
 
 

University of Birmingham

Multi-step reinforcement learning for model-free
predictive energy management of an electrified off-
highway vehicle
Zhou, Quan; Li, Ji; Shuai, Bin; Williams, Huw; He, Yinglong; Li, Ziyang; Xu, Hongming; Yan,
Fuwu
DOI:
10.1016/j.apenergy.2019.113755

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Zhou, Q, Li, J, Shuai, B, Williams, H, He, Y, Li, Z, Xu, H & Yan, F 2019, 'Multi-step reinforcement learning for
model-free predictive energy management of an electrified off-highway vehicle', Applied Energy, vol. 255,
113755. https://doi.org/10.1016/j.apenergy.2019.113755

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 05/11/2019

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 03. May. 2024

https://doi.org/10.1016/j.apenergy.2019.113755
https://doi.org/10.1016/j.apenergy.2019.113755
https://birmingham.elsevierpure.com/en/publications/4cc92fc4-b5c2-4364-9986-3977cb83b5a4


Manuscript submitted to ‘Applied Energy’ 

1 

 

Multi-step Reinforcement Learning for Model-Free Predictive 

Energy Management of an Electrified Off-highway Vehicle 

Quan Zhou1, Ji Li1, Bin Shuai1, Huw Williams1, Yinglong He1, Ziyang Li1, Hongming Xu1*, Fuwu Yan2 

1 Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK 
2 School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China 

Highlights 

• Reinforcement Learning is researched for energy saving in a hybrid vehicle. 

• Energy efficiency can be continuously improved by multi-step learning. 

• The ‘Recurrent-to-Terminal’ strategy is shown the most effective learning strategy. 

• The method can save energy by more than 7.8% in the selected real-time operations. 

Abstract 

The energy management system of an electrified vehicle is one of the most important supervisory 

control systems which manages the use of on-board energy resources. This paper researches a 

‘model-free’ predictive energy management system for a connected electrified off-highway vehicle. 

A new reinforcement learning algorithm with the capability of ‘multi-step’ learning is proposed to 

enable the all-life-long online optimisation of the energy management control policy. Three multi-step 

learning strategies (Sum-to-Terminal, Average-to-Neighbour Recurrent-to-Terminal) are researched 

for the first time. Hardware-in-the-loop tests are carried out to examine the control functionality for 

real application of the proposed ‘model-free’ method. The results show that the proposed method 

can continuously improve the vehicle’s energy efficiency during the real-time hardware-in-the-loop 

test, which increased from the initial level of 34% to 44% after 5 hours’ 35-step learning. Compared 

with a well-designed model-based predictive energy management control policy, the model-free 

predictive energy management method can increase the prediction horizon length by 71% (from 35 

to 65 steps with 1s interval in real-time computation) and can save energy by at least 7.8% for the 

same driving conditions. 

Keywords: Model-Free Predictive Control; Energy Management; n-step Reinforcement Learning; 

Markov Decision Problem; Hybrid Electric Vehicle 

Nomenclature 

𝑃 Power (W) 𝑨 set of actions 

𝑠 state 𝑹 set of rewards 
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𝑎 action 𝑸 Q table 

𝑟 reward 𝑫 set of data collected 

𝑝 prediction horizon 𝛷 learning strategy 

𝑡 time OEM original equipment manufacturer 

𝑆𝑜𝐶 state of charge Subscripts 

𝑅 Resistance (Ω) 𝑑𝑒𝑚 demand 

𝐼 Current (A) ℎ history 

𝐿𝑜𝑠𝑠 power loss (W) 𝑒𝑛𝑔 engine-generator set 

𝛱 control policy 𝑏𝑎𝑡𝑡 battery package 

𝑄 expected system performance 𝑖𝑛𝑖 initial 

𝑺 set of states 𝑟𝑒𝑓 reference 

1. Introduction 

Climate change-associated environmental protection concerns are among the world’s greatest 

challenges [1]. Allied with carbon dioxide (CO2) mitigation through sustainable approaches [2], 

optimisation of energy usage can effectively reduce CO2 emissions [3]. Driven by the increasingly 

stringent emission and fuel consumption regulations, conventional vehicle systems are undergoing 

electrification, e.g. regenerative electric brakes [4], electrified suspension [5], and electric powertrain 

[6]. Hybrid electric vehicle (HEV) is an immediately available solution for vehicle electrification to 

help achieve the goal of CO2 emission reduction in road transportation. The energy management 

system plays the most critical role for HEV CO2 emission control and much effort is made to 

determine the distribution of power from each source (engine or motor) simultaneously satisfying the 

driver’s demand, minimising energy consumption/emissions, and maintaining the battery’s state-of-

charge SoC [7].  

The new real-world driving emissions (RDE) test requires original equipment manufacturers (OEMs) 

to optimise the performance of their products in real world driving [8]. Real world driving is a Markov 

decision process (MDP), which is a process for decision making in stochastic situations [9]. 

Advanced energy management systems should have the capability to operate online optimisation to 

determine the optimal power distribution in any transient and stochastic environment. Model-based 

predictive control (MPC) is a widely-used method for optimisation of the vehicle energy management 

system [7,10]. A two-step rolling optimisation process including ‘prediction’ and ‘solving’ is used for 
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MPC to obtain the optimal control signal in each sampling interval. The performance of MPC is 

affected by three main aspects: the accuracy of predictive models [11,12]; the length of predictive 

horizon [13,14], and the optimisation ability of its algorithm [15,16]. 

Recently, the Vehicle to Everything (V2X) network has been developed for the connected vehicles 

to transmit a great amount of data and engage with networked computing resources. It allows 

advanced nonlinear model-based predictive control for further improvement of vehicle performance. 

The V2X network can extend the prediction horizon using the data from the global positioning system 

(GPS) [13,17]. Adaptive modelling is available with the V2X data and connected computing 

resources [18,19]. Online control optimisation with nonlinear prediction models can be carried out 

using the connected computing resources [20,21]. The development of prediction models and 

optimisation algorithms, however, still requires human knowledge to maximise control performance. 

The recent progress on artificial intelligence (AI) has demonstrated that machines have the potential 

to beat human beings, in developing better strategies (control policy) for certain problems (e.g. 

playing board games [22]). AI has been widely used for automotive technology research, especially 

for autonomous and intelligent vehicles (e.g. lane change intention prediction [23], driver activity 

recognition [24], driver behaviour prediction [25], etc.). However, it is difficult to implement advanced 

AI algorithms in conventional vehicle controllers, because AI-based control needs a large memory 

space to store data and a powerful processor to run the learning algorithms [26]. With the help of the 

V2X network, which can provide big data and connected computing resources, the concept of 

‘model-free’ brings automotive engineering research into a new era [27]. The control policies for 

model-free control are optimised by updating a merit function which is a function of the rewards 

representing the performance of the vehicle system. Vehicle system models are no longer required 

for model-free control, therefore, the model-free control can avoid the negative influence of the 

inaccuracy of the vehicle models [28].  

Many energy management methods for hybrid vehicles have been developed with the standard ‘one-

step’ reinforcement learning algorithms, which updates the merit/value function Q with the 

information of two neighbouring time instants [29]. To minimise the vehicle’s fuel consumption over 

a predictive horizon, one-step reinforcement learning works with a Markov chain model which 

predicts the power demand over the prediction horizon [30,31]. The main drawback of using the one-

step method is that obtaining a reward 𝑟(𝑡) only directly affects the values of the state-action pair 

𝑠(𝑡) and 𝑎(𝑡) that led to the reward at a single step. The values of other state action pairs are 

affected only indirectly through the updated value 𝑄(𝑠(𝑡), 𝑎(𝑡)). This can make the learning process 

slow since many updates are required for the propagation of a reward to the relevant preceding 

states and actions [32]. Also from the aspect of predictive energy management control, one-step 

learning has to work with a Markov chain model to obtain the control action that can achieve the 

maximum reward over a predictive horizon [33,34]. On the other hand, the Markov model will 

significantly affect the vehicle performance and the computing effort [35].  

Recent development in computer science suggests that multi-step reinforcement learning can 

achieve optimal model-free predictive control without extra training of Markov chain models [32]. 

Multi-step reinforcement learning is considered as a promising technology for optimisation of the 

energy systems with high uncertainty in power demand. Although many successful applications 
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using this technology to solve complex decision making problems can be found from the literature, 

such as playing the game of Go [22], multi-step learning strategies should be developed for problems 

[36]. To the best of the authors’ knowledge, no report is yet available in the literature concerning the 

research of multi-step reinforcement learning for the energy management of hybrid vehicles. Based 

on the above observations and the authors’ recent research on an electrified off-highway vehicle 

[21,37], this paper proposes a new model-free predictive energy management method for an 

electrified off-highway vehicle. The following work was carried out for the first time: three multi-step 

learning strategies were developed for model-free predictive energy management of a hybrid vehicle; 

the learning performance of different learning strategies was investigated for optimisation of the 

energy management control policy; the computing efforts of model-free predictive control were 

studied for preparation of real-time control; and hardware-in-the-loop tests were performed to 

evaluate the feasibility of real application using the proposed method. 

The rest of this paper is organised as follows: Section 2 introduces the off-highway vehicle, its model-

free energy management system, and the problems associated with the model-free control. The 

multi-step reinforcement learning for model-free predictive energy management control is proposed 

in Section 3, followed by the description of the experimental system for real-time validation and 

evaluation in Section 4. In Section 5, the performance of the proposed energy management method 

is evaluated from the perspectives of learning performance, computing effort, and real-time control 

capability. The advantages of the proposed method are also demonstrated by comparing the vehicle 

performance with the conventional model-based method based on hardware-in-the-loop testing. 

Section 6 summarises the conclusions. 

2. Energy Management for the Connected Off-highway Vehicle 

2.1 The connected vehicle system 

This paper develops a model-free predictive energy management method based on a connected 

hybrid aircraft-towing tractor, as shown in Fig. 1. The off-highway vehicle works at an airport, which 

includes complex and interconnected traffic system involving aircraft, towing tractors, and ground 

support vehicles. The V2X network (connecting the vehicles, aircraft, and infrastructures) provides 

connected live data and computing resources for online optimization of the vehicle control system. 

This will save energy by organising the traffic and individual vehicle operation.  
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Fig. 1. Aircraft towing scenario with V2X communication 

The aircraft towing scenario studied in this paper is one of the most typical individual vehicle 

operation scenarios at the airport [21], which consists of a towing tractor, an aircraft, an airport control, 

and V2X communications. The airport control firstly receives the tractor and aircraft’s data via the 

V2X network; secondly, performs online control policy optimisation in the server computer; and finally, 

sends the optimised control policy back to the vehicle controller via the V2X network. This network 

with advanced intelligent algorithms enables online control policy optimisation for energy saving, 

which was previously limited by the performance of the local vehicle controller. 

The hybrid aircraft towing tractor has a plug-in series hybrid configuration as shown in Fig.2, which 

uses electricity from a battery package (consisting of 8200 lithium-ion cells) as the primary power to 

drive a 245kW traction motor. An 86.2kW engine-generator is equipped as an alternative power unit 

to provide extra power for vehicle operation and charging the battery package. The energy 

management system (EMS) determines the amount of power contributed by the engine-generator 

and the battery package to satisfy the power demand and maintain the state of charge (SoC) of the 

battery package.  

 

Fig. 2. System configuration and power-flow of the electrified off-highway vehicle 
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2.2 The Model-free predictive energy management system 

A model-free predictive energy management system is developed for the vehicle based on a layered 

and distributed control framework, as illustrated in Fig. 3. The system consists of two main layers: 

the control layer (located in the on-board vehicle controller) and the learning layer (located in the 

server computer). The two distributed control layers are connected via the V2X network. The control 

layer applies the EMS control policy to allocate the power-flow based on the driver’s inputs and 

vehicle state (i.e. fuel consumption and battery’s SoC). The learning layer executes the 

reinforcement learning algorithm and regularly updates the control policy, so that the control policy 

of the EMS can be adapted to real-world driving through multi-objective optimization over the 

predictive horizon. 

 

Fig. 3. Layered control framework for model-free predictive energy management 

The interaction between the energy management system (EMS) and its external environment 

(including the driver and the vehicle system) can be described as a Markov decision process (MDP) 

[30,33,38]. The main uncertainty of this MDP is caused by drivers in real-world driving conditions, 

which directly affects the power demand of the hybrid system. The four main components (i.e. state, 

action, reward, and control policy) within the MDP of this research are defined as follows:  

a) State 

The state variables used in this study are defined as: 

𝑠(𝑡) = {𝑃̂𝑑𝑒𝑚(𝑡) 𝑆𝑜𝐶̂(𝑡)}, (1) 

where, 𝑃̂𝑑𝑒𝑚(𝑡) ∈ 𝓟 is the modified driver’s power demand value based on actual measurement from 

the energy management controller; 𝓟 = {0, 0.5, 1, ⋯ , 252.5, 253}; 𝑆𝑜𝐶̂ ∈ 𝓢 is the battery’s modified 

SoC value based on battery data measured by the controller; and 𝓢 = {20, 20.1, 20.2, ⋯ , 79.9, 80}. A 

nearest neighbourhood search method is used to project the measured data {𝑃𝑑𝑒𝑚(𝑡) 𝑆𝑜𝐶(𝑡)} to the 

respective data in the state space {𝑃̂𝑑𝑒𝑚(𝑡) 𝑆𝑜𝐶̂(𝑡)}. The SoC value is estimated based on its real-time 

current, battery capacity and initial SoC, the nearest neighbourhood search method works as a filter 

to isolate the noise and error of SoC value. 
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b) Action 

The action is the control signal, 𝑢𝑎𝑝𝑢(𝑡), of the engine-generator: 

𝑎(𝑡) = 𝑢𝑎𝑝𝑢(𝑡), (2) 

where, 𝑢𝑎𝑝𝑢(𝑡) ∈ 𝓤 ; 𝓤 = {0, 0.05, 0.1, ⋯ , 0.95, 1} . Once the control signal, 𝑢𝑎𝑝𝑢(𝑡) , of the engine-

generator is obtained, the power requirement for the battery package can be obtained by: 

𝑢𝑏𝑎𝑡𝑡(𝑡) =
𝑃𝑟𝑒𝑞−𝑢𝑎𝑝𝑢(𝑡)∙𝑃𝑎𝑝𝑢_𝑚𝑎𝑥

𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥
, (3) 

where, 𝑃𝑏𝑎𝑡𝑡 is the power supplied by the battery package; 𝑃𝑎𝑝𝑢 is the power supplied by the engine 

generator; 𝑃𝑎𝑝𝑢_𝑚𝑎𝑥 is the maximum power that can be provided by the engine generator; and 𝑃𝑟𝑒𝑞 

is the required power for driving the traction motor and powering the on-boarded auxiliary devices. 

c) Reward 

To minimise the vehicle power loss and maintain the battery SoC level simultaneously, the reward is 

defined as a function of the overall vehicle power loss 𝑃𝑙𝑜𝑠𝑠 and the remaining battery SoC, in which 

the power loss 𝑃𝑙𝑜𝑠𝑠 and absolute SoC value lower than the reference SoC and |𝑆𝑜𝐶𝑟𝑒𝑓 − 𝑆𝑜𝐶(𝑡)| 

are added as penalties to the initial constant reward 𝑟𝑖𝑛𝑖 so that the learning system can remember 

which actions have been attempted and the rewards after these actions taken: 

𝑟(𝑡) = {
𝑟𝑖𝑛𝑖 − 𝑃𝑙𝑜𝑠𝑠(𝑡) 𝑆𝑜𝐶(𝑡) ≥ 𝑆𝑜𝐶𝑟𝑒𝑓 ,

𝑟𝑖𝑛𝑖 − 𝑃𝑙𝑜𝑠𝑠(𝑡) − 𝛼|𝑆𝑜𝐶𝑟𝑒𝑓 − 𝑆𝑜𝐶(𝑡)| 𝑆𝑜𝐶(𝑡) < 𝑆𝑜𝐶𝑟𝑒𝑓 ,
 (4) 

where 𝑆𝑜𝐶𝑟𝑒𝑓 is the reference battery SoC value that is chosen to maintain the battery SoC within 

an acceptable range (for the best performance and health of the battery, 𝑆𝑜𝐶𝑟𝑒𝑓 should be 30%); 𝛼 

is a scale factor used to balance the consideration of SoC level and power efficiency; and 𝑃𝑙𝑜𝑠𝑠(𝑡) =

𝐿𝑜𝑠𝑠𝑒𝑛𝑔(𝑡) + 𝐿𝑜𝑠𝑠𝑏𝑎𝑡𝑡(𝑡) is the total power loss of engine and battery, which comprises the power 

loss of the engine, 𝐿𝑜𝑠𝑠𝑒𝑛𝑔(𝑡), and power loss of the battery, 𝐿𝑜𝑠𝑠𝑏𝑎𝑡𝑡(𝑡). The latter two losses can 

be calculated by measuring the fuel consumption rate, 𝑚𝑓̇ , engine torque, 𝑇𝑒𝑛𝑔, engine speed, 𝑛𝑒𝑛𝑔, 

and battery current, 𝐼𝑏𝑎𝑡𝑡, then using: 

{
𝐿𝑜𝑠𝑠𝑒𝑛𝑔(𝑡) = 𝑚𝑓(𝑡)̇ ∙ 𝐻𝑓 −

𝑇𝑒𝑛𝑔(𝑡)∙𝑛𝑒𝑛𝑔(𝑡)

9550
,

𝐿𝑜𝑠𝑠𝑏𝑎𝑡𝑡(𝑡) = 𝑅𝑙𝑜𝑠𝑠(𝑆𝑜𝐶) ∙ 𝐼𝑏𝑎𝑡𝑡(𝑡)2,

 (5) 

where, 𝐻𝑓 is the heat value of the fuel (for diesel, 𝐻𝑓 = 44 × 106J/kg) and 𝑅𝑙𝑜𝑠𝑠 is the equivalent 

internal resistance of the battery, which is a function of battery SoC. 

d) Control policy 

A control policy Π is used to determine the action 𝒂(𝑡) based on the current observation of vehicle 

state, 𝒔(𝑡), which is a function of the state variables and Q values at the current state: 
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𝑎(𝑡) = Π(𝑠(𝑡) 𝑄(∙)) (6) 

More specificity, a policy used for model-free control can be expressed as: 

Π: 𝒂(𝑡) = arg max 𝑄(𝑠(𝑡), : ) (7) 

where, 𝑎(𝑡)  is the action value; 𝑠(𝑡)  is the current state; Π  is the control policy; and 𝑄(∙)  is a 

database of the merit function values of all the possible states and actions in the MDP. The control 

policy is optimised by reinforcement learning through continuously updating the database of the merit 

function values 𝑄(∙). 

3. Multi-step Reinforcement Learning 

This paper proposes multi-step learning to optimise the control policy in equation (5), which will have 

the capability of predictive optimal energy management without any extra training of Markov chain 

models. Differently from one-step reinforcement learning, multi-step learning uses the history sets 

(data collected from (𝑡 − 𝑝)𝑡ℎ  time interval to the 𝑡𝑡ℎ  time interval) of states  𝑺ℎ(𝑡 − 𝑝: 𝑡) , 

actions 𝑨ℎ(𝑡 − 𝑝: 𝑡) , and rewards 𝑹ℎ(𝑡 − 𝑝: 𝑡)  to update the database of the merit function values 

Q(𝑠(𝑛), 𝑎(𝑛)) at each time step t as follows: 

𝑄(𝑠(𝑛), 𝑎(𝑛)) ← 𝛷(𝑸, 𝑺ℎ(𝑡 − 𝑝: 𝑡), 𝑨ℎ(𝑡 − 𝑝: 𝑡), 𝑹ℎ(𝑡 − 𝑝: 𝑡)] 𝑛 ∈ [𝑡 − 𝑝, 𝑡], (8) 

where, 𝑠(𝑛) ∈ 𝑺ℎ(𝑡 − 𝑝: 𝑡) and 𝑎(𝑛) ∈ 𝑨ℎ(𝑡 − 𝑝: 𝑡) are state and action values at the 𝑛-th time step 

(𝑛 = 𝑡 − 𝑝, 𝑡 − 𝑝 + 1, … 𝑡) of the history set collected at the 𝑡-th time interval; 𝑺ℎ(𝑡 − 𝑝: 𝑡); 𝑨ℎ(𝑡 − 𝑝: 𝑡), 

and 𝑹ℎ(𝑡 − 𝑝: 𝑡) are the history set of state, action and reward collected at the 𝑡-th time interval; 𝑸 

is the Q-table before updating; and the Q-value is used to estimate the expected system performance. 

Here 𝛷 is the n-step learning strategy, which aims to determine the optimal control policy.  

Three multi-step learning strategies are investigated in this paper. The first learning strategy, named 

‘Sum-to-Terminal’, is rooted in one-step Q-learning. The ‘Sum-to-Terminal’ strategy uses the sum of 

the rewards in the predictive horizon, the Q-value in the first step, and the terminal step to optimise 

the control policy. The second one (‘Average-to-Neighbour’) and the third one (‘Recurrent-to-

Terminal’) are proposed to connect the Q-value in each step to the others within the predictive 

horizon using the rewards. The Average-to-Neighbour strategy updates the control policy using the 

average reward value and the Q-values of each of the neighbouring steps. The ‘Recurrent-to-

terminal’ strategy builds a network of the Q-values of the current step with other steps within the 

predictive horizon. The three learning strategies will be described in detail in the following sections. 

To clearly illustrate how the n-step learning strategies work, some concepts are defined as follows: 

Definition 1. ‘Data-set package’ with notation 𝑫(𝑡)  defines the history sets of state, action and 

reward used for n-step learning at the t-th time interval as 𝑫(𝑡) = {𝑺ℎ(𝑡 − 𝑝: 𝑡), 𝑨ℎ(𝑡 − 𝑝: 𝑡), 𝑹ℎ(𝑡 −

𝑝: 𝑡)}. 



Manuscript submitted to ‘Applied Energy’ 

9 

 

Definition 2. ‘Elements’ with notation 𝑑(𝑖)  defines the components within the data set package, 

where, 𝑖 ∈ [1, 𝑝] is the index of elements which will be defined in Definition 3. Each element includes 

the value of state, action and reward within the data-set package as 𝑑(𝑖) = {𝑠(𝑖), 𝑎(𝑖), 𝑟(𝑖)}. 

Definition 3. ‘Order Index’ with notation 𝑖 defines the order of each element in the data-set package 

using for reinforcement learning at each time interval. For example, the order index of element 𝑑 =

{𝑠(𝑡 − 𝑝 + 2), 𝑎(𝑡 − 𝑝 + 2), 𝑟(𝑡 − 𝑝 + 2)}  in the data-set package 𝑫(𝑡)  is 3, but in data-set 

package 𝑫(𝑡 + 1), its order index will be 2. 

Definition 4. ‘Table-Lookup Index’ with notation τ defines the position of each state and action in the 

set of state and action, which is used to find the respective Q value of each state and action from 

the Q table. For example, as the action set is A = {0, 0.05,0.10,0.15 … .0.95,1}, the table lookup index 

of action variable 𝑎 = 0.05  is  τ(𝑎 = 0.05) = 2 ; a similar principle can be applied to the state 

variables.  

3.1 Sum-to-Terminal Strategy (S2T) 

The first n-step learning strategy named ‘Sum-to-Terminal (S2T)’ is a straightforward strategy as 

shown in Fig. 4.  

 

Fig. 4. Sum-to-Terminal (S2T) strategy for multi-step reinforcement learning 

With the data set 𝑫(𝑡) packaged at each time step 𝑡, the S2T strategy connects the Q value of each 

elements 𝑄(𝑠(𝑖), 𝑎(𝑖))  to its terminal Q value 𝑄(𝑠(𝑝), 𝑎(𝑝))  directly with the sum of the reward 

during the time interval ∑ 𝑟(𝑗)
𝑝
𝑗=𝑖 : 

𝑄(𝑠(𝑖), 𝑎(𝑖)) ← 𝑄(𝑠(𝑖), 𝑎(𝑖)) +  𝛼[∑ 𝑟(𝑗)
𝑝
𝑗=𝑖 + 𝑚𝑎𝑥𝑄(𝑠(𝑝), : ) − 𝑄(𝑠(𝑖), 𝑎(𝑖))], (9) 

where, 𝑠(𝑖) ∈ 𝑺(𝑡), 𝑎(𝑖) ∈ 𝑨(𝑡), 𝑟(𝑖) ∈ 𝑹(𝑡),  are the state, action and reward with order index 𝑖 

respectively; 𝑖 = 1,2 … 𝑝 is the order index of each element within the data-set package; 𝛼 is the 

learning rate; 𝑚𝑎𝑥𝑄(𝑠(𝑝), : ) is the estimated terminal Q value obtained by look-up from the old Q 

table. The pseudo-code for the S2T strategy is provided in 0. 
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Fig. 5. Pseudo-code for n-step reinforcement learning with S2T strategy 

3.2 Average-to-Neighbour Strategy (A2N) 

The ‘Average-to-Neighbour (A2N)’, as shown in Fig. 6, builds the relationship of each step by 

updating the Q values of neighbouring steps (i.e.  𝑄(𝑠(𝑖), 𝑎(𝑖))  and  𝑄(𝑠(𝑖 + 1), 𝑎(𝑖 + 1)) ) with the 

average reward of the predictive horizon 
1

𝑝
∑ 𝑟(𝑗)𝑝

𝑗=1 .  

 

Fig. 6. Average-to-Neighbor (A2N) strategy for multi-step reinforcement learning 

The mathematical expression of A2N strategy for Q value optimisation is: 

𝑄(𝑠(𝑖), 𝑎(𝑖)) ← 𝑄(𝑠(𝑖), 𝑎(𝑖)) +  𝛼[
∑ 𝑟(𝑗)

𝑝
𝑗=1

𝑝
+ 𝑚𝑎𝑥𝑄(𝑠(𝑖 + 1), : ) − 𝑄(𝑠(𝑖), 𝑎(𝑖))], (10) 

where, 𝑖 = 1,2 … 𝑝 is the order index of each element within the data-set package. The pseudo-

code for the A2N strategy is shown in Fig. 7. 
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Fig. 7. Pseudo-code for n-step reinforcement learning with A2N strategy 

3.3 Recurrent-to-Terminal Strategy (R2T) 

The Recurrent-to-Terminal (R2T) strategy as shown in Fig. 8 is developed based on the Q(𝜆 ) 

learning algorithm [39].  

 

Fig. 8. Recurrent-to-Terminal (R2T) strategy for multi-step reinforcement learning 

The R2T strategy updates the Q-value recurrently step-by-step from the current step to the terminal 

step. A networked value function ∑ 𝑉(𝑗)𝑝
𝑗=𝑖  is introduced to update the Q value of each element 

𝑄(𝑠(𝑖), 𝑎(𝑖)) using  

𝑄(𝑠(𝑖), 𝑎(𝑖)) ← 𝑄(𝑠(𝑖), 𝑎(𝑖)) +  𝛼 ∙ ∑ 𝑉(𝑗)𝑝
𝑗=𝑖 , (11) 

where, 𝑖 = 1,2 … 𝑝 the order index of each element within the data-set package, 𝑉(𝑗) is the value 

function for R2T for the element with order index 𝑗, which is defined: 

𝑉(𝑗) = 𝜆𝑗𝑟(𝑗) + 𝜆𝑗+1maxQ(𝑠(𝑗 + 1)) − 𝑄(𝑠(𝑗), 𝑎(𝑗)), (12) 



Manuscript submitted to ‘Applied Energy’ 

12 

 

where, 𝜆 is the discount factor, 𝑟(𝑗) is the reward at (𝑗)-th time interval. The pseudo-code for the 

R2T strategy is given in Fig. 9. 

 

Fig. 9. Pseudo-code for multi-step reinforcement learning with R2T strategy 

4. Testing and Validation Set-up 

The performance of multi-step reinforcement learning with various learning strategies is first 

investigated by tracking the evolution of vehicle’s energy efficiency with the driving cycles defined 

by the tractor original equipment manufacturer (OEM). The vehicle’s energy efficiency is the energy 

used for vehicle operation (e.g. driving and aircraft towing) divided by the equivalent energy in the 

fuel used from the tank and electricity supplied from the grid. The predictive capability is also 

investigated by evaluating the system performance with different predictive horizons. Next, the 

feasibility for real-time implementation is investigated by monitoring the computational time and 

performance for each learning algorithm. The model-free method for energy management of the off-

highway vehicle real-time is validated in with two rounds of hardware-in-the-loop tests comprising 11 

different scenarios. A comparison study with the model-based method is carried out to validate the 

advantages of the proposed method.  

4.1 Driving Cycles for Machine Learning and Validation 

Four driving cycles defined by the tractor OEM [21,37] were used in the present work and the power 

demand profiles of each driving cycle are shown in Fig. 10. The vehicle model following the driving 

cycle 1 (4252s) for machine learning was first run repetitively for 24 hours. The other three driving 

cycles were used to imitate the power demand diversity, and they were used to evaluate the model-

free predictive energy management strategy. Driving cycles 2-4 represent three typical power 

demands of the aircraft towing tractors, which use the data collected from three vehicles working in 

different areas of the airport. Driving cycle 2 is built with a vehicle working with both large aircraft 

and small aircraft. Driving cycle 3 is built with a vehicle mainly working with large aircraft and driving 

cycle 4 uses the data of a vehicle mainly working with small aircraft. Further details in terms of the 

driving cycles can be found in the authors’ previous research [27].  
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Fig. 10. Power demand of each driving cycle 

4.2 Hardware-in-the-loop Testing Facilities 

The hardware-in-the-loop (HiL) test is used for testing the real-time performances of the energy 

management system. This will examine whether the energy management system can be used in 

real application for controlling the energy-flow of a hybrid electric powertrain. An Industrial standard 

testing system provided by the ETAS Group [40] will be used for the HiL test in this paper. The 

configuration of the HIL testing system is shown in Fig. 11. The layered control system for model-

free predictive energy management runs on an ETAS ES910 prototype controller. The ES910 is 

configured with 1.5GHz CPU, 4GB RAM and a 1Gbps Ethernet port. The control algorithms are 

programmed in host PC-1 and flashed to ES910 by ETAS INTECRIO. The DESK- LABCAR performs 

as the hybrid aircraft towing tractor and communicates with the energy management controller 

(ES910) via CAN bus. The vehicle is modelled and compiled on host PC-2 and downloaded to DESK-

LABCAR by ETAS Experiment Environment (EE) via Ethernet protocol. The performance of vehicle 

is monitored by ETAS EE in host PC-2. The real-time models for the HIL test are developed using 

Simulink as in the authors’ previous work [21,37], and the models are verified by the test data from 

a prototype vehicle provided by the industrial partners [41]. 
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Fig. 11. Facilities for hardware-in-the-loop test 

5. Results and Discussion 

5.1 Learning Performance 

According the authors’ recent research on energy management of the hybrid tractor using model-

based predictive control, the maximum predictive length of model-based method using ES910 is 35 

steps [21]. Therefore, the performance evaluation starts from the model-free predictive energy 

management with 35-step. The system efficiency of powertrain energy conversion is calculated for 

every 4252s with the measured data of equivalent power loss for fuel consumption, battery power 

loss, and the power used by the traction motor, which is used to evaluate the learning performance.  

The process of ‘learning from scratch’ (initial Q table is a zero-set) with all the 3 proposed learning 

strategies is monitored. The improvement of vehicle’s energy efficiency during the learning process 

is shown in Fig. 12., which can be roughly classified into two stages, i.e., a rapid improving stage (at 

the beginning) and a slow improving stage (after sufficient experience for Q-table filling). The “ε −

greedy” [35] is used to generate an exponential reducing function for controlling the probability for 

self-exploration, which leads to a theoretical logarithmic improvement in system efficiency.  

The model-free controller initially creates a control policy by itself and continuously updates the policy 

using feedback from the vehicle system. There are no human inputs for control policy modification 

nor is there any control parameter tuning during the whole learning processes. The purpose of the 

model-free predictive energy management system is to realise continuous optimisation of the energy 

management control policy without human intervention. This is evidenced by the fact the vehicle 

energy efficiency continuously increases with the time of learning, Fig. 12.   
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Fig. 12. Learning performance of different learning strategies (35-step) 

The discrete sampling of the system efficiency therefore generates a ‘knee’ point at about 5 hours 

for 35 step Q-learning. Among the three proposed learning strategies, the Recurrent-to-Terminal 

(R2T) strategy is the most efficient strategy for Model-free predictive energy management with the 

prediction horizon of 35 steps. 

The global optimum solution for the energy management controller leads to the minimum total fuel 

consumption with an acceptable SoC value at the end of the trip. For predictive energy management 

of a HEV, a longer predictive horizon means the control will consider the vehicle performance with 

the information for a longer trip so it can make the system performance closer to its global optima 

for the trip [10]. The performance of the model-free predictive energy management was investigated 

by tracking the improvement of vehicle’s energy efficiency with increasing prediction length and the 

results are presented in Fig. 13.  

   

(a) (b) (c) 

Fig. 13. Learning performance of different prediction length: (a)-S2T; (b)-A2N; (c)-R2T 

The system efficiencies after 24 hours of reinforcement learning using Driving Cycle 1 with 4 different 

prediction step lengths are listed in Table.1. It shows that each of the 3 proposed learning strategies 

have the capability of improving the system performance by increasing the prediction length. More 

improvement on efficiency can be achieved with increased prediction horizon length when the 

prediction length is relatively low, for example, 18.67% energy efficiency improvement can be 

achieved when changing the prediction length from 35 steps to 55 steps using S2T strategy. When 

the prediction horizon is relatively high, the increasing of prediction length will no longer significantly 

improve the energy efficiency. The results also suggest that the R2T strategy outperforms the other 

strategies by achieving higher system efficiency at the end of the learning process, for all the selected 

prediction lengths. 
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Table.1. System performance of the proposed learning strategy with different prediction length 

 Prediction step length 

 35 55 85 125 

R2T 44.66% 53.00% 55.47% 58.38% 

A2N 44.12% 52.53% 55.46% 58.14% 

S2T 44.55% 52.70% 54.99% 58.08% 

5.2 Computing Effort 

The computational cost is a natural concern for real-time implementation and the prediction length 

is the most significant factor that affects the computational cost [19]. The computational cost of the 

proposed method with respect to prediction step size is investigated here using the ES910 prototype 

controller. The average computational cost per time step including the data communication is shown 

in Fig. 14. It indicates that while the augmented prediction size leads to increased computational 

load, prediction step size being less than 65 steps can make the controller with A2N and S2T strategy 

implementable in real-time while 60 steps can make the model-free energy management with R2T 

strategy implementable in real-time, as the computing time is less than the sampling time of 1 second. 

The average computing time for 65-step model-free method with A2N and S2T is 0.98s and the 

average computing time for 60-step model-free method with R2T is 0.97s. According to the 

preliminary research by the authors, the average computing time for 35-step model-based method 

is 0.92s [21]. Comparing with the model-based method which has a maximum prediction horizon 

length of 35 steps for real-time control using the ES910 [21], the proposed method can help to 

increase prediction horizon length by at least 71%. 

 
Fig. 14. Averange computation time per step for different learning strategy 

5.3 Capability for Real Time Control 

The model-free predictive energy management with R2T learning strategy outperforms other 

proposed strategies by achieving the best vehicle system efficiency with the same prediction length 

(as discussed in Section 5.1). The advantage of the R2T strategy is that it includes more iteration 

loops (as shown in Fig. 9) to build up a more complex learning system for storing more ‘learning 

experience’, and this additional complexity in contrast costs more in computational resources and 

shortens its maximum predictive step length in real-time.  
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The full performance in real-time of different learning strategies was investigated by monitoring the 

learning performance of each strategy with its maximal step length in real-time (e.g. 60 steps for R2T, 

65 steps for A2N and S2T) and the results are shown Fig. 15. In real-time, although the maximum 

prediction step size of R2T strategy is 5 steps shorter than other proposed strategies, it still 

outperforms other proposed strategies by achieving a better system efficiency at the end of the 

learning process and tends to continuously improve when it keeps learning from the real-world 

interaction. 

 

Fig. 15. The full performance in real-time of different learning strategy 

5.4 Performance comparing with the Model-based Predictive Method 

The real-time performance of the model-free method with R2T learning strategy was compared with 

the model-based method via two rounds of hardware-in-the-loop (HiL) testing. In the first round HiL 

test, both methods control the vehicle’s energy flow with a prediction horizon length of 35 steps. The 

real-time vehicle performance for different battery initial SoC values of 80% and 20% under driving 

cycle 1 are shown in Fig. 16 (a) and (b) respectively.  

  

(a) (b) 

Fig. 16. Real-time performance of the vehicle: (a) Initial SoC=80%; (b) Initial SoC=20% 
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The first round HiL testing results for the model-free method is shown in blue solid lines and the 

results of model-based method is presented in magenta dashed lines. The time history of energy 

loss, battery SoC, engine command, battery cell current/voltage are compared. The proposed control 

method can maintain the HEV’s components working within the proper range in real-time. The 

model-free predictive energy management method outperforms model-based method in terms of 

both energy consumption and battery SoC maintenance.  

The working condition varies between different scenarios; therefore, a test of robustness and 

repeatability is needed. The second round HiL tests were performed to evaluate the energy 

management methods in three driving cycles with different initial battery SoC values (80%, 50% and 

20%). The full performance in real-time of the model-free method (with prediction length of 60 steps) 

was investigated and compared with model-based method (with prediction length of 35 steps [21]) 

in the second round test. The results in Table.2 indicate that the model-free method with its full 

performance capability leads to a significant improvement on energy saving. The energy saving rate 

is calculated by: 

∆=
𝐸𝑚𝑏−𝐸𝑚𝑓

𝐸𝑚𝑏
 (13) 

where, ∆  is the energy saving rate; 𝐸𝑚𝑏  is the total energy used for vehicle operation with the 

model-based method; 𝐸𝑚𝑓 is the total energy used for vehicle operation with the model-free method. 

Table.2. Performance of model-free method and model-based method (full performance) 

Cycle Name Initial SoC Method End SoC Energy Usage (MJ) Saving rate 

Driving Cycle 2 

80% Model-based 29.74% 844.08 - 

80% Model-free 28.68% 778.25 7.79% 

50% Model-based 29.69% 1016.96 - 

50% Model-free 28.66% 922.41 9.29% 

20% Model-based 29.73% 1177.86 - 

20% Model-free 28.68% 1071.34 9.04% 

Driving Cycle 3 

80% Model-based 29.74% 293.08 - 

80% Model-free 28.81% 254.80 13.06% 

50% Model-based 29.74% 469.34 - 

50% Model-free 28.81% 401.78 14.39% 

20% Model-based 29.74% 628.75 - 

20% Model-free 28.81% 552.29 12.16% 

Driving Cycle 4 

80% Model-based 29.74% 234.9 - 

80% Model-free 28.81% 208.34 11.31% 

50% Model-based 29.68% 394.2 - 

50% Model-free 28.81% 354.75 10.08% 

20% Model-based 29.68% 555.34 - 

20% Model-free 28.81% 505.15 9.04% 
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Comparing with model-based method, the model-free method can save at least 7.79% energy over 

the Driving cycle 2 when SoC is 20%; The highest energy saving range is obtained over the Real-

world cycle-3 with the initial battery SoC of 50%, which can save 14.39% energy. The average energy 

saving is 10.68% for the 9 pairs of experiments.  

From the comparison study with two rounds of HiL testing, the model-free method outperforms the 

model-based method in all the selected driving cycles, including the driving cycle for policy learning 

(driving cycle 1) and driving cycles for validation (driving cycle 2-4). There are three main reasons 

why the model-free method will perform better in real-time energy management control than the 

model-based method: 1) It is impossible to have a ‘perfect model’ to predict the performance of 

vehicles in all real world driving conditions; 2) the models used in control are fixed for the life of the 

vehicle without the ability to adapt to the changes in the vehicle itself e.g., aging; doing both online 

modelling and online model solving with model-based method is also very costly in terms of 

computational resource; 3) the model-free method has the capability of continuous control policy 

optimisation using the real-time feedback directly. This indicates that the proposed model-free 

predictive control method is a promising technology in the real application of hybrid vehicle energy 

management.  

6. Conclusion 

A new model-free predictive energy management method for a hybrid vehicle has been studied and 

compared with the conventional model-based energy management method. Three different multi-

step reinforcement learning strategies for the model-free predictive control were proposed and 

investigated for the first time. The learning performance and real-time implementation feasibility of 

the model-free method were evaluated in a hardware-in-the-loop testing system. The research has 

demonstrated the use of Artificial Intelligence (AI) and Internet of Things (IoT) for energy system 

optimisation in the transportation sector. The conclusions drawn from the investigation are as follows: 

1. The Model-free predictive energy management method can achieve higher vehicle’s energy 

efficiency after a certain time interval of vehicle operation through the proposed learning 

strategies. At least 29% of vehicle’s energy efficiency improvement can be realised after 5 hours 

real-time learning. 

2. The proposed learning strategies can optimise the control policy in real-time with a maximum 

prediction length of 65 steps, and the optimal control policy can be obtained and implemented in 

the ES910 controller within 1 second; The maximum prediction horizon for real time control can 

be increased by at least 71% compared with the model-based method. 

3. The proposed recurrent-to-terminal learning strategy is the most effective multi-step 

reinforcement learning strategy for model-free predictive energy management in the case study, 

and it outperforms in real-time the other proposed strategies with the same prediction step length. 

4. The proposed model-free predictive energy management method is robust for energy saving and 

it outperforms the conventional model-based method through energy savings of at least 7.8%. 

An average 10.68% energy saving was achieved in the 9 pairs of hardware-in-the-loop tests. 
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