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SPANNING TREES WITH FEW BRANCH VERTICES∗

LOUIS DEBIASIO† AND ALLAN LO‡

Abstract. A branch vertex in a tree is a vertex of degree at least three. We prove that,
for all s ≥ 1, every connected graph on n vertices with minimum degree at least ( 1

s+3
+ o(1))n

contains a spanning tree having at most s branch vertices. Asymptotically, this is best possible and
solves a problem of Flandrin, Kaiser, Kuz̆el, Li, and Ryjác̆ek, which was originally motivated by an
optimization problem in the design of optical networks.
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1. Introduction. For a graph G, the minimum degree of G, denoted by δ(G),
is the smallest degree of its vertices. A tree is an acyclic connected graph, and a
branch vertex in a tree is a vertex of degree at least three. Dirac [10] proved that
every graph with minimum degree at least (n − 1)/2 contains a Hamiltonian path,
i.e., a spanning tree with no branch vertices and exactly two leaves; furthermore, this
is best possible, as for all n ≥ 2, there are connected graphs with minimum degree
d(n− 1)/2e − 1 which have no Hamiltonian paths. This result has been generalized
in many ways. In particular, Win [32] proved that if G is a connected graph on n
vertices with δ(G) ≥ (n−1)/k, then G contains a spanning tree in which every vertex
has degree at most k. Broersma and Tuinstra [2] proved that if G is a connected
graph on n vertices with δ(G) ≥ (n− k + 1)/2, then G contains a spanning tree with
at most k leaves. These results are best possible for all k ≥ 2, and when k = 2, they
correspond to Dirac’s theorem.

The problem of determining whether a connected graph contains a spanning tree
with a bounded number of branch vertices, while a natural theoretical question, seems
to have been first explicitly studied because of a problem related to wavelength-
division multiplexing technology in optical networks, where one wants to minimize
the number of light-splitting switches in a light-tree (see [15] for a more detailed
description and background). Gargano et al. [16] showed that the problem of finding
a spanning tree with the minimum number of branch vertices is NP-hard. Since then,
the problem has been investigated by many authors [3, 4, 5, 7, 19, 20, 21, 26, 27, 28, 29].

A spanning tree with at most one branch vertex is called a spider. Gargano
et al. [15] (also see Gargano and Hammar [14]) proved that if G is a connected graph
on n vertices with δ(G) ≥ (n − 1)/3, then G contains a spanning spider (later Chen
et al. [6] proved the stronger result that connected graphs on n ≥ 56 vertices with
δ(G) ≥ (n − 2)/3 contain a spanning broom; that is, a spanning spider obtained by
joining the center of a star to an endpoint of a path). Motivated by this, Gargano
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1504 LOUIS DEBIASIO AND ALLAN LO

et al. [15] conjectured that for all s ≥ 1, if G is a connected graph on n vertices
with δ(G) ≥ (n− 1)/(s+ 2), then G contains a spanning tree with at most s branch
vertices. Later, Flandrin et al. [12, Problem 11] asked if the much stronger bound of
δ(G) ≥ n/(s+ 3) +C is sufficient, and then Ozeki and Yamashita [22, Conjecture 30]
conjectured a precise value for the constant term.1

Conjecture 1.1 (Ozeki and Yamashita [22]). For all s ∈ Z+, if G is a con-
nected graph on n vertices with δ(G) ≥ n−s

s+3 , then G contains a spanning tree with at
most s branch vertices.

Note that even the approximate version of the conjecture by Flandrin et al. has
not been verified for any s ≥ 1, and the original (weaker) conjecture of Gargano et
al. has not been verified for any s ≥ 2. The goal of this paper is to prove Conjecture
1.1 asymptotically.

Theorem 1.2. Let s ∈ Z+ and γ > 0. Then there exists n0 = n0(γ, s) such
that every connected graph G on n ≥ n0 vertices with δ(G) ≥ ( 1

s+3 + γ)n contains a
spanning tree with at most s branch vertices.

The following example shows that our result is asymptotically best possible and
that Conjecture 1.1 is best possible if true.

Example 1.3. For all s,m ∈ Z+ with m ≥ 2, there exists a connected graph G on
n = (s+ 3)m− 2 vertices with δ(G) = n−s−1

s+3 such that every spanning tree of G has
more than s branch vertices.

Proof. Let P = b1b2 . . . bs+1 be a path on s + 1 vertices and H1, H2, . . . ,Hs+3

copies of complete graph on m vertices such that P,H1, . . . ,Hs+3 are vertex-disjoint.
For each 1 ≤ i ≤ s + 1, identify bi with a vertex of Hi. We further identify b1 and
bs+1 with a vertex of Hs+2 and Hs+3, respectively. We call the resulting graph G; see
Figure 1 for an example. Clearly G has n = (s+3)m−2 vertices and δ(G) = m−1 =
n−s−1
s+3 . Note that each bi is a branch vertex in any spanning tree of G.

Km Km Km Km

Km Km Km

b1
b2

b3

b4
b5

Fig. 1. An example for the case s = 4.

Our proof of Theorem 1.2 uses the absorbing method, first systematically intro-
duced by Rödl, Ruciński, and Szemerédi [25], together with a nonstandard use of
Szemerédi’s regularity lemma [30]. In section 3 we discuss the canonical partition of
the graph with linear minimum degree, and then after stating Lemma 3.5, the main
lemma of the paper, we use it to deduce Theorem 1.2. In section 4 we prepare for
the proof of Lemma 3.5 by proving a more basic result about (fractional) matchings.

1In both places, the conjecture is stated as a generalized Ore-type degree condition; that is, in
terms of the sum of the degrees of every independent set of s + 3 vertices, but we only state the
minimum degree version here.
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SPANNING TREES WITH FEW BRANCH VERTICES 1505

In section 5 we state the regularity lemma along with a few basic supporting lem-
mas. Finally, in szection 6 we use the regularity lemma and the absorbing method
together with the results of the previous section to prove Lemma 3.5 which completes
the result.

1.1. Notation. For n ∈ Z+, we write [n] for {1, . . . , n}. We ignore floors and
ceilings whenever they are not crucial to the calculation. Throughout the paper, we
will write α � β to mean that given β, we can choose α small enough so that α
satisfies all of necessary conditions throughout the proof. In order to simplify the
presentation, we will not determine these functions explicitly.

Let G be a graph and U,W ⊆ V (G) be disjoint. We write U for V (G) \ U .
We denote by G[U ] and G[U,W ] the subgraph of G induced on U and the bipartite
subgraph of G induced by the partition {U,W}. We write G\U for G[U ] and e(U,W )
for e(G[U,W ]). For v ∈ V (G), dG(v, U) denotes the number of neighbors of v in U .
We write N(U) for

⋃
u∈U N(u). For graphs G,H, we write G −H for the subgraph

of G with vertex set V (G−H) = V (G) and edge set E(G−H) = E(G) \ E(H).

2. Overview of the proof. Our proof splits into two main parts. First we
show that if G is a graph with minimum degree at least (1/r + γ)n, then we can
find a partition of V (G) into at most r − 1 parts {V1, . . . , Vk} having the property
that for each i, G[Vi] has no sparse cuts and most vertices in Vi have degree at least
(1/r + γ/2)n in G[Vi] while all other vertices in Vi have linear minimum degree in
G[Vi]. Let us say that we have partitioned G into “robust” subgraphs.

The second part of the proof focuses on these so-called robust subgraphs obtained
above. Let t ≥ 1, and let G be a graph on n vertices with linear minimum degree
having no sparse cuts in which most of the vertices have degree at least ( 1

t+3 + γ)n.
We will show that not only does G contain a spanning tree with at most t branch
vertices, but G contains a cycle C and a set K ⊆ V (C) with |K| ≤ t such that for all
v ∈ V (G) \ V (C), v has a neighbor in K. It is clear that such a structure, which we
call a “star-cycle,” contains a spanning tree with at most t branch vertices.

The real heart of the proof lies in finding these spanning star-cycles in the robust
subgraphs. By using the absorbing method in a particular form proved by the first
author and Nelsen [9], we can reduce the problem to finding a nearly spanning star-
cycle. It is now standard in nearly spanning subgraph problems to use Szémerédi’s
regularity lemma to reduce the problem to finding a simpler structure in the so-called
reduced graph. For instance, if one were looking for a Hamiltonian cycle, it would be
natural to apply the regularity lemma and prove that the reduced graph is connected
and contains a perfect matching. In our case, the simpler structure that we wish to
find is a collection of vertex-disjoint edges and stars which we call a “star-matching.”
Unfortunately it may not be sufficient to simply find a star-matching in the reduced
graph, as this may not correspond to the desired star-cycle in the original graph.
Namely, there is no relationship between the maximum degree of the original graph
and its reduced graph. For example, suppose that G is the binomial random graph
on n with each edge chosen independently with probability 1/2. Then (typically) we
have ∆(G) ≈ n/2, and the reduced graph R of G is a complete graph on k vertices
for some large k. Clearly, a spanning star S in R is a star-matching. However, in
order to “convert” S into a nearly spanning star-cycle with one branch vertex in G,
we would need to find a star in G with degree greater than (1−1/k− o(1))n > n/2 ≈
∆(G). To get around this issue, we find the star-matching in the “fractional-random-
reduced-graph” R∗ (see Definition 5.5) instead of the reduced graph, where ∆(R∗)
“respects” ∆(G).
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1506 LOUIS DEBIASIO AND ALLAN LO

Finally, to combine the two parts of the proof, we start with a connected graph
G having minimum degree at least ( 1

s+3 + γ)n. We obtain a robust partition of G,
and inside each part of the partition we find a star-cycle having the correct number of
stars depending on the relative degrees inside that part. Then we use the connectivity
of G to find edges connecting the spanning star-cycles from each part of the partition.
The minimum degree of G will put bounds on the number of parts of the partition
and the relative degrees inside those parts in such a way that the obtained spanning
tree has at most s branch vertices.

3. Sparse cuts and robust partitions. Let 0 < α, η ≤ 1, and G a graph on n
vertices. For X ⊆ V (G), we say that (X,X) is an α-sparse cut if e(X,X) < α|X||X|.
Moreover, G is (η, α)-robust if δ(G) ≥ ηn and G has no α-sparse cuts.

We will use the following two simple observations from [9].

Observation 3.1 (see [9, Observation 4.4]). Let 0 < α ≤ η/2, let G be a graph on
n vertices, and let {X1, X2} be a partition of V (G) with |X1| ≤ |X2|. If δ(G) ≥ ηn
and |X1| ≤ ηn/2, then e(X1, X2) ≥ α|X1||X2|.

Observation 3.2 (see [9, Observation 4.7]). Let 0 < α ≤ η/2, and let G be a graph
on n vertices. If G is (η, α)-robust and Z ⊆ V (G) with |Z| ≤ αηn/8, then G \ Z is
(η/2, α/2)-robust.

The following two lemmas are similar to Lemmas 6.1 and 6.2 in [8]; however, we
cannot directly quote those results here, as we need to use the fact that the relative
degree of most vertices in each part of the partition is very close to their overall degree.

Lemma 3.3. Let 0 < α < η ≤ δ with 8α ≤ η. Let G be a graph on n vertices such
that δ(G) ≥ ηn and d(v) ≥ δn for all but at most αn vertices v ∈ V (G). If G has an
α2-sparse cut, then there exists a partition {Y1, Y2} of V (G) such that, for all i ∈ [2],

(i) |Yi| ≥ (δ − 3α)n;
(ii) δ(G[Yi]) ≥ δ(G)/2 and d(v, Yi) ≥ (δ − 3α)n for all but at most 3αn vertices

v ∈ Yi.
Proof. Let {X1, X2} be a partition of G such that e(X1, X2) < α2|X1||X2| and

|X1| ≤ |X2|. By Observation 3.1, |X1|, |X2| ≥ ηn/2. Let U0 be the set of vertices
v ∈ V (G) such that d(v) < δn, so |U0| ≤ αn. For i ∈ [2], let Ui be the set of vertices
v ∈ Xi such that d(v,X3−i) ≥ αn. Since e(X1, X2) ≤ α2n2, we have |Ui| < αn. Let
X ′i := Xi \ (Ui ∪ U0). Note that |X ′i| ≥ ηn/2− 2αn ≥ ηn/4 and for all v ∈ X ′i,

d(v,X ′i) ≥ d(v)− d(v,X3−i)− |Ui| − |U0| ≥ d(v)− 3αn

≥ max{(δ − 3α)n, d(v)/2},(3.1)

since δ ≥ η ≥ η/2 + 3α as α ≤ η/8. Partition U0 ∪ U1 ∪ U2 into U ′1 and U ′2 such that
e(X ′1 ∪ U ′1, X ′2 ∪ U ′2) is minimized. Let Yi = X ′i ∪ U ′i for i ∈ [2]. Clearly {Y1, Y2} is a
partition of V (G). Since |U0 ∪U1 ∪U2| ≤ 3αn, {Y1, Y2} satisfies (i) and (ii) by (3.1).

The next lemma shows that a graph G can be partitioned into {V1, . . . , Vk} such
that each G[Vi] has no sparse cut and most of the vertices in G[Vi] have very few
neighbors outside of Vi.

Lemma 3.4. Let r, n ∈ Z+ with r ≥ 2 and γ, α > 0 be such that 22r+3α ≤
min{1/r, γ}. If G is a graph on n vertices with δ(G) ≥ (1/r + γ)n, then there exists
a partition {V1, . . . , Vk} of V (G) with k ≤ r − 1 such that, for each i ∈ [k],

(i) |Vi| > (1/r + γ/2)n;
(ii) δ(G[Vi]) ≥ δ(G)/2k−1 and d(v, Vi) ≥ (1/r+γ/2)n for all but at most 4k+1αn

vertices v ∈ Vi;
(iii) G[Vi] has no 16k+1α2-sparse cuts.
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Proof. Let P1 := {V (G)}. At step j ≤ r− 1, suppose that we have already found
a partition Pj = {U1, . . . , Uj} of V (G) such that for all i ∈ [j],

(i′) |Ui| ≥ (1/r + γ − 4j+1α)n;
(ii′) δ(G[Ui]) ≥ δ(G)/2j−1 and d(v, Ui) ≥ (1/r + γ − 4j+1α)n for all but at most

4j+1αn vertices v ∈ Ui.
If G[Ui] has no 16j+1α2-sparse cuts for all i ∈ [j], then we are done by setting k := j
and Vi := Ui for each i ∈ [k]. So suppose without loss of generality that G[U1] has
an 16j+1α2-sparse cut. By Lemma 3.3, there is a partition U ′1, U

′
2 of U1 such that for

i ∈ [2]
(i′′) |U ′i | ≥ (1/r + γ − 4j+1α)n− 3 · 4j+1α|U1| ≥ (1/r + γ − 4j+2α)n;
(ii′′) δ(G[U ′i ]) ≥ δ(G[U1])/2 ≥ δ(G)/2j and

d(v, U ′i) ≥
(
1/r + γ − 4j+1α

)
n− 3 · 4j+1α|U1| ≥

(
1/r + γ − 4j+2α

)
n

for all but at most 3 · 4j+1α|U1| ≤ 4j+2αn vertices v ∈ U ′i .
Set Pj+1 := {U ′1, U ′2, U2, . . . , Uj} to be the partition of V (G), and note that (i′) implies
that this process will end with a partition having at most r − 1 parts.

For t ∈ Z+, a t-star-cycle is a union of cycle C and t vertex-disjoint stars S1, . . . , St
such that the centers of stars are in V (C) and the leaves of the stars are not in V (C).
The next lemma shows that each G[Vi] obtained from Lemma 3.4 contains a spanning
t-star-cycle for some t depending on the relative degrees. In fact, we show that when
G has no α-sparse cuts, we can get an improvement in the bound on the degrees (note
that n

s+3 ≥
n

(
√
s+1)2

for all s ≥ 1).

Lemma 3.5. Let s, n ∈ Z+, and let 1/n � α, α′ � η, γ, 1/s. If G is an (η, α)-
robust graph on n vertices such that d(v) ≥ ( 1

(
√
s+1)2

+ γ)n for all but at most α′n

vertices v ∈ V (G), then G has a spanning t-star-cycle with some t ≤ s.
We will prove Lemma 3.5 in section 6, but first we deduce Theorem 1.2 using

Lemma 3.5. We need the following well-known result of Pósa.

Theorem 3.6 (Pósa [23]). Let G be a graph on n vertices. If for every 1 ≤ k ≤
(n−1)/2, at most k−1 vertices have degree at most k, then G contains a Hamiltonian
cycle.

Proof of Theorem 1.2. Let α∗ be a constant such that 1/n� α∗ � η, γ, 1/s. Let
α := (4rα∗)2 and α′ := 4s+3α∗, so we have α′ ≤ 2−(s+1)(s + 3)−2. By Lemma 3.4
with r = s+ 3, there exists a partition {V1, . . . , Vk} of V (G) with k ≤ s+ 2 such that
for each j ∈ [k],

(i) |Vj | > ( 1
s+3 + γ

2 )n,

(ii) δ(G[Vj ]) ≥ δ(G)/2s+1 and for all but at most α′n vertices v ∈ Vj , d(v, Vj) ≥
( 1
s+3 + γ

2 )n, and
(iii) G[Vj ] has no α-sparse cut.

For each j ∈ [k], let Gj := G[Vj ] and sj :=
⌊
(s+3)|Vj |
n+1

⌋
. Note that by (i), each

sj ≥ 1. Furthermore,

∑
j∈[k]

sj =
∑
j∈[k]

⌊
(s+ 3)|Vj |
n+ 1

⌋
≤

∑
j∈[k]

(s+ 3)|Vj |
n+ 1

 =

⌊
n(s+ 3)

n+ 1

⌋
≤ s+ 2.(3.2)

Consider any j ∈ [k]. Note that by the definition of sj , we have
|Vj |(s+3)
n+1 < sj + 1 and

thus

dGj
(v) ≥

(
1

s+ 3
+
γ

2

)
n ≥

(
1

sj + 1
+
γ

4

)
|Vj |
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for all but at most α′n ≤ (s+ 3)α′|Vj | vertices v ∈ Vj . Also

δ(Gj) ≥ δ(G)/2s+1 ≥ n

2s+1(s+ 3)
> (s+ 3)α′|Vj |.

If sj = 1, then Theorem 3.6 implies that Gj has a Hamiltonian cycle Hj . If sj ≥ 2,
then Lemma 3.5 implies that Gj contains a spanning tj-star-cycle Hj with tj ≤
max{1, sj − 2}. (Note that if sj ∈ {2, 3}, then tj ≤ 1.) Therefore, each Gj contains a
spanning tj-star-cycle with

tj ≤ sj − 1.(3.3)

Since G is connected, there exist edges e1, . . . , ek−1 in G such that
⋃
j∈[k]Hj ∪⋃

j∈[k−1] ej is connected. Without loss of generality, we may assume that for all

i ∈ [k − 1], ei ∩ V (Hi+1) 6= ∅ and ei ∩
⋃
j∈[i] V (Hj) 6= ∅. We claim that for each

i ∈ [k − 1], there exists a tree Ti spanning
⋃
j∈[i+1]Hj ∪

⋃
j∈[i] ej with at most i −

1 +
∑
j∈[i+1] tj branch vertices. We will proceed by induction on i. For i = 1 and

j ∈ [2], let e′j be an edge in the cycle of Hj such that e′j intersects e1 if possible. Then
T1 := (H1 − e′1)∪ (H2 − e′2)∪ e1 is a tree with t1 + t2 branch vertices. Hence we may
assume that i > 1, and the statement holds for i′ < i. Let Ti−1 be a spanning tree
of
⋃
j∈[i]Hj ∪

⋃
j∈[i−1] ej with at most i− 2 +

∑
j∈[i] tj branch vertices (which exists

by the induction hypothesis). Let T ′i+1 be a spanning tree of Hi+1 ∪ ei with exactly
ti+1 branch vertices. (To be precise, T ′i+1 := Hi+1 ∪ ei − e′i+1, where e′i+1 is an edge
in the cycle of Hi+1 such that e′i+1 intersects ei if possible.) Thus Ti := Ti−1 ∪ T ′i+1

is a spanning tree of
⋃
j∈[i+1]Hj ∪

⋃
j∈[i] ej with at most i − 1 +

∑
j∈[i+1] tj branch

vertices, so the claim holds (see Figure 2).

H1

H2

H3

H4

H5

e1
e2

e3

e4

Fig. 2. Building the tree using the star-cycles H1, . . . , Hk. The branch vertices are highlighted
in bold.

Let T := Tk−1. Hence T is a spanning tree of G with at most

k − 2 +
∑
j∈[k]

tj =
∑
j∈[k]

(tj + 1)− 2
(3.3)

≤
∑
j∈[k]

sj − 2
(3.2)

≤ s

branch vertices, as desired.

4. Star-matchings. In this section we prove a preliminary result which will we
will use together with the regularity lemma (see Lemma 5.3) to prove Lemma 3.5 in
section 6.

For our purposes, we define a 2-matching to be a vertex-disjoint union of edges
and odd cycles (sometimes this is referred to as a basic 2-matching). The order of
a 2-matching M is the number of vertices in M , and a maximum 2-matching is one
of maximum order. Note that a 2-matching M implies the existence of a (perfect)
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SPANNING TREES WITH FEW BRANCH VERTICES 1509

fractional matching on V (M). We need the following theorem of Pulleyblank which
gives a Gallai–Edmonds-type ([11, 13]) structural result for 2-matchings. Below we
just state a simplified version of the result which suffices for our purposes, so the
reader should see [24, Theorem 4] for the complete statement.

Theorem 4.1 (Pulleyblank [24]). Let G be a graph, let A be the set of vertices
which are not covered in some maximum matching, and let A1 be the set of isolated
vertices in G[A]. If M is a maximum 2-matching for which the number of vertices
contained in odd cycles is minimized, then V (G) \ V (M) ⊆ A1 and the edges of M
incident with vertices in A1 induce a matching which covers N(A1).

For t ∈ Z+, a t-star-matching is a vertex-disjoint collection of edges and exactly t
(nontrivial) stars, and and a t-star-2-matching is a vertex-disjoint collection of edges,
odd cycles, and exactly t (nontrivial) stars.

Lemma 4.2. Let n, s ∈ Z+, and let G be a bipartite graph on n vertices with par-
tition {A,B}. If d(a) ≥ n

(
√
s+1)2

for all a ∈ A and there exists a matching covering B,

then G contains a spanning t-star-matching for some t ≤ s.
Proof. Let M be a matching covering B. We begin with two claims.

Claim 4.3. Suppose there exist B′ ⊆ B with |B′| ≤ s and a matching M ′ covering
A \N(B′). Then G contains a spanning t-star-matching for some t ≤ s.

Proof of Claim. Since M and M ′ cover B and A \ N(B′), respectively, there
exists a matching M∗ which covers B ∪ (A \ N(B′)) = V (G) \ N(B′).2 Finally,
since V (G) \ V (M∗) ⊆ N(B′), there exists a spanning t-star-matching for some t ≤
|B′| ≤ s.

Claim 4.4. If there exists U ⊆ A such that |N(U)| < |U |, then |U | > n
(
√
s+1)2

,

and there exists b ∈ N(U) such that |d(b, U)| ≥ |U |n
(
√
s+1)2|N(U)| >

n
(
√
s+1)2

.

Proof of Claim. Let U ⊆ A such that |N(U)| < |U |. Since d(a) ≥ n
(
√
s+1)2

for

all a ∈ A, we clearly have |U | > n
(
√
s+1)2

. Furthermore, by averaging, there exists a

vertex b ∈ N(U) such that

d(b, U) ≥ e(U,N(U))

|N(U)|
≥
|U | n

(
√
s+1)2

|N(U)|
>

n

(
√
s+ 1)2

.

Recall that M covers B, so we may assume that M does not cover A, or else we are
done. Thus we have |A| > |B|. By Claim 4.4, there exists b1 ∈ B with A1 := N(b1)
such that

|A1| = |d(b1, A)| ≥
|A| n

(
√
s+1)2

|B|
≥ |A| − sn

(
√
s+ 1)2

.(4.1)

To see this last inequality, set |A| = αn (and so |B| = (1−α)n), and then divide both
sides by n. Now it is straightforward to verify that α

1−α
1

(
√
s+1)2

≥ α − s
(
√
s+1)2

holds

for all 1/2 ≤ α < 1 and s ≥ 1.
Now suppose that for some r ∈ [s − 1] we have chosen vertices b1, . . . , br and

pairwise disjoint sets A1, . . . , Ar such that Ai = N(bi)\
⋃
j∈[i−1]Aj for all i ∈ [r], |A1|

satisfies (4.1), and |Ai| > n
(
√
s+1)2

for all 2 ≤ i ≤ r. If there exists a matching covering

2See [31, Exercise 3.1.13].
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1510 LOUIS DEBIASIO AND ALLAN LO

A \
⋃
i∈[r]Ai, then we are done by Claim 4.3 (with B′ := {b1, . . . , br}). Otherwise, by

Hall’s theorem and Claim 4.4, there is a vertex br+1 with Ar+1 = N(br+1) \
⋃
i∈[r]Ai

such that |Ar+1| > n
(
√
s+1)2

. Thus we obtain vertices b1, . . . , bs and pairwise disjoint

sets A1, . . . , As such that Ai = N(bi) \
⋃
j∈[i−1]Aj for all i ∈ [s], |A1| satisfies (4.1),

and |Ai| > n
(
√
s+1)2

for all 2 ≤ i ≤ s. Note that∣∣∣∣∣∣A \
⋃
i∈[s]

Ai

∣∣∣∣∣∣ < |A| −
(
|A| − sn

(
√
s+ 1)2

)
− (s− 1)n

(
√
s+ 1)2

=
n

(
√
s+ 1)2

.

Since d(a) ≥ n
(
√
s+1)2

for all a ∈ A, there is a matching M ′ saturating A \
⋃
i∈[s]Ai,

and thus we are done by Claim 4.3 (with B′ := {b1, . . . , bs}).
We now combine Theorem 4.1 and Lemma 4.2 to prove the following result on

spanning t-star-2-matchings in general graphs.

Lemma 4.5. Let n, s ∈ Z+ and 0 < α′ ≤ η, γ. If G is a graph on n vertices with
δ(G) ≥ ηn, and d(v) ≥ ( 1

(
√
s+1)2

+γ)n for all but at most α′n vertices v ∈ V (G), then

G has a spanning t-star-2-matching with t ≤ s. Moreover, if G is bipartite, then G
has a spanning t-star-matching with t ≤ s.

Proof. Let A be the set of vertices in G which are not covered in some maximum
matching in G, and let A1 be the set of isolated vertices in G[A]. Let M be a
maximum 2-matching in G with the minimum number of vertices in odd cycles. Let
B := N(A1), and let H be the bipartite graph induced by (A1, B). By Theorem 4.1,
we have that A1 is an independent set, and the edges of M in H (call them M̂)
induce a matching covering B. Let A′1 be the set of at most α′n vertices v ∈ A1

for which d(v,B) < ( 1
(
√
s+1)2

+ γ)n but d(v,B) ≥ ηn. Now by the size of A′1, there

exists a matching M ′ covering A′1, which we will choose to have as many edges from
M̂ as possible. Let A∗1 = A1 \ V (M ′), B∗ = B \ V (M ′). Let H∗ = H[A∗1 ∪ B∗] be
the bipartite graph obtained from H by deleting vertices of M ′. Note that M̂ \M ′
covers B∗ and for all v ∈ A∗1,

d(v,B∗) ≥
(

1

(
√
s+ 1)2

+ γ

)
n− α′n ≥ n

(
√
s+ 1)2

≥ |H∗|
(
√
s+ 1)2

.

Thus by Lemma 4.2, there is a spanning t-star-matching M∗ in H∗ with t ≤ s. Now
(M \ M̂) ∪M ′ ∪M∗ gives us the desired t-star-2-matching of G.

If G is bipartite, then since G has no odd cycles, a t-star-2-matching is a t-star-
matching.

We note that any improvement in the bound on d(a) for all a ∈ A in Lemma 4.2
would immediately improve the bounds in Lemma 4.5, Lemma 6.2, and consequently
Lemma 3.5.

Problem 4.6. Determine the smallest value of m so that the outcome of Lemma
4.2 holds with d(a) ≥ m for all a ∈ A. It is at least n

2s+2 as witnessed by s+1 disjoint,
nearly balanced copies of complete bipartite graphs on approximately n

s+1 vertices each.

5. Regularity lemma. Let G be a bipartite graph with bipartition {A,B}. For
nonempty sets X ⊆ A, Y ⊆ B, we define the density of G[X,Y ] to be dG(X,Y ) :=
eG(X,Y )/|X||Y |. Let ε > 0. We say that G is ε-regular if for all sets X ⊆ A and
Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B| we have
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SPANNING TREES WITH FEW BRANCH VERTICES 1511

|dG(A,B)− dG(X,Y )| < ε.

The following simple results follow immediately from this definition.

Proposition 5.1. Let (A,B) be an ε-regular pair with density d. Then, for all
A′ ⊆ A with |A′| ≥ ε|A|, all but at most 2ε|B| vertices in B have (d±ε)|A′| neighbors
in A′.

Proposition 5.2. Let (A,B) be an ε-regular pair with density d, and let c > ε.
Let A′ ⊆ A and B′ ⊆ B with |A′| ≥ c|A| and |B′| ≥ c|B|. Then (A′, B′) is a
2ε/c-regular with density at least d− ε.

Let Q be a partition of a set V . For a subset U ⊆ V , define Q\U := {W \U : W ∈
Q}. We say that a partition Q′ is a refinement of Q if, for all W ′ ∈ Q′, W ′ ⊆ W for
some W ∈ Q.

Let G be a graph on V . We say that Q is an (ε, d,m, k)-regular partition of G, if
(Q1) Q = {V0, V1, . . . , Vk} is a partition of V ;
(Q2) |V0| ≤ εn;
(Q3) |V1| = · · · = |Vk| = m;
(Q4) for all distinct i, j ∈ [k], the graph G[Vi, Vj ] is ε-regular and has density either

0 or > d;
(Q5) for all i ∈ [k], G[Vi] is empty.

We use the degree form of the regularity lemma.

Lemma 5.3 (degree form of the regularity lemma). For all 0 < ε < 1, there
exists N = N(ε) such that the following holds for every 0 ≤ d < 1. For every graph
G on n ≥ N vertices with partition Q′ of V (G) into at most ε−1 parts, there exist a
spanning subgraph G′ of G and an (ε, d,m, k)-regular partition Q = {V0, V1, . . . , Vk}
of G′ satisfying the following:

(i) ε−1 ≤ k ≤ N ;
(ii) {V1, . . . , Vk} is a refinement of Q′ \ V0;
(iii) ∆(G−G′) ≤ (d+ ε)n.

Lemma 5.3 can be derived from Szemerédi’s original regularity lemma [30].3

We now define the reduced graph.

Definition 5.4 (reduced graph). Let m, k ∈ Z+ and ε, d > 0. Let G be a
graph and Q = {V0, V1, . . . , Vk} an (ε, d,m, k)-regular partition of G. We define the
(ε, d)-reduced graph R of G as follows. The vertex set of R is the set of clusters
{Vi : i ∈ [k]}. For each U,U ′ ∈ V (R), UU ′ is an edge of R if the subgraph G[U,U ′] is
ε-regular and has density greater than d.

Note that the (ε, d)-reduced graph R depends on Q, which will always be known
from the context. If |V (G)| = n and δ(G) ≥ ηn, then δ(R) ≥ (η − ε)k (see Proposi-
tion 5.6). As discussed in section 2, there is no relationship between ∆(G) and ∆(R).
For our purpose, we would like that, if dR(Vi) = dik, then the majority of the vertices
v ∈ Vi satisfy dG(v) ≈ din. We can achieve this by considering a graph R∗ obtained
from the reduced graph R by essentially replacing each edge ViVj in R of density di,j
with a random bipartite graph of density di,j . Formally, we introduce the following
notion.

Definition 5.5 (fractional-random-reduced graph). Let `, s ∈ Z+ and ε, ε′, d >
0. Let G be a graph and Q = {V0, V1, . . . , Vk} an (ε, d,m, k)-regular partition of G.

3See [18, Lemma 7.3] for a sketch of the proof.
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1512 LOUIS DEBIASIO AND ALLAN LO

For all distinct i, j ∈ [k], let di,j = dG(Vi, Vj). We say that a graph R∗ is an (ε′, `, s)-
fractional-random-reduced graph of G if

(R1) V (R∗) =
⋃
i∈[k]Xi, where Xi = {xi,j : j ∈ [`]} is a set of ` vertices;

(R2) for any distinct i, j ∈ [k], if di,j = 0, then R∗[Xi, Xj ] is empty;
(R3) for any i ∈ [k], any s′ ≤ s vertices y1, . . . , ys′ with each yp ∈ Xip , where

ip 6= i,∣∣∣∣∣∣Xi ∩
⋃
p∈[s′]

NR∗(yp)

∣∣∣∣∣∣ =

∣∣∣∣∣∣Xi \
⋂
p∈[s′]

NR∗(yp)

∣∣∣∣∣∣ = (1± ε′)

1−
∏
p∈[s′]

(1− dip,i)

 `.

Again, R∗ depends on Q, which will be known from context. Note that if 0 <
1/`� ε′, d, 1/s, then such an R∗ exists, by taking R∗[Xi, Xj ] to be a binomial random
balanced bipartite graph on 2` vertices with probability di,j for each distinct i, j ∈ [k]
(cf. [17, Definition 1.9]).

The key property of R∗ is that if R∗ contains vertex-disjoint stars covering some
proportion of V (R∗), then we can find vertex-disjoint stars in G covering approxi-
mately the same proportion of V (G) (see Lemma 5.10).

The following simple propositions relate the minimum degrees of G, R, and R∗.

Proposition 5.6. Let n, `, s ∈ Z+ and ε, ε′, δ, η, α′ > 0 with ε ≤ 1/2. Let G be a
graph on n vertices with δ(G) ≥ ηn. Let U be the set of vertices v ∈ V (G) such that
d(v) < δn, and let Q′ := {U,U}. Suppose that |U | ≤ α′n. Let Q = {V0, V1, . . . , Vk} be
an (ε, d,m, k)-regular partition of G such that {V1, . . . , Vk} is a refinement of Q′ \V0.
Let R and R∗ be the (ε, d)-reduced graph and an (ε′, `, s)-fractional-random-reduced
graph of G, respectively. Then

(i) δ(R) ≥ (η − ε)k;
(ii) δ(R∗) ≥ (η − ε− ε′)k`;
(iii) dR∗(x) ≥ (δ − ε− ε′)k` for all but at most 2α′k` vertices x ∈ V (R∗).

Proof. For all distinct i, i′ ∈ [k], let di,i′ = dG(Vi, Vi′). Note that k ≤ n/m ≤ 2k.
For each i ∈ [k],∑

i′∈[k]\{i}

di,i′ ≥
1

m2

∑
v∈Vi

(dG(v)− |V0|)

≥ k

m

∑
v∈Vi

(
dG(v)

n
− ε
)
≥ k

m

∑
v∈Vi

(η − ε) = (η − ε)k,(5.1)

implying (i), as dR(Vi) ≥
∑
i′∈[k]\{i} di,i′ and δ(G) ≥ ηn. Consider any vertex xi,j ∈

V (R∗). By (R3) (with s′ = 1) and (5.1), we have

dR∗(xi,j) =
∑

i′∈[k]\i

dR∗(xi,j , Vi′)

≥
∑

i′∈[k]\i

(1− ε′)di,i′` ≥ (1− ε′)(η − ε)k` ≥ (η − ε− ε′)k`.

Hence δ(R∗) ≥ (η − ε− ε′)k` implying (ii). Recall that {V1, . . . , Vk} is an refinement
of Q′ \ V0. Thus for all but at most `|U |/m ≤ 2α′k` vertices x ∈ V (R∗) satisfies
dR∗(x) ≥ (δ − ε− ε′)k`.

We need the following lemmas which give some desirable properties of (ε, d)-
reduced graph R. First, we show that if G has no sparse cuts, then R is connected.
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Lemma 5.7. Let n, k,m ∈ Z+ and ε, d, α > 0 be such that 2(d+2ε) ≤ α. Let G be
a graph on n vertices with no α-sparse cuts. Let G′ be a spanning subgraph of G with
∆(G − G′) ≤ (d + ε)n. Let Q = {V0, V1, . . . , Vk} be an (ε, d,m, k)-regular partition
of G′. Then the (ε, d)-reduced graph R of G′ is connected.

Proof. Suppose that R is not connected. Let A be a component of R with |A| ≤
k/2 and A =

⋃
Vi∈A Vi. Note that |A| ≥ n/2. By the hypothesis,

eG
(
A,A

)
≤ eG−G′

(
A,A

)
+ eG(A, V0) ≤ (d+ 2ε)n|A| ≤ α|A||A|

contradicting the fact that G has no α-sparse cuts.

Next, we show that if R is connected, then every pair of vertices in V (G) \V0 can
be connected by a short path, even if some small number of vertices are forbidden to
be used on the path. We say the length of a path P to mean its number of its edges.
For vertices u, v, a (u, v)-path is a path having u and v as endpoints.

Lemma 5.8. Let n, k,m ∈ Z+ and ε, d > 0 be such that k ≥ 3 and 4ε < 3d. Let
G be a graph on n vertices with δ(G) ≥ ηn and Q = {V0, V1, . . . , Vk} an (ε, d,m, k)-
regular partition of G. Suppose that X ⊆ V (G) with |X| ≤ dm/4 and the (ε, d)-reduced
graph R of G is connected. Let u, v ∈ V (G) \ X such that d(u, Vi) ≥ (d − ε)m and
d(v, Vi′) ≥ (d − ε) for some i, i′ ∈ [k]. Then there exists an (u, v)-path in G \ X of
length at most k + 1.

Proof. By relabeling if necessary, suppose d(u, V1) ≥ (d−ε)m and d(v, Vt) ≥ (d−
ε)m such that V1V2 . . . Vt is a path in R (with t ≤ k), which exists since R is connected.
If t = 1, then let V2 be a neighbor of V1 in R. Note that by Proposition 5.1, there
exists a vertex in V2 which has a neighbor in both (N(u)∩V1)\X and (N(v)∩V1)\X.
Thus there exists an (u, v)-path of length 4 in G \X.

If t ≥ 2, then set V ′1 = (N(u) ∩ V1) \ X and V ′t = (N(v) ∩ Vt) \ X. Applying
Proposition 5.1 iteratively, we find V ′2 , . . . , V

′
t−1 such that for all i ∈ [t − 2], V ′i+1 ⊆

Vi+1 \ X, |V ′i+1| ≥ (d − ε)|Vi+1| − |X| ≥ ε|Vi+1| and d(v, V ′i ) ≥ (d − ε)|V ′i | > 0 for
all v ∈ V ′i+1. Note that eG(V ′t−1, V

′
t ) > 0 by Proposition 5.1. In the end we have a

(u, v)-path ux1 . . . xtv with each xi ∈ V ′i .

The following lemma appears explicitly in [1, Lemma 10], although we only state
a weaker version here. It allows us to turn the existence of a matching in the reduced
graph into long paths in the original graph.

Lemma 5.9. Let 0 < m� ε < d/100. Let G be a bipartite graph with bipartition
{V1, V2} with |V1|, |V2| ≥ m. Suppose that G is ε-regular with density at least d/4.
Then there exists a path of length at least (2− 10ε/d)m.

Let R∗ be a fractional-random-reduced graph of G. The next lemma shows that
if R∗ contains vertex-disjoint stars covering some proportion of V (R∗), then we can
find vertex-disjoint stars in G covering approximately the same proportion of V (G).

Lemma 5.10. Let n, `, s ∈ Z+ and ε, ε′, d > 0 with ε ≤ d and 4sε ≤ ε′ . Let G be
a graph on n vertices and Q = {V0, V1, . . . , Vk} an (ε, d,m, k)-regular partition of G.
Let R∗ be an (ε′, `, s)-fractional-random-reduced graph of G. Suppose that S1, . . . , St
are vertex-disjoint stars in R∗ and L is the set of leaves of S1, . . . , St. Then G contains
t vertex-disjoint stars S′1, . . . , S

′
t such that

(i) |
⋃
p∈[t] V (S′p)| ≥ m

` |L| − 4ε′mk;

(ii) for each i ∈ [k], |Vi ∩
⋃
p∈[t] V (S′p)| ≤ m

` |Xi ∩ L|+ t.
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1514 LOUIS DEBIASIO AND ALLAN LO

Proof. For each p ∈ [t], let yp be the center of Sp with yp ∈ Xip and Lp :=
V (Sp) \ yp be the leaves of Sp. For distinct i, j ∈ [k], let di,j := dG(Vi, Vj).

Claim 5.11. There exist distinct vertices v1, . . . , vt ∈ V (G) and subsets I1, . . . ,
It ⊆ [k] such that, for each p ∈ [t] and all i ∈ [k],

(ap) vp ∈ Vip ;
(bp)

∑
i∈Ip |Lp ∩Xi| ≥ (1− 4ε)|Lp|;

(cp) if i ∈ Ip, then Lp ∩Xi 6= ∅;

(dp)

∣∣∣∣∣∣Vi \
⋃

p′∈[p] : i∈Ip′

NG(vp′)

∣∣∣∣∣∣ ≤ mmax

 ∏
p′∈[p] : i∈Ip′

(
1− dip′ ,i + ε

)
, ε

 .

Proof of Claim. Suppose for some p ∈ [t], we have already found v1, . . . , vp−1,
I1, . . . , Ip−1. We find vp and Ip as follows.

Consider i ∈ [k] \ {ip} with Xi ∩ Lp 6= ∅. Let Ji := {p′ ∈ [p − 1] : i ∈ Ip′} and
Ni :=

⋃
p′∈Ji NG(vp′). We say that the vertex v ∈ Vip is i-good if

|Vi \ (NG(v) ∪Ni)| ≤ max
{(

1− dip,i + ε
)
|Ni|, εm

}
;

otherwise, we say that v is i-bad. Define the function σi : Vip → {0, 1} such that
σi(v) = 1 if v is i-good, and σi(v) = 0 otherwise. Since Xi ∩ Lp 6= ∅, then the
definition of R∗ implies that dip,i ≥ d > 0. If |Vi \Ni| ≤ εm, then σi(v) = 1 for all
v ∈ Vip . Otherwise since G[Vip , Vi] is ε-regular, Proposition 5.1 implies that for all
but at most 2εm vertices v ∈ Vip ,

|Vi \ (NG′(v) ∪Ni)| ≤
(
1− dip,i + ε

)
|Vi \Ni| .

Hence σi(v) = 1 for all but at most 2εm vertices v ∈ Vip , that is,
∑
v∈Vip

σi(v) ≥
(1− 2ε)m. Therefore,∑

v∈Vip

∑
i∈[k] : Xi∩Lp 6=∅

|Xi ∩ Lp|σi(v) ≥ (1− 2ε)m
∑
i∈[k]

|Xi ∩ Lp| = (1− 2ε)m|Lp|.

So, by averaging, there exists a vertex vp ∈ Vip \ {v1, . . . , vp−1} such that∑
i∈[k]

|Xi ∩ Lp|σi(vp) ≥ (1− 4ε)|Lp|.

Set Ip := {i ∈ [k] : Xi ∩ Lp 6= ∅ and σi(vp) = 1}. Clearly (ap)–(cp) hold. We now
verify (dp). If i /∈ Ip, then (dp) holds by (dp−1). If i ∈ Ip, then (dp) holds by (dp−1)
and the fact the vp is i-good.

We are going to construct vertex-disjoint stars S′1, . . . , S
′
t, where Sp has center vp

and leaves in
⋃
i∈Ip Vi. Let V̂ := {v1, . . . , vt}. Suppose that for each i ∈ [k],

|Vi ∩NG(V̂ )| ≥ m

`

 ∑
p∈[t] : i∈Ip

|Lp ∩Xi|

− 2ε′m.(5.2)

Pick Wi ⊆ Vi ∩NG(V̂ ) such that |Wi| = m
` (
∑
p∈[t] : i∈Ip |Lp ∩Xi|) − 2ε′m. Together

with (bp) and the fact that 4sε ≤ ε′, we have
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∑
i∈[k]

|Wi| ≥
∑
i∈[k]

m
`

 ∑
p∈[t] : i∈Ip

|Lp ∩Xi|

− 2ε′m


=
m

`

∑
p∈[t]

∑
i∈Ip

|Lp ∩Xi|

− 2ε′mk

≥ m

`

∑
p∈[t]

(1− 4ε)|Lp| − 2ε′mk ≥ m

`
|L| − (2ε′ + 4sε)mk ≥ m

`
|L| − 3ε′mk.

As Wi ⊆ Vi ∩
⋃
p∈[t]NG(V̂ ), G contains vertex-disjoint stars S′1, . . . , S

′
t with centers

v1, . . . , vt such that
⋃
p∈[t] V (S′p) = V̂ ∪

⋃
i∈[k]Wi. Clearly (i) holds. Since |Wi| ≤

m
` |L ∩Xi| and |V̂ | = t, (ii) holds.

To see if (5.2) holds, consider i ∈ [k]. Let Ji = {p ∈ [t] : i ∈ Ip}. If |Vi∩NG(V̂ )| ≥
(1 − ε)m, then we are done, as

∑
p∈Ji |Lp ∩ Xi| ≤ |Xi| = ` and ε < ε′. Hence (dp)

implies that

∣∣∣Vi ∩NG(V̂ )
∣∣∣ ≥

∣∣∣∣∣∣Vi ∩
⋃
p∈Ji

NG(vp)

∣∣∣∣∣∣ ≥
1−

∏
p∈Ji

(
1− dip,i + ε

)m

≥

1−
∏
p∈Ji

(
1− dip,i

)m− sεm
(R3)

≥ m

`

∣∣∣∣∣∣Xi ∩
⋃
p∈Ji

NR∗(yp)

∣∣∣∣∣∣− (sε+ ε′)m

≥ m

`

∣∣∣∣∣∣Xi ∩
⋃
p∈Ji

NSp
(yp)

∣∣∣∣∣∣− 2ε′m =
m

`

∑
p∈Ji

|Xi ∩ Lp| − 2ε′m.

Thus (5.2) holds as required. This completes the proof of the lemma.

6. Spanning star-cycles in graphs with no sparse cuts. Let β > 0, and let
G be a graph on n vertices. We say G is β-near-bipartite if there exists X ⊆ V (G)
such that e(X) < βn2 and e(V (G) \X) < βn2.

The proof of Lemma 3.5 will be obtained by a combination of the following two
results, the first of which is proved by the first author and Nelsen in [9]. Lemma 6.1
provides the existence of an absorbing path which depends on whether G is near-
bipartite or not. In order to use the absorbing path in the case that G is near-bipartite,
we show in Lemma 6.2 that the nearly spanning t-star-cycle can be chosen so that
there are an equal number of leftover vertices in each part of the bipartition.

Lemma 6.1 (absorbing lemma [9]). Let 0 < 1/n� α� η, set ρ := α32/α2

, and
suppose G is an (η, α)-robust graph on n vertices.

(i) If G is not α4-near-bipartite, then there exists a path P with |V (P )| ≤ ρn such
that for all W ⊆ V (G) \ V (P ) with |W | ≤ ρ3n, the subgraph G[V (P ) ∪W ]
contains a spanning path having the same endpoints as P .

(ii) If G is α4-near-bipartite, then there exist a partition {A,B} of V (G) and
a path P with |V (P )| ≤ ρn such that δ(G[A,B]) ≥ ηn/2 and for all W ⊆
V (G) \ V (P ) with |W ∩ A| = |W ∩ B| ≤ ρ3n, the subgraph G[V (P ) ∪ W ]
contains a spanning path having the same endpoints as P .

Lemma 6.2. Let s, n ∈ Z+ and be α, α′, η, ρ, γ be such that 1/n � ρ, α, α′ �
η, γ, 1/s and ρ ≤ αη/16s. Let G be an (η, α)-robust graph on n vertices such that
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1516 LOUIS DEBIASIO AND ALLAN LO

d(v) ≥ ( 1
(
√
s+1)2)

+ γ)n for all but at most α′n vertices. Let P ⊆ G be a path of

order |V (P )| ≤ ρn. Then G contains a t-star cycle C∗ for some t ≤ s with |V (C∗)| ≥
(1−ρ3)n, which contains P as a segment. Moreover, if there exists a partition {A,B}
of V (G) such that δ(G[A,B]) ≥ ηn/2, then we can choose C∗ as above having the
additional property that |A \ V (C∗)| = |B \ V (C∗)|.

Proof. Define N, ` ∈ Z+, and let d, ε, ε′ be such that

1/n� 1/N � ε� d, 1/`, ε′ � ρ, α, α′ � η, γ, 1/s.

If {A,B} is the partition of V (G) such that δ(G[A,B]) ≥ ηn/2, then by Chernoff’s
bound for a random variable with hypergeometric distribution, there exists a set
W ⊆ V (G) \ V (P ) such that |W ∩A| = |W ∩B| = ρ3n/4 and for all v ∈ V (G),

dG(v,A ∩W ) ≥ ρ3

4
dG\V (P )(v,A)− εn and dG(v,B ∩W ) ≥ ρ3

4
dG\V (P )(v,B)− εn.

(6.1)

We reserve W to ensure |A \ V (C∗)| = |B \ V (C∗)| later. If such {A,B} does not
exist, then let W be a subset of V (G) \ V (P ) of size |W | = ρ3n/2.

Let Ĝ := G \ (V (P ) ∪W ). Let

V ′ :=

{
v ∈ V (Ĝ) : dĜ(v) <

(
1

(
√
s+ 1)2

+
3γ

4

)
n

}
,

so |V ′| ≤ α′n. Let Q′ := {V ′, V (Ĝ) \ V ′}. Apply Lemma 5.3 to Ĝ and Q′ to obtain a
spanning subgraph G′ of Ĝ and an (ε, d,m, k)-regular partition Q = {V0, V1, . . . , Vk}
of G′ such that

(a1) ε−1 ≤ k ≤ N ;
(a2) {V1, . . . , Vk} is a refinement of Q′ \ V0;
(a3) ∆(Ĝ−G′) ≤ (d+ ε)n.

Let R be the (ε, d)-reduced graph of G′. Note that since Ĝ is (η/2, α/2)-robust by
Observation 3.2 and the fact that |V (P ) ∪W | ≤ 2ρn ≤ αηn/8, R is connected by
Lemma 5.7.

We now reserve a set U , which will be used to connect paths into a cycle later, as
follows. By Chernoff’s bound for a random variable with hypergeometric distribution,
there exists a set U ⊆

⋃
i∈[k] Vi such that |U ∩ Vi| = ρ8m and, for all v ∈ V (G), we

have

dG(v, U) ≥ ρ8
(
dG(v)−

(
ρ+ ρ3/2

)
n
)
− εn ≥ ρ8ηn/2 ≥ η|U |/2,(6.2)

where we use the facts that δ(G) ≥ ηn, |U | ≤ ρ8n and ε, ρ � η. Let QU =
{∅, V1 ∩ U, V2 ∩ U, . . . , Vk ∩ U}. Since ε � ρ, d, Proposition 5.2 implies that QU
is an (ε1/2, d/2, ρ8m, k)-regular partition of G′[U ]. Note that R is also isomorphic to
the (ε1/2, d/2)-reduced graph of G′[U ]. So the (ε1/2, d/2)-reduced graph of G′[U ] is
connected.

Let G∗ = G′ \U , Q∗ = Q\U and m∗ = (1−ρ8)m. Let V ∗i = Vi \U for all i ∈ [k].
Note that

m∗k =
(
1− ρ8

)
mk ≥

(
1− ρ8

)
(1− ε)|V (Ĝ)| ≥

(
1− ρ8 − ε− ρ3/2

)
n− |V (P )|.

(6.3)

By Proposition 5.2, Q∗ is an (2ε, d/2,m∗, k)-regular partition of G∗. Let R∗ be an
(ε′, `, s)-fractional-random-reduced graph of G∗. Note that for all v ∈ V (G∗),
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dG∗(v) ≥ dG(v)− |V (P )| − |W | −∆(Ĝ−G′)− |U |
(a3)

≥ dG(v)− (ρ+ ρ3/2 + d+ ε+ ρ8)n ≥ dG(v)− η|G∗|/3.

Proposition 5.6 implies that δ(R∗) ≥ ηk`/2 and dR∗(x) ≥ ( 1
(
√
s+1)2

+ γ
2 )k` for all but

at most 8α′k` vertices x ∈ V (R∗).
By Lemma 4.5, R∗ has a spanning t-star-2-matching M∗ with some t ≤ s. Let

S1, . . . , St be the nontrivial stars of M∗, and let M be the 2-matching of M∗. Let L
be the set of leaves of S1, . . . , St. Since t ≤ `, (a1) implies that

|L|+ |V (M)| = k`− t ≥ (1− ε)k` and |Xi ∩ (L ∪ V (M))| ≤ `.(6.4)

By Lemma 5.10, G∗ contains t vertex-disjoint stars S∗1 , . . . , S
∗
t such that

(b1) |
⋃
p∈[t] V (S∗p)| ≥ m∗

` |L| − 4ε′m∗k;

(b2) for each i ∈ [k], |V ∗i ∩
⋃
p∈[t] V (S∗p)| ≤ m∗

` |Xi ∩ L|+ t.
Recall that M is a 2-matching. Let M = M1 ∪ M2, where M1 is the set of

components of M consisting of a single edge and M2 is the set of components of M
which are odd cycles. Let H be the multigraph on [k] such that ij is an edge of H
of multiplicity 2µ1 + µ2, where µr is the number of edges between Xi and Xj in Mr.
Note that

|E(H)| = |V (M)|.(6.5)

For each edge e ∈ E(H), we choose We ⊆
⋃
i∈e Vi\

⋃
p∈[t] V (S∗p) such that |We∩V ∗i | =

m∗/2` − t for each i ∈ e. By (6.4) and (b2), we can ensure that {We : e ∈ E(H)} is
pairwise disjoint.

Consider any e = ii′ ∈ E(H). Note that G∗[We] = G∗[We ∩ V ∗i ,We ∩ V ∗i′ ]. By
Proposition 5.2, G∗[We] is 5`ε-regular with density at least d/4. Apply Lemma 5.9
and obtain a path Pe in G∗[We] with

|V (Pe)| ≥ (1− 100ε/d)m∗/`− 2t ≥ (1− 2ε′)m∗/`,

where the last inequality holds as ε � d � ε′. Recall that |E(H)| = |V (M)| ≤ k`.
Note that

|V (P )|+ |
⋃
p∈[t]

V (S∗p)|+
∑

e∈E(H)

|V (Pe)|

(b1)

≥ |V (P )|+ m∗

`
|L| − 4ε′m∗k + (1− 2ε′)

m∗

`
|E(H)|

(6.5)

≥ |V (P )|+ (1− 2ε′)(|L|+ |V (M)|)m
∗

`
− 4ε′m∗k

(6.4)

≥ |V (P )|+ (1− 6ε′ − ε)km∗

(6.3)

≥
(
1− 6ε′ − 2ε− ρ8 − ρ3/2

)
n >

(
1− ρ3/2− 2ρ8

)
n,(6.6)

where for the last inequality we use the fact that ε, ε′ � ρ.
Next, we connect P , S∗1 , . . . , S∗t ,

⋃
e∈E(H) Pe into a t-star-cycle using vertices

from U as follows. Let P1, . . . , Pq be an enumeration of {Pe : e ∈ E(H)}, so q ≤ k`.
Let Pq+1 := P . For j ∈ [q+ 1], let x2j−1, x2j be the end vertices of Pj . For p ∈ [t], set
x2q+2p+1, x2q+2p+2 be the center of S′p and a leaf of S′p, respectively. By (6.2) and since
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k`+ t ≤ γn, there exist distinct vertices y1, . . . , y2q+2t+2 ∈ U such that yj ∈ NG(xj)
for all j ∈ [2q + 2t + 2]. Moreover, (6.2) implies that for each j ∈ [2q + 2t + 2],
dG(yj , U∩Vi) ≥ η|U∩Vi|/2 for some i ∈ [k]. Recall that the (ε1/2, d/2)-reduced graph
of G′[U ] is connected. By repeat applications of Lemma 5.8, there exist disjoint paths
P ′1, . . . , P

′
q+t+1 in G′[U ] such that each P ′j is a (y2j , y2j+1)-path of length at most k+1

(with y1 = y2q+2t+3). Set

C∗ = P ∪
⋃
p∈[t]

S∗p ∪
⋃

e∈E(H)

Pe ∪
⋃

j∈[q+t+1]

P ′j ∪
⋃

j∈[2q+2t+2]

{xjyj}.

Note that C∗ is a t-star-cycle, and by (6.6),

|V (C∗)| ≥ (1− ρ3/2− 2ρ8)n.(6.7)

From this point on, all that remains is to prove the last sentence of the lemma. So
we assume that there exists a partition {A,B} of V (G) such that δ(G[A,B]) ≥ ηn/2.
We will show that |A\V (C∗)| = |B\V (C∗)| by altering C∗. (Note thatW∩V (C∗) = ∅,
so we can add vertices of W to C∗.) Let K∗ be the set of vertices in C∗ that have
degree at least 3. Note that K∗ is precisely the set of centers of S∗1 , . . . , S

∗
t . Let

A0 := A \ V (C∗), and let B0 := B \ V (C∗). Suppose without loss of generality that
|A0| − |B0| > 0. Since W ⊆ A0 ∪B0, |W ∩A| = |W ∩B| = ρ3n/4, we have by (6.7)

0 < |A0| − |B0| < 2ρ8n.

First suppose that there exists x ∈ K∗ with dC∗(x) ≥ ρ4n + 2. Let L∗ be the
set of vertices y ∈ NC∗(x) that have degree 1 in C∗. Note that |L∗| ≥ ρ4n. If
|L∗ ∩ B| ≥ ρ4n/2, then we are done by deleting |A0| − |B0| vertices of L∗ ∩ B from
C∗. If |L∗ ∩A| ≥ ρ4n/2, then (6.1) implies that

dG(x,A ∩W ) ≥ ρ3

4
|L∗ ∩A| − εn ≥ 2ρ8n > |A0| − |B0|.

In this case, we are done by joining |A0| − |B0| vertices in NG(x) ∩A ∩W to x.
Therefore we may assume that dC∗(x) < ρ4n + 2 ≤ 2ρ4n for all x ∈ K. This

implies that C∗ has at most 2sρ4n vertices of degree 1. Let C be the cycle in C∗,
that is, C is obtained from C∗ by deleting all vertices of degree 1. Hence by (6.7),

|V (C)| ≥ |V (C∗)| − 2sρ4n ≥ (1− ρ3)n.

Since δ(G[A,B]) ≥ ηn/2, we deduce that V (C)∩A, V (C)∩B 6= ∅. Let A′ := A\V (C)
and B′ := B \ V (C), and suppose that |A′| − |B′| > 0 (and the case |B′| − |A′| > 0 is
proved analogously). Note that

0 < |A′| − |B′| ≤ |A0| − |B0|+ |V (C∗) \ V (C)| < (2ρ8 + 2sρ4)n ≤ 2(s+ 1)ρ4n.

Let x′ ∈ V (C∗)∩B, which exists by (6.7). Recall that δ(G[A,B]) ≥ ηn/2 and ρs� η.
Hence (6.1) implies that

dG(x′, A ∩W ) ≥ ρ3ηn/8− εn ≥ 2(s+ 1)ρ4n > |A′| − |B′|.

Let C ′ be the 1-star-cycle obtained from C by joining |A′|−|B′| vertices in NG(x′, A∩
W ) to x′. Note that |V (C ′)| ≥ |V (C)| ≥ (1− ρ3)n and |A \ V (C ′)| = |B \ V (C ′)|, as
desired.
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Proof of Lemma 3.5. We will only consider the case when G is α4-near-bipartite
(as the other case can be proven by a similar argument). Set ρ := α32/α2

. By
Lemma 6.1 there exists a partition {A,B} of V (G) and a path P with |V (P )| ≤ ρn
such that δ(G[A,B]) ≥ ηn/2 and for all W ⊆ V (G)\V (P ) with |W ∩A| = |W ∩B| ≤
ρ3n, the subgraph G[V (P )∪W ] contains a spanning path having the same endpoints
as P . Now apply Lemma 6.2 to G to get a t-star cycle C∗ for some t ≤ s which
contains P as a segment and has |A \ V (C∗)| = |B \ V (C∗)| ≤ ρ3n. By the property
of P and the size of the sets A \ V (C∗) and B \ V (C∗), we can replace P in C with a
path P ∗ having the same endpoints as P and V (P ′) = V (P ) ∪ (V (G) \ V (C∗)).
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[17] J. Komlós and M. Simonovits, Szemerédi regularity lemma and its applications in graph
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