree;
(2) the model chooses the verb that occurred in the corpus while the partici-

pants prefer a different verb;
(3) the participants prefer the verb that occurred in the corpus while the model

prefers a different verb;
(4) the model and the participants both prefer the same verb, but not the one

that occurred in the corpus;
(5) the model and the participants prefer different verbs, and the corpus

contains yet another verb.

The results of the analysis are summarized in Table 8.

As we can see, experimental items where the model and the participants agreed
on a verb different from the verb used in the corpus account for nine out of 60,
i. e. 15% of all cases. In such cases, the choice of the verb attested in the corpus
is arguably unusual or has become obsolete, and the verb preferred by the
participants (and the model) should be regarded as (currently) “correct.” Thus,
the accuracy figures given in the preceding section underestimate the partici-
pants’ (and the model’s) true performance by about 15%. The corpus and the
frequency-adjusted model agreed on 28 (19 + 9) out of the 60 sentences, that is in
46.6% of all cases. This is virtually identical to the average human performance:

Table 8: Agreement between the corpus, the model and human participants.

Type Corpus Model Participants Original
model

Frequency
adjusted model

% in frequency
adjusted model

 verb  verb  verb    

 verb  verb  verb    

 verb  verb  verb    

 verb  verb  verb    

 verb  verb  verb    
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as indicated earlier, the mean human score was 27.7 and the median 28.
However, as shown in the table, the humans as a group did considerably better,
choosing the “correct” verb in 35 (19 + 16) or 58.3% of sentences. Why should
there be such a discrepancy between individual and group performance? One
possibility is that the difference is due simply to the fact that, between them, 134
participants have experienced more verb tokens in relevant contexts than any
one participant, and hence had more opportunities for learning the differences
between the contexts (in the widest sense of the word, i. e. not necessarily
limited to sentential contexts, and including subtle pragmatic differences and
attitudes) in which the verbs occur. If this is the case, then we would expect
older participants (who have had more experience, possibly including more
experience with the type of texts the corpus contained) to perform better than
younger participants. In order to test this possibility, we computed a Pearson
product-moment correlation between participants’ age and their scores in the
experiment. The relationship turned out to be insignificant (rPearson=–0.09,
p = 0.323), suggesting that all participants have had enough relevant experience.
Hence, it is unlikely that the difference between individual and group scores can
be explained by the amount of experience – although it is possible, of course,
that what matters more than sheer amount is the type of experience, for
instance, exposure to particular genres.

Another possibility is that different participants relied on different features,
and hence collectively the group were able to take advantage of more information
than any one individual. This possibility will be explored in Study 2 (see Section 5).

4.2.3 Analysis 3: Using forced-choice responses as the test corpus

In the previous two sections, we compared human participants and the model
by giving them both the same task: predicting the verb that actually occurred in
each sentence in the test corpus. An alternative way to evaluate the model is to
see how well it can predict the participants’ responses: in other words, we take
all of the participants’ responses (134 × 60 sentences) and use them as another
test corpus for the model. In this section, we assess the model’s performance on
this test corpus.

A polytomous mixed-effect regression model (with participant as the ran-
dom effect) of the type described in Section 3 achieves a likelihood-based
pseudo-variance of MacFadden’s RL

2= 26.2% in explaining the individual cate-
gorical choices in the forced choice data using exactly the same model specifica-
tion, i. e. variable combinations, as was used to explain the literary corpus data.
This is slightly less than the original corpus-based model that achieved 31%.
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We can gain a better understanding of how the predictions for the forced-
choice corpus compare to the predictions for the literary texts corpus by inspect-
ing the resulting odds tables. The odds from the forced-choice model are
represented in Table 9. Boldfaced odds greater than one signal variable levels
in favour of a specific verb, odds less than one capture variable levels against a
specific verb, and odds in parentheses denote insignificant variable levels. Take
for example the fact that the TRY verb occurs in a main clause (CLAUSE.MAIN)
which has significant positive odds in favor of probovat’, pytat’sja, starat’sja and
silit’sja but neutral odds for norovit’ and poryvat’sja. The comparatively high
odds of a perfective aspect on the TRY verb (FINITE.ASPECT_PERFECTIVE) in
favor of probovat’ stand out — this is due to the fact that probovat’ is one of only
three verbs that have a perfective counterpart, and the verb that occurs most
frequently in the perfective aspect in the data.

Even at first glance, it is clear that while some verbs have clearly different
profiles, others are more similar to each other. For example, probovat’, pytat’sja,
silit’sja and starat’sja share four of their favourable odds and the differences
between probovat’ and pytats’sja in terms of odds in favour are marginal
(perfective aspect triggers probovat’). Other verbs, such as norovit’ and pory-
vat’sja are markedly different, sharing at most one favoured property with the
four other verbs. As was the case with the odds derived from the literary corpus
data (presented in Table 10 below), overall, the presence of the infinitive plays a
significant role in the selection of norovit’ and poryvat’sja, but for the other four
verbs it is either much less relevant or even signals repulsion in the case of
pytat’sja.

When we compare the odds tables (Table 9) and (Table 10) in more detail,
we see that the odds in favour of one and the same verb are different depending
on the corpus. The verb that shows least variation in this respect is starat’sja
which is in both datasets likely to be used in declarative sentences with a human
subject, if the TRY verb occurs in a gerund or if the infinitive has imperfective
aspect marking; in the literary corpus data high control over the infinitive action
was another trigger, while in the forced-choice corpus data occurring in a main
clause and describing a past attempt at a physical action turned out to be
triggers. Other verbs, such as pytat’sja and poryvat’sja seem to be triggered by
entirely different sets of properties in the literary data and the forced-choice
data. Pytat’sja is such an example: while in the literary corpus model variable
levels such as past tense, a high level of control over the infinitive action and
physical activities trigger pytat’sja, in the forced-choice model it is a human
subject, occurrence as gerund, being used in a main clause and in a declarative
sentence that trigger the verb. Furthermore, in the literary corpus model, nine
out of the 19 variables are insignificant, while in the forced-choice model only
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three out of 19 are insignificant and nine out of 19 are significantly against.
Nevertheless the aggregated effects, i. e. overall, the correlation between the
corpus-based probabilities and the forced-choice proportions stands at rpearson
0.46 (t = 9.8012, df = 358, p < 0.001).

Why then are the odds in the models different? Primarily, because the
selection of the sample sentences in the forced-choice model and the frequencies
of the properties associated with these sentences is different. The sample of 60
sentences presented to the subjects is much more limited in terms of the range of
possible contextual properties and property combinations that it contains than
the literary corpus; this affects the contribution each property makes to the
choice of one option over another. This key difference also has to be borne in
mind when attempting to use elicited data to investigate the behavior of proper-
ties for which no or not enough corpus data is available (Bresnan 2007).

5 Study 2: Modelling group effects
and individual differences

We know that language learners are highly sensitive to frequency. However,
they cannot track the frequency of everything they encounter – so how do they
know what to track? This problem has led many researchers (see, e. g. Golinkoff
et al. 1994; Markman 1987; Woodward and Markman 1998) to conclude that
humans have innate biases which lead them to focus on some features while
ignoring others. Note that this conclusion is based on an implicit assumption,
namely, that all speakers of the same language converge on (more or less) the
same grammar. While this assumption is quite widespread, there is now con-
siderable evidence that it is incorrect: there are in fact significant differences
between individual speakers’ grammars (for reviews see Dąbrowska 2012, 2015).
It is possible, then, that different individuals concentrate on different features,
and this could explain why the group in the present study did better than the
average individual: between them, they are able to cover all the relevant
features. We explore this possibility in the second study.

5.1 Method

As explained earlier, the TRY verb dataset was coded for 87 features, but the
model developed by Divjak and Arppe (2013) included only 18 hand-picked
features. Comparative modelling suggested that different variable combinations
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could achieve comparable results, and that omitting some affected prediction
accuracy more than omitting others. Here, we take this line of thought further
and apply it in modeling individual differences. In total 134 different “dumb”
models were constructed to match the number of participants in study 1. Each of
these “dumb” models used a different, randomly selected subset of 18 variables.
These variables were chosen from the 25 that were retained after complying with
the requirements for gracefully fitting the individual one-vs-rest models, i. e. the
variables occur at least once in the Forced Choice stimuli, and at least once with
all of the 6 TRY verbs in the full dataset. Two exactly collinear properties were
excluded (dealing with the complementary aspect marking of the finite and
infinitive verbs); other than that, collinearity was not considered since it does
not affect overall prediction accuracy if it is pervasive, i. e. present not just in the
sample but throughout the population (cf. Harrell 2001: 65), which is what we
assume here. As before, the verb with the highest predicted probability was
regarded as the model’s choice and the scores were compared to the scores we
got from the respondents.

5.2 Results and discussion

The prediction accuracy of these 134 models ranges from 30% to 45% (mean
39% and median 38.3%). For robustness, we also ran this same procedure using
2500 random models; this yielded a wider range but a similar mean and median.
The results are presented in the Appendix.

The worst and best models share 12 out of 18 contextual variables, as
illustrated in Table 11. The table shows that certain properties such as (present)
tense and (imperfective) aspect of the finite verb, as well as aspect of the
infinitive contribute to the individual profiles of the verbs. Although tracking
these properties significantly improves prediction accuracy, they are not typi-
cally included in lexical semantic studies.

The models supplied the target verb (that is to say, the verb that actually
occurred in the corpus) on average in 23.4 out of the 60 sentences, i. e. 39% of
the time (median 23, SD 1.7, range 18–27). Thus, the average level of accuracy of
the “dumb” models was virtually identical to that of the hand-crafted model,
which, as we have seen, selected the target verb for 23/60 sentences, and
slightly below that of human participants who scored 28/60. Interestingly,
however, there was much less variation in the “dumb” models’ accuracy scores
than in humans: recall that the standard deviation for humans was 4.7 – almost
three times larger than for the dumb models, and the range of scores was
13–38 – almost four times larger. This is rather surprising, and suggests that it
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does not really matter which contextual features humans track, as long as they
track enough features.4

Allowing the models to “vote” in the same way as the human participants in
Study 1 resulted in a negligible improvement in performance, from 23.4 to 24.

Table 11: Properties used in the best and worst models out of 134 random models.

Worst model Best model

CLAUSE.MAIN

FINITE.ASPECT_IMPERFECTIVE

FINITE.MOOD_GERUND

FINITE.MOOD_INDICATIVE FINITE.MOOD_INDICATIVE

FINITE.TENSE_PRESENT

INFINITIVE.ASPECT_PERFECTIVE

INFINITIVE.CONTROL_HIGH INFINITIVE.CONTROL_HIGH

INFINITIVE.CONTROL_MEDIUM INFINITIVE.CONTROL_MEDIUM

INFINITIVE.SEM_COMMUNICATION INFINITIVE.SEM_COMMUNICATION

INFINITIVE.SEM_METAPHORICAL_PHYSICAL_EXCHANGE

INFINITIVE.SEM_METAPHORICAL_MOTION

INFINITIVE.SEM_METAPHORICAL_MOTION_OTHER

INFINITIVE.SEM_MOTION

INFINITIVE.SEM_MOTION_OTHER INFINITIVE.SEM_MOTION_OTHER

INFINITIVE.SEM_PERCEPTION

INFINITIVE.SEM_PHYSICAL INFINITIVE.SEM_PHYSICAL

INFINITIVE.SEM_PHYSICAL_OTHER INFINITIVE.SEM_PHYSICAL_OTHER

SENTENCE.DECLARATIVE SENTENCE.DECLARATIVE

SENTENCE.EXCLAMATIVE SENTENCE.EXCLAMATIVE

SENTENCE.NONDECLARATIVE

SUBJECT.SEM_ANIMATE_ANIMAL SUBJECT.SEM_ANIMATE_ANIMAL

SUBJECT.SEM_ANIMATE_HUMAN SUBJECT.SEM_ANIMATE_HUMAN

SUBJECT.SEM_INANIMATE_MANMADE SUBJECT.SEM_INANIMATE_MANMADE

4 How many features would be enough requires further investigation, but preliminary results
from a 1000-fold random selection of 18 variables from the original full 26-variable set, as
reported in Divjak and Arppe (2013), reveal the following: the mean accuracy for these 1000
random models was 45.95%, ranging from 26.87% to 51.59. The best 100 random models (with
accuracy values ranging from 49.44% to 51.59%) had on average 11 (60.0%) variables values in
common with each other, ranging from as few as six up to as many as 15 common variables in
individual pairwise comparisons. Moreover, the best and worst models had only eight variables
(44%) in common, which probably explains the substantial difference in model performance.
We do not pursue this question further here because our interest is not in finding the most
parsimonious model, but rather in exploring the impact of the contextual effects that we had
selected on the basis of prior studies. As Tarpey (2009), echoing Box (1979), put it, “in any given
data analysis situation, a multitude of models can be proposed. Most of these will be useless…
and perhaps a few will be useful.”
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This is probably due to the fact that, in contrast to the humans, the models’
property space remained constrained: although the 134 models were able to
track more properties, only 25 out of the 87 annotated for were available to them
(Divjak 2010). The improvement in performance that we observed for the human
participants strongly suggests that they not only must have tracked different
property constellations, but that they also had access to a larger range of
properties than were considered in our study. We return to this issue in the
concluding section (Section 7).

6 Study 3: Acceptability ratings

In a third study, we compare the probability the corpus model assigns to
encountering each of the six verbs in the 60 test sentences to the acceptability
ratings that adult native speakers would assign to those combinations. Several
papers have investigated the relation between corpus-based frequencies and
native speaker judgments (Featherston 2005; Kempen and Harbusch 2005;
Arppe and Järvikivi 2007; Klavan 2012; Bermel and Knittl 2012), including the
relation between probabilities conditioned on one contextual element and
acceptability ratings (Divjak 2008, 2016). This study is, however, the first to
correlate corpus-based probabilities for the choice of one verb over another,
conditioned on all other elements present in the sentence, with native speaker
ratings of the suitability of these verbs in those sentences. It therefore measures,
in more detail than the forced choice task, how well model-predictions align
with native speaker intuitions.

6.1 Method

6.1.1 Materials

The same 60 sentences as selected for the forced choice task presented in
Section 4.1.1 were used in the acceptability ratings task. Yet, instead of offering
them to native speakers in the form in which they occurred in the corpus, we
created six versions of each sentence, using each of the six TRY verbs. Six
stimulus sets were derived in such a way that the probability distributions
estimated by the polytomous logistic regression model were equally well repre-
sented across all six sets. Within each set, the sentence order was randomized
once, to avoid having more likely or more unlikely items cluster together, and
each participant saw 10 cases of each verb. Since the literary corpus model
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predicted probabilities for all six verbs in each context, precise predictions about
acceptability are available for all possible verb-by-context combinations in the
form of probabilities of occurrence.

6.1.2 Participants

One hundred and three adult native speakers of Russian were recruited via
e-mail announcements and through personal contacts. The participants were
randomly assigned to one of the six lists. The vast majority either held a
university degree or was studying for one. Respondents could enter a prize
drawing where in total six Amazon or Ozon vouchers of £15 each could be won.

6.1.3 Procedure

The participants were given the following instructions (in Russian):

In this experiment you will be asked to rate how natural sentences sound. We are
specifically interested in the use of verbs meaning TRY such as probovat’, pytat’sja,
starat’sja, silit’sja, norovit’ and poryvat’sja. There are 72 sentences in total and we would
like you to rate them on a scale from 1 (sounds very strange) to 10 (sounds completely
natural). Work at a quick pace, don’t think too long over one answer, don’t go back and
change things: there are no right or wrong answers and we are interested in your first
choice.

The experiment was administered online using Google Forms, and took about 15
minutes to complete.

6.2 Results and discussion

For the analysis of the data, the raw acceptability ratings were residualized
against participant and position of the sentence in the experiment, i. e. accept-
ability was regressed on participant and position of the sentence in the experi-
ment and the residuals from this regression were used. This ensures that (what
remained of) each acceptability rating was free of differences in how partici-
pants used the scale, or how their ratings changed over the course of the
experiment. The residualized ratings were also rescaled so that each partici-
pant’s used the entire range (1–10). Our results, visualized in Figure 2, show a
clear two-way distinction between low-probability items for which the accept-
ability can vary, with acceptability then converging and finally linearly
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increasing from p-values of 0.15, as shown by the red line. This means that,
whereas the high probability of a verb given its context by and large entails
acceptability of that verb in that context (as witnessed by the relatively empty
lower right hand quadrant), the (relative) low probability of a verb given its
context does not entail lower acceptability. In other words, the probability that
the corpus model calculates for encountering each of the six verbs in the 60 test
sentences roughly converges with how acceptable each sentence will be for
adult native speakers for all but the lowest-probability cases (i. e. from p=0.15
upwards).

This result confirms previous findings by Arppe and Järvikivi (2007), Divjak
(2008) and Bermel and Knittl (2012) who concluded that meta-linguistic accept-
ability relates to probability in a non- straightforward way, as both high and low
probable items may exhibit a high degree of acceptability. In fact, Figure 2

Figure 2: Residualized and rescaled acceptability ratings plotted against probability.
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shows that the low probability of an item given its context can correlate with any
degree of acceptability.

7 Conclusion

The goal of much computational modelling work is to develop the best – i. e. most
accurate – model of the phenomenon in question. As we have seen, once its
predictions were adjusted for verb frequency, the Divjak and Arppe (2013) model
for choosing between 6 Russian near-synonyms was able to predict the verb that
actually occurred in the test corpus with 47% accuracy. While this may seem
disappointing at first, a comparison with the performance of 134 human judges
reveals that this is actually an excellent result. Many linguistic phenomena are
simply not fully predictable, and if we are interested in modelling human knowl-
edge, we should compare our models’ performance to that of human respondents.

To investigate this further, we created 134 models which used a random
selection of the features, and they all performed within the human range. This
demonstrates that a very large number of models can approximate human
behaviour, which is in itself hugely varied. Divjak and Arppe (2013: 245) noted
already that “there would appear to exist some redundancy among the proper-
ties, which testifies to the inherent multicollinearity of linguistic variables that is
extremely difficult, if not impossible, to eliminate, as well as to a degree of
potentially significant divergence in possible property combinations leading to
similar model fit and accuracy.” Any given feature seems predictable from many
other features. Because of this redundancy, an utterance can be produced in
(unobservably) different ways, which explains how individual differences and
uniformity across the community can co-exist (Hurford 2000; Barth and
Kapatsinski 2014; Dąbrowska 2013, 2014). Thus, while multicollinearity can be
a major headache for statistical modelling (but see Harrell 2001), it may be a
blessing for language learners, in that it enables speakers to behave in a way
that is broadly similar to that of other speakers even when they all have different
underlying grammars. This, combined with the considerable differences in the
performance of human participants, suggests that rather than trying to find the
single “best” model, it may be more productive to develop a range of models
reflecting the range of human performance (as already suggested by Lauri
Carlson, cf. Arppe 2008: 208); for a practical implementation, see Barth and
Kapatsinski 2014).

Second, our results suggest improvements to future models of linguistic
data. Study 3 confirms that meta-linguistic acceptability relates to probability
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in a non- straightforward way, as combinations with a likelihood of p > 0.1 tend
to be judged as acceptable but items below this threshold may exhibit a high
as well as a low degree of acceptability. In the case of a six-way choice, the
absence of a clear correlation between probability and acceptability is likely due
to the fact that low probability can be the result of competition between a
number of equiprobable items, i. e. items that are equally likely given the
context. This indicates that such information would need to be brought into
linguistic models to increase their cognitive reality. Although the difference
between the onomasiological and semasiological components of word meaning
dates back to Structuralism and Geeraerts et al. (1994) have outlined an overall
framework for quantitative onomasiology, we are not aware of any corpus-based
modelling work that would have factored onomasiology into its statistical
model. Efforts are underway (Divjak and Arppe, in progress) to model this
phenomenon using measures from Information Theory such as entropy that
captures uncertainty.

Finally, the results reported here also raise some new questions. Although
the accuracy of the frequency-adjusted Divjak and Arppe (2013) model was
similar to that of the average Russian speaker, it did not perform as well as
the participants as a group. We hinted earlier that this is probably due to the fact
that the individual differences between speakers were much larger than those
between the models used in Study 2. This suggests that speakers differ not just
in which features they track, but also how many features they are able to track,
and possibly also in their sensitivity to frequency effects. A second line of
inquiry that will shed light on this issue is more technical in nature and
considers alternative ways of evaluating the model’s performance, by steering
clear of considering the highest probability option as the chosen option (cf. the
criticism levelled at measures of classification accuracy for multivariate models
that model probability distributions, cf. Hosmer and Lemeshow 2000). And
finally, if the field of linguistics adopts the approach advocated in this paper,
and starts to test corpus-based models against human performance routinely,
the cognitive plausibility of the algorithm should be considered as a goodness-
of-fit criterion, particularly in research within cognitive linguistic paradigms.
Baayen et al. (2013) have shown that statistical classifiers based on cognitively
realistic approximations of how humans learn such as Naive Discriminative
Learning perform as well as regression models for binary choices. Preliminary
results support this finding for more complex corpus models that predict a four-
way polytomous choice (Arppe and Baayen 2011).

Capitalizing on the findings we have presented will help linguists address
some interesting theoretical questions that have hitherto remained unanswered.
As noted earlier, language acquisition researchers worry about how learners
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know which features to track. The results of Study 2 suggest that it does not
really matter what exactly learners track, as long as they track enough features.
The results of the random variable selection in particular point to overlapping
property combinations making up the core of a lexeme; this would make it
possible for speakers to draw largely similar interpretations regarding lexemes
even though the individual properties they have tracked and recorded differ.
What this implies for the degree to which all speakers of a language share the
same contextual property associations, and thus also any abstract prototypes
derived from such sets of properties, requires further research.
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Appendix

For robustness, we also ran the comparative modeling procedure using 2,500
random models. The prediction accuracy here ranges from 23.3% to 48.3% (but
with comparable mean 38.6% and median 38.3% as the 134 models). These
models also share 12 out of 18 properties, as illustrated in Table 12 below

Table 12: Properties used in the best and worst models out of 2,500 random models.

Worst model Best model

CLAUSE.MAIN CLAUSE.MAIN
FINITE.MOOD_GERUND
FINITE.MOOD_INDICATIVE
FINITE.TENSE_PAST
FINITE.TENSE_PRESENT

INFINITIVE.ASPECT_PERFECTIVE INFINITIVE.ASPECT_PERFECTIVE
INFINITIVE.CONTROL_HIGH
INFINITIVE.CONTROL_MEDIUM INFINITIVE.CONTROL_MEDIUM
INFINITIVE.SEM_COMMUNICATION
INFINITIVE.SEM_METAPHORICAL_MOTION

(continued )
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This verification procedure confirms our findings: the best model invests heavily
in formal properties such as tense, aspect and mood as well as properties
referring to the clause or sentence; together they make up 10 out of 18 properties
used. Although tracking these significantly improves prediction accuracy, they
are not typically included in lexical semantic studies while the usual suspects,
i. e. semantic properties, seem less reliable predictors for the choice of one near-
synonym over another.

Dataset download

Divjak, Dagmar; Dąbrowska, Ewa; Arppe, Antti, 2015, “Replication data for:
Machine meets man: evaluating the psychological reality of corpus-based prob-
abilistic models”, http://hdl.handle.net/10037.1/10246 UiT Open Research Data.

Table 12: (continued )

Worst model Best model

INFINITIVE.SEM_METAPHORICAL_MOTION_OTHER
INFINITIVE.SEM_METAPHORICAL_PHYSICAL_EXCHANGE
INFINITIVE.SEM_MOTION INFINITIVE.SEM_MOTION
INFINITIVE.SEM_MOTION_OTHER INFINITIVE.SEM_MOTION_OTHER
INFINITIVE.SEM_PERCEPTION INFINITIVE.SEM_PERCEPTION
INFINITIVE.SEM_PHYSICAL INFINITIVE.SEM_PHYSICAL

INFINITIVE.SEM_PHYSICAL_OTHER
SENTENCE.DECLARATIVE SENTENCE.DECLARATIVE
SENTENCE.EXCLAMATIVE SENTENCE.EXCLAMATIVE
SENTENCE.NONDECLARATIVE SENTENCE.NONDECLARATIVE
SUBJECT.SEM_ANIMATE_ANIMAL

SUBJECT.SEM_ANIMATE_HUMAN
SUBJECT.SEM_INANIMATE_MANMADE SUBJECT.SEM_INANIMATE_MANMADE

Machine Meets Man 33

Brought to you by | University of Birmingham
Authenticated

Download Date | 1/23/20 3:18 PM




