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Abstract  

 

Tumor endothelial specific expression of Robo4 in adults identifies this plasma membrane 

protein as an anti-cancer target for immunotherapeutic approaches, such as vaccination. In 

this report, we describe how vaccination against Robo4 inhibits angiogenesis and tumor 

growth. To break tolerance to the auto-antigen Robo4, mice were immunised with the 

extracellular domain of mouse Robo4, fused to the Fc domain of human immunoglobulin 

within an adjuvant. Vaccinated mice show a strong antibody response to Robo4, with no 

objectively detectable adverse effects on health. Robo4 vaccinated mice showed impaired 

fibrovascular invasion and angiogenesis in a rodent sponge implantation assay, as well as a 

reduced growth of implanted syngeneic Lewis lung carcinoma. The anti-tumor effect of 

Robo4 vaccination was present in CD8 deficient mice but absent in B cell or IgG1 knockout 

mice, suggesting antibody dependent cell mediated cytotoxicity as the anti-vascular/anti-

tumor mechanism. Finally, we show that an adjuvant free soluble Robo4-carrier conjugate 

can retard tumor growth in carrier primed mice. These results point to appropriate Robo4 

conjugates as potential anti-angiogenic vaccines for cancer patients. 

 

Word count: 172 
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Introduction 

The tumor microenvironment is markedly different from that of a healthy tissue in being 

hypoxic, acidic and because of poor vessel development, showing reduced blood perfusion 

and shear stress. We have previously shown that low shear stress at the endothelial surface in 

tumor vessels induces expression of specific proteins including Robo4 and CLEC14A (1). 

Proteins induced in endothelium by the tumor microenvironment have been designated tumor 

endothelial markers (TEM's). Studies involving TEM’s have shown that their targeting can 

impede tumor growth in animal models (2). TEM’s localised at either the plasma membrane 

or secreted into the extracellular matrix are accessible for antibody targeting, which can be 

either infused or generated de novo via vaccination. An advantage of active vaccination is the 

possibility of generating both antibody production in situ and cytotoxic T-cell mediated 

immunity. Recent work in experimental mouse models has shown reduction in tumor growth 

after vaccination with endothelial expressed proteins, including the vascular endothelial 

growth factor receptor (VEGFR) -2, Endoglin/CD105, Delta-like 4 (DLL4) and the extra 

domain-B of fibronectin (reviewed in (2), (3-5)) 

 

For effective immunotherapy, the choice of tumor endothelial marker is critical. Robo4 has 

recently been shown to be a superior target to VEGFR2 (6). In that study, Mai et al. 

demonstrated that while internalising antibodies targeting VEGFR2 or Robo4 both retard 

tumor growth, there was significant toxicity associated with those targeting VEGFR2 but not 

with those targeting Robo4 (6). This is likely to reflect the expression of VEGFR2 on 

endothelium in healthy tissue compared with Robo4 that is restricted to the tumor 

endothelium (1, 7-10). An endothelial specific member of the Roundabout family of guidance 

molecules, Robo4 is present on the vessels of a number of tumor types including pancreatic, 
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bladder, lung and prostate cancer (1, 7-10).  Roles for Robo4 have been identified in 

angiogenic sprouting and filopodia formation as well as maintenance of the endothelial 

barrier through binding of its ligand Unc5b (reviewed in (11)). 

 

Robo4 as an autoantigen does not easily raise T cell help. We therefore linked Robo4 to 

foreign proteins. This efficiently induced autoantibodies specific to Robo4. We show that a 

carrier priming followed by carrier-conjugate vaccination protocol efficiently breaks B cell 

tolerance to Robo4 and induces an anti-tumor vessel immune response based on Robo4-

specific IgG1. Vaccination with the extracellular domain of Robo4 affects vascularisation of 

sponges implanted into vaccinated mice and retards the growth of subcutaneously implanted 

tumors. This anti-tumor effect in the absence of adverse effects makes targeting Robo4 a 

promising strategy for the treatment of human cancer. 
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Materials and methods  

Blood sampling  

Fresh blood from healthy donors or cancer patients was collected with ethical approval 

(South Birmingham Ethics Committee REC ref 06/Q2707/338) and patient consent. 

 

Mice 

Mice were on a C57/BL6 background and were either wild type, B cell deficient strain with a 

targeted deletion of Jh (12) or IgG1 deficient strain (13). All animal experimentation was 

carried out in accordance with British Home Office License number PPL 80/2217 held by RB. 

 

Cell culture  

293T and Lewis lung carcinoma cells were cultured in Dulbecco's modified Eagle's medium 

(DMEM) containing 10 % foetal calf serum (FCS) and 4 mM L-glutamine. Cells were 

passaged at confluence. 

 

Production of lentivector and expression of mouse Robo4-Fc using a lentiviral system 

Mouse Robo4-Fc was amplified from a parent vector by PCR using Phusion proof-reading 

polymerase (New England Biolabs, MA, USA) with the following primers:  

Forward: 5’-TAGTAGATTTAAATACCATGGGCTCTGGAGGAACG-3’ 

Reverse: 5’-TAGTAGTTAATTAATCATTTACCCGGAGACAGGGAGAG-3’ 
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The amino acid sequence of mouse Robo4-Fc is shown in Supplemental figure 1. Second 

generation lentivirus stocks were produced by calcium phosphate transfection into HEK293T 

cells with the packaging (psPAX2, Didier Trono Addgene plasmid 12260) and  lentivector 

(pWPI vector, Didier Trono, Addgene plasmid 12254) together with a plasmid (PMD2.G, 

Didier Trono Addgene plasmid 12259) which encodes the VSVG envelope protein (14, 15). 

Briefly, for one 10 cm plate of 293T cells, 3 x 10
6
 cells were seeded 24 hours prior to 

transfection. 20 g lentivector, 15 g packaging plasmid (2nd generation, psPAX2) and 6 g 

envelope plasmid (PMD2.G) were used. The transfection mix was prepared by adding the 

plasmids to 450 l distilled water and 63 l of 2M calcium chloride. 500 l 2x HEPES-

buffered saline (HBS, pH 7.05) was then added. After 15 min at room temperature the entire 

mixture was added to the plate. The medium was replaced after 6 – 8 hours with fresh 

DMEM/10% FCS. The viral supernatant was collected 48 hours later, filtered through a 0.45 

m filter. Virus was used for transduction or stored at -80
o
C for future use. To transduce the 

293T cells, 3 ml of the viral supernatant was added to 3 x 10
6
 cells at 37

o
C for 7 hours and 

then replaced with DMEM/10%FCS. Since the lentivector pWPI contained an IRES linked 

GFP sequence, the transduced cells were FACs sorted for GFP to obtain a pure population of 

Robo4 producing cells.  

 

Affinity purification of Fc fusion proteins using a Protein A column 

The FACS sorted lentivirus transduced 293T cells (mRobo4-Fc-pWPI) were expanded with 

complete media in 15 cm tissue culture dishes. When the confluency reached 80%, media 

was replaced with fresh OptiMEM (Invitrogen, Paisley, UK). 5 collections within 10 days 

gave 2~3 L of conditioned media. Collected media was adjusted to pH 8.0. 1 mM EDTA and 

a few phenylmethylsulfonyl fluoride crystals were added to the conditioned media to inhibit 
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proteases. Conditioned media was then run through a Hi-Trap protein A column at 1 ml/min 

at 4
o
C followed by a 5x column volume wash with pH 7 buffer (Na2PO4, 20 mM). A pH 

gradient elution was achieved by FPLC chromatography using pH 3 buffer (sodium citrate 

100 mM). The major products were eluted between pH 3.5 and 4, the pH adjusted back to 7 

using Tris-HCl pH 9.5 solution and stored at 4
o
C.  

 

Papain cleavage of recombinant human and mouse Robo4-Fc and depletion of the Fc 

fragment.  

Robo4-Fc was cleaved by incubation with the cysteine protease papain (Sigma, Gillingham, 

UK) as follows: 600 µg/ml Robo4Fc, 1.6 µg/ml papain in 0.15 M NaCl, 0.67 mM EDTA and 

0.5 mM L-cysteine. Cleavage was performed at 37
o
C for 40 minutes. 50 µl of iodoacetic acid 

(130 mM, pH 6.8) was added to quench the reaction (16, 17). Based on an early study 

investigating papain cleavage site of human IgG (18), it is most likely that papain cuts the 

histidine-threonine (HT) bond within the Robo4-Fc fusion protein (Supplemental figure 1). 

To remove the Fc fragments, 50 µl of PBS washed protein G beads (Sigma, Gillingham, UK) 

was added to 1 ml of reaction mix and placed on a wheel and rotated at 4
o
C for 2 hours. 

Protein G beads were removed by centrifugation, the supernatant collected and analysed by 

Western blot against polyclonal anti Robo4 (Abcam, Cambridge, UK) and anti human Fc 

antibody (Sigma, Gillingham, UK) to confirm successful cleavage and Fc depletion. 

Supernatants containing pure Robo4 protein were stored at 4
o
C.  

 

Measurement of Robo4 antibodies in human and mouse serum 
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 An ELISA plate was coated with papain cleaved human or mouse Robo4 overnight at 4
o
C. 5 

µl of serum from cancer patients, healthy individuals or immunised mice was diluted ten-fold 

in PBS and applied to an ELISA plate. Peroxidase conjugated anti-human IgG or anti-mouse 

IgG antibody (Sigma, Gillingham, UK) was applied to each well as the secondary antibody 

and the rest of the procedure was as described above. To determine the antibody subclasses in 

serum from vaccinated mice, ELISA plates coated with pure mouse Robo4 protein were 

incubated with ten-fold diluted mouse serum following addition of AP conjugated anti-mouse 

IgG1, IgG2a, IgG2b, IgG3 and IgM secondary antibodies (Southern Biotech, Cambridge, 

UK). 

 

Immunohistochemistry and immunofluorescence of paraffin embedded tissue 

Immunohistochemistry and immunofluorescence was performed as previously described (1). 

Briefly, the Lewis lung carcinoma paraffin embedded tissue sections were incubated with 

1/100 CD31 (JC70) monoclonal antibody (Dako, Glostrup, Denmark) and 1/500 Robo4 

polyclonal antibody (Abcam, Cambridge, UK) for 1 hour. Following a TBS-0.1% Tween-20 

wash, the sections were visualised using Vector Labs Vector ImmPRESS universal secondary 

antibody kit (30 min) and Vector ImmPACT DAB chromogen (10 min). Finally sections were 

counterstained in Meyer’s haematoxylin, dehydrated, cleared and mounted in distyrene-

plasticizer-xylene (DPX, Surgipath, Peterborough, UK). To investigate co-localization of 

Robo4 and Bandieria simplicifolia isolectin B4 in resected sponges, slides were incubated in 

10 µg/ml of Robo4 polyclonal antisera (Abcam, Cambridge, UK). Mouse endothelium was 

visualized with 5 μg/ml of isolectin B4 conjugated to FITC (Sigma, Gillingham, UK). For 

fibrinogen and neutrophil staining, Lewis lung carcinoma sections were treated with 1 in 500 

diluted polyclonal fibrinogen antisera (Dako, Glostrup, Denmark) or 1 in 1000 diluted 
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monoclonal anti-Ly6G and Ly-6C antibody (BD PharmingenTM, Oxford, UK). After 

overnight incubation at 4
o
C, sections were probed with 15 µg/ml of rhodamine or FITC 

conjugated secondary antibody (Invitrogen, Paisley, UK). Slides were permanently mounted 

with Prolong gold anti-fade reagent including DAPI (Invitrogen, Paisley, UK) to counterstain 

cell nuclei. Sections were then examined using an Axiovert 100M laser scanning confocal 

microscope (Carl Zeiss, Welwyn Garden City, UK).  

 

Mouse immunisation with Freund’s and alum adjuvants 

Mice were immunised subcutaneously with 50 g of Robo4 protein in Freund's complete 

adjuvant followed two weeks later with 50 g in incomplete Freund's adjuvant. For alum 

adjuvant, the same volume of Robo4 and 9% aluminium potassium sulphate were mixed. The 

pH was adjusted to 6.5, incubated in the dark for 1hr at room temperature, and then the mix 

was washed twice with PBS. The antigen-alum precipitate was finally resuspended in an 

appropriate volume and 50 µg of antigen was injected intraperitoneally per mouse. 20 µl of 

blood was collected from each mouse before injection. The level of Robo4 specific antibody 

was tested by ELISA assay using papain cleaved mouse Robo4 as the coating protein. Organs 

including brain, heart, lung, liver, kidney and spleen from both groups were collected and 

fixed in 4% formalin. The tissues were then paraffin embedded, sectioned and stained with 

haematoxylin and eosin. Pictures from the stained sections were acquired using a Leica DM 

IL microscope (Leica, Milton Keynes, UK) and a USB 2.0 2M Xli camera (XL Imaging LLC, 

Carrollton, TX, USA).  

 

Depletion of the CD8
+
 T cell subset in mice 
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Depletion of CD8
+
 T cells from Fc or Robo4-Fc vaccinated mice was initiated 14 days post-

immunisation. In brief, 200 µg of rat anti-mouse CD8 (an equal concentration of YTS 169 

anti-mouse CD8 alpha and YTS 156.7.7 anti-mouse CD8 beta, kindly supplied by Professor 

Steve Cobbold, Therapeutic Immunology Group, Sir William Dunn School of Pathology, 

University of Oxford, UK) was injected intraperitoneally per mouse every third days for the 

duration of the experiment (19, 20). Depletion of the CD8 T cell subset was verified by flow 

cytometry analysis of the peripheral blood cells for CD3 and CD8  (BD Biosciences, 

Stockholm, Sweden). 

 

Immunisation with Robo4 conjugates in Fc or CGG primed mice 

For antigen priming, 50 µg of human Fc protein or chicken γ globulin (CGG, Sigma, 

Gillingham, UK) per mouse was delivered intraperitoneally with alum adjuvant. Purified 

mouse Robo4-Fc protein was cross-linked to CGG using glutaraldehyde as previously 

described (21). 50 µg of Robo4-Fc or Robo4-Fc-CGG conjugate was intraperitoneally 

injected into 5-week primed mice. Pure Fc protein or Fc-CGG conjugate were used as 

controls.  

 

Sponge implantation and wound healing assays 

The mouse subcutaneous sponge angiogenesis assay was performed as previously described 

(22). Briefly, each C57/BL6 mouse received a sponge and 200 µl of 10 ng/ml of bFGF was 

injected into the sponge on alternate days. On day 14, sponges were excised, fixed in 4% 

formalin followed by 70% ethanol. Fixed sponges were then paraffin embedded, sectioned 

and haematoxylin and eosin stained. The area of invasion compared to that of the whole 
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sponge was obtained using ImageJ software and the percentage of invaded area calculated. To 

quantify wound healing, images were taken using a Leica microscope (DM6000) and the 

open wound areas were quantified using ImageJ software at each time point.  

 

Tumor growth experiments 

C57/BL6 mice were subcutaneously implanted with 1 x 10
6
 of Lewis Lung Carcinoma cells. 

Tumor size was measured at indicated days and tumor volume calculated following the 

formula: length x width
2
 x 0.4 (23). ANOVA analysis was performed for the comparison of 

tumor growth between Robo4 and Fc vaccinated mice. 
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Results  

Vaccination with Robo4 protein generates an antibody response in mice 

To measure Robo4 specific antibodies in sera from mouse and man, an enzyme linked 

immunoabsorbant assay (ELISA) was developed using the extracellular domain of mouse or 

human Robo4 immobilized on a microtitre plate. Robo4 was produced as the extracellular 

domain of mouse or human Robo4 fused to the Fc domain of human immunoglobulin 

(Robo4-Fc) (Supplemental figure 2a).  The Fc domain was cleaved from the fusion protein 

by papain, and the Fc portion removed using protein A beads (Supplemental figure 2b).  The 

detection limit of the assay was found to be an antibody concentration of 8 ng/ml 

(Supplemental figure 2c). To eliminate the possibility of a preexisting Robo4 antibody in 

cancer patients due to its high expression in tumour vessels, we looked for the presence of 

Robo4 specific antibodies in sera of both cancer patients (n = 20) and non-cancer individuals 

(n = 100). Our investigation confirmed that no immunoreactivity was detected from either 

patient sera or from healthy control sera (data not shown). The lack of an antibody response 

to Robo4 in cancer patients may be due to inadequate antigen presentation, immune 

suppression, or the lack of specific T cell help due to central tolerance. The absence of 

antibodies to Robo4 in cancer patients justified attempts to vaccinate against Robo4 and to 

document the effect on angiogenesis and tumor growth.  

 

With some self-antigens, it is possible to break tolerance by conjugating to a foreign antigen 

and immunising in combination with a potent adjuvant.  Immunisation of mice with 50 µg of 

a mouse Robo4 human Fc fusion protein (Robo4-Fc) in complete Freund’s adjuvant followed 

by boosting with Robo4 in incomplete Freund’s adjuvant (Figure 1a) resulted in a robust 

antibody response (Figure 1b).  Immunisation without adjuvant alone gave no antibody 
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response (data not shown). Characterising the isotypes of the induced antibodies revealed that 

there were high levels of IgG1, with lower titres of IgG2a, IgG2b and IgG3 (Figure 1c). 

Immunisation with protein antigens in mice tends to induce immunoglobulin class switching 

predominantly to IgG1 associated with T-helper 2-type immunity, even in the presence of Th1 

polarizing bacterial adjuvants (24, 25).  

  

Robo4 vaccination inhibits vascularisation of a subcutaneously implanted sponge 

To determine whether the induced Robo4 antibodies would affect angiogenesis, sponges were 

subcutaneously implanted into vaccinated mice.  The implanted sponges were injected with 

pro-angiogenic basic fibroblast growth factor (bFGF) on alternate days, and harvested after 

fourteen days. In Fc vaccinated control mice, Robo4 expression was observed on the newly 

formed vessels, and co-localised with the endothelial-specific glycosylation selectively 

recognised by Bandieria simplicifolia isolectin B4 - FITC (26) (Supplemental figure 3a).  

Robo4 vaccination dramatically reduced the vascularisation compared to control Fc 

immunised mice.  Quantitation of fibrotic invasion showed a highly significant reduction 

from a mean of 78% in control mice to 36% in Robo4 vaccinated mice (Figure 2a and 2b).  

Evaluation of vessel density and dimensions showed that Robo4 vaccination significantly 

reduced both these parameters compared to control mice (Figure 2c-e).  This data shows that 

an immune response to Robo4 impeded the development of new blood vessels within the 

sponge.   

 

Robo4 protein vaccination reduces tumor growth and disrupts tumor vessels 
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Since angiogenesis promotes growth of solid tumors, the effect of Robo4 vaccination on the 

growth of subcutaneously implanted mouse tumor cells was examined. Lewis lung carcinoma 

cells form tumors with Robo4 expressing vessels (Supplemental figure 3b). Tumor growth 

was significantly retarded in Robo4 immunised mice compared with control Fc immunised 

mice (Figure 3a). In order to elucidate the effect of the immune response to Robo4 on the 

tumor vessels, immunofluorescent staining of fibrinogen was performed on tumor sections 

since deposition of this protein is an indicator of increased vascular leakage (27). There was 

significantly increased staining of fibrinogen in tumors from the Robo4 vaccinated group, 

consistent with vessel damage (Figure 3b). Immunostaining with antibodies to a neutrophil-

specific marker showed an increased neutrophil infiltration into the Robo4 vaccinated group 

compared with a control Fc immunised group (Figure 3c). This confirmed increased tumor 

inflammation in the tumors in the Robo4-Fc vaccinated mice.   

 

Robo4 vaccination with alum adjuvant reduces tumor growth via an antibody-mediated 

mechanism 

While Freund’s complete adjuvant is a good inducer of cytotoxic T cell responses, it has 

severe side reactions and is therefore not permissible for use in humans (25, 28). To identify a 

milder alternative we tested alum based adjuvants, which are commonly used in human 

vaccination, but mainly primes for Th2-dependent antibody responses. We initially compared 

Robo4 antibody titers in the serum of alum and Freund’s vaccinated mice. With a single dose 

of alum vaccination, a similar level of Robo4 antibody was achieved compared to that 

induced by Freund’s adjuvant (Supplemental figure 4). Mice were immunised with Fc or 

Robo4-Fc protein alum precipitate intraperitoneally and Lewis lung carcinoma cells were 
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injected subcutaneously on the same day. Growth of tumor was again retarded in Robo4 

vaccinated mice to a similar extent to pre-vaccination with Freund’s adjuvant (Figure 4a).   

 

To investigate the mechanism of the therapeutic effect elicited by Robo4 in alum vaccination, 

we examined the involvement of B- or cytotoxic T-lymphocytes. To determine the role of 

cytotoxic T cells in the anti-tumor effect, CD8
+
 T cells were depleted by injection of 

antibodies 14 days after Robo4-Fc or Fc immunisation.  Efficient depletion was verified by 

flow cytometry of peripheral blood cells from the vaccinated mice (Supplemental figure 5). 

This showed that in the absence of CD8
+
 T cells the therapeutic effect of Robo4 vaccination 

was unchanged, arguing against a role for cytotoxic T cells in the inhibition of tumor growth 

(Figure 4c). Robo4 specific antibodies were confirmed 21 days post-immunisation (Figure 

4b and d). In contrast, similar experiments performed in genetically modified B cell deficient 

mice lacking the whole antibody repertoire (12), or B cell sufficient mice that only lack the 

IgG1 subclass (13) completely abolished the inhibitory antitumor effect of vaccination 

(Figure 4e and f). Robo4 antibody was undetectable in serum from either B cell or IgG1 

deficient mice (data not shown). These results suggest that the humoral response to Robo4 

and in particular IgG1 has a key role in the inhibition of tumor growth.  

 

Soluble Robo4 conjugated to a carrier protein induces a rapid protective antibody 

response in the absence of an adjuvant 

Prior vaccination with a carrier protein in an adjuvant ensured a high frequency of carrier-

specific memory T-cells to provide help to autoantigen-specific B cells. This strategy may 

lead to efficient and rapid onset of antigen-specific antibody production, which develops 
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faster than primary responses in naïve animals (Figure 5a) (29, 30). Here, we explored the 

feasibility of using this strategy to induce rapid immune responses to Robo4. Firstly, 

intraperitoneal immunisation with alum precipitated human Fc was used to induce a human 

Fc specific immunological memory. Five weeks later, mice were challenged by 

intraperitoneal immunisation with 50 g of soluble mouse Robo4 fused to human Fc, or pure 

soluble human Fc protein. Tumor cells were concurrently implanted. Fc priming resulted in a 

strong tumor growth inhibition in the Robo4-Fc vaccinated animals (Figure 5b). To further 

explore this approach for cross-linked antigens, mice were primed with alum precipitated 

chicken gamma globulin (CGG) five weeks prior to immunisation with soluble Robo4-Fc 

which was chemically cross-linked to CGG. Similarly to the Fc-primed mice, vaccination of 

CGG-primed animals with cross-linked Robo4-Fc-CGG led to significant and sustained 

tumor growth inhibition (Figure 5d). Anti-Robo4 antibody titers in these two experiments 

were verified in serum samples from vaccinated mice 21 days post-vaccination (Figure 5c 

and e).  

 

Vaccination against Robo4 has no affect on wound healing or organ integrity 

The potential for impaired wound healing or organ-specific pathology following Robo4 

vaccination was investigated. Freund’s adjuvant was used in this experiment since it is 

reported to induce the strongest antibody responses. Quantitation of surgically created 

wounds on alternate days showed no difference between the Robo4 vaccinated and control Fc 

vaccinated groups. Wounds were completely healed on day 7 in all animals (Figure 6a). 

Haematoxylin and eosin staining of tissue collected from Robo4-Fc and Fc control vaccinated 

mice 6 weeks post-vaccination showed no observable pathology (Figure 6b).   
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Discussion 

The tumor vasculature is a major target for anti-cancer therapies that range from anti-

angiogenesis to inflicting damage on established tumor vessels. Disruption of tumor vessels 

has been achieved with both toxin conjugated antibodies and low molecular weight species 

such as combretastatin (31). Antibody directed approaches have shown particular promise 

and a natural progression to the use of ectopically delivered antibodies is to generate an 

immune response to a target in vivo. Indeed there have been several attempts to vaccinate 

against tumor vessels using targets such as delta-like 4 (3) and the EDB domain of 

fibronectin ((4), reviewed in (2)). We have recently shown that the endothelial specific 

protein Robo4 is induced by low shear stress on the endothelial surface (1). Induction by low 

shear stress leads to Robo4 expression on poorly differentiated and perfused tumor vessels 

but absence in the well perfused vessels of healthy tissue (11). In this study we have explored 

the possibility of harnessing Robo4 as a tumor vessel specific antigen.  

 

Robo4 is an endothelial specific member of the roundabout gene family (8, 32, 33). The 

function of Robo4 is unclear but appears to depend on the context of the endothelial cell. In 

tip cells, Robo4 promotes filopodia formation and cell migration and is generally pro-

angiogenic (34). In contrast, in the resting 'palisade' cell Robo4 stabilises the endothelial 

barrier (35), possibly by ligation of UNC5B on an adjacent endothelial cell (36). While weak 

Robo4 expression is found on all endothelium (37), expression is much stronger on tumor 

endothelium (1, 8, 9). For example, high expression of Robo4 is found in over 60% of 

pancreatic, prostate, stomach, lung and renal cancers pointing to a promising target in cancer.  
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A key consideration for vascular targeting strategies is the effect these treatments might have 

on the vasculature in healthy tissue. While in the HUVEC-immunised patients no adverse 

effects were observed, gastrointestinal bleeding was observed in a pancreatic cancer trial 

using vaccination to peptides from VEGFR-1 (38). Given the importance of VEGFR in tumor 

angiogenesis, and the emergence of VEGF-targeted therapies such as bevacizumab, 

significant effort has gone into immune targeting of this signalling pathway (reviewed in (2)). 

Indeed prolonged use of VEGF-based anti-angiogenics has highlighted a role for VEGF 

signalling in the maintenance of the normal vasculature (39). Though bevacizumab has been 

clinically effective, in some cases wound healing has been adversely affected (40). This does 

not appear to be the case in Robo4 vaccinated mice where there was no delay in wound 

healing after sponge implantation. Histological analysis of heart, lung, kidney, spleen, brain 

or liver showed no differences between control and Robo4 vaccinated mice, which all suggest 

that targeting Robo4 may be a safe immunotherapeutic intervention. Induced expression of 

Robo4 in tumor vessels has been exploited to enable tumor vessel imaging (41) and as a 

target for antibody mediated anti-tumor therapy (6). The latter study showed that internalizing 

antibodies to either VEGFR2 or Robo4 induced a strong anti-tumor effect in mouse cancer 

models. A significant finding of the study was that while antibodies to VEGFR2 caused 

extensive toxicity, those to Robo4 were without adverse effects. These results are consistent 

with the lack of pathology seen with tumor blocking anti-Robo4 antibodies described by 

others and contrast to the lethal toxicity of anti-VEGFR2 antibodies (6). 

 

It was not possible in our hands to culture Robo4 specific T cells from human PBMCs 

(unpublished data), nor could we detect Robo4-specific antibodies in healthy people or 

cancer patients. In view of this lack of immune activation, it was considered worthwhile to 

attempt Robo4 vaccination. As seen for other antigens (25), it was possible to efficiently 
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vaccinate using Robo4 with Freund's complete adjuvant. Vaccinated mice showed a strong 

anti-angiogenic response and retarded growth of Lewis lung tumors. Tumors in the Robo4 

vaccinated mice showed increased vascular damage and inflammation. As Freund’s adjuvant 

has severe side effects, alum adjuvant was also tested., The literature generally reports that 

alum is a poor adjuvant compared to Freund's complete adjuvant for breaking tolerance (42). 

Thus, the equally strong response to Robo4 with both adjuvants was somewhat unexpected. 

despite of which is generally considered a weaker adjuvant to self-antigens compared with 

Freund’s (42). A comparable level of Robo4 antibody titer was seen in the sera from alum and 

Freund’s adjuvant vaccinated mice. This could be possibly explained bymay be related to the 

fact that Robo4 is an embryonic protein that is absent from in healthy adults and only present 

expressed in tumour vessels. Although alum vaccination preferentially induces Th2 type CD4 

T cell activation and IgG1 responses (30), similar tumor growth inhibition was observed. A 

potential mechanism for the anti-angiogenic/anti-tumor effect was then explored. Equivalent 

Robo4 vaccine induced tumor growth inhibition was seen in CD8
+ 

depleted mice but lost in 

the absence of B cells, suggesting that the anti-tumor effect of vaccination is mainly antibody 

and not cytotoxic T cell mediated. While others showed a major role of cyototoxic T cells and 

not antibody in the anti-tumor effect of OVA in Freund’s adjuvant vaccination (28), this effect 

was measured on OVA expressing transfectoma cells, where it is unlikely that native antigen 

is expressed on the cell surface. Observations similar to ours have been reported for a DNA 

vaccine against the endothelial tip cell marker Delta-like 4, which showed that upon depletion 

of CD8
+
 T cells, the anti-tumor effect was not impaired in DLL4 vaccinated mice (3).  

 

Another reason for the use of strong adjuvants is the need to overcome T cell tolerance to 

self-antigens (43). We circumvented this problem by using a conjugate vaccine approach, 

where mice pre-vaccinated with carrier protein (human Fc or CGG) were challenged with the 
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corresponding Robo4 conjugate in free form. This approach efficiently induces an anti-tumor 

effect without further adjuvant and should be transferable to combinations of human Robo4 

with carriers used in human vaccines given during childhood vaccination such as diphtheria 

toxoid (44). Conjugate vaccines have been used against tumor neoantigens, although not in 

the presence of preexisting T-cell memory (45). How vaccination with a combination of 

autoantigen and foreign carrier impacts on the longevity of the antibody response, e.g. 

through recruitment of regulatory T cells, requires further investigation. It has been found by 

others that vaccination to autoantigens tends to induce considerably shorter lasting immune 

responses (25), which may improve long term safety of this approach. 

 

Robo4-specific antibodies are likely to inhibit tumor growth through antibody dependent cell 

mediated cytotoxicity (ADCC) or complement dependent lysis. Surprisingly, IgG1 deficiency 

results in a major reduction in the tumor inhibition following Robo4 vaccination. It is likely 

that Robo4 vaccination of IgG1 deficient mice results in compensatory production of other 

antibody classes through switching to other IgG subclasses and IgM from non-switched B 

cells. Thus complement dependent lysis is an unlikely candidate as the mechanism for the 

vaccine induced tumor suppression. It is of interest to consider why IgG1 could be a key 

mediator of the anti-tumor effect. It has been shown that IgG1 binding to FcRIII mediates 

tumor-specific ADCC in phagocytic cells (46). In fact many of today’s tumor-specific 

antibody drugs are derived from murine IgG1 antibodies. IgG1 has also been shown to play a 

major role in protection from some pathogens (47).  However, IgG2a antibodies can activate 

tumor-specific ADCC in a similar way (46), and no Fc receptors with affinity specifically for 

IgG1 are known that would mediate this effect (48). Therefore, the potency of IgG1 in 
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immune protection may be due to an undefined IgG1 specific Fc receptor, or the specificity 

and affinity of germinal centre derived IgG1 is a key mediator of the protective effect.  

 

A caveat for this study is that human and mouse IgG subclasses are not evolutionary 

homologues and may not function in the same way. It has been shown that Th2 induced 

human  IgG4, which together with human IgG1 is the closest homologue to murine IgG1, 

impairs vaccine induced tumor protection in man (49). We conclude that it remains to be 

tested whether this approach will work in a similar fashion in the clinic. 
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Figure legends 

Figure 1  

Vaccination of mice with mouse Robo4 generated a Robo4-specific IgG response 

(a) Protocol for Robo4 vaccination prior to sponge or tumor implantation. 50 µg of Robo4-Fc 

or control Fc protein was subcutaneously injected into mice in complete Freund’s adjuvant 

(CFA) on day 0. Mice were then boosted with the same amount of protein in incomplete 

Freund’s adjuvant (IFA) at day 14. Vaccinated mice either received sponge implantation or 

tumor cell inoculation on day 28. (b) Vaccination with Robo4-Fc induces Robo4-specific 

antibody production. Mice (C57/BL6) were vaccinated with Fc or mouse Robo4-Fc protein 

injection according to the protocol in (a). Robo4 antibodies were determined by ELISA at day 

14 and day 28. The mean and standard error of the mean (SEM) are indicated, (n = 6 per 

group, p <0.001, Mann-Whitney test). (c) Determination of the antibody isotypes in the 

control and Robo4 vaccinated mouse sera. Sera, harvested at day 28 from Fc or Robo4-Fc 

vaccinated mice, was diluted tenfold and used in an ELISA with secondary antibody specific 

for mouse IgG1, 2a, 2b, 3 or IgM. 

 

Figure 2  

Robo4 vaccination inhibited fibrovascular invasion and angiogenesis in subcutaneously 

implanted sponges 

Mice were vaccinated with either Fc or Robo4-Fc and sponges were implanted at day 28.  2 

ng of basic fibroblast growth factor (bFGF) was injected into the sponges on alternate days 

and they were harvested after 14 days. (a) Representative images of sections of the implanted 

sponges stained with haematoxylin and eosin (H&E) (top panels). Using ImageJ image 

analysis software invaded areas were marked in red (bottom panels) (b) Quantification of the 

invaded area of the sponge.  Invaded area as a percentage of the whole sponge was plotted for 

a representative section for each mouse. The mean and SEM are indicated (P = 0.0006, 

Mann-Whitney test). (c) Representative H&E stained sections show fewer and smaller 

vessels in Robo4-Fc vaccinated mice compared with control Fc vaccinated mice. (d) Vessel 

numbers from 3 random sections per mouse were quantitated and plotted, the mean and SEM 

are indicated (p <0.001, Mann-Whitney test). (e) The area of 10 random vessels per group 
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was quantitated using ImageJ and plotted. The mean and SEM are shown (p <0.001, Mann-

Whitney test).  

 

Figure 3  

Robo4 vaccination retarded tumor growth and increased fibrinogen deposition and 

neutrophil infiltration 

Mice were vaccinated with either Fc or Robo4-Fc and subcutaneously implanted with 10
6
 

Lewis lung carcinoma cells. The size of tumor was measured three times per week. (a) Tumor 

volume was plotted and Two-way ANOVA analysis of tumor volume was performed (P < 

0.05, n = 6 per group). (b) Immunofluorescent staining of fibrinogen was performed using 

polyclonal fibrinogen antisera on 4 sections for 4 tumors per group. Quantification of the area 

positive for fibrinogen staining (green) was determined using ImageJ.  The mean and SEM 

are indicated, (p <0.001, Mann-Whitney test). (c) Neutrophil invasion was assessed by 

immunofluorescent staining with monoclonal anti-Ly6G and Ly-6C antibody.  The number of 

infiltrating neutrophils (red) was counted from 4 sections from each of 4 tumors. The mean 

and SEM are indicated, (p <0.001, Mann-Whitney test). 

 

Figure 4  

Robo4 vaccination with alum adjuvant retarded tumor growth 

(a) Alum vaccination protocol: mice were vaccinated with either Fc or Robo4-Fc with alum 

as an adjuvant. 10
6
 Lewis lung carcinoma cells per mouse were concurrently implanted 

subcutaneously. Tumor growth in Fc or Robo4-Fc alum vaccinated wild type C57/BL6 mice. 

Tumor volume was plotted as mean ±SEM. Two-way ANOVA analysis of tumor volume 

was performed (P < 0.001, n = 7 per group). (b) Robo4 antibodies were determined by 

ELISA at day 21 post-immunisation. The antibody titer was normalized to positive control 

serum from Freund’s adjuvant vaccinated mice. The mean and standard error of the mean 

(SEM) are indicated, (n = 7 per group, p <0.01, Mann-Whitney test).  (c) CD8 depletion 

protocol: Mice were vaccinated with either Fc or Robo4-Fc with alum as an adjuvant. CD8 

depletion was initiated 14 days later with a 3 day interval between injections of anti-CD8 
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antibodies.  Tumor growth in control mice and in mice depleted of CD8
+
 cells. Tumor volume 

was plotted as mean ±SEM. Two-way ANOVA analysis of tumor volume was performed 

(Control group: P < 0.001, n = 6 per group; CD8
+
 depletion group: P < 0.005, n = 6 per 

group). (d) Robo4 antibodies were determined by ELISA at day 21 post-immunisation. The 

antibody titer was normalized to positive control serum from Freund’s adjuvant vaccinated 

mice. The mean and standard error of the mean (SEM) are indicated, (n = 6 per group, p 

<0.01, Mann-Whitney test). (e) Tumor growth in Fc or Robo4-Fc alum vaccinated B cell 

knockout mice. Tumor volume was plotted as mean ±SEM (n = 6 per group) (f) Tumor 

growth in Fc or Robo4-Fc alum vaccinated IgG1 knockout mice. Tumor volume was plotted 

as mean ±SEM (n = 6 per group).  

 

Figure 5  

Induction of protective Robo4-specific antibodies in carrier-primed animals 

(a) Carrier priming strategy for rapid production of Robo4 antibodies. Pre-vaccination of a 

carrier protein in a strong adjuvant ensures the presence of carrier-specific memory T cells, 

which allows rapid Robo4 antibody production upon subsequent exposure to Robo4-carrier 

conjugates. (b) Mice receiving primary immunisation with human Fc in alum were 

reimmunised 5 weeks later with mouse Robo4-Fc protein without adjuvant. Concurrently 10
6
 

Lewis lung carcinoma cells were implanted subcutaneously. Tumor growth in Fc or Robo4-

Fc alum vaccinated Fc primed mice. Tumor volume was plotted as mean ±SEM. Two-way 

ANOVA analysis of tumor volume was performed (P < 0.001, n = 10 per group). (c) Robo4 

antibodies were determined by ELISA at day 21 post-immunisation. The antibody titer was 

normalized to positive control serum from Freund’s adjuvant vaccinated mice. The mean and 

standard error of the mean (SEM) are indicated, (n = 10 per group, p <0.001, Mann-Whitney 

test). (d) Mice receiving initial immunisation with chicken gamma globulin (CGG) in alum 

(29) were reimmunised 5 weeks later with Robo4-Fc cross-linked with CGG using 

glutaraldehyde (21). Concurrently 10
6
 Lewis lung carcinoma cells were implanted 

subcutaneously. Tumor growth in Fc or Robo4-Fc alum vaccinated CGG primed mice. Tumor 

volume was plotted as mean ±SEM. Two-way ANOVA analysis of tumor volume was 

performed (P < 0.001, n = 8 per group). (e) Robo4 antibodies were determined by ELISA at 

day 21 post-immunisation. The antibody titer was normalized to positive control serum from 
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Freund’s adjuvant vaccinated mice. The mean and standard error of the mean (SEM) are 

indicated, (n = 8 per group, p <0.001, Mann-Whitney test). 

 

Figure 6  

No pathological changes in a range of organs were observed after vaccination with 

Robo4. 

(a) Quantification of the wound area (n = 6 per group). (b) H&E staining on heart, lung, 

kidney, spleen, brain and liver sections from Fc and Robo4-Fc vaccinated mice 6 weeks post 

vaccination.   
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Supplemental figure 1 

Sequence of mouse Robo4-Fc and the site of papain cleavage 

The extracellular domain of mouse Robo4 (Black) was fused to a human Fc (Blue) and the 

recombinant protein produced for vaccination in mouse. The papain cleaved product 

containing Robo4 alone was used in the ELISA as the coating antigen. The site of papain 

cleavage is indicated in red.  

 

 Supplemental figure 2 

Production of extracellular Robo4 protein and papain cleavage of Fc. Development of 

an ELISA to measure anti-Robo4 antibody 

HEK293T cells were transduced with lentivirus to produce human or mouse Robo4 

extracellular domain-Fc. Fusion proteins were secreted into and purified from the tissue 

culture medium. Conditioned medium was collected on alternate days and purified by affinity 

chromatography using a protein A column. (a) SDS-PAGE and Coomassie staining of mouse 

Robo4-Fc purified from media harvested on alternate days. (b) Purified Robo4-Fc was 

treated with papain to cleave the Fc portion, which was depleted using protein A 

chromatography. The intact and purified mouse Robo4 extracellular domain was subject to 

SDS-PAGE and western blotted for both anti-mouse Robo4 or anti-Fc, showing effective 

depletion of the Fc portion. (c) The purified mouse or human extracellular domain was 

immobilized on ELISA plates at the indicated concentrations and a range of concentrations of 

either anti-human Robo4 (MR7 (22)) or anti-mouse Robo4 were tested to determine the 

sensitivity of the ELISAs.     

 

Supplemental figure 3 

Expression of Robo4 on vessels in implanted sponges and Lewis lung carcinoma tumors  

(a) Immunofluorescent staining was performed on the sponges of the control mice.  Robo4 

was stained using a mouse Robo4-specific antibody, the endothelial cells were stained with 

Bandieria simplicifolia isolectin B4-FITC and DAPI was used to visualize nuclei (blue). 

Fluorescence detected within the vessel lumen is due to autofluorescence of erythrocytes in 
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both red and green channels which is absent from the blue channel. Images were acquired 

using confocal microscopy. (b) Immunohistochemistry was performed to determine Robo4 

expression in Lewis lung carcinoma tumors.  The primary antibodies were anti-CD31 which 

stains all endothelial cells and anti-mouse Robo4. A similar staining pattern was observed in 

the tumor vasculature for both markers. 

 

Supplemental figure 4  

Comparative analysis of sera from Freund’s and alum vaccinated mice. 

Determination of Robo4-specific antisera in Freund’s and alum vaccinated mouse sera. 

Mouse sera harvested at day 28 post-vaccination, was diluted tenfold and used in an ELISA. 

Commercial mouse Robo4-his protein (Sino Biological Inc. China) was used as the coating 

antigen in this assay. 

 

Supplemental figure 5  

In vivo depletion of CD8
+
 cells in vaccinated mice  

Depletion of CD8
+
 cells was initiated on the day of tumor challenge by injection of anti-CD8 

antibodies. The depletion was verified by immunostaining of peripheral blood cells using 

anti-mouse CD3-PECy5 and anti-mouse CD8-FITC antibodies 10 and 20 days post-depletion.  

 

 

 


