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On the energy-critical fractional Schrödinger equation in the radial case

Zihua Guo, Yannick Sire, Yuzhao Wang, and Lifeng Zhao

Abstract. We consider the Cauchy problem for the energy-critical nonlinear Schrödinger equa-
tion with fractional Laplacian (fNLS) in the radial case. We obtain global well-posedness and

scattering in the energy space in the defocusing case, and in the focusing case with energy below
the ground state. The main feature of the present work is the nonlocality of the operator. This

does not allow us to use standard computations for the rigidity part of the theorem. Instead we

develop a commutator argument which has its own interest for problems with nonlocal operators.
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1. Introduction

In this paper, we study the Cauchy problem for the nonlinear Schrödinger equation with
fractional Laplacian for N ≥ 2:

(1.1)

{
i∂tu+D2αu+ µ|u|

4α
N−2αu = 0 (x, t) ∈ RN × R

u|t=0 = u0 ∈ Ḣα(RN ),

where α ∈ ( N
2N−1 , 1), D2α is the Fourier multiplier of symbol |ξ|2α with D =

√
−∆, µ ∈ {−1, 1}.

Here µ = 1 corresponds to the defocusing case, and µ = −1 corresponds to the focusing case.
When α = 1, (1.1) is the well-known energy-critical nonlinear Schrödinger equation which has been
extensively studied, and we refer the readers to [27] for a survey of the study. When 0 < α < 1, (1.1)
is a nonlocal model known as nonlinear fractional Schrödinger equation which has also attracted
much attentions recently (see [12, 15, 14, 4, 5, 13, 6, 7, 17, 1, 25]). The fractional Schrödinger
equation is a fundamental equation of fractional quantum mechanics, which was derived by Laskin
[22, 23] as a result of extending the Feynman path integral, from the Brownian-like to Lévy-like
quantum mechanical paths. The purpose of this paper is to prove some analogue global well-
posedness and scattering for (1.1) in the radial case.

Under the flow of the equation (1.1), the following quantities (mass and energy) are conserved:

M(u) =

∫
RN
|u(x, t)|2dx,

Eµ(u) =

∫
RN

1

2
|Dαu|2 +

µ

p+ 2
|u|p+2dx.

c©2015 International Press
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We write E±(u) = E±1(u). Moreover, the equation (1.1) preserves the radial symmetry, and also
has the following scaling invariance: for λ > 0

u(x, t)→ λ
N−2α

2 u(λx, λ2αt), u0(x)→ λ
N−2α

2 u0(λx).

Thus, (1.1) is Ḣα-critical, since the scaling transform leaves Ḣα-norm invariant.
There are remarkable differences between the defocusing and focusing cases. In the focusing

case, the flow has more kinds of dynamical behavior. An important role is played by the ground
state Wα, namely the unique non-negative radial solution to the fractional elliptic equation

(1.2) D2αW − |W |
4α

N−2αW = 0.

We have Wα ∈ Ḣα, and so Wα is a stationary solution to (1.1) when µ = −1. See section 3 for
more properties of Wα. The main result of this paper is

Theorem 1.1. Assume α ∈ ( N
2N−1 , 1) and

2α < N < 4α.

Let Wα be as above. Assume u0 ∈ Ḣα, u0 radial. Then

(1) Defocusing case (µ = 1): (1.1) is globally well-posed, and scattering holds.
(2) Focusing case (µ = −1): if E−(u0) < E−(Wα) and ‖Dαu0‖2 < ‖DαWα‖2, then (1.1) is

globally well-posed, and scattering holds.

Remark 1. Notice that the cases N = 2 and N = 3 which are relevant for the Schrödinger
equation are covered depending on the values of α. Indeed, one can take N = 2 with α ∈ ( 2

3 , 1) and

N = 3 with α ∈ ( 3
4 , 1). These restrictions on the exponents for the powers of the laplacian come

from the nonlocality of the operator and the arguments to handle the concentration-compactness
argument. Indeed, the nonlocal character of the operator does not allow to have “exact” expressions
but only estimates. At the moment, we do not know how to remove these assumptions.

Now we discuss the ideas of proof. We follow closely the Kenig-Merle’s concentration com-
pactness/rigidity method [19]. There are several different ingredients:

(1) Radial Strichartz estimates. When α < 1, we know that the classical Strichartz estimates
in non-radial case has loss of regularity. However, in the radial case, it was known that
when α ∈ ( N

2N−1 , 1) one has generalized estimates which has no loss of derivatives, see

[16]. In contrast to [19], radial symmetry for (1.1) plays crucial role in many aspects.
(2) The results from the study of the fractional elliptic equation. The fractional elliptic

equation has been extensively studied recently. In the focusing case, we will apply the
results for (1.2) which was obtained in [24], [3].

(3) Localization of virial identity. In the rigidity argument, we use the localization of virial
identity. Due to the nonlocal nature of |D|2α, we need to deal with some commutator
estimates.

The main difference between (1.1) and Schrödinger equation is the nonlocal property of the frac-
tional Laplacian. In our proof, this nonlocal property makes only slight difference from the Kenig-
Merle’s argument in the concentration-compactness part (Thus we omit most of the details). How-
ever, it makes big difference in the space-time a-priori estimates, e.g. localization of virial estimates
in the rigidity part. We do not know any other monotonicity, such as Morawetz estimates. To
our best knowledge, this paper is the first one which generalizes Kenig-Merle’s argument to the
nonlocal setting.

2. The Cauchy problem and the variational estimates

2.1. The Cauchy problem. In this section, we review the local theory and small data global
theory for the Cauchy problem (1.1) with radial symmetry. It has no difference between defocusing
and focusing cases. The key ingredient is the radial Strichartz estimates obtained in [16].
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Lemma 2.1 (Proposition 3.9 [16]). Suppose N ≥ 2, α > 1/2 and u, u0, F are spherically
symmetric in space and satisfy{

i∂tu+D2αu = F (x, t) ∈ RN × R
u|t=0 = u0.

Then for γ ∈ R it holds

‖u‖LqtLrx + ‖u‖C(R:Ḣγ) . ‖u0‖Ḣγ + ‖F‖
Lq̃
′
t L

r̃′
x
,(2.1)

if the following conditions hold:
(1) (q, r) and (q̃, r̃) both satisfy the following conditions:

2 ≤ q, r ≤ ∞, 1

q
< (N − 1

2
)(

1

2
− 1

r
);(2.2)

(2) q̃′ < q and the “gap” condition:

2α

q
+
N

r
=
N

2
− γ, 2α

q̃
+
N

r̃
=
N

2
+ γ.

Remark 2. The conditions in (1) can be relaxed to the following

2 ≤ q, r ≤ ∞, 1

q
≤ (N − 1

2
)(

1

2
− 1

r
), (q, r) 6= (2,

4N − 2

2N − 3
).(2.3)

On the boundary line 1
q = (N − 1

2 )( 1
2 −

1
r ), [16] first proved it for q ≥ r, and was later improved

to other pairs independently by [18] and [8].

Definition 2.1. For N ≥ 2, we say that a pair of exponents (q, r) is α-admissible if (q, r)
verifies

2α

q
+
N

r
=
N

2
, 2 ≤ q, r ≤ ∞.(2.4)

By Lemma 2.1, we see that if α ∈ ( N
2N−1 , 1), then we have a full set of α-admissible Strichartz

estimates which has no loss of derivatives. With these Strichartz estimates, we can proceed as the
classical theory of Schrödinger equation. Let I ⊂ R be an interval, and we define Sα(I),Wα(I)
norm by

‖v‖Sα(I) = ‖v‖
L

2(N+2α)
N−2α

t L

2(N+2α)
N−2α

x

and ‖v‖Wα(I) = ‖v‖
L

2(N+2α)
N−2α

t L

2N(N+2α)

N2+4α2
x

.

Note that ( 2(N+2α)
N−2α , 2N(N+2α)

N2+4α2 ) is α-admissible pairs. By Sobolev embedding, we have that if
N > 2α,

‖v‖Sα(I) ≤ C‖D
αv‖Wα(I).

Definition 2.2. Let t0 ∈ I. We say that u ∈ C(I; Ḣα(RN )) ∩ {Dαu ∈ Wα(I)} is a solution
of the (1.1) if

u|t0 = u0, and u(t) = ei(t−t0)D
2α

u0 +

∫ t

t0

ei(t−t
′)D2α

|u|
4α

N−2αu dt′.

Definition 2.3. Let v0 ∈ Ḣα, v(x, t) = eitD
2α

v0 and let {tn} be a sequence, with limn→∞ tn =
t ∈ [−∞,+∞]. We say that u(x, t) is a non-linear profile associated with (v0, {tn}) if there exists
an interval I, with t ∈ I (if t = ±∞, I = [a,+∞) or (−∞, a]) such that u is a solution of (CP) in
I and

lim
n→∞

‖u(−, tn)− v(−, tn)‖Ḣα = 0.

With the Strichartz estimates, we can obtain the following results for (1.1) by standard argu-
ments (for example, see [9]).

Theorem 2.2. (1) Assume N ≥ 2, α ∈ ( N
2N−1 , 1), 2α < N < 6α and u0 ∈ Ḣα(RN ), u0 radial,

‖u0‖Ḣα ≤ A. Then ∃δ = δ(A) s.t. if ‖eitD2α

u0‖Sα(I) ≤ δ, 0 ∈ İ, there exists a unique solution

to (1.1) on I such that u ∈ C(I; Ḣα), supt∈I ‖u(t)‖Ḣα + ‖Dαu‖Wα(I) ≤ C(A) and ‖u‖Sα(I) ≤ 2δ.
Moreover, we have
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• Local existence: there exists a maximal open interval I = (−T−(u0), T+(u0)) where the
solution u is defined.

• Small data global existence: if A� 1, then I = (−∞,+∞).
• Dαu ∈ LqtLrx(I ′ × RN ) for any α-admissible pair (q, r), where I ′ ⊂ I is a closed interval

with finite length.
• Blowup criterion: If T+(u0) < +∞, then ‖u‖Sα([0,T+(u0))) = +∞. A similar statement

holds in the negative time direction.
• Scattering: If T+(u0) = +∞ and u does not blow up forward in time, then u scatters

forward in time, that is, there exists a unique u+ ∈ Ḣα such that

lim
t→+∞

‖u(t)− eitD
2α

u+‖Hα(RN ) = 0.(2.5)

A similar statement holds in the negative time direction.

(2) For any u+ ∈ Ḣα, there exists a solution u to (1.1) such that (2.5) holds. As a consequence,
for any (v0, {tn}), there always exists a non-linear profile associated to (v0, {tn}) with a maximal
interval of existence.

Next, we need a perturbation theorem. It follows in a very similar way as Theorem 2.14 in
[19] (see [20] for a correct proof), see also [26]. Since for α ∈ ( N

2N−1 , 1), we have generalized
inhomogeneous Strichartz estimate given by Lemma 2.1, the proof is with slight change and we
omit the details,

Theorem 2.3 (Stability). Assume N ≥ 2, α ∈ ( N
2N−1 , 1), 2α < N < 6α. Let I = [0, L),

L ≤ +∞, and let ũ be defined on I × RN such that

‖ũ‖L∞t Ḣαx (I×RN ) ≤ A, ‖ũ‖Sα(I) ≤M, ‖Dαũ‖Wα(I) <∞(2.6)

for some constants A and M , and ũ verifies in the sense of integral equation

iũt +D2αũ+ µ|ũ|
4α

N−2α ũ = e

for some function e. Let u0 ∈ Ḣα be such that ‖u(0) − ũ(0)‖Ḣα ≤ A′. Then ∃ε0 = ε0(M,A,A′)
s.t. if 0 < ε < ε0 and

‖eitD
2α

(u(0)− ũ(0))‖Sα(I) ≤ ε, ‖Dαe‖
L2
IL

2N
N+2α
x

≤ ε,(2.7)

then, there exists a unique solution u on I × RN to (1.1) with initial data u0 satisfying

‖u‖Sα(I) ≤ C(A,A′,M), sup
t∈I
‖u(t)− ũ(t)‖Ḣα ≤ C(A,A′,M).

2.2. Some variational estimates in the focusing case. In the focusing case, the ground
state plays an important role. Consider the fractional elliptic equation

(2.8) D2αW − |W |
4α

N−2αW = 0.

By the work of Lieb [24], it was known that: if 0 < α < N/2, then (2.8) has a solution in Ḣα

W (x) = C1(N,α)

(
1

1 + C2(N,α)|x|2

)N−2α
2

for some C1, C2 > 0. It arises in the study of the best constant for Hardy-Littlewood-Sobolev
inequalities. The classification of positive regular solutions for (2.8) was studied in [3]. We also
have the following characterization of W (see [24], [11]): W attains the best constant CN in the
Sobolev embedding inequality:

(2.9) ‖u‖
L

2N
N−2α

≤ CN‖Dαu‖L2 .

Moreover, if 0 6= u ∈ Ḣα verifies ‖u‖
L

2N
N−2α

= CN‖Dαu‖L2 , then u = Wθ0,x0,λ0
:= eiθ0λ

(N−2α)/2
0 W (λ0(x−

x0)) for some θ0 ∈ [−π, π], λ0 > 0, x0 ∈ RN .
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W is a stationary solution to (1.1) when µ = −1. By the equation (2.8), we have
∫
|DαW |2 =∫

|W |2
∗
. Also, (2.9) yields C2

N

∫
|DαW |2 =

(∫
|W |2

∗)(N−2α)/N
, so that C2

N

∫
|DαW |2 =

(∫
|DαW |2

)N−2α
N

.

Hence, ∫
|DαW |2 =

1

C
N/α
N

and Eµ(W ) =

(
1

2
+ µ

1

2∗

)∫
|DαW |2 ,

which is α
N

1

C
N/α
N

in the focusing case. For simplicity, we write E±(u) = E±1(u).

With the variational properties, we can follow Kenig-Merle’s argument with slight change to
prove the following lemma. We omit the proof.

Lemma 2.10. (1) Assume α ∈ ( N
2N−1 , 1), ‖Dαu‖L2 < ‖DαW‖L2 , and E−(u) ≤ (1−δ0)E−(W )

for some δ0 > 0. Then, there exists δ = δ(δ0, N) > 0 such that

(2.11)

∫
|Dαu|2 ≤ (1− δ)

∫
|DαW |2

and

(2.12)

∫
|Dαu|2 − |u|2

∗
≥ δ

∫
|Dαu|2 .

(2) Assume α ∈ ( N
2N−1 , 1). Let u be a solution of (1.1) with maximal interval I, ‖Dαu0‖L2 <

‖DαW‖L2 , and E−(u0) ≤ (1 − δ0)E−(W ) for some δ0 > 0. Then, there exists δ = δ(δ0, N) > 0
such that for t ∈ I

(2.13)

∫
|Dαu(t)|2 ≤ (1− δ)

∫
|DαW |2

(2.14)

∫
|Dαu(t)|2 − |u(t)|2

∗
≥ δ

∫
|Dαu(t)|2

(2.15) E−(u(t)) '
∫
|Dαu(t)|2 '

∫
|Dαu0|2

with comparability constants which depend only on δ0.

3. Profile decomposition and concentration-compactness alternative

A profile decomposition has been developped in [4] for the L2-critical nonlocal Schrödinger
equation. However, in our case, this is not enough. As in [21] and [19], one has the following
theorem.

Theorem 3.1. Let {v0,n} ∈ Ḣα such that
∫
|Dαv0,n|2 ≤ A with α ∈ ( N

2N−1 , 1). Assume
furthermore that

‖e−itD
2α

v0,n‖L2(N+2α)/N−2α ≥ δ(N)

Then there exists a sequence {V0,j} ∈ Ḣα, a subsequence of {v0,n} ∈ Ḣα and a triple (λj,n, xj,n, tj,n) ∈
R+ × RN × R with the orthogonality condition as n→∞ for j 6= j′

λj,n
λj′,n

+
λj′,n
λj,n

+
|tj,n − tj′,n|

λ2j,n
+
|xj,n − xj′,n|

λj,n
→∞

such that

‖V0,1‖Ḣα ≥ α0(A) > 0.

If V `j (x, t) = e−itD
2α

V0,j then, given ε0 > 0, there exists J = J(ε0) and a sequence {wn} ∈ Ḣα so
that

V0,n =

J∑
j=1

1

λ
(N−2α)/2
j,n

V `j

(x− xj,n
λj,n

,
−tj,n
λ2j,n

)
+ wn

and for large enough n

‖e−itD
2α

wn‖Sα(R) ≤ ε0
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(3.1)

∫
|DαV0,n|2 =

J∑
j=0

∫
|DαV0,j |2 +

∫
|Dαwn|2 + o(1), as n→∞

(3.2) E±(V0,n) =

J∑
j=0

E±(V `j (−tj,n/λ2j,n)) + E±(wn) + o(1), as n→∞

Proof. The original proof can be found in the work of Keraani [21]. Here we follow the
approach of Visan [27]. For α ∈ ( 1

2 , 1) and N ≥ 2, we have that

‖eitD
2α

f‖
L

2(N+2α)
N−2α

t,x (R×RN )

. ‖f‖Ḣαx (RN )(3.3)

holds for all radial f ∈ Ḣα.

Lemma 3.4 (Refined Strichartz estimate). Let α ∈ ( N
2N−1 , 1), N ≥ 2, and f ∈ Ḣα(RN ), we

have

‖eitD
2α

f‖
L

2(N+2α)
N−2α

t,x (R×RN )

. sup
j∈Z
‖eitD

2α

fj‖
4α

N+2α

L

2(N+2α)
N−2α

t,x (R×RN )

‖f‖
N−2α
N+2α

Ḣαx (RN )
,(3.5)

where fj = Pjf and Pj is a Littlewood-Paley projection around the frequency annulus {ξ : |ξ| ∼ 2j}.

Proof. First we consider the case when N ≥ 6α. We have N+2α
2(N−2α) ≤ 1. We have

‖eitD
2α

f‖
2(N+2α)
N−2α

L

2(N+2α)
N−2α

t,x (R×RN )

.
∫ ∫

R×RN

(∑
j∈Z
|eitD

2α

fj |2
)N+2α
N−2α

dxdt

.
∫ ∫

R×RN

(∑
j∈Z
|eitD

2α

fj |2
) N+2α

2(N−2α)
(∑
k∈Z
|eitD

2α

fk|2
) N+2α

2(N−2α)

dxdt

.
∑
j≤k

∫ ∫
R×RN

|eitD
2α

fj |
N+2α
N−2α |eitD

2α

fk|
N+2α
N−2α dxdt,(3.6)

where we used the fact that N+2α
2(N−2α) ≤ 1 in the last step. By applying Hölder inequality, Bernstein

inequality, and Strichartz estimate (3.3), we obtain

(3.6) .
∑
j≤k

‖eitD
2α

fj‖
L

2(N+2α)
N−4α

t,x

‖eitD
2α

fj‖
4α

N−2α

L

2(N+2α)
N−2α

t,x

‖eitD
2α

fk‖
4α

N−2α

L

2(N+2α)
N−2α

t,x

‖eitD
2α

fk‖
L

2(N+2α)
N

t,x

. sup
j∈Z
‖eitD

2α

fj‖
8α

N−2α

L

2(N+2α)
N−2α

t,x

∑
j≤k

‖eitD
2α

fj‖
L

2(N+2α)
N−4α

t,x

‖eitD
2α

fk‖
L

2(N+2α)
N

t,x

. sup
j∈Z
‖eitD

2α

fj‖
8α

N−2α

L

2(N+2α)
N−2α

t,x

∑
j≤k

22αj‖eitD
2α

fj‖
L

2(N+2α)
N−4α

t L

2N(N+2α)

N2+8α2
x

‖eitD
2α

fk‖
L

2(N+2α)
N

t,x

. sup
j∈Z
‖eitD

2α

fj‖
8α

N−2α

L

2(N+2α)
N−2α

t,x

∑
j≤k

22αj‖fj‖L2
x
‖fk‖L2

x

. sup
j∈Z
‖eitD

2α

fj‖
8α

N−2α

L

2(N+2α)
N−2α

t,x

∑
j≤k

2α(j−k)‖fj‖Ḣαx ‖fk‖Ḣαx

. sup
j∈Z
‖eitD

2α

fj‖
8α

N−2α

L

2(N+2α)
N−2α

t,x

‖f‖2
Ḣαx
,(3.7)

which complete the proof for the case N ≥ 6α.
Now we turn to the case 2 ≤ N < 6α. We have N+2α

2(N−2α) > 1 in this case. Set[N + 2α

N − 2α

]
= m− 1,
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for some integer m ≥ 3. Proceeding as before, we have

‖eitD
2α

f‖
2(N+2α)
N−2α

L

2(N+2α)
N−2α

t,x (R×RN )

.
∫ ∫

R×RN

(∑
j∈Z
|eitD

2α

fj |2
)N+2α
N−2α

dxdt

.
∫ ∫

R×RN

m∏
i=1

(∑
ji∈Z
|eitD

2α

fji |2
) N+2α
m(N−2α)

dxdt

.
∑

j1≤j2≤···≤jm

∫ ∫
R×RN

m∏
i=1

|eitD
2α

fji |
2(N+2α)
m(N−2α) dxdt

.
∑

j1≤j2≤···≤jm

∫ ∫
R×RN

m∏
i=1

|eitD
2α

fji ||eitD
2α

fji |
2(N+2α)
m(N−2α)

−1 dxdt,(3.8)

where we use the fact N+2α
m(N−2α) ≤ 1. By applying Hölder inequality, Bernstein inequality, and

Strichartz estimate (3.3), we obtain

(3.8) .
∑

j1≤···≤jm

∥∥|eitD2α

fj1 ||eitD
2α

fjm |
∥∥
L
N+2α
N−2α
t,x

m−1∏
i=2

‖eitD
2α

fji‖
L

2(N+2α)
N−2α

t,x

m∏
i=1

‖eitD
2α

fji‖
2(N+2α)
m(N−2α)

−1

L

2(N+2α)
N−2α

t,x

. sup
j∈Z
‖eitD

2α

fj‖
m−2+m(

2(N+2α)
m(N−2α)−1)

L

2(N+2α)
N−2α

t,x

∑
j1≤jm

(
jm − j1

)m−2∥∥|eitD2α

fj1 ||eitD
2α

fjm |
∥∥
L
N+2α
N−2α
t,x

. sup
j∈Z
‖eitD

2α

fj‖
8α

N−2α

L

2(N+2α)
N−2α

t,x

∑
j1≤jm

(
jm − j1

)m−2
‖eitD

2α

fj1‖
L

2(N+2α)
N−4α

t,x

‖eitD
2α

fjm‖
L

2(N+2α)
N

t,x

. sup
j∈Z
‖eitD

2α

fj‖
8α

N−2α

L

2(N+2α)
N−2α

t,x

∑
j1≤jm

(
jm − j1

)m−2
22j1α‖eitD

2α

fj1‖
L

2(N+2α)
N−4α

t L

2N(N+2α)

N2+8α2
x

‖eitD
2α

fjm‖
L

2(N+2α)
N

t,x

. sup
j∈Z
‖eitD

2α

fj‖
8α

N−2α

L

2(N+2α)
N−2α

t,x

∑
j1≤jm

(
jm − j1

)m−2
22j1α‖fj1‖L2

x
‖fjm‖L2

x

. sup
j∈Z
‖eitD

2α

fj‖
8α

N−2α

L

2(N+2α)
N−2α

t,x

∑
j1≤jm

(
jm − j1

)m−2
2(j1−jm)α‖fj1‖Ḣαx ‖fjm‖Ḣαx

. sup
j∈Z
‖eitD

2α

fj‖
8α

N−2α

L

2(N+2α)
N−2α

t,x

‖f‖2
Ḣαx
,

(3.9)

which complete the proof for the case 2 ≤ N < 6α. Thus we complete the proof of the lemma. �

Once the refined Strichartz is established, the profile decomposition follows from standard
techniques. See for instance [27].

�

4. Minimal energy non-scattering solution

We now assume 2α < N < 6α. Denote A+ =∞, A− = E−(W ). For each 0 ≤ a ≤ A±, let

K−(a) :={f ∈ Ḣα
rad : E−(f) < a, ‖Dαf‖2 < ‖DαW‖2}

K+(a) :={f ∈ Ḣα
rad : E+(f) < a},

S±(a) := sup{‖u‖Sα(I) | u(0) ∈ K±(a), u sol. to (1.1) with ±},
Let

E∗± := sup{a > 0 | S±(a) <∞}.(4.1)
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The small data scattering implies that E∗± > 0. We will prove E∗± = A± by contradiction, and
thus finish the proof of Theorem 1.1.

Assume E∗± < A±, then we show the existence of a critical element which is compact modulo
invariant groups. We have

Lemma 4.1 (Existence of critical element). Suppose E∗± < A±, then there is a radial solution
u± to (1.1)± with maximal interval I± satisfying

E(u±) = E∗±, ‖Dαu−‖2 < ‖DαW‖2, ‖u±‖Sα(I±) =∞.

Lemma 4.2. Assume u± is as in Lemma 4.1 and say that ‖u±‖S(I±∩(0,∞)) = ∞. Then there

exists λ(t) ∈ R+, for t ∈ I± ∩ (0,∞), such that

K = {v(x, t) : v(x, t) =
1

λ(t)
N−2α

2

u±(
x

λ(t)
, t)}

has the property that K is compact in Ḣα. A corresponding conclusion is reached if ‖u±‖Sα(I±∩(−∞,0)) =
∞.

The two lemmas above follow in the same way as in Kenig-Merle [19], by using stability
Theorem and the profile decomposition given in Theorem 3.1.

5. Rigidity Theorem

The main purpose of this section is to disprove the existence of critical element that was
constructed in the previous section under the assumption E∗± < A± by using the structure of the
equation (1.1). We will rely on the virial identity.

Lemma 5.1 (virial identity). Assume u is a smooth solution to (1.1). Then

d

dt
<
∫
iux · ∇ūdx = 2α

∫
|Dαu|2dx+

Nµp

p+ 2

∫
|u|p+2dx.

The previous lemma is just a formal computation based on properties of the Fourier transform
(recall that the symbol of D2α is |ξ|2α.

Since the virial does not make sense in the energy space, we will use the localization of virial
estimates. In this sequel, we fix ψ ∈ C∞0 (RN ), ψ radial, ψ ≡ 1 for |x| < 1, ψ ≡ 0 for |x| ≥ 2. For

R&1, let ψR(x) = ψ(x/R), ψ̃R(x) = x
R · ∇ψ( xR ). We have

Lemma 5.2. Assume u is solution to (1.1). Then

d

dt
<
∫
iuxψR · ∇ūdx =2α

∫
|Dαu|2ψRdx+

pµN

p+ 2

∫
|u|p+2ψRdx

+ <2

∫
Dαu[Dα, ψR](x · ∇ū)dx+

pµ

p+ 2

∫
|u|p+2ψ̃Rdx

+ <N
∫
Dαu[Dα, ψR]ūdx+ <

∫
Dαu[Dα, ψ̃R]ūdx,

where [Dα, f ]g = Dα(fg)− fDαg.

Proof. Using the equation (1.1), we get from direct computation that

d

dt
<
∫
iuxψR · ∇ūdx

=<
∫

(D2αu+ µ|u|pu)(2xψR · ∇ū+NψRū+ ψ̃Rū)dx

=<
∫
D2αu2xψR · ∇ūdx+ <

∫
µ|u|pu2xψR · ∇ūdx

+ <
∫
D2αu(dψRū+ ψ̃Rū)dx+ <

∫
µ|u|pu(NψRū+ ψ̃Rū)dx

:=I + II + III + IV.
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Obviously,

IV = Nµ

∫
|u|p+2ψRdx+ µ

∫
ψ̃R|u|p+2dx.

Using integration by part, we get

III =<
∫
D2αu(dψRū+ ψ̃Rū)dx

=N

∫
|Dαu|2ψRdx+ <d

∫
Dαu[Dα, ψR]ūdx

+

∫
|Dαu|2ψ̃Rdx+ <

∫
Dαu[Dα, ψ̃R]ūdx.

Similarly,

II =<
∫
µ|u|pu2xψR · ∇ūdx =

∫
µ|u|pxψR · ∇(|u|2)dx

=− 2µN

p+ 2

∫
|u|p+2ψRdx−

2µ

p+ 2

∫
|u|p+2ψ̃Rdx

Now we compute I. By Fourier transform, it is easy to check [Dα, x · ∇] = αDα. Then we
have

I =<2

∫
DαuψR(x · ∇Dαū+ αDαū)dx+ <2

∫
Dαu[Dα, ψR](x · ∇ū)dx

=2α

∫
|Dαu|2ψRdx−N

∫
|Dαu|2ψRdx

−
∫
|Dαu|2ψ̃Rdx+ <2

∫
Dαu[Dα, ψR](x · ∇ū)dx.

Summing over the four terms, we complete the proof. �

Due to the nonlocal properties of the fractional Schrödinger equation, the localization of virial
estimates is not very clean. There are many remainder terms. However, all of them can be handled
in the energy space. We have

Lemma 5.3. Assume 0 < α ≤ 1, 0 < ε < α and R&1. Then

‖[Dα, ψR]f‖L2 .‖g‖
L

2N
N−2α (|x|&R1−ε)

+R−εα‖Dαf‖L2 ,(5.1)

‖[Dα, ψR]x · ∇f‖L2 .‖Dαf‖L2 ,(5.2)

‖[Dα, ψR]x · ∇f‖L2(|x|.R1−ε) .R
−εα/2‖Dαf‖L2 + ‖g‖

L
2n

n−2α (|x|&R1−ε)
,(5.3)

where g = F−1(|f̂ |).

The proof of the lemma will be given in the end of this section. Now we use it to prove the
main result of this section:

Theorem 5.4. Assume that u±0 ∈ Ḣα is such that

E±(u±0 ) < A±, ‖Dαu−0 ‖2 < ‖DαW‖2.
Let u± be the solution of (1.1)± with u±(0) = u±0 , with maximal interval of existence I±. Assume
that there exists λ(t) > 0, for t ∈ I± ∩ [0,∞), with the property that

K = {v(x, t) : v(x, t) =
1

λ(t)
N−2α

2

u±(
x

λ(t)
, t)}

is precompact in Ḣα. Then we must have T+(u0) =∞, u0 ≡ 0.

Proof of Theorem 5.4. We only prove the focusing case, since the defocusing case follows
in a similar way. Assume I− = (−T−, T+). It suffices to prove this theorem under the assumption
that λ(t) ≥ A0 for some A0 > 0 for all t, since the general case follows similarly as in [19]. The
proof splits in two cases.
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Case 1. T+(u0) < +∞
With the same proof as in [19], we have λ(t)→∞ as t ↑ T+(u0). We define

yR(t) =

∫
|u(x, t)|2ψR(x)dx, t ∈ [0, T+).

Then we have

y′R(t) =− 2 Im

∫
D2α(u) · ūψR(x)dx

=− 2 Im

∫
Dαu · [Dα(ūψR)− ū ·DαψR]dx− 2 Im

∫
Dαu · ū ·DαψRdx.

By the commutator estimates ‖Dα(fg)− fDαg‖2 . ‖Dαg‖2‖g‖∞, α ∈ (0, 1), we get

|y′R(t)| .‖Dαu‖2‖Dα(ūψR)− ū ·DαψR‖2 + ‖Dαu‖2‖u‖ 2n
n−2α
‖DαψR‖nα

.‖Dαu‖22.

Next, we show: for all R > 0,∫
|x|<R

|u(x, t)|2dx→ 0, as t→ T+(u0).(5.4)

In fact, u(y, t) = λ(t)
N−2α

2 v(λ(t)y, t) so that∫
|x|<R

|u(x, t)|2dx

=λ(t)−2α
∫
|y|<Rλ(t)

|v(y, t)|2dy

=λ(t)−2α
∫
|y|<εRλ(t)

|v(y, t)|2dy + λ(t)−2α
∫
εRλ(t)<|y|<Rλ(t)

|v(y, t)|2dy

:=I + II.

By Hölder and Sobolev, we have

I . λ(t)−2α‖v‖2
L

2N
N−2α

(εRλ(t))2α . (εR)2α‖DαW‖22,

while

II . λ(t)−2α(Rλ(t))2α‖v‖2
L

2N
N−2α (|x|≥εRλ(t))

→ 0, as t→ T+(u0).

Thus (5.4) follows.
Therefore, we have

|yR(0)− yR(T+(u0))| . T+(u0)‖DαW‖22,
which implies

yR(0) . T+(u0)‖DαW‖22.
Then letting R→∞, we obtain that u0 ∈ L2(RN ). Arguing as before,

|yR(t)− yR(T+(u0))| . (T+(u0)− t)‖DαW‖22.

So

|yR(t)| . (T+(u0)− t)‖DαW‖22.
Letting R→∞, we see that

‖u(t)‖22 . (T+(u0)− t)‖DαW‖22
and so by the conservation of the L2 norm ‖u0‖2 = ‖u(t)‖2 → 0, t → T+(u0). But that u ≡ 0
contradicting T+(u0) < +∞.

Case 2. T+(u0) = +∞
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In this case we use the localized virial identity. Let u(y, t) = λ(t)
N−2α

2 v(λ(t)y, t), then∫
|y|>R(ε)

|Dαu(y, t)|2dy =

∫
|y|>R(ε)

λ(t)N |Dαv(λ(t)y, t)|2dy

=

∫
|z|>λ(t)R(ε)

|Dαv(z, t)|2dx

≤
∫
|z|≥A0R(ε)

|Dαv(z, t)|2dz

. ε. (by the precompactness of K)

By similar arguments, we have for any ε > 0, there exists R(ε) such that

(5.5)

∫
|x|>R(ε)

(
|Dαu(x, t)|2 + |u(x, t)|

2N
N−2α +

|u(x, t)|2

|x|2α
)
dx < ε

Let ũ = F−1x |Fu(ξ, t)|. By Plancherel theorem we know ũ has the same compactness as u. Thus
we have: for each ε > 0, there exists R(ε) > 0 such that, for all t ∈ [0,∞), we have

(5.6)

∫
|x|>R(ε)

(
|Dαũ(x, t)|2 + |ũ(x, t)|

2N
N−2α +

|ũ(x, t)|2

|x|2α
)
dx < ε.

Next, we consider

IR(t) = Re

∫
iuxψR · ∇ūdx.

By Cauchy-Schwarz inequality and integration by parts for fractional derivatives, we have

|IR(t)| .‖D1−α(uxψR)‖2 · ‖Dα−1∇ū‖2
.‖Dαu‖2 · ‖D1+N

2 −2α(xψR)‖2 · ‖Dαu‖2 . R2α · ‖Dαu0‖22.
On the other hand, by Lemma 5.2 and Lemma 5.3, we have

I ′R(t) =2α

∫
|Dαu|2dx− 2α

∫
|u|

2N
N−2α dx(5.7)

+ 2α

∫
(|Dαu|2 − |u|

2N
N−2α )(ψR − 1)dx− 2α

N

∫
|u|

2N
N−2α ψ̃Rdx(5.8)

+ 2 Re

∫
Dαu[Dα, ψR](x · ∇ū)dx(5.9)

+ dRe

∫
Dαu[Dα, ψR]ūdx+ Re

∫
Dαu[Dα, ψ̃R]ūdx.(5.10)

By the variational estimates, we have

(5.7) ≥ Cδ‖Dαu0‖22.
If u0 6= 0, then fix 0 < ε� ‖Dαu0‖22. For (5.8), by (5.5) we get that

(5.8) . ε

for R sufficiently large. The term of (5.9) can be estimated as follows

|(5.9)|

.|
∫
|x|.R1−ε

Dαu[Dα, ψR](x · ∇ū)dx|+ |
∫
|x|&R1−ε

Dαu[Dα, ψR](x · ∇ū)dx|

.‖Dαu‖2‖[Dα, ψR](x · ∇ū)‖L2(|x|.R1−ε) + ‖Dαu‖L2(|x|&R1−ε)‖[Dα, ψR](x · ∇ū)‖2

.R−
εα
2 ‖Dαu‖2 + ‖ũ‖

L
2N

N−2α (|x|&R1−ε)
+ ‖Dαu‖L2(|x|&R1−ε)‖Dαu‖L2

where the last inequality follows from Lemma 3.5. Therefore, (5.9) . ε if R is sufficiently large.
The smallness of (5.10) can be obtained similarly. Thus

|I ′R(t)| &
∫
|Dαu0|2.
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Integrating in t, we get IR(t)−IR(0) & t
∫
|Dαu0|2, but we also have |IR(t)−IR(0)| . R2

∫
|Dαu0|2,

which is a contradiction for t large. Thus u0 ≡ 0 and the theorem is proved. �

In the end, we give the proof of Lemma 5.3.

Proof of Lemma 5.3. First we show (5.1). Using Fourier transform, we have

|F([Dα, ψR]f)(ξ)| .|
∫
ξ=ξ1+ξ2

(|ξ1 + ξ2|α − |ξ2|α)ψ̂R(ξ1)f̂(ξ2)|

.
∫
ξ=ξ1+ξ2

|ξ1|α|ψ̂R(ξ1)| · |f̂(ξ2)|.

Then we get

‖[Dα, ψR]f‖2 .‖F−1(|ξ1|α|ψ̂R(ξ1)|) · g‖2
.‖F−1(|ξ1|α|ψ̂R(ξ1)|)‖N

α
· ‖g‖

L
2N

N−2α (|x|&R1−ε)

+ ‖F−1(|ξ1|α|ψ̂R(ξ1)|)‖
L
N
α (|x|.R1−ε)

· ‖g‖
L

2N
N−2α

.‖g‖
L

2N
N−2α (|x|&R1−ε)

+R−εα‖Dαf‖L2

where in the last inequality we used the fact that ‖F−1(|ξ1|α|ψ̂R(ξ1)|)‖n
α
≤ C, |F−1(|ξ1|α|ψ̂R(ξ1)|)| .

R−α and the Sobolev embedding.
Next, we prove (5.2). Direct computations show that

F([Dα, ψR]x · ∇f)(ξ)

=−
∫

(|ξ|α − |ξ2|α)ψ̂R(ξ − ξ2)∇ξ2 · (ξ2f̂(ξ2))dξ2

=

∫
ξ=ξ1+ξ2

−α|ξ2|αψ̂R(ξ1)f̂(ξ2) + i(|ξ1 + ξ2|α − |ξ2|α)x̂ψR(ξ1) · ξ2f̂(ξ2).

Thus we get

|F([Dα, ψR]x · ∇f)(ξ)| .
∫
ξ=ξ1+ξ2

|ξ2|α(|ψ̂R(ξ1)|+ |x̂ψR(ξ1)| · |ξ1|) · |f̂(ξ2)|

and then by Plancherel’s equality

‖[Dα, ψR]x · ∇f‖L2 .‖Dαf‖L2 .

Finally, we prove (5.3). We have

F([Dα, ψR]x · ∇f)(ξ)

=

∫
ξ=ξ1+ξ2,|ξ1|�|ξ2|

−α|ξ2|αψ̂R(ξ1)f̂(ξ2) + i(|ξ1 + ξ2|α − |ξ2|α)x̂ψR(ξ1) · ξ2f̂(ξ2)

+

∫
ξ=ξ1+ξ2,|ξ1|&|ξ2|

−α|ξ2|αψ̂R(ξ1)f̂(ξ2) + i(|ξ1 + ξ2|α − |ξ2|α)x̂ψR(ξ1) · ξ2f̂(ξ2)

:=F [M(f)] + F [R(f)].

As before, we have

|F [R(f)](ξ)| .
∫
ξ=ξ1+ξ2

|ξ1|α(|ψ̂R(ξ1)|+ |x̂ψR(ξ1)| · |ξ1|) · |f̂(ξ2)|

and then as (5.1) we get

‖Rf‖2 . ‖g‖
L

2n
n−2α (|x|&R1−ε)

+R−εα‖Dαf‖L2 .

To estimate M(f), we need to exploit a cancelation. Since |ξ1| � |ξ2|, by fundamental theorem
of calculus we have
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(5.11) |ξ1 + ξ2|α − |ξ2|α =

∫ 1

0

d

dt
|tξ1 + ξ2|αdt =

∫ 1

0

α|tξ1 + ξ2|α−1
tξ1 + ξ2
|tξ1 + ξ2|

dt · ξ1.

Recall that

F [M(f)] =

∫
|ξ1|�|ξ2|

−α|ξ2|αψ̂R(ξ1)f̂(ξ2) +

∫
|ξ1|�|ξ2|

i(|ξ1 + ξ2|α − |ξ2|α)x̂ψR(ξ1) · ξ2f̂(ξ2)

Thus we get, using (5.11) for the second integral

F [M(f)] =

∫
|ξ1|�|ξ2|

−α|ξ2|αψ̂R(ξ1)f̂(ξ2)

+

∫
|ξ1|�|ξ2|

∫ 1

0

α|tξ1 + ξ2|α−1
tξ1 + ξ2
|tξ1 + ξ2|

dt · iξ1x̂ψR(ξ1) · ξ2f̂(ξ2)(5.12)

Denote ξs = (ξs,1, · · · , ξs,N ), s = 1, 2, then the second term equals to∫
|ξ1|�|ξ2|

N∑
j,k=1

∫ 1

0

α|tξ1 + ξ2|α−1
tξ1,k + ξ2,k
|tξ1 + ξ2|

dt · iξ1,kx̂jψR(ξ1) · ξ2,j f̂(ξ2)

=

∫
|ξ1|�|ξ2|

∫ 1

0

α|tξ1 + ξ2|α−1
tξ1 + ξ2
|tξ1 + ξ2|

dt · ξ2ψ̂R(ξ1)f̂(ξ2)

+

∫
|ξ1|�|ξ2|

∫ 1

0

α|tξ1 + ξ2|α−1
tξ1 + ξ2
|tξ1 + ξ2|

dt · ̂x⊗∇ψR(ξ1) · ξ2f̂(ξ2).

Thus, we get

F [M(f)] =

∫
|ξ1|�|ξ2|

(

∫ 1

0

α|tξ1 + ξ2|α−1
tξ1 + ξ2
|tξ1 + ξ2|

dt · ξ2 − α|ξ2|α)ψ̂R(ξ1)f̂(ξ2)

+

∫
|ξ1|�|ξ2|

i

∫ 1

0

α|tξ1 + ξ2|α−1
tξ1 + ξ2
|tξ1 + ξ2|

dt · |ξ2|−αξ2 ̂̃ψR(ξ1)D̂αf(ξ2)

=F [I] + F [II].

For I, by mean value formula, we have

|I| .
∫
|ξ1|�|ξ2|

α2|ξ2|α−1|ξ1| · |ψ̂R(ξ1)| · |f̂(ξ2)|

and then

‖I‖2 . R−α‖f‖2.
For II, we see

II =

∫
K(x− y1, x− y2)ψ̃R(y1)Dαf(y2)dy1dy2

where K is the kernel for the bilinear multiplier

K(x, y) =

∫
ei(xξ1+yξ2)m(ξ1, ξ2)dξ1dξ2

with the symbol

m(ξ1, ξ2) =

∫ 1

0

α|tξ1 + ξ2|α−1
tξ1 + ξ2
|tξ1 + ξ2|

dt · |ξ2|−αξ2 · 1|ξ1|�|ξ2|.

It is easy to see from direct computations that m satisfy the Coifman-Meyer condition (see [10]),
and then the kernel K is Calderón-Zygmund (see [10]) and

|K(x− y1, x− y2)| . (|x− y1|+ |x− y2|)−2N .

If |y1| ∼ R, |x| . R1−ε, then

|K(x− y1, x− y2)| . R−2N .



14 Z. GUO, Y. SIRE, Y. WANG, AND L. ZHAO

Hence we estimate by Cauchy-Schwarz inequality,

| II |2 ≤ ‖Dαf‖22
1

R3N

∫
|ψ̃1(y1)|2 dy1 ≤

C

R3N
‖Dαf‖22.

Hence

‖II‖2L2(|x|.R1−ε) ≤
CRN(1−ε)

R3N
.

Thus we get since R is large

‖II‖L2(|x|.R1−ε) . R
−ε/2‖Dαf‖2.

Therefore, the lemma is proved. �
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