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Abstract

The electricity consumption forecasting is a challenging task, because the predictive accuracy is easily

affected by multiple external factors, such as society, economics, environment, as well as the renewable en-

ergy, including hydro power, wind power and solar power. Particularly, in the smart grid with large amount

of data, how to extract valuable information of those external factors timely is the key to the success of

electricity consumption forecasting. A method of probability density forecasting based on Least Absolute

Shrinkage and Selection Operator-Quantile Regression Neural Network (LASSO-QRNN) is proposed in this

paper. First, important features are extracted from external factors affecting the electricity consumption

forecasting by LASSO regression. Then, the LASSO-QRNN model is constructed to predict annual elec-

tricity consumption. The results of electricity consumption forecasting under different quantiles in the next

several years are evaluated. Besides, we introduce kernel density estimation into our LASSO-QRNN model,

which can give a probability distribution instead of a single-valued prediction. The prediction accuracy is

evaluated through the empirical analyses from the Guangdong province dataset in China and the California

dataset in the United States. The simulation results demonstrate that the proposed method provides better

performance for electricity consumption forecasting, in comparison with existing quantile regression neural

network (QRNN), back-propagation of errors neural network (BP), radial basis function neural network

(RBF) methods, quantile regression (QR) and nonlinear quantile regression (NLQR). LASSO-QRNN can

not only better learn the high-dimensional data in electricity consumption forecasting, but also provide more

precise results.

Keywords: LASSO Quantile Regression Neural Network, probability density forecasting, electricity

consumption forecasting, uncertainty analysis, high dimensional data
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1. Introduction

Electricity consumption around the world is rising rapidly, due to the ever-increasing population, value

pursuit for better living standards and attention to large-scale industrialization, which leads to the positive

economic growth rates [1]. Medium and long term electricity consumption forecasting is essential to energy

investment planning [2]. For example, in response to the excessive consumption of electricity, huge quantities

of fossil fuel were used to generate electricity at the end of the 20th century, which caused the depletion of

fossil fuel resources. Since the beginning of the 21st century, renewable energy sources (such as hydro, solar,

wind) have been increasingly utilized to generate electricity. Compared with traditional fossil fuels, the wind,

solar and hydro power generations have the advantages of large development potential, non-pollution and

recyclability. They established a better and cleaner energy structure. However, on account of the uncertainty

and complementarity of hydro, wind and solar power, electricity consumption forecasting becomes utterly

important, but challenging. An accurate forecasting can promote the effective use of renewable energy.

Moreover, precise electricity consumption forecasting can guide government strategies for future energy

usage and development.

Most commonly used methods for electricity consumption forecasting include regression models [3], time

series models [4], the fuzzy theory [5], neural networks [6], Bayesian networks [7], hybrid method [8] and so

on. Regression analysis and time series models are the most acclaimed modeling techniques in electricity

consumption forecasting [9]. With the rapid development of modern artificial intelligence methods, artificial

neural network and population evolutionary algorithm are introduced into electricity forecasting [10]. Gra-

diti G et al. [11] demonstrated that statistical machine learning approaches provided more accurate power

predictions. In terms of prediction output, existing methods of electricity consumption forecasting can be

divided into deterministic point prediction and probabilistic forecasting based on uncertainty analysis [12].

An exact point prediction cannot reflect the fluctuation of electricity consumption. In reality, real electricity

consumption and the load growth are influenced by various factors, including economic development, in-

dustrial structure, income level of residents, climate, geographical environment, national policy (electricity

price) etc. All of these factors interact and influence each other. Furthermore, the integration of informati-

zation and industrialization in power industry promotes the rapid growth of power data, resulting in a large

number of data with extensive sources, diverse features, huge volume and fast growth. It makes electricity

consumption forecasting increasingly complicated [13].

To deal with the uncertainty in electricity consumption, a new Kullback-Liebler (K-L) divergence based

similarity measure strategy was designed by Shao et al. [14] to forecast the electricity demand in China

considering the significant impact factors of the electricity consumption, showing better accuracy. Amina
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et al. [15] implemented a novel fuzzy wavelet neural network model for electricity consumption forecasting

in the power system of the Greek Island of Crete, which provided significantly better results. In [16], a

small-sample adaptive hybrid model (AHM) based on trend extrapolation method was proposed to forecast

electricity consumption in China from 1991 to 2014, which showed robustness to stochastic changes and

obtained more precise forecasting results. Al-Ghandoor et al. [17] presented an empirical model based on

multivariate linear regression of time series for the Jordanian industrial sector, which identified the main

influential factors of electricity consumption. Van der Meer et.al reviewed the probabilistic forecasting of

photovoltaic power production and electricity consumption [18] and proposed a probabilistic forecasting

method using Gaussian processes [19]. Vincenzo Bianco et al. [20] developed a long-term forecasting model

considering the influence of economic and demographic variables on the annual electricity consumption in

Italy from 1970 to 2007. It utilized the linear regression to build different models to reduce the uncertainty

of forecasting, and showed consistency with the official projections.

As a kind of probabilistic forecasting method [21], probability density forecasting method not only can

get the future electricity consumption variation interval under the corresponding confidence interval, but

also depict the full probability distributions of the future electricity consumption. It can provide more

insights into the distribution of electricity consumption, which can help power system decision-makers to

make effective decisions for the power system to avoid the large error and economic losses. However, owing to

the complexity and uncertainty of external influence factors, existing probability density forecasting methods

are difficult to characterize the uncertainty of electricity consumption [22].

In order to achieve accurate prediction of electricity consumption in large data environments, extracting

the feature from the external factors has become a key problem. The dimension of explanatory variables will

increase remarkably, if all influential factors are considered without selection. Identifying the most related

factors for training the model can improve predictive performance and reduce computational cost [23].

Traditional variable selection methods, such as forward stepwise, backward stepwise, ridge regression, may

suffer from the co-linearity problem, if there are too many tedious independent variables in high-dimensional

situations. So, it is likely to lose some important factors in the process of feature selection, greatly reducing

the explanatory power of the model. To tackle this issue, Tibshirani [24] proposed the Least Absolute

Shrinkage and Selection Operator (LASSO) algorithm, which was further extended by Hastie, Tibshirani

and Friedman [25]. By constructing a penalty function to acquire a refined model, the algorithm can compress

the coefficients of variables and make some regression coefficients set exactly to zero, so as to achieve the aim

of variable selection [26]. The LASSO is computationally practicable for high-dimensional data, reducing

amounts of computation greatly. For example, Florian et al. [27] proposed an accurate method of wind power

forecasting combined with LASSO, greatly reducing the computation time under the condition of the vast

parameter space. Huebner et al. [28] utilized LASSO regression for variable selection from different types

of factors influencing the energy consumption in residential buildings. Zhang et al. [29] built a classifier to
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recognize the patients at high risk of disease progression using the LASSO method from the high-dimensional

microarray data. In the paper, we first present a novel method, namely LASSO-quantile regression neural

network (LASSO-QRNN), to combine the LASSO regression with the quantile regression neural network

(QRNN).

QRNN model was put forward by Taylor [30], which is a nonparametric nonlinear method combing the

neural network with the quantile regression. Dadabada et al. [31] used the particle swarm algorithm to opti-

mize the QRNN for predicting the volatility of financial time series. Cannon [32] applied the QRNN method

to the precipitation downscaling task, considering the characteristics of prediction with mixed discrete-

continuous variables. Xu et al. [33] proposed a composite quantile regression neural network (CQRNN)

model to solve underlying nonlinear problems among variables. He et al. [34] utilized the quantile regression

neural network method to implement the probability density forecasting of wind power, which validly quan-

tified the indeterminacy of wind power generation. These empirical studies show the superiority of QRNN

method. Not only can it reveal the entire conditional distribution of response variables, but also deal with

complex nonlinear problems. In this paper, we will make use of the superior performance of QRNN for

electricity consumption forecasting. It can produce the detailed conditional quantiles of the consumption

values, and more accurate predictions.

Motivated by the existing research, we propose a new learning method to predict electricity consumption,

which combines LASSO and QRNN. The details will be given in the next section. LASSO can produce high-

quality features and reduce data dimensions effectively. QRNN is used to build the model, which estimates

the probability density function of the consumption value. To the best our knowledge, this is the first work

that uses and combines LASSO and QRNN for electricity consumption prediction. We verify our method on

two real-world datasets from Guangdong province in China and California in U.S. The probability density

forecasting results from the LASSO-QRNN method are compared to the results without considering the

external factors and the results without variable selection considering the external factors. Comparisons

with the state of the art further exhibit that the LASSO-QRNN method is able to improve the forecasting

accuracy of the electricity consumption significantly and minimize the uncertainty in electricity consumption.

The main contributions of this article include: 1) LASSO dimension reduction technique is applied

to reduce the uncertainty of annual electricity consumption associated with social and economic factors.

2) At different quantiles, LASSO-QRNN produces the probability distribution of electricity consumption

in details. More smooth probability density curves can be obtained, which provides more insights into

electricity consumption. 3) Two criteria are utilized to evaluate the performance of LASSO-QRNN, namely,

mean absolute percentage errors (MAPE) and relative mean squared error (RMSE). 4) The superiority of

the method is proven through the experiment on two real-world data sets, Guangdong province in China

and California in U.S. We study and compare three different settings: without considering external factors,

considering external factors without variable selection and considering external factors with LASSO-QRNN
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method. Our results indicate that the proposed LASSO-QRNN method provides informative prediction

than QRNN. Meanwhile, it achieves better accuracy than radial basis function neural network (RBF) [35],

back-propagation of errors neural network (BP) [36], quantile regression (QR) [37] and nonlinear quantile

regression (NLQR) [38]. In conclusion, the main novelty of the proposed method consists in effectively

reducing data dimensions and nondeterminacy in the forecasting process to improve prediction precision

considering the external and internal factors.

The subsequent sections are organized as follows. Section 2 introduces the correlation theories including

the mechanism of LASSO regression and the mathematical formulation of QRNN. Section 3 proposes the

LASSO-QRNN method for electricity consumption. The simulation studies are conducted to evaluate the

performance of LASSO-QRNN in Section 4. Finally, conclusions are given in Section 5.

2. Correlation theory

2.1. LASSO regression

With the advent of the big data era, how to extract useful information from data has been paid close

attention by scholar. One of the most effective approaches is statistical modeling technology. In order to

reduce model deviation at the beginning of modeling, researchers usually consider adding as many indepen-

dent variables as possible. However, in the actual modeling process, the subset of independent variables are

chosen in order to improve the prediction accuracy. It is called the variable selection. Variable selection is

an all-important step in the process of statistical modeling [39].

The LASSO method is a contraction estimation method, which can effectively deal with complex high-

dimensional data problems [40].

A multivariate linear regression model that satisfies the classical hypothesis is shown below.

Y = Xβ + ε (1)

where εi ∼ i.i.dN(0, σ2) means that each residual term is independent and has the same distribution with

normal distribution. The response variables satisfy the condition Y ∼ N(Xβ, σ2I) , in which I is the

identity matrix. By optimizing the objective function Eq(2), the ordinary least squares estimation result

obtained is β̂ols = (X ′X)−1X ′Y .

min
β

1

2
∥Y −Xβ∥22 (2)

Suppose the row and the column from the design matrix are respectively recorded as s and k. If s < k,

it indicates the sample size is less than the number of explanatory variables. At this time, rand(X ′X) ≤

rank(X) ≤ s where (X ′X) is a matrix with k row and k column. Hence, ordinary least squares estimation

fails because (X ′X) is nonexistent.
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Tibshirani [24] added L1 penalty to the end of the Eq(2) as follows.

min
β

1

2
∥Y −Xβ∥22 +

λ

2
∥β∥1 (3)

where λ is penalty parameter that is positive correlated with punishment intensity, ∥β∥1 is 1-norm satisfying

∥β∥1 = |β1|+ |β2|+ · · ·+ |βk|. In the formula, the first item is the loss function, which measures the fitting

effect of the regression model on the data. And the second item is the penalty function, which condenses

some nonsignificant coefficients into 0. By optimizing the Eq(3), the regression coefficient vector estimation

β̂lasso can be obtained, which is called LASSO regression. There is an equivalent constraint form that

corresponds to the Eq(3) as follows.

min
β

1

2
∥Y −Xβ∥22

s.t. ∥β∥1 ≤ C

(4)

where C is the constraint parameter corresponding to λ, which is negative correlation with punishment

intensity. The optimal solution can be obtained by Eq(3) and Eq(4). Because the penalty function is a

first order function with absolute value, it cannot be solved by the calculus method. It requires highly

complicated numerical calculation to solve the regression equation. Efron et al. [41] proposed least angle

regression (LARS) algorithm to solve the planning problem. By using LARS algorithm to solve LASSO

regression efficiently, LASSO algorithm is highly regarded by the academic community.

2.2. Quantile regression Neural network (QRNN)

Koenker and Bassett presented a method of quantile regression (QR). Compared with the traditional

mean regression, QR can more accurately describe the influence of the conditional distribution shape and the

variation range of the dependent variables for independent variables. However, this method only learns the

linear relationship between the response variables and the input variables under different quantiles, which

is not appropriate for the nonlinear relationship in most practical data [42]. Therefore, Taylor put forward

a nonlinear QR method based on neural networks. The expression is shown as follows.

Qy
i
(τ |xi) = f(xi, Ti(τ), Ui(τ)), i = 1, 2, ..., n (5)

f(xi, Ti(τ), Ui(τ)) = g2{
K∑

k=1

ui,k(τ)g1[

J∑
j=1

ti,j,k(τ)xi]} (6)

where τ ∈ (0, 1) is able to generate different quantiles, Ti = {ti,j,k}j=1,2,···,J;k=1,2,···,K represents the

estimated weight matrix between the input layer and the hidden layer, Ui = {ui,k}k=1,2,···,K represents the

connection weight vector between the hidden layer and the output layer. g1(·) is expressed as an activation
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function of the hidden layer using the hyperbolic tangent sigmoid function g1(v) =
1

1+e−v . g2(·) is the output

layer function, which is represented by a general linear model. f(xi, Ti(τ), Ui(τ)) is a nonlinear function

that is composition of weight vectors Ti and Ui.

The parameter estimation values of T (τ) = {T1, T2, · · ·, Tn}, U(τ) = {U1, U2, · · ·, Un} in the QRNN model

can be acquired by a programming problem as follows.

H(T (τ), U(τ)) = min

n∑
i=1

ρτ [(yi(τ)− f(xi, Ti(τ), Ui(τ))] + s1
∑
i,j,k

t2i,j,k + s2
∑
i,k

u2
i,k (7)

where n is the number of the sample, ρτ is loss function defined as following Eq(8). s1 and s2 are model

penalty parameters, which effectively prevent the model from overfitting to improve the accuracy of predic-

tion. The optimal estimate value of T (τ) and U(τ) can be obtained by optimizing Eq(7), which are recorded

as T̂ (τ) and Û(τ). With bringing the two values into Eq(5), the conditional quantiles of the response

variables are obtained.

ρτ (u) =

 τu

(τ − 1)u

, u ≥ 0

, u < 0
(8)

3. Electricity consumption probability density forecasting method based on LASSO-QRNN

3.1. LASSO-QRNN model

It is known that electricity consumption forecasting is disturbed by diverse external factors and these

factors influence the accuracy of forecasting greatly. How to identify significant factors that influence the

electricity consumption becomes important. Based on LASSO-QRNN method, the paper mainly explores

the influence of historical load and external factors on the electricity consumption forecasting.

The estimate value of the parameters can be obtained by solving the programming problem in Eq(7).

However, when the influence factors in the model are voluminous considering the influence of historical load

and external factors on electricity consumption forecasting, the variable selection method ought to be used

to improve the prediction accuracy. The LASSO regression method is used in this paper, which is based on

the original objective function of QRNN and adds the L1 penalty. The model is shown as follows.

min

n∑
i=1

ρτ [(yi(τ)− f(xi, Ti(τ), Ui(τ))] + s1
∑
i,j,k

t2i,j,k + s2
∑
i,k

u2
i,k + λ(∥T (τ)∥1 + ∥U(τ)∥1) (9)

where λ is penalty parameter that is positive correlation with punishment intensity, ∥T (τ)∥1 and ∥U(τ)∥1
are 1-norm. In the formula, the first item is the loss function, which measures the fitting effect of the QRNN

model on the data. The second item is the penalty function, which can compress nonsignificant coefficients

into zero. Then, the process of variable selection is achieved. In order to solve the LASSO-QRNN model,

an equivalent constraint form is obtained according to Eq(9) as follows.
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min

n∑
i=1

ρτ [(yi(τ)− f(xi, Ti(τ), Ui(τ))] + s1
∑
i,j,k

t2i,j,k + s2
∑
i,k

u2
i,k

s.t. ∥T (τ)∥1 + ∥U(τ)∥1 ≤ C

(10)

in which C is the constraint parameter corresponding to λ. The smaller the value of C is, the stronger the

effect of compressing the coefficients into zero is. Furthermore, the programming problem can be solved

by using LARS algorithm proposed by Efron, so as to obtain the parameter estimates of the model and

the conditional quantile of the electricity consumption. The LASSO-QRNN model not only produces the

distribution of electricity consumption values in different quantiles, but also selects more explanatory factors

to reduce the data dimension. In conclusion, the LASSO-QRNN method optimizes the prediction model,

which lays the foundation for the follow-up prediction work.

3.2. Probability density forecasting method based on LASSO-QRNN with kernel density estimation

Kernel density estimation (KDE) method is a nonparametric method for estimating probability density

functions [43], fitting observations to simulate a true probability distribution by a smooth spike function.

According to the above research, the conditional quantile of electricity consumption in different quantiles

can be obtained, which is represented as Zi = Qyi(τ |xi). The conditional quantile Zi is utilized as the

input values of the kernel function. In addition, by choosing appropriate bandwidth for probability density

prediction, the probability density functions of electricity consumption are obtained eventually. Supposing

that Z1, Z2, . . . , Zn are the independent identically distributed random samples, the probability density

function at any one point is denoted as f . The formula is shown as follows.

f̂h(x) =
1

n

n∑
i=1

Kh(x− Zi) =
1

nh

n∑
i=1

K(
x− Zi

h
) (11)

where h is the bandwidth that is a smoothing parameter requiring self-actuated setting, n is the sample size,

and K( · ) is regarded as a non-negative kernel function. Among different kernel functions, such as gaussian,

rectangular, triangular, epanechnikov, biweight, cosine and optcosine, this paper chooses epanechnikov and

gaussian, because the predicted results are more precise compared with the other kernel functions through

contrast experiments. The function expressions are respectively shown as follows.

K(u) =
3

4
(1− u2)

s.t. |u| ≤ 1

(12)

K(u) =
1√
2π

e−
1
2u

2

(13)

The flow chart of electricity consumption probability density forecasting method based on LASSO-QRNN

in this paper is shown in Fig.1.
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4. Experimental Analysis

4.1. Evaluation criteria

In this section, we compare LASSO-QRNN with two other situations to show the benefit of introducing

LASSO in our method. 1) the QRNN without considering external factors; 2) the QRNN considering

external factors without variable selection. Then, LASSO-QRNN is also compared with other state-of-the-

art approaches in electricity consumption forecasting, including RBF, BP, QR and NLQR. To verify the

effectiveness of our method, the paper employs the following evaluation criteria:

The mean absolute percentage errors (MAPE) is used for error analysis to point prediction results.

MAPE is defined as follows.

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (14)

in which n indicates the total number of years for electricity consumption to be predicted, yi and ŷi

respectively represent the actual and predicted values of electricity consumption at time i.

The relative mean square errors (RMSE) is used to reflect the deviation degree of the predicted value to

the actual value. RMSE is defined as follows.

RMSE =

n∑
i=1

(yi − ŷi)
2

n∑
i=1

y2i

(15)

4.2. Case study 1: Guangdong province in China

The first case is from Guangdong province of China. The experimental data are available from Guangdong

Statistical Yearbook published in 2017 [44]. As a dominating electricity consumption province in China,

the electricity consumption in Guangdong province can reach the sum of the surrounding provinces and

cities [45]. In terms of electricity consumption structure and energy efficiency, the proportion of coal in

fuel sources has declined, and the proportion of high-quality energy (including hydro, solar, wind, etc) in

consumption has increased. In recent years, accompanied by the economic development and the adjustment

of industrial structure, the electricity consumption in Guangdong province has achieved sustainable growth,

which is shown in Fig. 2. Hence, it is important to predict electricity consumption accurately.

In this case study, the historical electricity consumption and external factors from the past four years

are used as input data to forecast the annual electricity consumption. Suppose Yt = (yt−1, yt−2, . . . , yt−c)

indicates the historical load of the lag c, in which c represents the maximum lag phase of the electricity

consumption sequence yt to be predicted. The sequence of external influence factors is expressed as Xt =

(X1
t , X

2
t , . . . , X

m
t ), in which m is denoted as the number of the external influence factors. The d-th influence

10



Table 1: The statement of independent variables for Guangdong province data

Name
independent variables

Lag 1 Lag 2 Lag 3 Lag 4

Electricity consumption Yt yt−1 yt−2 yt−3 yt−4

GDP X1
t x1

t−1 x1
t−2 x1

t−3 x1
t−4

Second industry proportion X2
t x2

t−1 x2
t−2 x2

t−3 x2
t−4

Third industry proportion X3
t x3

t−1 x3
t−2 x3

t−3 x3
t−4

Permanent residents X4
t x4

t−1 x4
t−2 x4

t−3 x4
t−4

CPI X5
t x5

t−1 x5
t−2 x5

t−3 x5
t−4

Electricity consumption per unit of GDP X6
t x6

t−1 x6
t−2 x6

t−3 x6
t−4

Elasticity ratio of electricity consumption X7
t x7

t−1 x7
t−2 x7

t−3 x7
t−4

PCDI X8
t x8

t−1 x8
t−2 x8

t−3 x8
t−4

Per capita consumption expenditure X9
t x9

t−1 x9
t−2 x9

t−3 x9
t−4

Urbanization rate X10
t x10

t−1 x10
t−2 x10

t−3 x10
t−4

Total volume of retail sales X11
t x11

t−1 x11
t−2 x11

t−3 x11
t−4

Fixed investment X12
t x12

t−1 x12
t−2 x12

t−3 x12
t−4

Mean annual precipitation X13
t x13

t−1 x13
t−2 x13

t−3 x13
t−4

Mean annual temperature X14
t x14

t−1 x14
t−2 x14

t−3 x14
t−4

factor Xd
t satisfies the condition Xd

t = (xd
t−1, x

d
t−2, . . . , x

d
t−q). In the case, m is set to 14. In addition, both

c and q are equal to 4. There are 60 independent variables in total, as shown in Table.1. LASSO regression

is used to select the most influential factors of electricity consumption. The selected factors are historical

load with a lag of 1 and 3 periods, second industry proportion with a lag of 3 and 4 periods and permanent

residents with a lag of 4 periods, as shown in boldface text of Table.1. The procedure chart of compressing

factors is shown in Fig. 3. The dotted line indicates the trajectory of the factor selection process. The

abscissa indicates the constraint coefficient C, and the ordinate indicates the regression coefficient β. The

two coefficients correspond to the parameters in Eq(4). From the output of LASSO, we can see that the

electricity consumption in Guangdong province closely correlates with the historical electricity consumption,

the secondary industry proportion and the permanent residents. The description of the pertinent literature

further reflects this result [46]. During 1995-2016, with the development of the city, the number of permanent

residents in Guangdong province is growing and the second industry has achieved great development, which

leads to the growth of electricity consumption.

The annual total electricity consumption and extracted factors from 1995 to 2016 are selected as experi-

mental data, which are already normalized. The training sample is the electricity consumption and extracted
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Figure 2: The electricity consumption in Guangdong Province from 1995 to 2016
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Figure 3: The procedure chart of compressing factors (Guangdong)
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factors from 1995 to 2010. Through rolling forecasting method, the historical electricity consumption and

influence factors in previous four years are considered as input variables to forecast the annual electricity

consumption. The electricity consumption values for a total of 12 years from 1999 to 2010 are the expected

output values. In other words, a total of 12 groups of samples are selected to train the LASSO-QRNN

model, then we can further determine the optimal structure of the neural network. According to the opti-

mal structure, the electricity consumption values from 2011 to 2016 are predicted. Without considering the

external factors, the input layer of the neural network structure is 4 nodes, the hidden layer is 1 node, and

the output layer is 1 node. Considering external influence factors without variable selection, the nodes of

input layer, hidden layer and output layer are 60, 1, 1, respectively. When the LASSO regression is used for

variable selection considering external influence factors, the input structure of the neural network structure

is 5 nodes, the hidden layer is 1 node, and the output layer is 1 node. The neural network training number

is set to 100. And the penalty parameter is set to 2, which denotes that s1 and s2 are equal to 2 in Eq(7).

Through the trained neural network structure, consecutive quantiles under different quantiles from 2011 to

2016 are obtained, which have been restored from normalization. This paper selects the quantile range from

0.01 to 0.99, and the interval is 0.05. Then the predicted electricity consumption quantile is used as the

input variable of epanechnikov kernel function. Combined with the kernel density estimation method, the

annual probability density curve from 2011 to 2016 is obtained.

Fig. 4 shows the probability density curve from 2011 to 2016 without considering the external factors. We

compare it with the one with factor selection, as shown in Fig. 5. In Figs. 4 and 5, the value of the abscissa

corresponding to the red vertical line represents the actual value of the annual electricity consumption in

Guangdong province of China. The following conclusions can be drawn: Without considering the external

factors, the true values almost deviate from the highest probability point of the probability density curve.

Most of the true values appear at the end of the probability density curve, and the predicted values are far

from the true values. However, in consideration of external factors with variable selection, the true values

are almost in the vicinity of the highest probability point in the probability density curve. There is almost

no case in the tail of the probability density curve. The probability density forecasting method based on

LASSO-QRNN can produce better probability density curve of predicted values closer to the true values.

To show the effect of variable selection in our method, we compare three situations as we introduced

earlier: QRNN without considering external factors, QRNN considering external factors without variable

selection and LASSO-QRNN considering external factors, as shown in the Table. 2. According to the Table. 2,

the MRPE and RMSE of the predicted values considering the external factors are smaller than those without

considering the external factors in the mode and median. Moreover, considering the external factors, the

MRPE and RMSE of the predicted values with variable selection are smaller than those without variable

selection in the mode and median. It can be concluded that the predicted results using the LASSO-QRNN

method for variable selection are better than the predicted results without variable selection and without

13
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Figure 4: Probability density curve without considering the external factors in Guangdong province of

China
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Figure 5: Probability density curve considering the external factors (LASSO) in Guangdong province of

China
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Table 2: Prediction errors in three situations of Guangdong province data

Evaluation criteria
Without considering external factors

(QRNN)

Considering external factors

QRNN LASSO-QRNN

MRPE(%)
Median 15.41 8.60 1.83

Mode 21.21 5.25 1.21

RMSE(%)
Median 3.22 1.10 0.05

Mode 5.63 0.50 0.02

Table 3: Forecasting results of Guangdong province data based on LASSO-QRNN
Year Actual value/TWh Optimal forecast value/TWh APFE/%

2011 419.90 431.41 2.74

2012 441.94 445.06 0.71

2013 483.01 483.60 0.12

2014 523.52 516.89 1.27

2015 531.07 530.25 0.15

2016 561.01 548.32 2.26

considering the external factors. The predicted results of the mode is slightly better than the median and

the MRPE are 1.21 % and 1.83 %, respectively. In the big data environment with smart grid, this shows

that probability density forecasting of electricity consumption ought to fully consider the external influential

factors to achieve the purpose of optimal prediction model from the perspective of high dimensional data

analysis.

Based on the probability density forecasting method of LASSO-QRNN, we present the optimal point

predictions and absolute percentage forecast errors (APFE) of annual electricity consumption from 2011

to 2016, as shown in Table. 3. In consideration of external factors, the MAPE of the probability density

forecasting based on LASSO-QRNN is 1.21%. The minimum APFE of the probability density prediction

is 0.12 %. It can be concluded from Table. 3 that the probability density forecasting method based on

LASSO-QRNN can obtain more accurate prediction results, which are close to the actual value.

More details on the state of the art are provided to better illustrate the advantages of LASSO-QRNN

method. The paper compares the prediction error obtained from LASSO-QRNN with the error obtained by

RBF [35], BP [36], QR [37] and NLQR [38] in Table. 4. LASSO-QRNN method shows significantly better

performance, reducing the indeterminacy of electricity consumption forecasting.
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Table 4: Prediction errors of state-of-the-art methods for Guangdong province data

Evaluation criteria RBF BP
QR

(Median)

QR

(Mode)

NLQR

(Median)

NLQR

(Mode)

MRPE(%) 14.00 30.06 36.51 8.91 19.89 23.99

RMSE(%) 2.83 9.44 13.41 0.99 5.24 7.09

4.3. Case study 2: California in U.S.

The second case is from California in U.S. The experimental data are available from U.S. Energy Infor-

mation Administration website [47], which contains annual historical retail sales (consumption) of electricity

and external factors including total energy, average electricity price, number of electricity consumers and

so on. California’s electricity generation, transmission and distribution network are a management system

with a wide range and complexity [48]. Its fuel sources include higher percentages of natural gas, hydro, and

non-hydro renewables, and lower percentages of coal, petroleum, and nuclear [49]. Until 2003, the level of

electricity consumption in California ranked the second among the 50 states. The electricity consumption

in California from 1990 to 2015 is presented in Fig. 6. It shows a declining period after the peak value of

electricity consumption in 2008, which increases the difficulty and challenge tremendously for forecasting

the electricity consumption. In [50], the statewide annual electricity consumption prediction was pre-

sented during the period 2008-2018, assuming average temperatures. It is worth noting that the electricity

consumption in California used in this paper is different from that in this literature.

According to the above observations, the uniform rolling forecast approach is employed to forecast the

annual electricity consumption in California, and the number of external factors m is set to 8. In addition,

both c and q are equal to 4. As can be seen in Table.4, there are 36 independent variables in total.

In this case, the LASSO regression is also adopted to select the most appropriate variables for electricity

consumption forecasting. The procedure chart of compressing factors is shown in Fig. 7. The selected factors

are total energy with a lag of 1 ,2 and 4 periods, average electricity price with a lag of 1 and 4 periods,

and number of electricity customers with a lag of 2 and 3 periods, as shown in bold section of Table. 5. As

similar as [51], it appears that economic growth and the fluctuation of electricity price are the main factors

correlated with electricity consumption. Similarly to the previous case study, LASSO regression alleviates

high-dimensional data problems through the selection process of key factors, which is of great significance

in reality.

The electricity consumption and influence factors from 1990 to 2009 are used as the training sample.

Similar to the Guangdong province case, the rolling forecasting method is also adopted to process data. The

electricity consumption values for a total of 16 years from 1994 to 2009 are the expected output values. As

a result, 16-year samples are selected to train the LASSO-QRNN, which identifies the parameters of the
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Table 5: The statement of independent variables for California data

Name
independent variables

Lag 1 Lag 2 Lag 3 Lag 4

Electricity consumption Yt yt−1 yt−2 yt−3 yt−4

Personal income X1
t x1

t−1 x1
t−2 x1

t−3 x1
t−4

Population X2
t x2

t−1 x2
t−2 x2

t−3 x2
t−4

Per capita personal income X3
t x3

t−1 x3
t−2 x3

t−3 x3
t−4

Personal consumption expenditures X4
t x4

t−1 x4
t−2 x4

t−3 x4
t−4

GDP X5
t x5

t−1 x5
t−2 x5

t−3 x5
t−4

Total energy X6
t x6

t−1 x6
t−2 x6

t−3 x6
t−4

Average electricity price X7
t x7

t−1 x7
t−2 x7

t−3 x7
t−4

Number of electricity customers X8
t x8

t−1 x8
t−2 x8

t−3 x8
t−4
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Figure 6: The electricity consumption of California from 1990 to 2015
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neural network for obtaining the optimal structure. From 2010 to 2015, a total of six years of electricity

consumption forecasting is implemented. Without considering the external factors, the input layer of the

neural network is 4 nodes. Considering external influence factors without variable selection, the node number

of input layer is 36. When LASSO regression is used for variable selection considering external influence

factors, the input structure of the neural network is 7 nodes. In all three settings, the hidden layer is 2

nodes, and the output layer is 1 node. The neural network training number is set to 10, and the penalty

parameter is set to 5. Then the predicted electricity consumption quantile is considered as the input variable

of Gaussian kernel function, which have been inversely normalized. Through the trained neural network

structure and kernel density estimate algorithm, the results of probability density forecasting under different

quantiles for any year from 2010 to 2015 are obtained.

From the above, the probability density curve of consecutive quantiles can be obtained from 2010 to 2015.

Fig. 8 shows the probability density curve from 2010 to 2015 without considering the external factors. Similar

to the previous case study, it is compare with the results considering external factors with variable selection,

as shown in Fig. 9. In Figs. 8 and 9, the value of the abscissa corresponding to the red vertical line indicates

the actual value of the annual electricity consumption in California, USA. We obtain the following findings:

Without considering the external factors, the true values almost deviate from the highest probability point of

the probability density curve. In addition, the obtained probability density curve is inconsecutive and rough.
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Nevertheless, the true values are almost all in the vicinity of the highest probability point in the probability

density curve considering the external factors. Therefore it is easy to find that the LASSO-QRNN method

can acquire consecutive and slippy the probability density curves. It means that the predicted values are

more likely to get close to the true values. The probability density curve can not only provide more detailed

information for electricity consumption forecasting, but also open up new ideas and methods for electricity

consumption forecasting.
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Figure 8: Probability density curve without considering the external factors in California of U.S

In order to illustrate the effectiveness of this method, as similar as the case above-mentioned, the pre-

diction error of the three situations are also compared in Table. 6. According to the experimental results

in Table. 6, the MRPE and RMSE of the predicted results considering the external factors are less than

the predicted results without considering the external factors in the median. It can be concluded that the

predicted results using the LASSO-QRNN method for variable selection are better than the predicted results
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Figure 9: Probability density curve considering the external factors (LASSO) in California of U.S
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Table 6: Prediction errors in three situations of California data

Evaluation criteria
Without considering external factors

(QRNN)

Considering external factors

QRNN LASSO-QRNN

MRPE(%)
Median 7.44 2.09 1.29

Mode 3.12 3.89 2.04

RMSE(%)
Median 0.56 0.05 0.02

Mode 0.10 0.16 0.05

Table 7: Forecasting results of California data based on LASSO-QRNN
Year Actual value/TWh Optimal forecast value/TWh APFE/%

2010 258.33 259.76 0.48

2011 261.94 258.45 1.33

2012 259.54 257.31 0.86

2013 261.33 256.72 1.77

2014 262.59 257.07 2.10

2015 261.17 258.07 1.19

without variable selection and without considering the external factors. The predicted results of the median

is slightly better than the mode and the MRPE are 1.29% and 2.04%, respectively. This demonstrates

that the electricity consumption probability density forecasting method based on LASSO-QRNN is able to

lessen the nondeterminacy caused by external factors for improving the prediction precision of electricity

consumption, thus avoiding larger prediction errors and economic losses.

The forecasting results considering external factors based on LASSO-QRNN are shown in Table. 7, which

includes actual values, optimal point forecasts and the APFE of electricity consumption in California during

the period of 2010-2015. From Table. 7, it can be seen that the MAPE of the probability density forecasting

based on LASSO-QRNN is 1.29%. In addition, the minimum APFE of the probability density prediction

is 0.48%. Consequently, it can be concluded that the probability density forecasting method based on

LASSO-QRNN can obtain high-precision prediction results.

Similar to the case of Guangdong province data, the prediction error obtained by LASSO-QRNN is also

compared with that of BP, RBF, QR and NLQR as shown in Table. 8. The prediction accuracy of BP, RBF,

QR and NLQR is lower than that of LASSO-QRNN for California data, which justifies the superiority of

the proposed method.
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Table 8: Prediction errors of state-of-the-art methods for California data

Evaluation criteria RBF BP
QR

(Median)

QR

(Mode)

NLQR

(Median)

NLQR

(Mode)

MRPE(%) 6.28 7.05 7.06 3.87 2.02 2.08

RMSE(%) 0.40 0.50 0.50 0.16 0.04 0.05

5. Conclusions

Aiming at the electricity consumption forecasting, this paper proposes a probability density forecasting

method – LASSO-QRNN. Firstly, the method selects the most informative features from external factors by

using LASSO. It reduces data dimensions effectively without hurting predictive performance Secondly, the

QRNN method produces overall probability distribution of the electricity consumption at different quantiles

in details, which is valuable information for managing electricity consumption. The performance of LASSO-

QRNN is analyzed on two real-world datasets from Guangdong province of China and California of U.S.

Our main findings are:

By taking into account the external factors, the MRPE and RMSE of the probability density forecasting

results using LASSO-QRNN method are smaller than those without considering the external factors in terms

of the median and mode. With respect to the probability density prediction curve, the true values are almost

all in the vicinity of the highest probability point in the probability density curve considering the external

factors. However, the probability of the true value appearing in the tail is significantly increased if the

external factors are not considered. Derived from the probability density curve, the MRPE considering the

external factors is limited within 2% by using LASSO-QRNN method. Furthermore, the comparative analy-

sis with QRNN, RBF, BP, QR and NLQR displays that our method provides a more accurate prediction and

reduces the uncertainty of electricity consumption forecasting in power systems. From the simulation results,

the most relevant factors affecting electricity consumption in different regions are significantly discrepant.

The historical electricity consumption, second industry proportion and permanent residents are selected as

the feature to train the model in the data of Guangdong province, while total energy, average electricity

price and number of electricity customers are selected to train the model for the U.S. data. The sequence

diagram of Guangdong province data (Fig.2) is monotonically increasing other than the California data,

which verifies that the electricity consumption of California (Fig.6) is more intractable to achieve accurate

prediction than Guangdong data for the aggravation of instability. In summary, LASSO-QRNN is capable

of important features and learning from high-dimensional data effectively. It produces more informative

and accurate results than other existing methods.
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