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Abstract--Fractional Frequency Transmission is a competitive 

technology for offshore wind power transmission. Modular 

Multilevel Matrix Converter (M
3
C) plays a key role in a 

Fractional Frequency Transmission System (FFTS) as the 

frequency changer. M
3
C is broadly considered as the AC-AC 

converter for the future with its attractive advantages in high 

voltage and high power applications. Due to the lack of a DC 

link, electrical quantities at different frequencies from two AC 

systems couple in M
3
C, resulting in a complex harmonic 

condition. Harmonics can lead to stability issues and its analysis 

is of great importance. This paper focuses on the harmonic 

analysis of M
3
C. The arm capacitor voltage ripples and the 

harmonic currents are analyzed at various frequencies. Major 

factors influencing the harmonics magnitude are discussed. 

Analysis is conducted on sub-module capacitance and arm 

inductance selection. A zero-sequence current mitigation 

controller for M
3
C is implemented and tested. It is found that for 

a FFTS, some current harmonics flow into AC systems even 

though the system is balanced, while the others circulate within 

the converter. The theoretical harmonic analysis is verified by 

simulations in Real Time Digital Simulator® (RTDS) of a M
3
C 

system where each arm consists of forty sub-modules.  

 
Index Terms-- Fractional frequency transmission system, 

harmonic analysis, modular multilevel matrix converter, offshore 

wind power, energy storage. 

I.  INTRODUCTION 

NDER the pressure of fossil energy depletion and 

environmental pollution, renewable energy development 

has drawn worldwide attention. Offshore wind power is 

favored with merits of not taking up land in cities, rich and 

stable resource and suitability for large-scale development. 

Three main offshore wind transmission methods are traditional 

HVAC, HVDC and Fractional Frequency Transmission (FFT) 

[1]. FFT was first proposed in [2], the principle is to use a 

proportion of the system frequency, mostly 1/3, for the 

generator side. FFT requires less charging reactive current for 

cables than traditional HVAC, and therefore can support much 

longer transmission distance. Compared with HVDC, one 

main advantage is that no offshore converter station is needed. 
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That means, not only for investment, but also for operation 

and maintenance, FFT is more economical within certain 

distance range, usually between 80 km and 180 km [3]. Most 

of the wind power plant projects that were built or planned lie 

in this range [4]. [5] studied the feasibility of FFT and it 

showed a lower annual cost of FFT than  HVDC. In addition, 

DC circuit breaker technology is still immature, and therefore 

the connection between the offshore wind farm and the 

onshore AC system is limited to point-to-point HVDC 

connections. Reliability suffers due to this reason and the 

situation would get worse when the level of offshore wind 

power penetration becomes high. On the contrary, FFT is not 

limited to point-to-point, and offshore grids are easy to form 

[6]. 

There is no doubt that frequency changer is the core 

component of FFT. Early-stage research has been focused on 

the use of cycloconverter [7, 8]. However, it was later proven 

that cycloconverter might not be suitable for offshore wind 

integration with defects of poor controllability, severe 

harmonics and unsatisfactory fault ride through ability [3]. 

Instead, M3C presents its strength in this application. Low 

voltage harmonic level, low switching loss, flexible scalability 

and controllable power factor make M3C outstanding as the 

next-generation AC-AC converter, particularly in high voltage 

applications like offshore wind power transmission [9]. 

M3C was introduced in 2001 in [10]. The topology is 

similar with the traditional matrix converter but there are 

significant differences with the inclusion of multilevel H-

bridge sub-modules. Two main applications of M3C are motor 

driving [11-13] and wind energy transmission [9, 14, 15]. In 

[11], a control strategy for M3C based on dq transformation 

was proposed for motor driving and it was validated by 

experiment using a 400 V, 15 kW prototype. [12] optimized 

the inductors in M3C so that significant reductions in size and 

weight could be brought. The effectiveness was verified by a 

downscaled motor drive system. For wind energy transmission, 

different from that of motor drives, voltage rating is high and 

the sub-module number is large for M3C. Also the frequencies 

on both sides of M3C are controlled to be constant. This paper 

focuses on this kind of application. In [15], M3C was used in 

FFTS and its performance based on a new space vector 

modulation (SVM) control scheme was evaluated. As M3C is 

further developed, it has been found that the number of space 

vectors grew exponentially with the increasing number of sub-

modules. Consequently, SVM is unlikely to be implemented 

Harmonic Analysis of Modular Multilevel 

Matrix Converter for Fractional Frequency 

Transmission System 
Jiajie Luo, Xiao-Ping Zhang, Senior Member, IEEE, Ying Xue, Member, IEEE and Kanghui Gu 

U 

mailto:x.p.zhang@bham.ac.uk


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2019.2939312, IEEE
Transactions on Power Delivery

 2 

in wind power transmission application which requires a large 

number of sub-modules. A novel current control method of 

M3C was developed in [16], featuring in the decoupling of 

input and output. In [9], this method was further improved for 

FFTS by introducing the cross synchronous rotating frames, so 

that DC values are dealt with at most time in current loops. In 

[14], a feedforward compensation strategy was proposed. 

Simulation results show that with the proposed control method, 

M3C can cope with unbalanced grid conditions. Although 

plenty of work on M3C control has been carried out, limited 

attention has been paid on the harmonic analysis of M3C. 

Based on ideal assumptions, paper [17] derived the current 

expression of one arm of M3C. The focus was on parameters 

selection of the capacitor and harmonic was not fully analyzed 

for all nine arms in M3C. Authors of [18] provided an analysis 

of M3C in FFTS. A mathematical model of a sub-converter 

was presented and verified, but no attention was paid to the 

harmonics.  

For offshore wind power transmission system, harmonic 

analysis is vital from the stability point of view, as the 

generator side is a weak AC system and is prone to stability 

issues. It is shown that resonance and harmonic instability 

phenomena can occur when fast-switching devices interact 

with each other [19, 20]. Harmonic interaction was reported in 

[21] in the BorWin1 offshore wind farm system. The incident 

resulted in an outage of the HVDC system and wind power 

was not able to be transmitted. Harmonic analysis is also 

crucial to prevent device damage and economic loss. [22] 

reveals that for MMC, with the sub-module capacitor voltage 

ripple and harmonic currents, even the harmonic currents only 

circulate within the converter and do not flow into the grid, 

there exist poorly damped resonant modes that can lead to 

harmonic instability. In a MMC-HVDC system, [23] shows 

that circulating currents are in even orders, mainly in second 

order and they are confined within the converter. Besides, both 

the second order capacitor voltage and arm voltage are in 

negative sequence. However, the harmonic situation for a M3C 

based FFTS is still not clear, which is the main focus of this 

paper. Undoubtedly, MMC and M3C have similarities and 

they are often compared as counterparts. Nevertheless, without 

a DC link in M3C, two frequencies intertwine in the converter, 

and hence the harmonic situation is fundamentally different 

from that in MMC.  

The contributions of the paper are summarized as follows. 

• A harmonic analysis method for M3C is proposed. This 

method analyzes how the harmonic components are 

generated and it is compatible with different applications.  

• Current harmonics at multiple frequencies are quantified. 

Based on the analysis, they are classified into three types. It 

is indicated that some current harmonics circulate in arms, 

some behave as positive-sequence fundamental current and 

the others are zero-sequence and flow into AC systems. 

• Factors that have large impacts on harmonic magnitude are 

studied. Also, the influences of the harmonic components on 

M3C itself and AC systems are discussed in a detailed 

manner. The analysis provides insights to M3C modelling 

and can serve for the development of new control method. 

• Guidelines are provided on sub-module capacitance and arm 

inductance selection to limit capacitor voltage ripple and 

harmonic current distortion. An effective zero-sequence 

current mitigation controller for M3C is designed.   

The rest of the paper is organized as follows. Section II 

introduces the M3C for offshore wind FFTS. The current and 

voltage relations for one sub-module are derived first, and 

then the whole arm consisting all sub-modules is considered. 

Section III conducts a harmonic analysis of the M3C for FFTS. 

Different components are quantified and classified. The 

influences of different harmonic components are discussed. In 

Section IV, time-domain simulation results are presented to 

confirm the correctness of the analysis. Finally, conclusions 

are provided in Section V. 

II.  M3C FOR OFFSHORE WIND FFTS 

 
Fig. 1.  The configuration of an offshore wind FFTS.  

 

Similar to traditional HVAC transmission, a schematic 

diagram of an offshore wind FFTS is displayed in Fig. 1. The 

grid side frequency is chosen to be 60 Hz and the offshore 

wind farm generates power at 1/3 of the system frequency, 

which is 20 Hz. The voltage is stepped up by the transformers 

and then the wind power is transmitted onshore at fractional 

frequency. The M3C station which locates onshore triples the 

frequency and delivers the power into the main grid. The 

configuration of the M3C is shown in Fig. 2. ea, eb, ec and ia, ib, 

ic on the left refer to three-phase voltages and currents at the 

offshore wind generator side. Similarly, quantities with u, v, w 

are system side voltages and currents. Each phase of the 

fractional frequency side is connected to all three phases of the 

system side respectively. The positive direction of current is 

from generator to system. The positive polarities of voltages 

are as shown in Fig. 2. There are nine arms in total and each 

arm consists of a number of IGBT-based full bridge sub-

modules. In one arm, the switching signal of the ith sub-

module  𝑺𝒂𝒓𝒎𝒊 can be defined as: 

 {

𝑺𝒂𝒓𝒎𝒊 = 𝟏,     (𝒖𝒅𝒄 𝒊𝒏𝒔𝒆𝒓𝒕𝒆𝒅)   
𝑺𝒂𝒓𝒎𝒊 = 𝟎,     (𝒃𝒚𝒑𝒂𝒔𝒔𝒆𝒅)  

𝑺𝒂𝒓𝒎𝒊 = −𝟏,     (−𝒖𝒅𝒄 𝒊𝒏𝒔𝒆𝒓𝒕𝒆𝒅)  
 (1) 
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Fig. 2.  Schematic diagram of a M3C. 

 

Assuming that the sub-module voltages are balanced at 

steady state, the capacitor voltage 𝒖𝒅𝒄 for every sub-module in 

an arm is the same. The current relation for one sub-module 

can be expressed as: 

 𝑺𝒂𝒓𝒎𝒊 𝒊𝒂𝒓𝒎  = 𝑪 
𝒅𝒖𝒅𝒄

𝒅𝒕
  (2) 

where  𝒊𝒂𝒓𝒎 is the arm current, 𝑪 is the capacitance of one sub-

module. Refer N to the total sub-module number in an arm. 

Summing up (2) for all sub-modules in the arm, the current 

relation becomes: 

 

∑ 𝑺𝒂𝒓𝒎𝒊 𝒊𝒂𝒓𝒎 
𝑵
𝒊=𝟏  = 𝑵 𝑪 

𝒅𝒖𝒅𝒄

𝒅𝒕

𝒏  𝒊𝒂𝒓𝒎  = 𝑵 𝑪 
𝒅𝒖𝒅𝒄

𝒅𝒕

  (3) 

where n is the difference between the number of 𝒖𝒅𝒄 inserted 

sub-modules and that of −𝒖𝒅𝒄 inserted ones. Considering that 

sub-modules are inserted in only one direction at normal 

operation, n can be referred to the number of the inserted sub-

modules (negative value means sub-modules are inserted with 

−𝒖𝒅𝒄). Define 𝑺𝒂𝒓𝒎 as the average switching function of an 

arm, which is the ratio between inserted sub-module number 

and total sub-module number (n/N). This yields the current 

relation of a M3C arm: 

 𝑺𝒂𝒓𝒎  𝒊𝒂𝒓𝒎  =  𝑪 
𝒅𝒖𝒅𝒄

𝒅𝒕
 (4) 

The voltage relation of a M3C arm can be written as (5), 

where  𝒖𝒂𝒓𝒎 is the arm voltage. 

  𝒖𝒂𝒓𝒎  =  𝑵 𝑺𝒂𝒓𝒎 𝒖𝒅𝒄  (5) 

Equation (4) and (5) describe both the voltage and current 

relations for a M3C arm. The same equations are applied to all 

nine arms of M3C.     

III.  HARMONIC ANALYSIS OF M3C FOR OFFSHORE WIND FFTS 

Frequencies from the generator side 𝝎𝟏 and the system side 

𝝎𝟑 couple in M3C. At balanced steady state, the phase current 

is equally spread in three arms [17, 18]. For example, the arm 

current 𝒊𝒂𝒖 contains one third of the phase current 𝒊𝒂, one third 

of the phase current 𝒊𝒖, and also harmonics. The arm currents 

can be expressed as: 

  𝒊𝒂𝒓𝒎  =   
𝟏

𝟑
𝒊𝟐𝟎 + 

𝟏

𝟑
𝒊𝟔𝟎  +  𝒊𝒂𝒓𝒎

𝒉𝒂𝒓𝒎𝒐𝒏𝒊𝒄𝒔  (6) 

where 𝒊𝟐𝟎 and  𝒊𝟔𝟎 are the phase currents from the generator 

side and the grid side respectively. 𝒊𝒂𝒓𝒎
𝒉𝒂𝒓𝒎𝒐𝒏𝒊𝒄𝒔  is the arm 

harmonics which will be discussed later in this section. When 

the harmonic current is insignificant, arm currents for all nine 

arms can be given as: 

𝒊𝒂𝒖 ≈  
𝟏
𝟑

 𝑰𝒂 𝐬𝐢𝐧(𝝎𝟏𝒕 + 𝜷
𝟏
) +

𝟏
𝟑

 𝑰𝒖 𝐬𝐢𝐧(𝝎𝟑𝒕 + 𝜷
𝟑
)

𝒊𝒂𝒗 ≈  
𝟏
𝟑

 𝑰𝒂 𝐬𝐢𝐧(𝝎𝟏𝒕 + 𝜷
𝟏
) +

𝟏
𝟑

 𝑰𝒖 𝐬𝐢𝐧(𝝎𝟑𝒕 + 𝜷
𝟑

− 𝟏𝟐𝟎)
.
.
.

𝒊𝒄𝒘 ≈
𝟏
𝟑

𝑰𝒂 𝐬𝐢𝐧(𝝎𝟏𝒕 + 𝜷
𝟏

+ 𝟏𝟐𝟎) +
𝟏
𝟑

𝑰𝒖 𝐬𝐢𝐧(𝝎𝟑𝒕 + 𝜷
𝟑

+ 𝟏𝟐𝟎)

 
(7

) 

where 𝑰𝒂, 𝑰𝒖, 𝜷𝟏 and 𝜷𝟑 are the magnitudes and phase angles 

of the generator side and system side current respectively. 

Also, the arm switching functions can be given by: 

𝑺𝒂𝒖 =  𝒎𝒂 𝐬𝐢𝐧(𝝎𝟏𝒕 + 𝜶𝟏) −  𝒎𝒖 𝐬𝐢𝐧(𝝎𝟑𝒕 + 𝜶𝟑)

𝑺𝒂𝒗 =  𝒎𝒂 𝐬𝐢𝐧(𝝎𝟏𝒕 + 𝜶𝟏) −  𝒎𝒖 𝐬𝐢𝐧(𝝎𝟑𝒕 + 𝜶𝟑 − 𝟏𝟐𝟎)
.
.
.

𝑺𝒄𝒘 = 𝒎𝒂 𝐬𝐢𝐧(𝝎𝟏𝒕 + 𝜶𝟏 + 𝟏𝟐𝟎) −  𝒎𝒖 𝐬𝐢𝐧(𝝎𝟑𝒕 + 𝜶𝟑 + 𝟏𝟐𝟎)

 
(8

) 

where 𝒎𝒂, 𝒎𝒖, 𝜶𝟏 and 𝜶𝟑 are the generator side and system 

side voltage modulation ratios and angles.  

A.  Capacitor Voltage Ripples 

Apply (4) to arm au, the capacitor voltage can be expressed as: 

 𝒖𝒅𝒄_𝒂𝒖 =  ∫
𝟏

𝑪
 𝑺𝒂𝒖  𝒊𝒂𝒖   

(9) 

Substitute 𝒊𝒂𝒖 in (7) and 𝑺𝒂𝒖 in (8) into (9), the expression 

of the capacitor voltage in arm au can be derived. The 

expressions of the rest eight arms can be acquired in the same 

manner. The arm current and the switching function both 

contain harmonic components at frequencies 𝝎𝟏  and 𝝎𝟑 . 

According to trigonometric product-to-sum identity, the 

capacitor voltage frequency spectrum contains  𝟐𝝎𝟏  ,  𝟐𝝎𝟑 , 

 (𝝎𝟑 ± 𝝎𝟏)   and 0 Hz components. In this section and later 

analysis, the system frequency is considered to be 60 Hz. In 

this case, beside the DC component, the capacitor voltage has 

ripples of 40 Hz (also 80 Hz and 120 Hz). These frequencies 

are different from frequencies at either side of the ac systems. 

The 40 Hz voltage ripple has the largest magnitude compared 

to components at other frequencies. This will be further 

discussed and verified by the time domain simulation in 

Section IV. The constituent terms at 40 Hz are analyzed and 

the full expressions are calculated and shown as: 

𝒖𝒅𝒄𝒂𝒖𝟒𝟎
= 𝒌𝟏[−𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏) + 𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟐) 

 − 𝒎𝒖𝑰𝒂 𝒔𝒊𝒏(𝜽𝟑)] 
𝒖𝒅𝒄𝒂𝒗𝟒𝟎

= 𝒌𝟏[−𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏) + 𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟐 − 𝟏𝟐𝟎) 
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 −𝒎𝒖𝑰𝒂 𝒔𝒊𝒏(𝜽𝟑 − 𝟏𝟐𝟎)] 
𝒖𝒅𝒄𝒂𝒘𝟒𝟎

= 𝒌𝟏[−𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏) + 𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟐 + 𝟏𝟐𝟎) 

 −𝒎𝒖𝑰𝒂 𝒔𝒊𝒏(𝜽𝟑 + 𝟏𝟐𝟎)] 
⋮ (10) 

𝒖𝒅𝒄𝒃𝒘𝟒𝟎
= 𝒌𝟏[−𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏 + 𝟏𝟐𝟎) + 𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟐

− 𝟏𝟐𝟎) 

 −𝒎𝒖𝑰𝒂 𝒔𝒊𝒏(𝜽𝟑 − 𝟏𝟐𝟎)] 

⋮  

𝒖𝒅𝒄𝒄𝒘𝟒𝟎
= 𝒌𝟏[−𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏 − 𝟏𝟐𝟎) + 𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟐) 

 −𝒎𝒖𝑰𝒂 𝒔𝒊𝒏(𝜽𝟑)] 

where: 
𝒌𝟏 =

𝟏

𝟏𝟐𝑪𝝎𝟏
;  𝜽𝟏 = 𝟐𝝎𝟏𝒕 + 𝜶𝟏 + 𝜷𝟏; 

𝜽𝟐 = 𝟐𝝎𝟏𝒕 + 𝜷𝟑 − 𝜶𝟏; 𝜽𝟑 = 𝟐𝝎𝟏𝒕 + 𝜶𝟑 − 𝜷𝟏 

 

As can be seen from (10), the 40 Hz component of the 

capacitor voltage consists of three terms. For each term, the 

magnitude is the same for all nine arms while there can be a 

phase shift between nine arms. When the high order 

components are neglected, the capacitor voltage can be 

expressed as the sum of the dc component and the 40 Hz 

component: 

 𝒖𝒅𝒄 ≈   𝒖𝒅𝒄_𝟎  +  𝒖𝒅𝒄_𝟒𝟎  (11) 

B.  Arm Current Harmonics 

The purpose of this part is to analyze the arm currents of 

the M3C at various frequencies. In order to derive the 

expression of the arm currents, arm voltages are derived first. 

Then together with KVL equations, the arm currents are 

acquired so that the harmonics can be analyzed. 

In (8), switching function is of 20 Hz and 60 Hz. And in 

(11), capacitor voltage is of DC and 40 Hz. Substitute (8) and 

(11) into (5), components at different frequencies appear in 

arm voltage, which are shown in Table I. As can be seen, arm 

voltage contains components at 20 Hz, 60 Hz and 100 Hz. 

How each component is generated is shown in the second 

column in Table I. For instance, switching function at 60 Hz 

and capacitor voltage at 40 Hz gives arm voltage at 100 Hz 

and 20 Hz. The terms (20 + DC) and (60 + DC) are in positive 

sequence and they relate to the positive-sequence fundamental 

currents. These two terms do not belong to the scope of 

harmonics and will not be analyzed.    

TABLE I 

Arm Frequency Components 

Frequency 

(/Hz) 
Components (/Hz) 

20 (20 + DC);  (40 - 20);  (60 - 40) 

60 (60 + DC);  (20 + 40) 

100 (60 + 40) 

According to KVL, equations at 20 Hz, 60 Hz and 100 Hz 

can be written as: 

 

𝒆𝒂 =  𝒖𝒂𝒓𝒎_𝒂𝒖_𝟐𝟎 + 𝑳
𝒅𝒊𝒂𝒖_𝟐𝟎

𝒅𝒕

𝟎 =  𝒖𝒂𝒓𝒎_𝒂𝒖_𝟔𝟎 + 𝑳
𝒅𝒊𝒂𝒖_𝟔𝟎

𝒅𝒕
+ 𝒆𝒖

𝟎 =  𝒖𝒂𝒓𝒎_𝒂𝒖_𝟏𝟎𝟎 + 𝑳
𝒅𝒊𝒂𝒖_𝟏𝟎𝟎

𝒅𝒕

  (12) 

As KVL does not alter frequency, the frequency 

components of the arm current remain the same as the ones of 

the arm voltage as Table I shows. Combine (5), (8) and (10-

12), current harmonics at 20 Hz, 60 Hz and 100 Hz can be 

calculated.  

    1)  100 Hz 

The expression of the arm currents at 100 Hz is shown in 

(13). 𝝎𝟓  is referred to the frequency at 100 Hz. The arm 

currents at 100 Hz are formed of three terms. For each term, 

the magnitude is the same for all nine arms. Adding up  𝒊𝒂𝒖𝟏𝟎𝟎, 

𝒊𝒂𝒗𝟏𝟎𝟎 and 𝒊𝒂𝒘𝟏𝟎𝟎, all three terms cancel out, which means that 

the arm currents at 100 Hz will not flow into phase a and exist 

only in the arm. Same rule applies to phase b and c, and 

therefore the arm currents at 100 Hz are isolated from the 

generator side AC system. In terms of the system side, the 

same procedure is carried out. Likewise, 𝒊𝒂𝒘𝟏𝟎𝟎 , 𝒊𝒃𝒘𝟏𝟎𝟎  and 

𝒊𝒄𝒘𝟏𝟎𝟎 add up to zero (same for phase u and v) so no current at 

100 Hz will flow into the system side. In conclusion, the 

natures of these currents are circulating currents which only 

circulate within the converter. They take up the current rating 

of the semiconductor devices and should be suppressed during 

operation. 

𝒊𝒂𝒖𝟏𝟎𝟎 = 𝒌𝟐[𝒎𝒖𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟒) − 𝒎𝒖𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟓) 

 +𝒎𝒖
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟔)] 

𝒊𝒂𝒗𝟏𝟎𝟎 = 𝒌𝟐[𝒎𝒖𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟒 − 𝟏𝟐𝟎)

− 𝒎𝒖𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟓 + 𝟏𝟐𝟎) 

 +𝒎𝒖
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟔 + 𝟏𝟐𝟎)] 

𝒊𝒂𝒘𝟏𝟎𝟎 = 𝒌𝟐[𝒎𝒖𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟒 + 𝟏𝟐𝟎)

− 𝒎𝒖𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟓 − 𝟏𝟐𝟎) 

 +𝒎𝒖
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟔 − 𝟏𝟐𝟎)] 

⋮ (13) 

𝒊𝒃𝒘𝟏𝟎𝟎 = 𝒌𝟐[𝒎𝒖𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟒 − 𝟏𝟐𝟎) − 𝒎𝒖𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟓) 

 +𝒎𝒖
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟔)] 

⋮  

𝒊𝒄𝒘𝟏𝟎𝟎 = 𝒌𝟐[𝒎𝒖𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟒) − 𝒎𝒖𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟓 + 𝟏𝟐𝟎) 

 +𝒎𝒖
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟔 + 𝟏𝟐𝟎)] 

where: 
𝒌𝟐 =

𝑵

𝟐𝟒𝑳𝑪𝝎𝟏𝝎𝟓
;  𝜽𝟒 = 𝝎𝟓𝒕 + 𝜶𝟑 + 𝜶𝟏 + 𝜷𝟏;  

𝜽𝟓 = 𝝎𝟓𝒕 + 𝜶𝟑 + 𝜷𝟑 − 𝜶𝟏;  𝜽𝟔 = 𝝎𝟓𝒕 + 𝟐𝜶𝟑 − 𝜷𝟏 

 

    2)  60 Hz 

According to Table I, there are two sources of the 60 Hz 

arm currents. The first one is fundamental current and does not 

need to be analyzed. The expression of the second component 

is calculated and shown in (14). As it shows, the first of the 

three terms of the arm currents at 60 Hz has the same 

magnitude and phase angle for all nine arms of M3C. As a 

result, it behaves as zero-sequence current for AC systems at 

both sides and it flows into both systems with equal magnitude 
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if no countermeasure was implemented. This current is 

undesirable since it causes current distortion and can bring 

further instability issues like harmonic interaction and 

resonance. For the rest two terms, they cancel out at the 

fractional frequency side and are of positive sequence at the 

system side. They behave like the fundamental current and can 

be regulated by the current controller in vector control. The 

positive-sequence components are not problematic and strictly 

speaking, they do not belong to the harmonic scope.    

𝒊𝒂𝒖𝟔𝟎_𝟐 = 𝒌𝟑[−𝒎𝒂
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟕) + 𝒎𝒂

𝟐𝑰𝒖 𝒔𝒊𝒏(𝜽𝟖) 

 −𝒎𝒂𝒎𝒖𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟗)] 

𝒊𝒂𝒗𝟔𝟎_𝟐 = 𝒌𝟑[−𝒎𝒂
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟕) + 𝒎𝒂

𝟐𝑰𝒖 𝒔𝒊𝒏(𝜽𝟖 − 𝟏𝟐𝟎) 

 −𝒎𝒂𝒎𝒖𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟗 − 𝟏𝟐𝟎)] 

𝒊𝒂𝒘𝟔𝟎_𝟐 = 𝒌𝟑[−𝒎𝒂
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟕) + 𝒎𝒂

𝟐𝑰𝒖 𝒔𝒊𝒏(𝜽𝟖 + 𝟏𝟐𝟎) 

 −𝒎𝒂𝒎𝒖𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟗 + 𝟏𝟐𝟎)] 
⋮ (14) 

𝒊𝒃𝒘𝟔𝟎_𝟐 = 𝒌𝟑[−𝒎𝒂
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟕) + 𝒎𝒂

𝟐𝑰𝒖 𝒔𝒊𝒏(𝜽𝟖 + 𝟏𝟐𝟎) 

 −𝒎𝒂𝒎𝒖𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟗 + 𝟏𝟐𝟎)] 

⋮  

𝒊𝒄𝒘𝟔𝟎_𝟐 = 𝒌𝟑[−𝒎𝒂
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟕) + 𝒎𝒂

𝟐𝑰𝒖 𝒔𝒊𝒏(𝜽𝟖 + 𝟏𝟐𝟎) 

 −𝒎𝒂𝒎𝒖𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟗 + 𝟏𝟐𝟎)] 

where: 
 𝒌𝟑 =

𝑵

𝟐𝟒𝑳𝑪𝝎𝟏𝝎𝟑
;  𝜽𝟕 = 𝝎𝟑𝒕 + 𝟐𝜶𝟏 + 𝜷𝟏;  

𝜽𝟖 = 𝝎𝟑𝒕 + 𝜷𝟑;  𝜽𝟗 = 𝝎𝟑𝒕 + 𝜶𝟏 + 𝜶𝟑 − 𝜷𝟏 

 

    3)  20 Hz 

The harmonic currents at 20 Hz are analyzed by carrying 

out the same calculations to the second and the third terms of 

20 Hz in Table I. Results are concluded in Table II. Detailed 

equations are available in the appendix. The first term of the 

component (40-20) Hz and the second and third terms of the 

component (60-40) Hz behave like the positive-sequence 

fundamental current. The second and third terms of the 

component (40-20) Hz and the first term of the component 

(60-40) Hz only exist in the arms and will not flow into AC 

systems. 

TABLE II 

20 Hz Arm Current 

To sum up, the components of the arm currents analyzed 

above can be classified into three types. The first type only 

circulates within the converter but does not flow into AC 

systems. The second type does not cancel out at terminals and 

therefore goes into AC systems as zero-sequence current. The 

third type acts like positive-sequence fundamental current. 

The affecting factors of harmonic magnitude and influences of 

these harmonics on M3C itself and also AC systems connected 

to it are discussed in the following section. 

C.  Affecting Factors and Influences of M3C Harmonic 

Components 

As (13), (14), (A1) and (A2) show, the magnitude of these 

harmonic components depends on the sub-module capacitance, 

the inductance, the frequency of the AC system etc. The 

smaller the capacitance or the inductance, the larger the 

harmonics magnitude would be. If the AC system frequency is 

very small, in theory the harmonic components become 

infinity and the system could not function normally. Thus, the 

working frequency of the FFTS cannot be too low. In addition, 

current harmonics are related to capacitor voltage ripples. 

Effective ripple control is beneficial to harmonic suppression. 

Some of the current components coincide with the system 

frequency and are easy to omit. 

Based on the analysis in section B, it is indicated that there 

will be zero-sequence current flowing into the AC systems at 

both sides if no countermeasure was conducted. This can be 

problematic as wind farm is prone to stability problems [24]. 

Attention should also be paid to the system side, because 

offshore wind farms are often located in remote areas, where 

the strength of the AC network is weak [25]. Among three 

types of currents discussed in the last session, the components 

in positive sequence are not harmful since they can be 

regulated by the close-loop current controller. Circulating 

current and zero-sequence current can adversely influence the 

converter and AC systems in the following aspects: 

• Both circulating and zero-sequence currents take up current 

rating of the power electronic devices. They raise thermal 

issues and degrade the semiconductors. For multilevel 

converters, high voltage can be achieved by stacking up sub-

modules but current ability limits the power rating. In terms of 

an offshore wind power transmission project, converter capital 

cost is therefore increased.  

• The zero-sequence currents can flow into the AC network, 

which bring additional losses in devices including 

transformers and AC motors and raise the operating 

temperature. The aging of devices is accelerated and power 

loss also leads to low efficiency. 

• The harmonic currents flowing in the AC system can further 

cause instability problems. Large magnitude of zero-sequence 

current may trip the zero-sequence protection. When wind 

energy has high penetration, unexpected disconnection of a 

large wind power source would have significant effect on 

power system stability. Besides, harmonic interaction or 

resonance may happen. Torsional oscillation can be triggered 

in generators with the existence of injected harmonic currents. 

It results in shaft fatigue or even shaft failure [26, 27]. 

The transformer connection in an offshore wind power 

system based on real projects is shown in Fig. 1, with more 

details available in [28, 29]. The step-up transformer at the 

wind generator side usually includes delta connection, as a 

result of which, the zero-sequence currents could not reach the 

wind generator. However, for the system side, due to 

protection considerations at high voltage level (several 

Frequency 

(/Hz) 
Generator Side System Side 

(40 - 20) 

Term1 Positive sequence Cancelled out 

Term2&3 Cancelled out Cancelled out 

(60 - 40) 

Term1 Cancelled out Cancelled out 

Term2&3 Positive sequence Cancelled out 
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hundred kV), transformers are normally in Wye/Wye 

connection with grounding. Wye/Wye transformer enjoys the 

advantages of fewer turns for winding, lower insulation level, 

no phase displacement and therefore is cheaper and suitable 

for high voltage applications.[30] Further action should be 

taken when the harmonic magnitude is large. Besides FFT, 

another topology (as shown in Fig. 3) that connects medium 

voltage high power wind turbine with M3C is prosed in [13, 

31]. In this application, maximum power point tracking can be 

achieved and good dynamic performance was validated. 

However, in terms of harmonics, zero-sequence currents can 

impede the wind generator and also the electrical network, so 

further measures should be taken. Undoubtedly, sub-module 

capacitance and arm inductance should be carefully selected to 

limit the harmonics. Besides, one option could be adopting 

delta winding for the grid-connecting transformer to cut off 

the path of the zero-sequence currents. However, in that case 

the benefits of the Wye/Wye transformer would no longer 

exist. Another solution is to leave the transformer unchanged, 

but adopt a closed-loop controller to suppress the zero-

sequence currents using the controllability of M3C. The 

control algorithm will be discussed and the effectiveness will 

be verified in Section V.     

 
Fig. 3.  Topology to connect a high power wind turbine via M3C. 

IV.  SIMULATION RESULTS AND ANALYSIS VALIDATION 

To validate the theoretical analysis, a M3C connecting two AC 

systems at 20 Hz and 60 Hz is simulated in RTDS (See Fig. 2). 

Each arm has forty sub-modules. System at 20 Hz transmits 

power to 60 Hz side. Simulation parameters are provided in 

Table III. The M3C simulated in RTDS is a detailed model and 

the simulation time step is set to 3 µs to guarantee the 

accuracy of the simulation results where the MMC valves are 

modeled in the small time step.  

 In the ‘small time step’ modelling framework of RTDS, 

there are two different modelling methods developed, referred 

to as Method A and Method B, thereafter.  

 Method A: In this method, modeling switching devices 

with the use of L and C was discussed in [33]. This method 

could lead to certain discrepancy if parameters were not set 

properly. Results between PSCAD and RTDS (small time 

step) were presented and compared in [33], which matched 

very well. 

 Method B: In Method B, the MMC valve model in RTDS 

simulation also employs a resistive switching. Details of 

MMC valve model in RTDS using a resistive switching 

(Method B) can be found in [32]. In our simulations, 

‘small time step’ Method B is used to model the MMC 

switching devices.  

Method B models the MMC switching devices with the 

resistive switching approach, which is similar to that used in 

PSCAD. It may be useful to point out that due to calculation 

constraint, an artificial short interface line around 400 meters 

is inserted between the MMC arm component and the rest of 

the small time step circuit in RTDS. But since the application 

in this paper is offshore wind power transmission, whose 

distance is normally from tens of km to several hundred km, 

the impact of such a very short interface line on the accuracy 

of the overall system simulations is negligible. [32] conducted 

a thorough comparison on CIGRE DC grid test systems 

between RTDS MMC model using Method B and PSCAD 

MMC model to validate the correctness of the RTDS MMC 

valve model. All the cases showed very close results. In terms 

of actual values of the interface line parameters, C is in the 

magnitude of nF and this is so tiny that it can be ignored, and 

L is in the magnitude of mH, which can be taken out of the 

real arm inductance so that the total inductance remains the 

same. In addition, there are wires between arms in physical 

circuit, which justifies the rationality of the interface. 

The assumptions can be verified and the theoretical 

analysis can be compared to simulation results. The control 

method adopted is the vector control with inner current loops 

and outer loops for active/reactive power control or capacitor 

voltage balancing control. More details of the control system 

can be found in [34]. Note that the capacitor voltage for the 

control input should be the filtered version to avoid influence 

of the controller on quantified analysis. Otherwise the 

controller would try to control the capacitor voltage ripple as 

well and would not match the theoretical calculation. A low 

pass filter is applied to the active power signal for the same 

consideration.  

TABLE III 

Simulation Parameters 

Symbol Quantity Value  

S rated power 30 MVA 

𝑓1 fractional frequency 20 Hz 

𝑓3 system frequency 60 Hz 

V20 rated fractional frequency side voltage 33 kV 

V60 rated system side voltage 33 kV 

N sub-module number each arm 40 

𝑢𝑑𝑐_𝑟𝑒𝑓 capacitor voltage reference 1.5 kV 

L inductance 15 mL 

C Sub-module capacitance 10 mF /5 mF 

Line voltages and line currents at both generator side (20 

Hz) and system side (60 Hz) are plotted in Fig. 4. It can be 

seen that line voltages are perfect sinusoidal waveforms while 

line currents have small amount of harmonics. Fig. 5 shows 

the arm voltages and arm currents of the M3C. Both are 

mainly composed of 20 Hz and 60 Hz quantities, which can be 

reflected by (7) and (8). Furthermore, the 20 Hz arm voltage 

components of au, av and aw are extracted and plotted in Fig. 

6a (left). As can be seen, three curves are overlapped, 

indicating that the arm voltages are balanced at the 20 Hz side. 

Similarly, the 60 Hz arm voltage components of au, bu and cu 

are plotted in Fig. 6a (right) and the arm voltages are also 

balanced at the 60 Hz side. For the arm currents, same process 

is conducted and the current waveforms are of very minor 
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difference, indicating that the AC side phase current spreads 

equally into the three arms connected to it. These results show 

that the assumptions described in Section I are valid at steady 

state and the performance of the M3C as a frequency changer 

is satisfactory. 

For capacitor voltage, the measured actual capacitor 

voltage (dotted line) is plotted together with the capacitor 

voltage being composed of only DC and 40 Hz component 

(solid line) in Fig. 7. As can be seen, the main capacitor 

voltage ripple is at 40 Hz, and the magnitude of components at 

80 Hz, 120 Hz etc. is small. Therefore, neglecting higher 

frequency components only gives little discrepancy on 

capacitor voltage. When higher accuracy is required, the same 

analysis procedure can be repeated to include higher 

frequency ripples.   

 
(a) 20 Hz side: Line voltage (Left); Line current (Right)  

 
(b) 60 Hz side: Line voltage (Left); Line current (Right)  

Fig. 4.  Line voltage and line current at 20 Hz and 60 Hz sides. 

 

 
Fig. 5.  Arm voltage (Left) and arm current (Right) of M3C 

 

 
(a) Arm voltage: 20 Hz component (Left); 60 Hz component (Right)  

 
(b) Arm current: 20 Hz component (Left); 60 Hz component (Right)  

Fig. 6.  20 Hz and 60 Hz components of arm voltage and current. 

 
Fig. 7.  Sub-module actual capacitor voltage and capacitor voltage with only 

DC and 40 Hz components.  

Then the harmonics at 20 Hz side is studied. YN/d 

connection is selected for the step-up transformer connecting 

the M3C and the generator side, which can be shown in Fig. 1. 

The frequency spectrums of both sides of the transformer are 

plotted in Fig. 8. It can be seen in Fig. 8 (a) that the 60 Hz 

harmonic current does flow into the 20 Hz side AC system. 

But due to the delta connection of the transformer, it is 

isolated from the generator side (See Fig. 8 (b)) and has no 

effect on wind generators. Besides, two sets of capacitance 

values are chosen as 1 mF and 5 mF respectively. It can be 

observed that when the capacitance is halved, the harmonic 

current magnitude doubles. Results validate the analysis in 

Section III. 

 
(a) M3C side star connection current frequency spectrum. 

 
(b) Generator side delta connection current frequency spectrum. 

Fig. 8.  Frequency spectrum of currents at 20 Hz Side. 

On the system side, the line currents are measured and 

decomposed into positive-sequence currents and zero-



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2019.2939312, IEEE
Transactions on Power Delivery

 8 

sequence current. Fig. 9 shows that the positive-sequence 

currents peak at 0.68 kA while the zero-sequence current 

peaks at 0.013 kA. The magnitude of the zero-sequence 

current is 2% of the base currents. And it agrees with the 

current frequency spectrum (left bar at 60Hz, Fig. 8 (a)). 

 
(a) Positive Sequence Currents at 60 Hz  

 
(b) Zero-Sequence Current at 60 Hz 

Fig. 9.  Currents at 60 Hz Side. 

Arm harmonic current can be calculated as (𝒊𝒂𝒖 −  
𝟏

𝟑
 𝒊𝒂 −

 
𝟏

𝟑
 𝒊𝒖). As an example, the frequency spectrum of harmonic 

current in arm au is plotted in Fig. 10. As is expected, the arm 

harmonic current contains 20 Hz (circulating), 60 Hz (zero-

sequence) and 100 Hz (circulating) components. There is also 

a small amount of 140 Hz component. It can be studied using 

the same method and including the higher order voltage 

ripples. When the capacitance is halved, similarly, harmonic 

magnitudes double. Again, the simulation result validates the 

theoretical analysis.  

 

Fig. 10.  Frequency spectrum of arm current harmonics. 

To compare the analytical formula with the simulation 

model, the calculated value (red) of the 40 Hz capacitor 

voltage ripple is plotted together with the measured ripple at 

40 Hz in time domain simulation (black) in Fig 11. As can be 

seen, there is a good match between the two curves and 

therefore the calculated value has high accuracy. In addition, 

the calculated values of harmonic currents are compared with 

the measured values in simulation and the results are shown in 

Table IV. It can be seen that the difference is only 0.001-0.002 

kA. However, the values of harmonic currents are small so the 

discrepancy in percentage is around 20%. Hence, the current 

magnitude calculation is less accurate than the ripple voltage. 

Specifically, the calculated 60 Hz zero-sequence current is 

larger since theoretical analysis neglects resistance, with the 

presence of which, the actual current has a smaller value. For 

the 100 Hz and 20 Hz harmonic currents, the calculated values 

are smaller as expected, as theoretical analysis does not 

include the higher orders of the capacitor voltage ripple that 

can also lead to harmonic currents at 100 Hz and 20 Hz. For 

example, the 80 Hz voltage ripple interacts with the 20 Hz 

component in switching function and produces 100 Hz 

harmonics (80+20), or interacts with the 60 Hz component and 

produces 20 Hz harmonics (80-60).  

 
Fig. 11. Capacitor voltage 40 Hz – simulation result (black) and calculation 

value (red). 

TABLE IV 

Quantization Comparison with Simulation Results 

Harmonic 

Component 

Calculation Value 

(kA) 

Simulation Value 

(kA) 

Discrepancy 

(%) 

60 Hz 0.014 0.012 16.7 

100 Hz 0.007 0.009 22.2 

20 Hz 0.004 0.005 20.0 

V.  SUPPRESSION OF M3C HARMONICS  

M3C harmonics can be controlled using hardware or 

software solutions. Based on the discussion in Section III, it is 

known that sub-module capacitance and arm inductance are 

affecting factors of the harmonics. So, proper values of the 

elements can be selected to limit the harmonics within a 

certain range. A detailed analysis is conducted in this section 

in order to provide instructions for capacitor and inductor 

values selection for the consideration of limiting harmonics. 

Also, delta connection could be an option for the grid-

connecting transformer on the offshore side to deal with zero-

sequence harmonic currents. The above measures are regarded 

as hardware methods to suppress M3C harmonics. On the 

other hand, an effective zero-sequence current mitigation 

control algorithm is proposed and tested for M3C in subsection 

B, which is indicated as a software method for harmonic 

suppression.     

A.  Proper Selection of Sub-Module Capacitance and Arm 

Inductance 

At steady-state operation, it is normally considered that the 

voltage deviation should be kept within 10% of the DC sub-

module capacitor voltage [35]. In Fig. 12, the capacitor 

voltage ripple is plotted against the sub-module capacitance 
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for the test system. As can be seen, capacitance should be 3 

mF or larger in this case to satisfy the maximum ripple 

requirement. In addition, the voltage ripple is plotted against 

the reciprocal of the capacitance. As is shown in Fig. 13, it is 

very closed to a perfect straight line, and therefore the time 

domain simulation confirms the quantified analysis.    

 
Fig. 12.  Percentage voltage ripple versus sub-module capacitance. 

 

Fig. 13.  Percentage voltage ripple versus 1/C. 

Similarly, a suitable value should be selected for arm 

inductance to limit the total harmonic distortion (THD) within 

a certain level. The grid side THD is plotted with sub-module 

capacitance fixed at 5 mF and various arm inductances in Fig 

14. For instance, if THD needs to be limited lower than 10%, 

an arm inductance larger than 10.3 mL is required.  

 
Fig. 14.  Grid side THD at different arm inductor values. 

B.  Zero-Sequence Current Mitigation Controller  

In this sub-section, a zero-sequence current mitigation 

controller is proposed for M3C and the control diagram is 

shown in Fig. 15. The principle is to use the M3C to generate a 

compensating zero-sequence voltage 𝑣0  based on the 

measured zero-sequence current. The control purpose is to 

reduce the undesirable zero-sequence down to zero. 𝜃3 is the 

angle of the zero-sequence current and more details on the 

PLL for measuring it can be found in [36]. Considering that 

the zero-sequence harmonic currents are the same for all nine 

arms, only one controller is sufficient for all the arms in the 

M3C to fulfill the control target.  

 

 

Fig. 15.  Control diagram of the proposed zero-sequence current mitigation 

controller.  

In terms of controller parameters determination, gains 

cannot be too large for the mitigation controller. The reason is 

that the zero-sequence current mitigation control is an 

auxiliary control and it should not affect the primary vector 

control. If large gains are used, when the controller switches 

on, there would be a large zero-sequence voltage demand 

during the transient period. This zero-sequence voltage is 

superimposed to the voltage reference from vector control and 

may cause the converter to saturate. For illustrative purpose, a 

small sub-module capacitance is used (1 mF) to verify the 

effectiveness of the controller. Other parameters remain the 

same as in the last section. Controller parameters are available 

in the appendix. Note that besides 60 Hz, 180 Hz is also a 

prominent frequency that has zero-sequence current, so 

another controller is implemented based on the same principle. 

As can be seen in Fig. 16 (a), the AC current waveforms at 

both sides are of poor quality. High order harmonics are 

salient at the 20 Hz side and the sinusoidal waveforms at the 

60 Hz side are distorted. Fig. 16 (b) shows the current 

waveforms after the mitigation control is implemented. A 

significant improvement can be seen. The zero-sequence 

current is plotted in Fig. 17 with the controller switched on at 

the beginning of the simulation. It can be seen that with small 

gains, it may take seconds to fully suppress the zero-sequence 

current. But at steady state, the zero-sequence current can be 

mitigated to a negligible level and the effectiveness of the 

controller is verified.      

 
(a) Line currents before controller implemented. 

 
(b) Line currents after controller implemented. 

Fig. 16.  Line currents at 20 Hz and 60 Hz sides before (a) and after (b) the 

zero-sequence current mitigation controller implementation. 
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Fig. 17.  Mitigation of zero-sequence current with controller switched on at 

the start of simulation. 

VI.  CONCLUSION 

As M3C is the core device in a FFTS, its harmonics have a 

considerable influence on the overall system performance. 

This paper has conducted a detailed harmonic analysis for 

M3C. Owing to the interaction between the switching function 

and the arm current at multiple frequencies, capacitor voltage 

ripples are induced on top of the DC voltage. It has been 

indicated that these ripples affect the arm voltages and further 

the arm currents. Also, it has been found that the arm currents 

contain harmonic components at 20 Hz, 60 Hz and 100 Hz and 

they have been analyzed respectively. The expressions of 

currents for all nine arms have been derived so that each 

component can be quantified. It has been found that several 

factors have large impact on the current harmonic magnitude, 

including capacitance, inductance and system operating 

frequency. The analysis has also revealed the nature of all the 

terms of the harmonic components. Some terms flow into AC 

systems at both sides, some terms are cancelled out and only 

exist in the arms, and the others have characteristics as 

fundamental currents and can be regulated by vector control. 

Zero-sequence components can cause instability problems, 

bringing risks of tripping zero-sequence protection, harmonics 

interaction and torsional oscillation. Both zero-sequence and 

circulating components take up current rating of the converter 

and have negative economic impact. They also bring extra 

losses, raise thermal issues and adversely affect the operation 

of other devices. Delta connection provides isolation on zero-

sequence currents. In other cases, the harmonic currents can 

flow into the system or the generator and can cause a series of 

problems. The quantified calculation results have been 

compared with simulation results in RTDS and good matches 

have validated the theoretical analysis. Guidelines on sub-

module capacitance and arm inductance have been provided to 

limit the capacitor voltage ripple and harmonic currents within 

a certain range. A zero-sequence current mitigation controller 

for M3C has been implemented and tested. Although the 

analysis has been carried out for FFTS in this paper, the 

procedure is general and can be beneficial to M3C modelling 

and control method development.  

VII.  APPENDIX 

A.  20 Hz Arm Current Expressions: 

𝒊𝒂𝒖𝟐𝟎_𝟐 = 𝒌𝟒[𝒎𝒂
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏𝟎) − 𝒎𝒂

𝟐𝑰𝒖 𝒔𝒊𝒏(𝜽𝟏𝟏) 

 +𝒎𝒂𝒎𝒖𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟏𝟐)] 

𝒊𝒂𝒗𝟐𝟎_𝟐 = 𝒌𝟒[𝒎𝒂
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏𝟎) − 𝒎𝒂

𝟐𝑰𝒖 𝒔𝒊𝒏(𝜽𝟏𝟏 − 𝟏𝟐𝟎) 

 +𝒎𝒂𝒎𝒖𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟏𝟐 − 𝟏𝟐𝟎)] 

𝒊𝒂𝒘𝟐𝟎_𝟐 = 𝒌𝟒[𝒎𝒂
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏𝟎) − 𝒎𝒂

𝟐𝑰𝒖 𝒔𝒊𝒏(𝜽𝟏𝟏 + 𝟏𝟐𝟎) 

 +𝒎𝒂𝒎𝒖𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟏𝟐 + 𝟏𝟐𝟎)] 
⋮ (A1) 

𝒊𝒃𝒘𝟐𝟎_𝟐 = 𝒌𝟒[𝒎𝒂
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏𝟎 − 𝟏𝟐𝟎) − 𝒎𝒂

𝟐𝑰𝒖 𝒔𝒊𝒏(𝜽𝟏𝟏) 

 +𝒎𝒂𝒎𝒖𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟏𝟐)] 

⋮  

𝒊𝒄𝒘𝟐𝟎_𝟐 = 𝒌𝟒[𝒎𝒂
𝟐𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏𝟎 + 𝟏𝟐𝟎) − 𝒎𝒂

𝟐𝑰𝒖 𝒔𝒊𝒏(𝜽𝟏𝟏 − 𝟏𝟐𝟎) 

 +𝒎𝒂𝒎𝒖𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟏𝟐 − 𝟏𝟐𝟎)] 

where: 
𝒌𝟒 =

𝑵

𝟐𝟒𝑳𝑪𝝎𝟏
𝟐 ;  𝜽𝟏𝟎 = 𝝎𝟏𝒕 + 𝜷𝟏;  

𝜽𝟏𝟏 = 𝝎𝟏𝒕 + 𝜷𝟑 − 𝟐𝜶𝟏;  𝜽𝟏𝟐 = 𝝎𝟏𝒕 + 𝜶𝟑 − 𝜷𝟏 − 𝜶𝟏 

 

𝒊𝒂𝒖𝟐𝟎_𝟑 = 𝒌𝟒[−𝒎𝒖𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏𝟑) + 𝒎𝒖𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟏𝟒) 

 −𝒎𝒖
𝟐𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟏𝟓)] 

𝒊𝒂𝐯𝟐𝟎_𝟑 = 𝒌𝟒[−𝒎𝒖𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏𝟑 − 𝟏𝟐𝟎) + 𝒎𝒖𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟏𝟒) 

 −𝒎𝒖
𝟐𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟏𝟓)] 

𝒊𝒂𝐰𝟐𝟎_𝟑 = 𝒌𝟒[−𝒎𝒖𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏𝟑 + 𝟏𝟐𝟎) + 𝒎𝒖𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟏𝟒) 

 −𝒎𝒖
𝟐𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟏𝟓)] 

⋮ (A2) 

𝒊𝐛𝐰𝟐𝟎_𝟑 = 𝒌𝟒[−𝒎𝒖𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏𝟑) + 𝒎𝒖𝒎𝒂𝑰𝒖 𝒔𝒊𝒏(𝜽𝟏𝟒 − 𝟏𝟐𝟎) 

 −𝒎𝒖
𝟐𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟏𝟓 − 𝟏𝟐𝟎)] 

⋮  

𝒊𝐜𝐰𝟐𝟎_𝟑 = 𝒌𝟒[−𝒎𝒖𝒎𝒂𝑰𝒂 𝒔𝒊𝒏(𝜽𝟏𝟑 − 𝟏𝟐𝟎) + 𝒎𝒖𝒎𝒂𝑰𝒖 

 𝒔𝒊𝒏(𝜽𝟏𝟒 + 𝟏𝟐𝟎) − 𝒎𝒖
𝟐𝑰𝒂 𝒔𝒊𝒏( 𝜽𝟏𝟓 + 𝟏𝟐𝟎)] 

where: 
𝜽𝟏𝟑 = 𝝎𝟏𝒕 + 𝜶𝟑 − 𝜶𝟏 − 𝜷𝟏; 

 𝜽𝟏𝟒 = 𝝎𝟏𝒕 + 𝜶𝟑 − 𝜷𝟑 + 𝜶𝟏;  𝜽𝟏𝟓 = 𝝎𝟏𝒕 + 𝜷𝟏 
 

TABLE A1  

MITIGATION CONTROLLER PARAMETERS 

Symbol Quantity Value  

𝑘𝑝1 PI controller 1 proportional gain 1.0 

𝑘𝑖1 PI controller 1 integral gain 1.2 

𝑘𝑝2 P controller 2 proportional gain 0.2 
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