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A B S T R A C T

The bed nucleus of the stria terminalis (BNST) is a sexually dimorphic brain region which plays a key role in stress, anxiety, and anxiety-related disorders. Human
females have an increased susceptibility to anxiety-related disorders, however the physiological basis of this is not fully understood. Here we examined the effect of
the oestrous cycle and sex on the electrophysiological properties of Type I and Type II cells in the anterolateral area of the BNST (BNSTALG) in unstressed animals.
There was no significant effect of oestrous cycle on any of the parameters examined in either cell type. Compared to males, the female cohort had lower capacitance
in Type I cells while having a higher capacitance in Type II cells. Type II cells also displayed decreased excitability in the female cohort. In order to confirm the effect
of these populations on stress and anxiety, a correlation with behaviour on the elevated zero maze was carried out. We observed that increased excitability in Type II
neurons correlated with a decrease in anxiety-like behaviour. These sex-specific differences in excitability may contribute to altered susceptibility to anxiety-related
disorders.

1. Introduction

Chronic stress and anxiety are placing increasing burdens on the
economies of western societies (Kessler et al., 2001). A number of the
detrimental effects of chronic stress are mediated via the hypothalamic-
pituitary-adrenal (HPA) axis originating from the paraventricular nu-
cleus (PVN). A key source of stress-related responses is the limbic
system however there are no extensive connections between higher
limbic system structures, such as the hippocampus or the medial pre-
frontal cortex, and the PVN. Instead connections are relayed through
intermediate brain regions, a key one of which is the bed nucleus of the
stria terminalis (BNST).

Classically, the BNST has been hypothesised to mediate “sustained”
fear and/or anxiety after repeated stressors, as well as contextual cues
that predict aversive and/or stressful stimuli (Davis et al., 2010) how-
ever a number of more recent studies have highlighted the central role
of the BNST in learned fear (Moaddab and Dabrowska, 2017; Janeček
and Dabrowska, 2018), indicating that the BNST and the amygdala
work together to process fearful stimuli (Shackman and Fox, 2016). Due
to the central role of the BNST in stress processing it has been im-
plicated in a number of anxiety-related disorders including general
anxiety disorder (GAD) (Pigott, 2003; Conrad et al., 2011; Yassa et al.,
2012), drug addiction (specifically stress-induced relapse) (Shaham
et al., 2003; Dumont et al., 2005; Li et al., 2012; Jennings et al., 2013)
and post-traumatic stress disorder (PTSD) (Hammack et al., 2012;

Lebow et al., 2012; Janitzky et al., 2015; Rodriguez-Sierra et al., 2016).
Anxiety-related disorders show a significantly higher rate of in-

cidence in females relative to males, with some estimates putting rates
of PTSD in females at twice that observed in males (Kessler et al., 1995;
Breslau and Kessler, 2001). While societal effects may contribute to
such elevated rates, alterations in underlying neurological stress pro-
cessing may also be involved. In this regard it is important to note that
the BNST is a sexually dimorphic brain region in both humans and
rodents (del Abril et al., 1987; Malsbury and McKay, 1987; Hines et al.,
1992; Wittmann and McLennan, 2013). Moreover, it plays a role in
sexual identity (Hines et al., 1992; Kruijver et al., 2000) and sex-specific
behaviours. These behaviours include maternal behaviour (Klampfl
et al., 2014, 2016), aggression in males (Trainor et al., 2010; Masugi-
Tokita et al., 2016), sexual behaviour (He et al., 2013; Maejima et al.,
2015) and sex-specific responses to stressors (Greenberg et al., 2014;
Janitzky et al., 2014).

The BNST is comprised of a number of anatomically defined sub-
regions (Dong et al., 2001b, 2001a). One such subdivision is the ante-
rolateral area of the BNST (BNSTALG), a region with extensive connec-
tions to the PVN that has been strongly implicated in anxiety-related
response (Hammack et al., 2007; Daniel and Rainnie, 2015). There are
three neurophysiologically distinct cell types in the BNSTALG which
were first described by Hammack et al. (2007). While the physiological
roles of these cell types have yet to be fully determined, a recent review
of existing data hypothesised the role that each of these cell types fulfil.
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The exact role of Type I and Type II cells are yet to be fully understood
however they are believed to represent ‘anxiety off’ cells while Type III
cells, which are predominantly CRF positive-cells, are ‘anxiety on’ cells
(Daniel and Rainnie, 2015).

A number of studies have found an effect of oestrous cycle on the
electrophysiological properties of neurons (Blume et al., 2017;
Vandegrift et al., 2017; Proano et al., 2018). In order to determine if sex
specific differences were being driven by oestrous cycle the electro-
physiological properties were compared at each stage of the cycle. As
no statistically significant differences were observed the females at each
stage were grouped together for comparison with age matched males
from the same colony. We hypothesised that sex-specific differences in
the intrinsic properties of neurons located in the anterolateral area of
the BNST may be contributing to sex-associated differences in stress
processing. We sought to examine this by combining neurophysiolo-
gical characterizations of BNST cellular populations with behavioural
assessments of anxiety made using the elevated zero maze.

2. Method

2.1. Animals

All experiments were carried out in accordance with the Animals
(Scientific Procedures) act 1986. All tissues for this study were har-
vested from C57-BL6 mice bred in house from initial stock purchased
from Charles River. For their entire lifespan animals had ad libitum
access to both food and water and were housed on a 12/12 light-dark
cycle. In this investigation male and female animals aged 3–5 months
were compared; the female cohort had an age range of 15–26 weeks
with a mean age of 21 weeks while the male cohort was recorded from
animals aged 14–23 weeks with a mean age of 18 weeks. The female
cohort was further divided based on their stage in the oestrous cycle.
Experimental days employing brain slices obtained from the two dif-
ferent sexes and various oestrous stages were interleaved throughout
the duration of the study. A proportion of these animals underwent
behavioural tests. On the days in which behaviour was employed, the
zero maze was run in the morning and the animal was sacrificed for
subsequent slicing within an hour of the maze.

2.2. Behavioural tests

Anxiety levels were examined using the elevated zero maze (Faria
et al., 2016). In this maze, anxiety is thought to be related to the pro-
portion of time spent in the open area. A light source was placed in the
centre of the maze which allowed the two ‘closed’ quadrants of the
maze to remain dark while the ‘open’ quadrants of the maze were il-
luminated by white light. Animals were not handled by the experi-
menter prior to behavioural tests. Animals were placed in the maze for
5 min and the proportion of time spent in the open vs closed component
was determined using a stop watch. The experimenter was blind by to
animal's sex and oestrous cycle stage during analysis.

2.3. Slice preparation

Animals were killed by cervical dislocation, the skull was opened
and the brain was rapidly removed and placed immediately in an ice-
cold slicing medium consisting of (in mM): 189 Sucrose, 10 D-Glucose,
26 NaHCO3, 3 KCl, 5 MgSO4, 0.1 CaCl2, 1.25 NaH2PO4. A Leica VT1200
vibratome was then used to cut serial 300 μm thick coronal sections.
Following their preparation slices were allowed to recover at room
temperature for at least 60 min in our standard artificial cerebrospinal
fluid (aCSF). This was composed of (in mM):124 NaCl, 3 KCl, 24
NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgSO4, 10 D-Glucose, and was
continuously gassed with carbogen (i.e. 95%O2,5%CO2)

Slices containing the BNSTALG came from approximately Bregma -.1
to +0.3, and were identified with the aid of the Paxinos and Franklin

mouse brain atlas using the anterior commissure as a key landmark.
Recordings were carried out in the dorsal portion of the BNSTALG.
Typically one or two suitable BNST-containing coronal sections per
animal could be used and by bisecting these along the dorsal-ventral
midline we were able to obtain two to four usable tissue sections per
mouse.

2.4. Oestrous cycle testing

Following the cervical dislocation of female mice and the removal of
the brain into ice cold sucrose solution the stage of oestrous was ex-
amined via a wet smear. 10 μL of PBS was inserted ∼ 5 mm into the
mouse's vagina and gently flushed two to three times. The final flush
was collected and placed on to a slide for visual examination. The un-
stained sample was examined under a ×10 objective on a Nikon eclipse
E800 microscope. Oestrous cycle stage was determined by the propor-
tion of each cell type present as described in Caligioni (2009). Briefly,
during proestrus the sample is predominantly populated with nucleated
epithelial cells, during estrus it is predominantly anucleated cornified
cells, in metestrus it is a combination of leukocytes, cornified and nu-
cleated epithelial cells and during diestrus it is predominantly leuco-
cytes.

2.5. Electrophysiological recordings

All recordings were made using the whole cell patch clamp tech-
nique. The BNST containing brain slice was transferred into a sub-
merged recording chamber which was perfused with gassed aCSF and
maintained at a temperature of ∼34.5 °C. The recording chamber was
mounted on the stage of an upright microscope (Olympus BX51).

A Flaming Browning P-97 micropipette puller was used to produce
the microelectrodes used in this study. These had a resistance of 3–5 M
Ω when filled with the K-Gluconate-based internal solution used for all
recordings. This was composed of (in mM): 130 K-Gluconate, 20 KCl, 10
HEPES free acid, 0.2 EGTA, 0.3 GTP-Na salt, ATP-Mg salt, pH adjusted
to 7.3 with KOH. The 15 mV junction potential error produced by
pairing this pipette solution with our aCSF was corrected for during
analysis.

Cells within the BNST were visually identified using the micro-
scope's infrared differential interference contrast optics and a coupled
IR-sensitive CMOS camera (Thor Labs). All recordings were made with
a Multiclamp 700B amplifier (Molecular Devices) interfaced to a
Digidata 1440A (Molecular Devices). Experiments were controlled and
data collected using the Clampex programme within the pClamp 10.4
software suite. All data were stored directly onto a personal computer
(Hewlett-Packard) and backed-up to a network drive. A series of elec-
trophysiological protocols were carried out as previously described in
Smithers et al. (2017). Cells were then sorted into their subtypes based
on their electrophysiological properties from two different prestimulus
potentials based on criteria outlined in Hammack et al. (2007).

2.6. Data analysis

Data were analysed using a range of custom written MATLAB 2014b
scripts and pClamp 10.4 software. Determination of appropriate sta-
tistical test was based on assessment of normal distribution using the
Shapiro-Wilk normality test. Parameters were measured either at rest or
from two preset prestimulus potentials of −70 mV or −80 mV.

2.6.1. Statistical analysis
For comparisons of properties which were only examined at one

potential, a one-way ANOVA was used to examine oestrous and an
unpaired t-test was used to examine sex for populations determined to
be normally distributed. For populations which were not normally
distributed a Kruskal-Wallis test was performed to examine oestrous
and a Mann-whitney U test was performed to examine sex. For
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properties which were examined from two prestimulus potentials, if the
data were normally distributed at both prestimulus membrane poten-
tials a repeated measure two-way ANOVA was carried out with oestrous
or sex as the between subject effect and prestimulus membrane po-
tential as the within subject effect. If the data was not normally dis-
tributed at one or both of the prestimulus potentials a Kruskal-Wallis
test or Mann-whitney U was performed at each prestimulus membrane
potential as appropriate. Firing frequencies in response to each depo-
larising current injection were analysed via repeated measure three-
way ANOVA. All the above statistical tests were carried out in SPSS.
Proportion of cells firing was determined by a chi squared test carried
out in Excel. Figures were prepared with Origin 2016.

3. Results

3.1. Behaviour

Anxiety levels were assessed using the elevated zero maze, where
mice were run on the maze in the early hours of their lights-on stage.
Anxiety was measured as the percentage of time the animals spent in
the light component of the maze. While the females spent approxi-
mately 4% less time in the open in comparison to the males (male:
28 ± 2%, n = 20, female: 24 ± 1%, n = 46) this was not statistically
significant (unpaired t-test, p = 0.07, degrees of freedom (df) = 64,
Fig. 1). There was no statistically significant effect of oestrous cycle on
the % time spent in the open component of the maze (Table 1).

3.2. Electrophysiological properties of neurons located in the anterolateral
area of the BNST

Cells located in the BNSTALG were sorted based on their electro-
physiological properties based on criteria outlined in Hammack et al.
(2007). Type I and Type II neurons both display a sag following the
injection of a depolarising current injection indicative of Ih current.
Type I neurons have a regular spiking pattern while Type II neurons
exhibit a burst firing pattern in response to depolarising stimuli. Type II
neurons also exhibit a rebound depolarisation upon termination of a
hyperpolarising current which often reached threshold from a holding
potential of −55 mV. A total of 79 neurons were recorded from
BNSTALG neurons from male mice and 147 from female mice. In the
male cohort a total of 21 Type I cells, 30 Type II cells, 11 Type III cells
and 17 cells which did not fit the criteria of the 3 populations were
recorded. In the female cohort a total of 66 Type I cells, 56 Type II cells,

10 Type III cells and 15 cells which did not fit the criteria were re-
corded. To determine if there is a relationship between oestrous cycle
and the intrinsic electrophysiological properties of these neurons, the
stage of oestrous was determined at the point of death.

3.2.1. Type I neurons
Of the 66 Type I cells recorded from the female cohort, 13 were

from mice in estrus, 16 were from mice in metestrus, 21 were from mice
in diestrus and 16 were from mice in proestrus. There were no statis-
tically significant effects of the different stages of oestrous on the
resting membrane potential (Table 2), passive membrane properties
(Table 3) or action potential properties (Table 4) of Type I neurons
located in the BNSTALG. There was also no effect of the oestrous cycle
on the proportion of cells firing in response to depolarising current
injections. The firing frequencies of Type I neurons was also not de-
pendent upon oestrous stage (repeated measure two-way ANOVA,
p = 0.6, df = 3).

As no statistically significant effects of oestrous cycle was observed
within this population the cells from each stage of oestrous were
grouped together to form the female cohort. This female cohort was
then compared with an age-matched male cohort to examine the effect
of sex on this population of cells. We began by looking at the resting
membrane potential of Type I cells, both cohorts had similar resting
membrane potentials of ∼ −69 mV (male: 70 ± 2 mV, n = 26, female:
69 ± 1 mV, n = 68, unpaired t-test, p = 0.53, df = 92). Following this
we examined the firing properties of cells at their resting membrane
potential. There was no effect of sex on the proportion of cells firing
with 10/26 male cells firing and 31/68 female cells firing (chi-squared,
p = 0.53). We also examined the firing frequency of the cells which
were firing at rest and found no sex-dependent effect (Male: 2.2 ± 0.5,
n = 10, Female: 5.2 ± 1.1 Hz, Mann-Whitney p = 0.36, n = 31).

Due to the voltage-dependent nature of a number of electro-
physiological properties cells were held at two prestimulus potentials of
−70 mv and −80 mV. We began by examining the passive membrane
properties of the neurons in response to the injection of −40 pA of
current (average trace shown in Fig. 2). One key parameter measured
was the capacitance of the cell which relates to the size of the neuron.
In type I neurons the female cohort had a significantly lower capaci-
tance from both prestimulus potentials, (−70 mV: male: 74 ± 4,
n = 26, female: 63 ± 3, n = 68, Mann-Whitney U, p = 0.04. −80 mV:
male: 76 ± 5, n = 26, female: 65 ± 3, n = 68, Mann-Whitney U,
p = 0.04, Fig. 2) indicating smaller Type I cells in females. No differ-
ences were found in the any of the other passive membrane properties
(Table 5).

The action potential properties were examined from the first action
potential generated in response to a series of depolarising current in-
jections. There was no effect of sex on action potential zenith, width,
threshold or maximum rate of rise (dV/dt max) (Table 6). The excit-
ability of cells was examined using a number of different protocols,
these include incremental current steps ranging from 5 pA to 80 pA in
15 pA increments, from this we examine the proportion of cells firing in
response to each stimuli, the frequency of firing in each cohort (re-
peated measure three-way ANOVA, p = 0.64, df = 1) and latency fol-
lowing the injection of 80 pA of current (−70 mV: male: 12 ± 1 ms,
n = 26, female: 13 ± 1 ms, n = 68, Mann-Whitney U, p = 0.74.
−80 mV: male: 27 ± 3 ms, n = 26, female: 34 ± 5 mV/ms, n = 68,
Mann-U-Whitney, p = 0.10) and observed no significant effects.

In order to address the role of Type I cells in behaviour the elec-
trophysiological properties described here were correlated with per-
centage time spent in the open component of the maze. A more depo-
larised resting membrane potential was highly correlated with
decreases in anxiety like-behaviour in Type I neurons, however, inter-
estingly this was only observed in the male cohort (Male: Pearson
correlation, R-squared = 0.4, ANOVA p = 0.001, Female: Pearson
correlation, R-squared = 0.01, p = 0.46, Fig. 3).

Fig. 1. Percentage time spent in the open of the elevated zero maze of each sex.
(Male n = 20, female, n = 46).
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3.2.2. Type II neurons
A total of 30 Type II neurons were recorded from males and 56 Type

II neurons were recorded from females. Of the female cells 17 cells were
recorded from mice in estrus, 8 cells were recorded from mice in me-
testrus, 14 cells were recoded from mice in diestrus and 17 cells were
recorded from mice in proestrus. No statistically significant effect was
observed between any of the groups in resting membrane potential
(Table 7), passive membrane properties (Table 8) or action potential
properties (Table 9). There was also no effect of oestrous cycle on either
the proportion of cells firing in response to each depolarising current
injection or the firing frequency of cells in response to a series of de-
polarising current injections (Repeated measure three-way ANOVA,
p = 0.77, df = 3). As no effect of oestrous cycle was detected these cells
were grouped together to form the female cohort; this was then com-
pared with an interleaved male cohort from the same colony to examine
sex.

There was no effect of sex on the resting membrane potential of
Type II neurons, this averaged −66 ± 2 mV in the males and
−68 ± 1 mV in the females (unpaired t-test, p = 0.43, df = 84). The
proportion of cells firing at rest was also not dependent upon sex with
14/30 male cells firing at rest and 23/56 female cells firing (chi-
squared p = 0.62). Of the (40–50% of the total) cells which were firing
at rest the average firing frequency was ∼4 Hz in both cohorts (male:

4.9 ± 1.6 Hz, n = 14, female: 4.3 ± 0.8 Hz, Mann-Whitney U,
p = 0.96). Action potential properties were examined from the first
action potential generated in response to a series of depolarising current
injections from two prestimulus potentials. Action potential zenith,
width, and maximum rate of rise were not dependent upon sex
(Table 10).

We also examined the passive membrane properties of this cohort
following the injection of −40 pA of current (averages shown in Fig. 4).
From a prestimulus potential of −70 mV there was no significant effect
of sex on input resistance (male: 527 ± 47 MΩ, n = 30, female:
473 ± 30 MΩ, n = 56, Mann-Whitney U, p = 0.21) however from a
prestimulus potential of −80 mv the male cohort had a trend towards a
higher input resistance which did not reach statistical significance
(male: 430 ± 37 MΩ, n = 30, female: 371 ± 28, n = 56, Mann-
Whitney U, p = 0.054). There was no effect of sex on sag or membrane
time constant (Table 11). The capacitance was significantly higher in
the female cohort (−70 mV: male: 59 ± 3 pF, n = 30, female:
73 ± 3 pF, n = 56. −80 mV: male: 63 ± 3 pF, n = 30, female:
75 ± 4 pF, n = 56, two-way ANOVA, p = 0.01).

Finally, we examined the effect of sex on excitability of Type II
neurons. Excitability was characterised in a number of ways; these in-
cluded determining the proportion of cells firing in response to a series
of depolarising current injections, examining the firing frequencies

Table 1
% time spend in the open of each cohort on the elevated zero maze, df = 45.

Diestrus Proestrus Estrus Metestrus P value Statistical test

% time in the open arm 21 ± 2 (n = 12) 28 ± 3 (n = 10) 23 ± 2 (n = 13) 27 ± 2 (n = 11) 0.07 One-way ANOVA

Table 2
Resting membrane potential (RMP) and firing frequency at resting membrane potential of Type I neurons in oestrous cycle. Degrees of freedom for between group
comparisons = 3.

Parameter Estrus Metestrus Diestrus Proestrus P value Statistical test

RMP (mV) −64 ± 4 (n = 13) −70 ± 3 (n = 16) −68 ± 2 (n = 21) −71 ± 2 (n = 18) 0.28 One-way ANOVA
Frequency at RMP (Hz) 2.1 ± 0.7 (n = 8) 5.4 ± 2.1 (n = 7) 8.6 ± 2.9 (n = 9) 4.1 ± 2.1 (n = 7) 0.19 One-way

ANOVA

Table 3
Passive membrane properties of Type I neurons in oestrous cycle. Kruskal-Wallis test (KW) statistical test. Degrees of freedom for between group comparisons = 3.

Parameter and prestimulus potential Estrus Metestrus Diestrus Proestrus P value Statistical test

Rin (MΩ) −70 mV 510 ± 46 (n = 13) 536 ± 59 (n = 16) 473 ± 43 (n = 21) 535 ± 44 (n = 18) 0.63 KW
−80 mV 427 ± 49 (n = 13) 446 ± 61 (n = 16) 391 ± 39 (n = 21) 444 ± 44 (n = 18) 0.80 KW

Tau (ms) −70 mV 28 ± 3 (n = 13) 35 ± 3 (n = 16) 31 ± 4 (n = 21) 31 ± 3 (n = 18) 0.51 Two-way ANOVA
−80 mV 22 ± 2 (n = 13) 27 ± 3 (n = 16) 25 ± 3 (n = 21) 28 ± 3 (n = 18)

Sag (%) −70 mV 7 ± 1 (n = 13) 9 ± 1 (n = 16) 6 ± 2 (n = 21) 8 ± 1 (n = 18) 0.52 KW
−80 mV 14 ± 3 (n = 13) 15 ± 1 (n = 16) 16 ± 1 (n = 21) 16 ± 3 (n = 18) 0.67 KW

Capacitance (pF) −70 mV 56 ± 5 (n = 13) 70 ± 6 (n = 16) 67 ± 7 (n = 21) 62 ± 6 (n = 18) 0.51 KW
−80 mV 57 ± 6 (n = 13) 66 ± 6 (n = 16) 66 ± 5 (n = 21) 68 ± 7 (n = 18) 0.76 KW

Table 4
Action potential properties of Type I neurons in oestrous cycle. Kruskal-Wallis test (KW) statistical test. Degrees of freedom for between subject effects are 3.

Parameter and prestimulus potential Estrus Metestrus Diestrus Proestrus P Statistical test

Zenith (mV) −70 mV 18 ± 2 (n = 13) 17 ± 2 (n = 16) 15 ± 2 (n = 21) 13 ± 2 (n = 18) 0.30 KW
−80 mV 20 ± 2 (n = 13) 17 ± 2 (n = 16) 17 ± 2 (n = 21) 15 ± 2 (n = 18) 0.46 KW

Width (ms) −70 mV 0.75 ± 0.03 (n = 13) 0.75 ± 0.04 (n = 16) 0.73 ± 0.03 (n = 21) 0.77 ± 0.03 (n = 18) 0.47 KW
−80 mV 0.73 ± 0.03 (n = 13) 0.74 ± 0.05 (n = 16) 0.72 ± 0.04 (n = 21) 0.75 ± 0.04 (n = 18) 0.74 KW

Threshold (mV) −70 mV −51 ± 2 (n = 13) −51 ± 1 (n = 16) −52 ± 1 (n = 21) −51 ± 1 (n = 18) 0.81 Two-way ANOVA
−80 mV −50 ± 2 (n = 13) −51 ± 1 (n = 16) −52 ± 1 (n = 21) −51 ± 1 (n = 18)

dV/dt max (mV/ms) −70 mV 272 ± 23 (n = 13) 281 ± 16 (n = 16) 265 ± 16 (n = 21) 233 ± 11 (n = 18) 0.14 KW
−80 mV 308 ± 24 (n = 13) 302 ± 20 (n = 16) 294 ± 17 (n = 21) 257 ± 11 (n = 18) 0.17 KW
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during these current injections and measuring latency to the first spike
following the injection of +80 pA of current (Fig. 5). From a presti-
mulus potential of −80 mV there was an increased likelihood of firing
in the male cohort following the injection of the weakest current stimuli
(5 pA and 20 pA); in response to the injection of 5 pA of current 3/30 of
the males cells fired while 0/56 female cells fired (chi-squared,
p = 0.02), in response to 20 pA of current 13/17 male cells fired while
only 12/56 female cells fired (chi-squared, p = 0.03). There were no
other significant differences in the proportion of cells firing following
any other current injections or from a prestimulus potential of −70 mV.
Cells in the male cohort fired at a higher frequency then those in the
female cohort in response to depolarising stimuli (repeated measure
three way ANOVA, p = 0.04). There was no effect of sex on spike la-
tency from either prestimulus (−70 mV: male: 9 ± 1 ms, n = 30, fe-
male: 12 ± 1 ms, n = 56, Mann-Whitney U, p = 0.08. −80 mV: male:
15 ± 1 ms, n = 30, female: 24 ± 4 ms, n = 56, Mann-Whitney U,
p = 0.10).

In order to assess the possible role of this population in behaviour,
potential correlations between the electrophysiological properties of
Type II neurons and behaviour on the elevated zero maze were ex-
amined. A strong correlation between firing frequencies following the
injection of +80 pA of current and anxiety like behaviour was observed
from both prestimulus potentials in the male cohort (−70 mV: Pearson

correlation R-squared = 0.19, ANOVA, p = 0.03. −80 mV: R-
squared = 0.17, ANOVA, p = 0.04, Fig. 6). This observation was not
present in the female cohort (−70 mV: Pearson correlation R-
squared = 0.08, ANOVA, p = 0.12. −80 mV: R-squared = 0.01,
ANOVA, p = 0.88, Fig. 6).

4. Discussion

To our knowledge this is the first study to compare the electro-
physiological properties of Type I and Type II neurons in the BNSTALG

in adult male and female mice aged 3–5 months. The main electro-
physiological findings were a lower capacitance of Type I cells in the
female cohort and a higher capacitance in the female cohort of Type II
cells, which was paralleled by a lower intrinsic excitability. An addi-
tional aspect of this study was to consider the potential role of these
physiologically distinct cell types in behaviour. In this respect, we
found a negative correlation between time in the open component of
the maze and the resting membrane potential of Type I neurons in
males. We also found a positive correlation between the percentage
time spend in the open arm and the firing frequencies of Type II neu-
rons in males indicating a potential role for these populations in an-
xiety-like behaviour, once again this was only observed in the male
population.

Fig. 2. Passive membrane properties of Type I neurons. A) average responses to the injection of −40 pA of current. B) Effect of sex on capacitance of Type I neurons a
prestimulus potential of −70 mV (i) and −80 mV (ii), ∗ = p < 0.05.

Table 5
Passive membrane properties of Type I neurons. Mann-Whitney U (MW) statistical test, degrees of freedom in Two-way ANOVA = 1.

Parameter and prestimulus potential Male Female P value Statistical test

Rin (MΩ) −70 mV 496 ± 37 (n = 26) 511 ± 24 (n = 68) 0.73 MW
−80 mV 384 ± 28 (n = 26) 425 ± 24 (n = 68) 0.48 MW

Tau (ms) −70 mV 35 ± 2 (n = 26) 31 ± 2 (n = 68) 0.25 Two-way ANOVA
−80 mV 27 ± 2 (n = 26) 26 ± 1 (n = 68)

Sag (%) −70 mV 8 ± 1 (n = 26) 7 ± 1 (n = 68) 0.9 MW
−80 mV 14 ± 1 (n = 26) 15 ± 1 (n = 68) 0.8 MW
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While a hypothesised a role for these different populations has been
made based mainly on similar populations within the amygdala (Daniel
and Rainnie, 2016), their functional roles have yet to be fully ad-
dressed. Type III cells in the BNST are CRF cells, they are highly re-
sponsive to stress and are thought to act as anxiety-inducing neurons
(Dabrowska et al., 2013, 2016) however due to low n numbers in this
study we were unable to identify sex specific changes in this population.
Type I and Type II cells are hypothesised to be GABAergic and function
as ‘anxiety off’ cells (Daniel and Rainnie, 2016). The correlation ob-
served in male Type I neurons between resting membrane potential and
time in the open arm could indicate an anxiety-inducing function in this
unstressed model. The more hyperpolarising resting membrane poten-
tials in the male cohort correlated with a decrease in anxiety. A more
hyperpolarised resting membrane potential would indicate a decreased
likelihood of firing as, all other things being equal, larger amounts of
depolarising current would be required to bring the cell to threshold. To
my knowledge there has been no papers which have identified specific
neurochemical markers in this population therefore manipulation of
this circuit in vivo would be difficult with our current level of under-
standing.

The correlation between behaviour and excitability of Type II cells

supports the anxiety inhibiting hypothesis of this population with a
greater excitability of male neurons, as measured by spiking rate for a
80 pA current injection, correlating with the higher percentage of time
spent in the open component of the maze. A key finding in this study
was a lower excitability of Type II neurons in females. Theoretically
such a sex-associated change in excitability could result from a number
of underlying sources such as alterations in baseline levels of stress
hormones such as corticosterone, a negative shift in AP threshold, al-
tered AHPs, or changes in input resistance. In the case of Type II neu-
rons in the BNSTALG the ∼15% higher input resistance observed in the
male cohort is a likely contributing factor to the difference between the
sexes. Although this difference in input resistance was not statistically
significant in its own right, it may be enough to influence excitability,
especially when combined pro-excitability differences in other para-
meters in females that also fail to reach significance in their own right,
for example the slightly more negative AP threshold. What may be an
important feature in the excitability of type II cells is the seemingly
larger size of these neurons in females, as judged by a circa 20% larger
calculated capacitance. With a uniform conductance per unit surface
area of membrane this size difference would underpin the lower re-
sistance of type II females BNST neurons. In theory the decrease in
excitability of Type II neurons in the female cohort would lead to an
increase in anxiety; however, there were no statistically significant sex-
specific effects on percentage time spent in the open component of the
elevated zero maze. One possible reason for this is the absence of data
on Type III neurons. Type III neurons have been shown to play a key
role in stress and anxiety (Dabrowska et al., 2016), therefore changes in
Type III neurons, potentially masked by low statistical power, may have
a more powerful effect then the alterations reported here, making the
interpretation of the current data set more difficult.

The electrophysiological characterisation of neurons in the BNST at
the cellular level, along with the examination of functionality of these
populations, was originally based on studies performed with male rats
(Hammack et al., 2007). This characterisation was recently expanded to
other mammals including male mice and rhesus macaque; where a si-
milar classification of cells appears to exist (Daniel et al., 2017) albeit in
different proportions across the different species. In the present report
we found a higher proportion of Type I and Type II cells with fewer
recordings being made in Type III cells. This likely results from the
majority of the recorded neurons in the current report being located in
the undefined anterolateral area, an area where Type III neurons are
sparser. An interesting addition to this work would be an extensive
examination on the effect of sex on the CRF population (Type III cells)
within the BNST however this falls outside the remit of the current

Table 6
Action potential properties of Type I neurons. Mann-Whitney U (MW) statistical test, degrees of freedom in two way ANOVA = 1.

Parameter and prestimulus potential Male Female P Statistical test

Zenith (mV) −70 mV 16 ± 2 (n = 26) 15 ± 1 (n = 68) 0.43 MW
−80 mV 17 ± 2 (n = 26) 17 ± 1 (n = 68) 0.61 MW

Width (ms) −70 mV 0.76 ± 0.04 (n = 26) 0.75 ± 0.02 (n = 68) 0.99 MW
−80 mV 0.76 ± 0.04 (n = 26) 0.73 ± 0.02 (n = 68) 0.50 MW

Threshold (mV) −70 mV −51 ± 1 (n = 26) −51 ± 1 (n = 68) 0.69 Two-way ANOVA
−80 mV −51 ± 1 (n = 26) −51 ± 1 (n = 68)

dV/dt max (mV/ms) −70 mV 266 ± 12 (n = 26) 262 ± 8 (n = 68) 0.84 Two-way ANOVA
−80 mV 291 ± 15 (n = 26) 289 ± 9 (n = 68)

Fig. 3. Correlation between the percentage of time spent in the open compo-
nent of the maze and the resting membrane potential of Type I neurons. Male
cohort examined 14 cells taken from 9 animals (ANOVA, p = 0.001), female
cohort examined 29 cells taken from 20 animals (ANOVA p = 0.46).

Table 7
Resting membrane potential of Type II neurons in oestrous cycle. Degrees of freedom for between subject effects are 3.

Parameter Estrus Metestrus Diestrus Proestrus P value Statistical test

RMP (mV) −68 ± 3 (n = 17) −68 ± 3 (n = 8) −69 ± 2 (n = 14) −69 ± 2 (n = 17) 0.98 One-way ANOVA
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Table 8
Passive membrane properties of Type II neurons in oestrous cycle. Kruskal-Wallis test (KW) statistical test. Degrees of freedom for between subject effects are 3.

Parameter and prestimulus potential Estrus Metestrus Diestrus Proestrus P value Statistical test

Rin (MΩ) −70 mV 557 ± 66 (n = 17) 412 ± 107 (n = 8) 445 ± 43 (n = 14) 440 ± 44 (n = 17) 0.18 KW
−80 mV 447 ± 63 (n = 17) 317 ± 90 (n = 8) 346 ± 45 (n = 14) 341 ± 34 (n = 17) 0.25 KW

Tau (ms) −70 mV 36 ± 3 (n = 17) 29 ± 3 (n = 8) 28 ± 2 (n = 14) 30 ± 3 (n = 17) 0.16 KW
−80 mV 28 ± 3 (n = 17) 22 ± 4 (n = 8) 23 ± 2 (n = 14) 24 ± 2 (n = 17) 0.30 KW

Sag (%) −70 mV 11 ± 1 (n = 17) 13 ± 3 (n = 8) 11 ± 1 (n = 14) 12 ± 1 (n = 17) 0.97 KW
−80 mV 18 ± 2 (n = 17) 21 ± 3 (n = 8) 21 ± 3 (n = 14) 19 ± 2 (n = 17) 0.71 KW

Capacitance (pF) −70 mV 71 ± 6 (n = 17) 87 ± 14 (n = 8) 66 ± 4 (n = 14) 73 ± 6 (n = 17) 0.52 Repeated measure two-way ANOVA
−80 mV 71 ± 7 (n = 17) 85 ± 13 (n = 8) 76 ± 7 (n = 14) 73 ± 5 (n = 17)

Table 9
Action potential properties of Type II neurons in the stages of the oestrous cycle. Kruskal-Wallis test (KW) statistical test. Degrees of freedom for between subject
effects are 3.

Parameter and prestimulus potential Estrus Metestrus Diestrus Proestrus P Statistical test

Zenith (mV) −70 mV 15 ± 3 (n = 17) 16 ± 2 (n = 8) 10 ± 2 (n = 14) 16 ± 1 (n = 17) 0.14 Repeated measure two-way
ANOVA−80 mV 17 ± 3 (n = 17) 17 ± 2 (n = 8) 11 ± 2 (n = 14) 17 ± 1 (n = 17)

Width (ms) −70 mV 0.80 ± 0.03 (n = 17) 0.72 ± 0.04 (n = 8) 0.74 ± 0.03 (n = 14) 0.75 ± 0.03 (n = 17) 0.40 Repeated measure two-way
ANOVA−80 mV 0.75 ± 0.04 (n = 17) 0.68 ± 0.03 (n = 8) 0.69 ± 0.03 (n = 14) 0.73 ± 0.03 (n = 17)

Threshold (mV) −70 mV −52 ± 1 (n = 17) −49 ± 2 (n = 8) −51 ± 1 (n = 14) −53 ± 2 (n = 17) 0.52 KW
−80 mV −54 ± 1 (n = 17) −51 ± 2 (n = 8) −53 ± 1 (n = 14) −53 ± 1 (n = 17) 0.72 KW

dV/dt max (mV/ms) −70 mV 238 ± 14 (n = 17) 281 ± 20 (n = 8) 222 ± 13 (n = 14) 258 ± 14 (n = 17) 0.12 Repeated measure two-way
ANOVA−80 mV 273 ± 15 (n = 17) 313 ± 21 (n = 8) 257 ± 16 (n = 14) 285 ± 14 (n = 17)

Table 10
Action potential properties of Type I neurons. Mann-Whitney U (MW) statistical test, degrees of freedom in two way ANOVA = 1.

Parameter and prestimulus potential Male Female P Statistical test

Zenith (mV) −70 mV 13 ± 2 (n = 30) 14 ± 1 (n = 56) 0.61 Two-way ANOVA
−80 mV 14 ± 2 (n = 30) 15 ± 1 (n = 56)

Width (ms) −70 mV 0.73 ± 0.02 (n = 30) 0.76 ± 0.02 (n = 56) 0.39 Two-way ANOVA
−80 mV 0.69 ± 0.03 (n = 30) 0.72 ± 0.02 (n = 56)

Threshold (mV) −70 mV −51 ± 1 (n = 30) −52 ± 1 (n = 56) 0.52 MW
−80 mV −53 ± 1 (n = 30) −52 ± 1 (n = 56) 0.73 MW

dV/dt max (mV/ms) −70 mV 250 ± 15 (n = 30) 246 ± 8 (n = 56) 0.92 Two-way ANOVA
−80 mV 277 ± 16 (n = 30) 278 ± 8 (n = 56)

Fig. 4. A) Average response to the injection of −40 pA of current from a prestimulus potential of −70 mV (i) and −80 mV (ii). B) Capacitance of Type II cells from a
prestimulus potential of −70 mV (i) and −80 mV (ii), ∗ = p < 0.05.
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report.
This is not the first study to examine the electrophysiological

properties of female neurons located in the BNSTALG, Williams et al.
(2018) found similar proportion of cell types to be present in the
BNSTALG of the female rat, while our group have previously found si-
milar results in female mice of a similar age range (Smithers et al.,
2017). The correlations observed in these studies were only significant
in the male cohorts. This would lead one to question if such classifi-
cations are physiologically relevant in females. There are a number of
possibilities why these classifications may alter between sexes, for ex-
ample changes in Ih which would alter the sag of the cells, sag being one
of the key parameters on which Type I and Type II cells are char-
acterised. Equally changes in IT, which is believed to be responsible for

rebound firing in Type II cells, may have led to the misclassification of
proportions of this population. Reclassification of these cells in females
may be required for an accurate representation of the roles of cells
within the BNST. These discrepancies in classification highlights the
problem of sex bias in our electrophysiological characterisation of po-
pulations, especially those in a sexually dimorphic brain regions such as
the BNST.

Here we have provided insight into the differences in intrinsic
properties of neurons located in the BNSTALG between sexes in an un-
stressed model. These differences may provide a component of the
physiological basis for changes in susceptibility to anxiety-related dis-
orders. To our knowledge this is the first study to directly compare
anxiety-like behaviour in relation to Type I and Type II cells in the

Table 11
Passive membrane properties of Type I neurons. Mann-Whitney U (MW) statistical test, degrees of freedom in two way ANOVA = 1.

Parameter and prestimulus potential Male Female P value Statistical test

Tau (ms) −70 mV 29 ± 2 (n = 30) 31 ± 1 (n = 56) 0.7 Two-way ANOVA
−80 mV 25 ± 1 (n = 30) 25 ± 1 (n = 56)

Sag (%) −70 mV 12 ± 1 (n = 30) 12 ± 1 (n = 56) 0.3 Two-way ANOVA
−80 mV 16 ± 2 (n = 30) 19 ± 1 (n = 56)

Fig. 5. A) Sample traces showing the injection of −40 pA, +20 pA and +80 pA of current (i) and the responses from a (ii) male and (iii) female cell. B) The
proportion of cells firing in response to a series of depolarising current injections from a prestimulus potential of −70 mV (i) and −80 mV (ii). C) Firing frequency in
response to a series of depolarising current injections from a prestimulus potential of −70 mV (i) and −80 mV (ii), ∗ = p < 0.05.
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BNST and has provided insight into the possible functionality of these
different populations in the BNST.
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