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Abstract We present new variants of Estimation of Distribution Algorithms (EDA) for large scale continuous optimisa-

tion, that extend and enhance a recently proposed random projection (RP) ensemble based approach. The main novelty here 
is to depart from the theory of RPs that required (sub-)Gaussian random matrices for norm-preservation, and instead for 
the purposes of high dimensional search we propose to employ random matrices with independent and identically distributed 
entries drawn from a t-distribution. We analytically show that the implicitly resulting high dimensional covariance of the 
search distribution is enlarged as a result. Moreover, the extent of this enlargement is controlled by a single parameter, the 
degree of freedom. For this reason, in the context of optimisation, such heavy tailed random matrices turn out to be prefer-

able over the previously employed (sub-)Gaussians. Based on this observation, we then propose novel covariance adaptation 
schemes that are able to adapt the degree of freedom parameter during the search, and give rise to a flexible approach 
to balance exploration versus exploitation. We perform a thorough experimental study on high dimensional benchmark 
functions, and provide statistical analyses that demonstrate state-of-the-art performance of our approach when compared 
with previously existing alternatives in problems with 1000 search variables.

Keywords covariance adaptation, estimation of distribution algorithm, random projection ensemble, t-distribution

1 Introduction

Optimisation over high dimensional search spaces

is a key task in many modern applications, including

scientific, engineering and management problems. Es-

timation of Distribution Algorithms (EDAs) are black-

box optimisation methods based on probabilistic mod-

elling, which are becoming increasingly important in

the Evolutionary Computation (EC) community [1].

EDAs avoid the usage of arbitrary operators of tradi-

tional EC approaches, instead they estimate a proba-

bilistic model from the fittest individuals, and advance

the search for the global optimum by sampling the esti-

mated model. In this way, EDAs will not only simplify

the design of an optimisation method, but also allow

the algorithms to learn the structure of the search space

and guide the search in further promising directions [2].

However, the performance of most existing EDAs

deteriorates significantly in high dimensional search

spaces. This is because EDA requires model building

from empirical data, which is susceptible to the curse

of dimensionality [3]. Unless an enormous budget of

fitness evaluations is available, the sample size is insuf-

ficient for reliable model estimation. Consequently the

structure of the problem is often severely mis-estimated
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from limited samples – see [4, 5] for examples. In turn,

a badly estimated model typically results in premature

convergence [5].

To mitigate the curse of dimensionality, simpli-

fied models such as univariate models, or limited de-

pendency models are often preferred instead of a full

multivariate model in practice. The simplest of such

approach is described in [6], called UMDAc. The

model building in this univariate approach is simply

done under the independence assumption [6]: P (x) =∏d
i=1 P (xi), where d is the dimensionality of the search

space. More refined approaches such as the sep-CMA-

ES [7] and the univariate AMaLGaM [8] use only diag-

onal elements of a rotated full covariance matrix. How-

ever, the univariate models assume that all the vari-

ables are independent in some coordinate basis, hence

they may be expected to perform well on problems that

have no dependency between variables (i.e., separable)

in that basis.

Non-separable problems are those in which the

above assumption does not hold – that is, the design

variables have multiple inter-dependencies. The ap-

proach known as MIMIC, proposed by De Bonet et.

al [9] sets out to capture bivariate interactions between

decision variables by sampling from the pairwise joint

distribution between variables. Despite that MIMIC is

able to outperform univariate models, the majority of

optimisation problems will have larger groups of inter-

acting design variables. Several proposals have been

put forth to explicitly capture multivariate dependen-

cies by building graphical dependency networks, for ex-

ample Bayesian Networks [10]. But, from statistical,

computational and memory points of view, learning

probabilistic graphical models from the sample of fit

individuals is highly expensive and requires a large sam-

ple [11]. Thus, the scaling-up of these model building

processes to high dimensional problems remains chal-

lenging.

1.1 Related Work In Large-scale Black-box

Optimisation

There have been many efforts to alleviate the prob-

lems of high dimensional search, resulting in several al-

gorithms being proposed recently, including EDA-type

methods. Here we limit ourselves to a few that are

most relevant to the present work. Approaches can be

grouped into cooperative co-evolution based methods,

evolutionary strategies, latent variable models, hybrid

methods and compression based divide and conquer.

One of the first cooperative co-evolution (CC) meth-

ods is CC with Variable Interaction Learning (CCVIL)

proposed by Weicker et al. in [12]. It is a determin-

istic method to uncover dependencies between decision

variables. A more recent model-based formulation of

a similar idea is EDA with Model Complexity Control

(EDA-MCC) [13], which also employs a deterministic

algorithm; it groups variables into two disjoint subsets

– those that are weakly correlated with other variables,

and those that are strongly correlated. The strength of

correlations is estimated relative to a threshold.

Multilevel Cooperative Co-evolution (MLCC) pro-

posed in [14] groups the decision variables of a problem

randomly to tackle problems in high-dimensional opti-

misation. The groups are then optimised jointly, but

separately from other groups.

MA-SW-Chain [15] is a hybrid algorithm that as-

signs local search intensity to each individual by chain-

ing dissimilar local search applications. It is an exten-

sion of the MA-CMA-Chain algorithm for high dimen-

sional regime, and was the winner of the CEC2010-2012

large scale global optimisation competition on 1000 di-

mensional benchmark problems.

Another related method employs latent variable

models to sample new individuals with low-dimensional
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latent vectors. Shin et al [16] proposed a latent variable

model such as the Helmholtz machine and probabilis-

tic principal component analysis to estimate the prob-

ability distribution of given data. The model considers

latent variables which have much lower dimension than

input variables for optimising a high dimensional func-

tion. In doing so, the method will mitigate the curse of

dimensionality. A different way to exploit hidden low

dimensional structure was proposed in [17], suggesting

that a notion of intrinsic dimension of a function can

replace the ambient dimension of the inputs to the func-

tion, provided that the function has a special structure.

However, in the absence of this structure this method

is unsuitable.

A recent approach is the random matrix theory

based EDA in [4], which devises a compression-based

divide and conquer strategy. The idea is to project the

high dimensional selected individuals to many indepen-

dent low dimensional random subspaces, carry out the

costly sampling and estimation operations concurrently

in these subspaces, and combine the new samples to

form the next generation. Such ensemble can exhibit a

strong smoothing effect that facilitates estimation from

small samples.

1.2 Contributions

In this paper, we further enhance the random pro-

jection (RP) ensemble approach of [4], by employing a

parametrised family of heavy-tailed random matrices to

replace the more conventional sub-Gaussian ones. Al-

though this results in a minor change in the implemen-

tation, as we shall see, it allows for a better exploration

of high dimensional search spaces. An early version

with promising empirical results of this idea appeared

in [18]∗.

The increased exploration abilities of heavy tailed

distributions are well known in evolutionary search,

starting from pioneering work by Yao et al. [19] in the

univariate setting, and more recent work in the multi-

variate EDA framework – see e.g. [20–22] and references

therein. However, in the regime of large search spaces

of dimensionality well beyond 100 variables, the use of

such heavy tailed distributions in EDA is not straight-

forward – as demonstrated in [22], a heavy tailed search

distribution becomes increasingly counter-productive

as it loses sight of the direction of the search. Here

we avoid these problems as we employ heavy tailed dis-

tributions in a combination of RPs rather than directly

in the role of a search distribution.

Our approach is based on a detailed analysis of the

effect of the distribution of entries of random matrices

used in the algorithm in terms of the resulting aggre-

gated covariance of the multivariate search distribution

(which is not heavy tailed but Gaussian, as we shall see

later). We should also note that this type of analysis is

entirely different, and complementary with analyses of

the dynamics or the running time, as the latter is cur-

rently feasible only in univariate models on some very

specific problems [23]. The purpose of our analysis in

this work is (i) to shed light on some limitations of

borrowing existing tools from the area of RPs as done

in previous work, and (ii) to construct novel algorithm

variants that bypass these limitations.

In particular, our analysis reveals that, while the

use of RPs is useful for dealing with high dimensional

optimisation problems, the existing RP theory is not

well aligned with the needs of optimisation. More pre-

cisely, the use of sub-Gaussian RP matrices has been

originally borrowed from a literature that aims at ap-

proximately preserving Euclidean geometry. This goal

is different from ours and, as we shall see, adopting

the same approach falls short of exploration ability for

∗Received a Runner-Up Student Paper award.
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search. In turn, the use of heavy tailed random matri-

ces is very unusual in the context of the RP literature,

as they do not have good distance preservation proper-

ties, but they will turn out to have advantages for high

dimensional search.

The specific contributions of this paper are as fol-

lows:

• We analytically show that the excess kurtosis of

the entries of the RP matrices in the ensemble

has a precise role in the aggregated covariance

of the ensemble. The latter is the covariance of

the high dimensional search distribution, there-

fore this analysis reveals the following: A distribu-

tion with negative excess kurtosis will shrink the

aggregated covariance in comparison with that

obtained when using the Gaussian distribution,

and a distribution with positive excess kurtosis

will enlarge it.

• We then propose to employ random matrices with

i.i.d. t-distributed entries – this subsumes the

Gaussian ensemble of [4] as a special case, when

the degree of freedom is infinite. However, the

degree of freedom parameter offers a means to en-

large the aggregated covariance in favour of bet-

ter exploration in high dimensions. In particular,

we show that the extent of this enlargement is a

decreasing function of the degree of freedom pa-

rameter.

• Based on this, we then develop simple methods

to adapt the degree of freedom parameter during

the search, which essentially implement novel co-

variance adaptation schemes specifically for high

dimensional search.

• We present a thorough experimental study on

1000-dimensional multi-modal test functions from

the CEC2010-2012 large scale global optimisation 

competition benchmark, and demonstrate supe-

rior or state of the art performance in statistical 

comparisons with a number of existing alterna-

tives.

2 Heavy-tailed Random Matrices For Contin-

uous EDA Optimisation

Random Projections (RP) have already been used

with success in large scale continuous EDA [4]. However

the theory of RP in the literature is aimed at preserva-

tion of the Euclidean distances and norms. The goal in

optimisation is different: it is more important to have

a good exploration-exploitation tradeoff.

With this goal in mind, in this section we shall

present a RP ensemble based large scale multivari-

ate Gaussian EDA that employs random matrices with

heavy tailed entries drawn i.i.d. from the family of t-

distributions. We shall present this algorithm first, to

fix ideas, so that we see how these random matrices

enter into the search algorithm. We will then analyti-

cally justify our choice for the family of t-distributions

afterwards in the subsequent subsection.

2.1 The tRP-Ens-EDA algorithm: A basic
variant

Our algorithm is a modification of the random pro-

jection ensemble based EDA (RP-Ens-EDA) of [4], and

we refer to our new variant as tRP-Ens-EDA. The

pseudo-code of tRP-Ens-EDA is given in Algorithm 1.

The tRP-Ens-EDA proceeds by initially gener-

ating a population of individuals randomly every-

where in the search space, and selects the T fittest

ones based on their fitness values. This is the set

Pfit in Algorithm 1. M independent random pro-

jection (RP) matrices Ri are then generated, each

defines a random subspace of dimension k � d,

where d is the dimension of the search space. These
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are created in order to project the fittest individu-

als onto low dimensional subspaces defined by them.

Algorithm 1: Algorithm with entries of R from
t-distribution (tRP-Ens-EDA)

Input: k,M,N,MaxFE
Output: Best individual x∗; Best fitness f∗

1 P ← Initialise a population uniformly at random
in the search space.

2 ν ← Initialise a degree of freedom
3 while MaxFE > 0 do
4 MaxFE ←MaxFE −N .
5 f ← Evaluate the fitnesses of P.

6 Pfit ← Select the T individuals of P with
best fitness using truncation selection.

7 x∗ ← the individual with the optimal fitness
so far.

8 f∗ ← the optimal fitness value so far.
9 ν ← Decide a new ν with an adaptive

method.
10 µ← Estimate the mean of Pfit using

maximum likelihood estimation (MLE).
11 Pfit ← Pfit − µ.
12 {Ri}i=1:M ← Generate M independent

random matrices with entries drawn i.i.d.
from a t-distribution with mean 0 and
variance 1

d .
13 foreach i ∈ {1, 2, . . . ,M} do
14 YRi ← RiPfit projects Pfit to a random

k-dimensional subspace.
15 ΣRi ← Estimate the k × k covariance

matrix of YRi using MLE.
16 Sample N new points yRi

1 , ...,yRi

N i.i.d.

from N (0,ΣRi).

17 Pnew ←√
dM
k [ 1

MΣM
i=1R

T
i y

Ri
1 , ..., 1

MΣM
i=1R

T
i y

Ri

N ]+µ.

18 P ← Pnew.
19 Replace an individual in P with x∗ (elitism).

The number of such subspaces, M , and their dimen-

sion, k, are parameters of the method along with the

population size N . For all of these parameters we will

use the default values determined in [4]. i.e., M = d 3d
k e,

k = 3, N = 300, and |Pfit| = N/4, as the context

and meaning of these parameters is the same as in that

work. Another input parameter is the maximum fit-

ness evaluations allowed, MaxFE, which will be varied

depending on the goal of the experiments.

Once the set Pfit is determined, its sample mean is

estimated in step 10 and used to center the points in

step 11. The entries of the RP matrices Ri are drawn

i.i.d. from a t-distribution with mean 0 and variance 1
d .

This is the only difference from the original RP-Ens-

EDA [4]. It is implemented by sampling from t(0, 1, ν)

first, and then multiplying the samples by
√

ν−2
νd so that

their variance becomes 1/d. This choice for the variance

is to ensure that we recover the original scale in Step

17 without having to modify the scaling factor of the

original RP-Ens-EDA. When d is large, Ri have nearly

orthonormal rows, as a result of the concentration of

norms in high dimensions, since the coordinates in each

row are independent – this is a very generic property of

high dimensional probability spaces that both [4] and

our method exploit. So, pre-multiplying with Ri is al-

most like orthogonally projecting the points from the d

dimensional space to a k dimensional subspace, which

shortens the lengths of vectors by a factor of
√

k
d and

the standard deviation gets reduced by a factor of
√
M

after averaging. Therefore, the scaling factor needed to

recover the original scale is
√

dM
k .

Step 14 projects the good samples, YRi down to

the subspaces of dimension k, then estimates the k× k

covariance matrices in each subspace and samples N

new points in each subspace using k-dimensional mul-

tivariate Gaussian distributions. Step 17 averages the

obtained points from these subspaces to produce the

new population P. In addition, we will use elitism in

practice, so the best fitness individual always survives

to the next generation.

2.2 Why t-distributed random projections?

Let us restrict our attention to the procedure by

which the new generation is created, as this is what

distinguishes our algorithm from the vanilla multivari-

ate EDA. We want to analyse the aggregated covariance
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that the ensemble of RP creates implicitly, which is in

fact the covariance of the high dimensional search dis-

tribution that the new generation follows.

Our analysis will allow quite general RP matri-

ces, and only require their entries to be drawn i.i.d.

from a 0-mean symmetric distribution having finite first

four moments. This includes the Gaussian, all sub-

Gaussians, and the family of t-distributions with degree

of freedom at least 5. We take advantage of this general-

ity to develop our arguments and explain our choice for

the t-distributions, which, for readers familiar with the

random projection literature may seem very unusual.

We start by computing the covariance of the new

population in step 17 of Algorithm 1, conditional on

fixing the random projection matrices Ri, i = 1 : M .

We will then condition on the sample of fit individuals

and look at the effect ofRi, i = 1 : M by computing the

expectation of this ensemble covariance with respect to

Ri, i = 1 : M . If M is large enough, this expecta-

tion approximates well the finite M case. Moreover,

although not pursued here, tools from [24] may be used

to determine the sufficient ensemble size.

Proposition 1 Conditionally on Ri, i = 1 : M , the

new generation produced at Step 17 of Algorithm 1 is

i.i.d. Gaussian with mean µ and d × d covariance of

the following form:

Σrp =
d

kM

M∑
i=1

RT
i RiΣR

T
i Ri, (1)

where Σ is the maximum likelihood sample covariance

of the original selected individuals in Pfit.

The proof is deferred to Appendix A.

Next, we want to see the effect of the random Ri’s

on Σrp. To this end, we condition on Σ, and look at

the expectation ER[Σrp].

We require the following definition.

Definition 1 The excess kurtosis of a random variable

x is defined as:

K =
E[x4]

E[x2]2
− 3.

We have the following result.

Theorem. 1 Let R be a k × d random matrix, k < d,

with entries drawn i.i.d. from a symmetric distribution

with 0-mean, finite first four moments, and excess kur-

tosis K. Let Σ be a d × d fixed positive semi-definite

matrix with eigenvalues λ1, ..., λd.

ER[Σrp] =
1

d

[
(k + 1)Σ + Tr(Σ)Id +K

d∑
i=1

λiAi

]
,

(2)

where Ai are d×d diagonal matrices with their j-th di-

agonal elements being
∑d
a=1 U

2
aiU

2
aj and Uai is the a-th

entry of the i-th eigenvector of Σ.

Proof From eq. (1), the expectation of Σrp is

d
kER[RTRΣRTR], which we compute using a result

from [25], originally derived in a very different con-

text (namely to analyse compressive least square re-

gression).

Under the condition on R stated in Theorem 1,

Lemma 2 from [25] proved that E[RTRΣRTR] =

k · E[R2
i,j ]

2
[
(k + 1)Σ + Tr(Σ)Id +K

d∑
i=1

λiAi

]
, (3)

where Ai are the diagonal matrices defined as in The-

orem 1, and Rij is a generic entry of matrix R.

Now, by design, we have E[R2
ij ] = 1

d . Replacing eq.

(3) into eq. (1) completes the proof. �

Observe that, from the definition of the matrices

Ai, and since Σ is positive semi-definite, λi are non-

negative – consequently the sum in the last term in

the brackets in eq. (2), that is
∑d
i=1 λiAi is always a

diagonal matrix with non-negative diagonal entries.
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Now, let us look at the multiplier of this term, K.

In previous work [4] the entries of R were Gaussian or

sub-Gaussian. In the Gaussian case, K = 0. Hence in

that case the last term cancels out: K
∑d
i=1 λiAi = 0.

Nevertheless, what remains is a regularised version of

the sample covariance estimate Σ. This is always non-

singular, so the search does not get stuck in a subspace

of the search space.

However, if the entries of R are drawn from a sub-

Gaussian distribution, we find that certain choices may

be a bad idea – it depends on the excess kurtosis of the

distribution.

Indeed, take the Rademacher distribution below,

and note this is sub-Gaussian:

Rij ∼i.i.d.

{
1 with probability 1/2

−1 with probability 1/2.

Random matrices with i.i.d. entries from this distri-

bution have been originally proposed by [26] as an

implementation-friendly alterantive to the Gaussian

RP, and it was subsequently considered for RP-EDA-

Ensemble optimisation in [4].

It is easy to check that for this distribution we

have E[R4
ij ] = 1, and E[R2

ij ] = 1. Therefore, the

excess kurtosis is K = 1 − 3 = −2. Consequently,

K
∑d
i=1 λiAi = −2

∑d
i=1 λiAi. This is a diagonal ma-

trix with all non-positive diagonal entries. Therefore

this term diminishes the regularisation effect of the

term Tr(Σ)Id in eq. (2). It also shrinks the ensemble

covariance matrix in comparison with that of a Gaus-

sian RP ensemble.

We can go even further, and construct a simple ex-

ample where the term K
∑d
i=1 λiAi cancels out the ef-

fect of Tr(Σ)Id completely in some directions of the

search space, so we are left with maximum likelihood es-

timates in those directions that may be not sufficiently

accurate due to the small number of high-fitness indi-

viduals relative to the high dimensionality of the search

space. We give such an example in Appendix B.

Although such examples may seem contrived, the

shrinking effect of distributions with negative kurtosis

is undesirable for search, and instead we would like to

use the insights of this analysis to come up with a better

alternative.

If K > 0, then the term, K
∑d
i=1 λiAi is a diagonal

positive semi-definite matrix, hence it always adds a

non-negative quantity to the diagonals of the ensemble

covariance. Hence, our idea is to use a family of dis-

tributions with positive kurtosis, and moreover, adapt

K during the search. Based on the discussion above,

this would enlarge the covariance ER[Σrp] adaptively to

the necessary extent. Covariance adaptation has been

a successful technique in the EDA literature [27], and

our idea makes it feasible to implement it in new ways,

specifically for large scale EDA search through a more

suitable random projection ensemble.

To achieve this, we have chosen the family of t-

distributions with degree of freedom at least 5. Indeed,

for this family of distributions the following holds.

Proposition 2 The excess kurtosis of t(0, 1, ν) distri-

bution with degree of freedom ν, is:

K =
6

ν − 4
, provided ν > 4.

The proof is deferred to the Appendix C.

Corollary 1 (to Proposition 2) Changing the vari-

ance leaves the excess kurtosis unchanged.

The proof is immediate and given in Appendix C for

completeness.

We replace this into Theorem 1, and obtain the fol-

lowing.

Theorem. 2 If R is sampled i.i.d. from a t-

distribution with degree of freedom ν ≥ 5, mean 0 and
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variance 1/d, then the ensemble covariance for the high

dimensional search distribution is:

ER[Σrp] =
1

d

[
(k + 1)Σ + Tr(Σ)Id +

6

ν − 4

d∑
i=1

λiAi

]
,

(4)

where the matrices Ai are the same as defined in The-

orem 1.

The Gaussian RP corresponds to ν → ∞, in which

case the last term in the bracket in eq. (4) vanishes:

limν→∞
6

ν−4

∑d
i=1 λiAi = 0. In turn, by any finite

choice of the degree of freedom parameter for the t-

distribution we will be adding a positive semi-definite

matrix to this covariance – this makes it larger and

gives it more chance to explore the search space.

3 Adaptive Degree Of Freedom Parameter

In this section we devise methods to adapt the pa-

rameter ν during the search.

Parameter setting methods are dichotomised into

tuning and controlling [28]. Tuning means finding a

good value by trial and error before running the algo-

rithm and then fixing this value throughout the evo-

lutionary process. While it may seem convenient, the

trial-and-error phase consumes part of the budget of

function evaluations. On the other hand, parameter

control starts with an initial value which is then up-

dated during the search, based on partial outcomes of

the algorithm [28]. In other words, the latter type of

methods try to adapt the control parameters automat-

ically in order to adjust the algorithm to the problem

during the search [29]. Hence these type of methods

need us to devise an algorithm that acts as an adapta-

tion strategy. This is what we pursue in the remainder

of this section.

In the sequel we present three different adaptation

schemes. In each of these, the parameter we try to con-

trol is the degree of freedom of the t-distributed entries

of our random projection matrices (Ri, i = 1 : M).

To simplify the computations we shall approximate

Σrp by an upper bound on it in positive semi-definite

ordering, which is independent of the eigenvectors of Σ.

Observe that
∑d
i=1 λiAi � Tr(Σ) · Id, so we have:

ER[Σrp] 4
1

d

[
(k + 1)Σ + Tr(Σ)Id

(
1 + +

6

ν − 4

)
Id

]
.

3.1 Adaptive Variance Scaling based method

(AVS)

An Adaptive Variance Scaling (AVS) method was

originally proposed for EDA by Bosman [27]. In each

generation, it decides how to update a parameter for

the next generation based on the difference in the best

fitness between the latest two consecutive generations.

The original approach [27] is to scale the sample covari-

ance matrix Σ multiplicatively, by a value c ∈ [1, 10],

where c is adapted (i.e., either increased or decreased)

by a coefficient η ∈ (0, 1) as follows. If the best fitness

improved then c is increased as c/η in order to explore,

otherwise c is decreased as cη for exploitation. The au-

thors of [27] put c to 10 if it becomes greater than 10 or

smaller than 1, in order to stimulate exploration while

preventing a blow-up of the covariance.

Note, in our context of RP ensemble based algo-

rithm, we do not need to artificially introduce the c

parameter as the original AVS did, as we can use the

degree of freedom parameter ν to emulate the updating

heuristic of the original AVS. The pseudo-code of this



Momodou L. Sanyang et al.: Large Scale EDA with Adaptive Heavy Tailed Ensembles 9

adaptation scheme is given in Algorithm 2.

Algorithm 2: Adaptive variance based method
(AVS)

Input: Index of current generation t; Degree of
freedom νt; Best fitness bt, bt−1;
Coefficient η

Output: Degree of freedom νt+1

1 c← 1 + 6
νt−4 .

2 if bt is no better than bt−1 then
3 c← cη. //c gets smaller, ν gets larger
4 else
5 c← c/η. //c gets larger, ν gets smaller

6 νt+1 ← 6
c−1 + 4.

7 if νt+1 < 5 or νt+1 > 124 then
8 νt+1 ← 5. //to stimulate exploration

From eq. (4) we have seen that smaller values for

ν allow for exploration and larger ν-values encourage

exploitation in tRP-Ens-EDA. Also observe that ν has

a non-linear effect on the extent of enlarging the covari-

ance of the new population. We set:

c = 1 + 6/(ν − 4) (5)

which ensures that ν ≥ 5 as required – so that we can

directly apply the same adaptation rules as the original

AVS approach of [27], as follows. Suppose the tRP-

Ens-EDA is at its t-th generation, and denote by bt

and bt−1 the best fitness values of the latest two gener-

ations respectively. Recall, tRP-Ens-EDA uses elitism,

so we will never observe a worse-than previous value

of the best fitness. Therefore, our AVS will decrease c

(hence increase ν) for exploitation if bt is no better than

bt−1 before the elitism is applied, and increase c (hence

decrease ν) for exploration if bt is strictly better than

bt−1. This adaptation strategy is exactly the same as

that originally proposed in [27], and the only difference

is that it is now built into our RP-ensemble based EDA

for large scale searches.

Finally, from eq. (5) we have:

ν = 6/(c− 1) + 4 (6)

and, as in the original method of [27], we will also con-

strain the range of ν ∈ [5, 124], which corresponds to

c ∈ [1.05, 7]. If ν goes beyond this range, then it is put

to 5 to trigger exploration, which is the same strategy

as in [27].

3.2 A 1/5-success rule based method

A classic alternative adaptation scheme is the well-

known 1/5-success rule (or 1/5 rule). It is one of the

oldest adaptation heuristics, and it is widely used in

Evolutionary Strategies (ES) [30]. The 1/5 rule does

not look at the improvement in the best fitness, but in-

stead it looks at the overall fitness improvement of the

population. It measures this as the following success

probability:

Ps =
#individuals with improved fitness

Population size
.

If Ps > 1/5 then it is said that an improvement is de-

tected. In our case, when such improvement is detected

then we decrease ν for exploration, otherwise we in-

crease ν in order to exploit – in the same manner as we

did in AVS in section 3.1.

However, in ESs it is easy to compute Ps, because

the individuals can be compared with their parents af-

ter a mutation – but in EDA there is no explicit con-

nection between a particular individual and its descen-

dant in the next generation, as the new individuals are

sampled from a probability distribution that the whole

previous generation contributed to. To apply the 1/5

rule in EDAs we use the following heuristic. At the t-

th generation, given the fitness values of the population

with N individuals f t, and the fitness values of the in-

dividuals of the previous generation f t−1, we sort both

f t and f t−1, and compare between the corresponding

elements f ti and f t−1
i , where i ∈ {1, . . . , N}. This way

we count the number of fitness values f ti that are bet-

ter than the corresponding f t−1
i , and use this number

in the expression of Ps.
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The pseudo-code of this adapted 1/5 rule for tRP-

Ens-EDA is given in Algorithm 3. The algorithm first

counts the number of improved individuals between the

sorted fitness vectors of the two latest generations, and

then calculates the success probability Ps. If Ps ≤ 1/5,

then the adaptive method decreases the value of c (de-

fined as before in eq. (5)) and thus increases ν (defined

in eq. (6)) for the purpose of exploitation. Otherwise c

is increased, thus ν is decreased, for exploration. This

method shares with AVS the schemes of updating c and

thresholding ν, namely it increases or decreases c with

a coefficient η ∈ (0, 1), keeps ν ∈ [5, 124] and resets ν

to 5 if it goes beyond the range in order to stimulate

exploration.

Algorithm 3: 1/5-success rule based adaptive
method.

Input: Population size N ; Index of current
generation t; Degree of freedom νt,
Sorted fitnesses of the latest 2
populations f t & f t−1; Coefficient η

Output: degree of freedom νt+1

1 c← 1 + 6
νt−4 .

2 Np ← 0. //counter of improved individuals.
3 for i=1:N do
4 if f ti is better than f t−1

i then
5 Np ← Np + 1.

6 Ps ← Np/N . //success probability
7 if Ps ≤ 1/5 then
8 c← cη. //c gets smaller, ν gets larger
9 else

10 c← c/η. //c gets larger, ν gets smaller

11 νt+1 ← 6
c−1 + 4.

12 if νt+1 < 5 or νt+1 > 124 then
13 νt+1 ← 5. //to stimulate exploration

3.3 Adaptive degree of freedom (ADF)

Our third adaptation method will be a scheme

where some backtracking is possible. The parameter

updating decisions are made after trying out a list of

alternative choices and observing their effects on the

best fitness within each generation. We drew inspira-

tion from [29] initially, and devise our own adaptation

rules to fit the problem, bearing in mind that our pa-

rameter of interest must obey ν ≥ 5. The pseudo-code

of our proposed adaptive method is given in Algorithm

4.

Algorithm 4: Adaptive degree of freedom (ADF)

Input: ϑ (initial list of ν-values in ascending
order)

Output: ν
1 L← |ϑ|
2 for i = 1 : L do
3 Run steps 11-17 and 5 of Algorithm 1 with νi.
4 fi ← best fitness from step 5 of Algorithm 1.

5 if min(f) == max(f) then
6 ϑ1 ← max(5, round(ϑ1/2)).
7 for j = 2 : L do
8 ϑj ← ϑj ∗ 2.

9 else
10 `← arg min(f); ν ← ϑ`
11 if ` == 1 then
12 ϑ1 ← max(5, round(ϑ1/2)).
13 for j = 2 : L do
14 ϑj ← max(5, round((ϑj−1 + ϑj)/2)).

15 else
16 for j = 1 : `− 1 do
17 ϑj ← max(5, round((ϑj + ϑj+1)/2)).

18 ϑ` ← ϑ` + max(5, round(ϑ`/2)).
19 for j = `+ 1 : L do
20 ϑj ← max(5, round((ϑj−1 + ϑj)/2)).

The adaptive method given in Algorithm 4 main-

tains a list of L different alternative values of ν in as-

cending order, and in each generation it creates a sep-

arate trial (mock) new-generation using tRP-Ens-EDA

with each of the L different ν values on the current list.

The list L is initialised by taking the first ν values to

be 6, 7, . . . 6 + L− 1 (all close to the smallest allowable

value). The list is then updated based on the current

best value, to be tried in the next generation. If the cur-

rent list of ν-values produces no difference to the fitness,

then the list of values is spread out more (by decreasing

the smallest and increasing all other ν-values). Other-

wise the algorithm updates the list of values to be tried

in the next generation by bringing them closer to the

current best ν-value.
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This adaptation scheme is direct and generic; how-

ever it has a tuning parameter that presents a tradeoff:

the length of the list of the ν-values to try. Obviously,

the longer the list, the higher the chance to find a good

value within the generation, but the price is a quicker

drainage of the budget of fitness evaluations. We ex-

perimented with list lengths of L = 2 and L = 5 as

representatives of this algorithm in our early work [18],

and had found L = 2 to be a good value. Therefore we

employed this in the experiments reported here, and

will refer to our adaptation scheme as ADF(2df).

It follows from the construction of this method that

ADF uses L times as many fitness evaluations per gen-

eration than a fixed choice of ν would do, while the two

adaptation heuristics presented in the previous subsec-

tions keep the same per-generation budget of fitness

evaluations – since they make adaptation decisions se-

quentially, without the possibility of backtracking a pa-

rameter value after observing its effect on the fitness.

Therefore we expect ADF to be more advantageous in

terms of reaching a better fitness value when a suffi-

ciently large budget is available, whereas the sequential

heuristics may be preferable when the budget is rela-

tively small. This will be assessed in more detail in the

experimental section.

4 Experiments

Initial experiments have indicated that the best

choice of degree of freedom parameter is problem depen-

dent [18]. Therefore we turn our attention to the ada-

pation approaches. We conduct a thorough set of ex-

periments to assess our tRP-Ens-EDA with adaptation

schemes on a battery of large scale multi-modal bench-

mark problems, from the 1000-dimensional CEC2010-

2012 competition test suite, as described in [31]. All

problems are minimisations. Table 1 lists the test func-

tions used in our experiments.

Table 1. 1000-dimensional multi-modal test functions from the
CEC2010-2012 collection.

Problem Name
F1 Shifted Rastrigin’s function
F2 Shifted Ackley’s function
F3 Single-group Shifted & m-rotated Rastrigin’s func.
F4 Single-group Shifted & m-rotated Ackley’s func.
F5 D

2m -group Shifted & m-rotated Rastrigin’s func.
F6 D

2m -group Shifted & m-rotated Ackley’s func.
F7 D

2m -group Shifted & m-dimensional Rosenbrock’s func.
F8 D

2m -group Shifted & m-rotated Rastrigin’s func.
F9 D

m -group Shifted & m-rotated Ackley’s func.
F10 D

m -group Shifted & m-dimensional Rosenbrock’s func.
F11 Fully nonseparable Rosenbrock

In each experiment we initialise the population ran-

domly in the search space. All the results in com-

parative experiments are obtained through fresh runs

of the methods, except MA-SW-Chains whose results

were obtained from the literature.

4.1 Results and analysis

4.1.1 Comparative assessment of our adaptation
schemes

In the first set of experiments we are interested to find

out whether our adaptive schemes can outperform the

existing RP-Ens-EDA, and to learn about their respec-

tive advantages and disadvantages.

Table 2 provides a statistical analysis of comparisons on

the 1000-dimensional benchmarks. For each function,

we compare our three different adaptive methods and

the existing RP-Ens-EDA of [4] (ν = ∞). We report

the average and standard deviation of the best fitness

achieved with the evaluation budget of 6 × 105 fitness

evaluations – this is considered as medium budget in

the benchmark problem description.

We perform a two-tailed t-test for each pair of meth-

ods involved in this comparison, and the symbols in

the rightmost column of the table record statistically

significant differences detected at the 0.05 level, as fol-

lows: A symbol ‘+’ indicates that the method in the

corresponding row performed significantly better than

the method in the corresponding column. Likewise, ‘-’

means that the method in the corresponding row per-
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formed significantly worse than the method in the cor-

responding column. Recall that all the test problems

are minimisation problems, so lower fitness means bet-

ter performance. The symbol ∅ appears where statis-

tical comparison is not applicable. Positions left blank

in the last column mean that no statistically significant

difference was detected between the pair of methods

tested.

Table 2. Statistical comparison of our adaptation schemes
and the existing RP-Ens-EDA [4] (that is, ν = ∞) on 1000-
dimensional test functions, with a budget of 6 × 105 function
evaluations.

Method Mean Std
t test vs.

AVS 1/5 ADF(2df)

F1

AVS 750.318 57.9958 ∅ -
1/5 758.636 48.709 ∅ -
ADF(2df) 579.000 24.000 + + ∅
ν =∞ 784.21 76.017 -

F2

AVS 2.518e-13 4.390e-15 ∅
1/5 2.527e-13 4.390e-15 ∅
ADF(2df) 2.480e-13 4.760e-15 ∅
ν =∞ 2.537e-13 4.8104e-15

F3

AVS 1.308e+07 3.486e+06 ∅ + +
1/5 2.149e+07 9.803e+06 - ∅ +
ADF(2df) 3.040e+08 9.490e+06 - - ∅
ν =∞ 1.2397e+07 3.1864e+06 + +

F4

AVS 674.339 126.295 ∅ + -
1/5 1.417e+04 2023.35 - ∅ -
ADF(2df) 548.00 75.00 + + ∅
ν =∞ 117.78 17.151 + + +

F5

AVS 765.787 52.4462 ∅ -
1/5 785.701 55.9506 ∅ -
ADF(2df) 601.00 26.60 + + ∅
ν =∞ 832.18 62.543 - - -

F6

AVS 34.3466 8.33093 ∅
1/5 35.513 10.6229 ∅
ADF(2df) 35.000 9.490 ∅
ν =∞ 41.664 8.7003 - - -

F7

AVS 1.3306e+06 7.169e+04 ∅ +
1/5 1.3305e+06 6.865e+04 ∅ +
ADF(2df) 1.400e+06 5.670e+04 - - ∅
ν =∞ 1.4442e+06 5.3945e+04 - - -

F8

AVS 765.966 46.5231 ∅ -
1/5 742.17 45.8631 ∅ -
ADF(2df) 599.000 24.600 + + ∅
ν =∞ 802.11 49.957 - - -

F9

AVS 78.5521 14.0886 ∅ +
1/5 78.364 13.6203 ∅ +
ADF(2df) 91.800 15.700 - - ∅
ν =∞ 90.481 17.178 - -

F10

AVS 4.363e+04 8810.53 ∅
1/5 4.011e+04 1.106e+04 ∅
ADF(2df) 4.610e+04 9.72e+03 ∅
ν =∞ 5.4105e+04 1.0877e+04 - - -

F11

AVS 1022.22 63.4622 ∅
1/5 987.983 1.07683 ∅ +
ADF(2df) 1.10e+03 67.6 - ∅
ν =∞ 1614.7 249.44 - - -

From these results we observe the following.

• In 9 (out of 11) of the test problems, no statisti-

cally significant difference is detected between the

AVS, and the 1/5 adaptation heuristics.

• In the remaining 2 problems, AVS is statistically

superior to 1/5. On further investigation we ob-

served that the 1/5 approach has periods of stag-

nation where AVS is able to progress. This is

most likely because the definition of the 1/5 in

the context of EDA is rather ad hoc.

• AVS wins with statistical significance against the

existing RP-Ens-EDA in 7 (out of 11) test prob-

lems, and only loses on 1 (F4). The remaining 3

cases are ties.

• ADF performs on-par with AVS at this budget

size: 4 wins and 3 losses against AVS, and it out-

performs the existing RP-Ens-EDA in 7 of the

functions; it is outperformed by RP-Ens-EDA in

2 functions (F4 and F3), 2 ties.

We then ran the two most successful adaptation meth-

ods, ADF(2df) and AVS, versus the existing RP-Ens-

EDA for a larger budget size of 3 ·106. Fig. 1 shows the

detailed trajectories, in order to visualise the behaviour

of these methods and gain insight into the reasons for

the observed differences. In Fig. 1 the best fitness is

plotted against the elapsed number of function eval-

uations, averaged over 25 independent restarts. For

clarity of visual inspection, these are zoomed in to the

interesting ranges of the axes: the fitness values of the

first few generations are not shown, and the plotting

halts when no more interesting change occurs.

We see from the trajectory plots on figure 1 that,

given a sufficient budget, the direct adaptation method

ADF(2df) often reaches a better fitness value with a

slight delay. This makes good sense intuitively too,

based on the construction of the algorithm that spends

part of its resources on exploring. Interestingly, it of-

ten goes through a period of stagnation before it wins

over. For instance, on F3, with the medium budget

size reported in Table 2 it was outperformed by all
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Fig.1. Fitness trajectories of the RP-Ens-EDA, tRP-Ens-EDA(AVS) and tRP-Ens-EDA(2df) for a maximum of 3 × 106 function
evaluations. For a statistical analysis of significance of the differences observed halfway through the budget after 6 × 105 function
evaluations, see Table 2.

other methods, including the previously existing RP-

Ens-EDA, whereas from the trajectory plot we see that

it does win eventually, given a larger budget, whereas

the Gaussian variant makes no further progress. In-

deed, we see from the trajectories in Fig. 1 that the

Gaussian RP-Ens-EDA is more prone to premature

convergence than our adaptive tRP-Ens-EDA variants.

More differences between ADF and AVS will be seen

in multi-comparison tests in the presence of other com-

peting state-of-the-art algorithms in section 4.1.2.

4.1.2 Comparison with state of the art methods on
1000 dimensional problems

We compare our best performing adaptive degree of

freedom methods tRP-Ens-EDA(ADF) and tRP-Ens-

EDA(AVS) with the existing state-of-the-art on the

1000 dimensional CEC 2010-2012 competition multi-

modal benchmark problems.

Tables 3-4 and 5-6 summarise the results from experi-

ments with two different budged sizes respectively, from

25 repeated independent runs each. Average and stan-

dard deviation of the best fitness values achieved are

reported. By the Friedman’s test and a subsequent

multi-comparison, the means and standard deviations

of the best performing algorithms are marked in bold.

The two budget sizes tested are 6 ·105 and 3 ·106 – that

is, a medium size budget and a large budget, according

to the definitions in the benchmark suite.

The results are summarised in Tables 3- 4 and 5- 6. We

see from these tables, and also from figure 1, that our

tRP-Ens-EDA(ADF) is most competitive in the high
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budget setting. In particular,

• In the medium budget setting (0.6 · 106 function

evaluations), tRP-Ens-EDA(ADF) wins with sta-

tistical significance over all competitors tested in

two of the test functions in the medium budget

setting. AVS wins over all competitors tested

in one function. In fact, tRP-Ens-EDA(AVS)

does better than tRP-Ens-EDA(ADF) in terms

of achieving lower fitness on a larger number

of functions, but statistically significant out-

performance is not observed in most of these cases

in the multi-comparison test.

• In the large budget setting (3 ·106 function evalu-

ations), tRP-Ens-EDA(ADF) wins over all other

methods tested – including the winner of the

CEC’10-’12 competitions [15] – in 4 of the test

functions (out of 11 tested).

We can therefore conclude that a direct adaptation

scheme like ADF turns most beneficial when we allow

slightly larger budget sizes. In medium or limited bud-

get settings we can recommend the AVS method.

Naturally, one cannot expect any method to perform

best on all problems in the light of well known no

free lunch theorems. However, the observed empir-

ical results together with their statistical significance

analysis support the conclusion that the methods pre-

sented in this paper are competitive with state of the art

large-scale optimisation heuristics, and therefore make

a worthwhile addition to the practitioner’s toolbox for

use in difficult high dimensional problems that no spe-

cialised algorithm is know to be able to solve. Moreover,

our algorithm construction comes with a good intuition

of its working strategy, which consists in a controlled

increase of exploration in a similar spirit as the adap-

tive variance scaling idea previously pursued in [27], but

now supporting much larger scale problems through an

ensemble of RPs.

4.1.3 Scalability of ADF(2df)

Since our ADF(2df) is the most expensive in terms of

function evaluations per generation, our final set of ex-

periments is to assess its scalability. We measure the

number of function evaluations needed (search cost) to

reach a specified distance from the global optimum as

the problem dimension varies. We fix the value to reach

(VTR) to 10−3, and vary the dimensionality of the

problem d ∈ [50, 1000]. We repeat the same experi-

ment with three other choices of VTR: 10−2, 102 and

103 to avoid biasing the conclusions towards a partic-

ular choice of the VTR. Throughout, the budget was

fixed to 3 · 106 so the algorithm stops either when the

budget is exhausted or upon reaching the VTR. All

other parameters are kept at their default values.

Figure 2 displays the average number of function eval-

uations as computed from the successful runs out of 25

independent repetitions for each problem, for each di-

mension tested. That is, runs terminated by exhausting

the budget do not contribute to these plots.

From figure 2 we observe a linear shape on the scala-

bility measurements (dashed lines on the log-log plots).

The black dotted line corresponds to the slope of 1 (that

is, linear scaling), for reference. This means that our

tRP-Ens-EDA with ADF scheme scales at most poly-

nomially (with degree indicated by the slope of lines) in

the dimension of the problem, which matches the best

scaling known for sep-CMA-ES [7] and the original RP-

Ens-EDA [4].

5 Conclusions and future work

We devised new adaptive approaches for high dimen-

sional continuous black-box optimisation which extend

and generalise the random projection ensemble based
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Table 3. Mean of best fitness values from 25 independent runs, in comparison with state of the art under equal budget of 0.6 · 106

function evaluations.

MA-SW-Chains CCVIL MLCC sep-CMA-ES EDA-MCC tRP-Ens-EDA(AVS) RP-Ens-EDA tRP-Ens-EDA(ADF)
F1 2.67E+03 1.77E+01 6.22E+03 8.15E+03 1.24E+03 7.57E+02 8.05E+02 5.79E+02
F2 3.84E+00 1.77E+01 1.45E+01 2.15E+01 3.86E+00 2.50E-13 1.30E-04 2.48E-13
F3 2.17E+08 9.79E+08 4.19E+08 1.41E+08 1.84E+07 1.30E+07 1.44E+07 3.04E+08
F4 8.14E+04 2.12E+07 1.41E+07 1.04E+07 1.78E+01 6.69E+02 2.51E+02 5.48E+02
F5 3.22E+03 1.31E+04 1.10E+04 8.36E+03 1.38E+03 8.01E+02 7.66E+02 6.01E+02
F6 3.83E+01 2.32E+02 2.16E+02 2.25E+02 3.42E+01 2.30E+01 3.33E+01 3.50E+01
F7 4.34E+03 1.84E+11 1.21E+09 5.02E+05 1.89E+08 1.33E+06 1.43E+06 1.40E+06
F8 3.19E+03 1.86E+04 1.84E+04 8.13E+03 1.49E+03 7.72E+02 7.89E+02 5.99E+02
F9 1.02E+02 4.26E+02 4.14E+02 4.30E+02 7.92E+01 8.27E+01 8.67E+01 9.18E+01
F10 5.53E+03 4.76E+11 2.67E+10 2.19E+04 1.65E+09 3.58E+04 4.74E+04 4.61E+04
F11 1.21E+03 4.48E+11 5.26E+10 1.16E+03 2.16E+09 9.94E+02 1.12E+03 1.10E+03

Table 4. Standard deviation of best fitness values from 25 independent runs, in comparison with state of the art, under equal budget
of 0.6 · 106 function evaluations.

MA-SW-Chains CCVIL MLCC sep-CMA-ES EDA-MCC tRP-Ens-EDA(AVS) RP-Ens-EDA tRP-Ens-EDA(ADF)
F1 1.63E+02 1.40E+01 1.75E+03 3.63E+02 4.77E+01 6.76E+01 7.17E+01 2.40E+01
F2 2.13E-01 1.97E+00 1.90E+00 2.07E-02 3.66E-01 6.39E-015 2.24E-06 4.76E-15
F3 8.56E+07 7.60E+07 1.76E+08 3.00E+07 3.39E+06 4.09E+06 3.29E+06 9.49E+06
F4 2.84E+05 3.76E+05 8.29E+06 2.33E+06 1.90E-01 1.30E+02 2.68E+01 7.50E+01
F5 1.85E+02 3.29E+02 1.97E+03 3.85E+02 6.28E+01 9.17E+01 5.91E+01 2.66E+01
F6 7.23E+00 8.08E-01 1.79E+01 5.05E+00 3.12E+00 9.48E+00 7.31E+00 9.49E+00
F7 3.21E+03 1.23E+11 2.15E+09 8.66E+04 7.86E+07 5.45E+04 4.72E+04 5.67E+04
F8 1.46E+02 3.76E+02 1.02E+04 3.49E+02 7.53E+01 3.79E+01 4.85E+01 2.46E+01
F9 1.42E+01 9.41E-01 1.22E+01 2.88E+00 8.38E+00 1.29E+01 1.43E+01 1.57E+01
F10 3.94E+03 2.86E+11 5.31E+10 1.12E+04 3.97E+08 5.43E+03 1.12E+04 9.72E+03
F11 1.42E+02 2.64E+11 7.80E+10 1.34E+02 4.97E+08 1.55E+01 1.04E+02 6.76E+01

EDA by means of using unconventional random matri-

ces. We have analytically shown that this results in

enlarging the covariance of the high dimensional search

distribution, which then increases exploration. Hence

our adaptive schemes in fact implement novel means of

covariance adaptation. We have demonstrated superior

performance against the original version RP-Ens-EDA

on both large and medium budget instances, and with a

state of the art performance in comparison with a num-

ber of existing methods on 1000 dimensional problems.

Future work remains to investigate other aggregation

schemes, and to extend the method to multi-objective

problems. A very interesting question for future work

would be to analyse the dynamics and the running time

of such high dimensional EDA optimisation algorithms.
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ties. In Neural Information Processing Systems.

1997, 9(1): 424-430.

[10] P.A.N. Bosman, D. Thierens. An algorithmic

framework for density estimation based evolution-

ary algorithms. Technical report, 1999, UU-CS.
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Appendix A

Proof [of Proposition 1] Recall from step 14 of Algo-

rithm 1 that the set of projected points in the i-th sub-

space is:

YRi = {Ri(x1 − µ),Ri(x2 − µ), ...,Ri(xN − µ)}.

Conditional on Ri, the sample covariance matrix of

this is:

ΣRi =
1

N

N∑
n=1

Ri(xn − µ)(Ri(xn − µ))T = RiΣR
T
i .

So the samples in step 16 are yRi
1 , . . . ,yRi

N ∼

N (0,ΣRi).

To find the distribution of the individuals in Pnew at

step 17, we look at the n-th individual:

xn :=

√
dM

k
[

1

M

M∑
i=1

RT
i y

Ri
n ] + µ. (7)
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Conditionally on Ri, i = 1 : M , this is a linear com-

bination of independent Gaussian random variables,

which is again a Gaussian†. Hence, xn is Gaussian

distributed, with mean µ (since yRi
n has zero mean),

and we compute its covariance below.

In equation (7), denote Ai :=
√

dM
k

1
MR

T
i , then we

have that yRi
n ∼ N (0,RiΣR

T
i ). So,

Aiy
Ri
n ∼ N (0,AiRiΣR

T
i A

T
i ) (8)

for all n = 1, . . . N . Replacing Ai in (8), we have the

i-th summand in eq. (7) is:

AyRi
n ∼ N (0,

√
dM

k

1

M
RT
i RiΣR

T
i

√
dM

k

1

M
Ri),

which simplifies to

N (0,
d

kM
RT
i RiΣR

T
i Ri).

Finally, the summation operation yields the ensemble

covariance in the d-dimensional search space as stated

in eq. (1). �

Appendix B

Here we give an example to demonstrate that random

matrices with negative excess kurtosis can cancel the

regularisation effect of the ensemble in some directions

of the search space.

Let Rij ∼ {−1,+1} with a probability of 1/2 each.

Hence we have E[R4
ij ] = 1, E[R2

ij ] = 1, and therefore

the excess kurtosis is K = 1− 3 = −2.

For the sake of this example, suppose that rank(Σ) =

2, so λ1 ≥ λ2 > 0, λ3 = . . . λd = 0, and suppose the

first two eigenvectors of Σ are

u1 =
(

1/
√

2, 1/
√

2, 0, . . . , 0
)
,

u2 =
(
−1/
√

2, 1/
√

2, 0, . . . , 0
)
,

and the remaining eigenvectors have their first two co-

ordinates 0. This is well defined, since one can easily

verify that u1 ⊥ u2, ‖u1‖ = ‖u2‖ = 1. Denote by

U the matrix having ui in its rows, with entries Uai,

where a, i = 1, . . . d.
Now, we have:

A1 =



∑d
a=1 U

4
a1 0 0 . . . 0

0
∑d
a=1 U

2
a1U

2
a2 0 . . . 0

0 0
∑d
a=1 U

2
a1U

2
a3 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 . . .
∑d
a=1 U

2
a1U

2
ad



=



1/2 0 0 . . . 0

0 1/2 0 . . . 0

0 0 0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 . . . 0


= A2.

Then, for this example we get:

K

d∑
i=1

λiAi = −2(λ1A1 + λ2A2)

= −Tr(Σ)


1 0 0 . . . 0

0 1 0 . . . 0

...
...

. . .
...

...

0 0 0 . . . 0

 .

This cancels the effect of the term Tr(Σ)Id in the first

two coordinate directions, leaving ER[Σrp] to be a mul-

tiple of maximum likelihood covariance estimates in

those directions.

Appendix C

Proof [Proof of Proposition 2] Let k ∈ {2, 4} and

x ∼ t(0, 1, ν) a t-distributed random variable, then by

definition,

E[xk] =

∫ ∞
−∞

xkf(x)dx

where f(x) is the pdf of the t distribution,

f(x) = c

(
1 +

x2

ν

)−1
2 (ν+1)

, (9)

†Assume x ∼ N (mx,Σx) and y ∼ N (my ,Σy), then

Ax + By + c ∼ N (Amx + Bmy + c,AΣxA
T + BΣyB

T )

.
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where

c =
1

√
νB(ν2 ,

1
2 )

=
Γ(ν/2 + 1/2)√
ν Γ(ν/2)Γ(1/2)

(10)

and B(·, ·) is the beta function [32]. Observing that

f(x) = f(−x), we can re-write the integral as:

E[xk] = 2

∫ ∞
0

xkf(x)dx. (11)

Writing out the expression of f as defined in eq. (9),

we have that eq. (11) equals

E[xk] = 2c

∫ ∞
0

xk
(

1 +
x2

ν

)−1
2 (ν+1)

dx

Now, we make the change of variable: t = x2

ν . Hence

x = (νt)
1
2 , and we get:

E[x4] = cν
k+1
2

∫ ∞
0

t
k+1
2 −1(1 + t)−

1
2−

ν
2 dt

= cν
k+1
2

∫ ∞
0

t
k+1
2 −1(1 + t)−( k+1

2 )−( ν−k2 )dt,

where we added and subtracted k/2 in the exponent

of the last term so that the integral represents a beta

function [32]:

B(m+ 1, n+ 1) =

∫ ∞
0

um(1 + u)−(m+n)−2

with m := k
2 −

1
2 and n := ν

2 − 3. Therefore we can

write:

E[xk] = cν
k+1
2 B

(
k + 1

2
,
ν − k

2

)
= cν

k+1
2

Γ(k+1
2 )Γ(ν−k2 )

Γ( 1+ν
2 )

.

We need to evaluate this for k = 4 and k = 2. Replac-

ing the expression of c from eq. (10), we get for k = 4

the following:

E[x4] = ν2 Γ( 5
2 )Γ(ν−4

2 )

Γ(ν2 )Γ( 1
2 )

,

which is finite provided that ν−4 > 0 (since Γ(0) =∞).

To simplify, we use the identities Γ(5
2 ) = 3

4

√
π and

Γ( 1
2 ) =

√
π [32]. So,

E[x4] =
3ν2

4 Γ(ν−4
2 )

Γ(ν2 )
.

Furthermore, by a property of the Gamma function,

Γ(x) = (x− 1)Γ(x− 1) [32], we have after substitution

and simplification:

E[x4] =
3ν2

(ν − 2)(ν − 4)
.

Analogously, for k = 2, we arrive at

E[x2] =
ν

ν − 2
.

Therefore, the excess kurtosis is:

K =
E[x4]

(E[x2])2
− 3 =

6

ν − 4
.

�

Proof [of Corollary 1] Let c > 0 be a constant. Then

c · x has variance c2var(x). The excess kurtosis of c · x

is
E
[
(c · x)4

]
(E
[
(c · x)2

]2 − 3.

Taking the constant out, we have

c4E
[
x4
]

c4E
[
x2
]2 − 3 =

E
[
x4
]

E
[
x2
]2 − 3,

thus the excess kurtosis did not change. �
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