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Abstract 25 

The addition of rewarding feedback to motor learning tasks has been shown to increase the 26 

retention of learning, spurring interest in its possible utility for rehabilitation. However, motor 27 

tasks employing rewarding feedback have repeatedly been shown to lead to great inter-28 

individual variability in performance. Understanding the causes of such variability is vital for 29 

maximising the potential benefits of reward-based motor learning. Thus, using a large human 30 

cohort of both sexes (n=241), we examined whether spatial (SWM), verbal (VWM) and mental 31 

rotation (RWM) working memory capacity and dopamine-related genetic profiles were 32 

associated with performance in two reward-based motor tasks. The first task assessed 33 

participant’s ability to follow a slowly shifting reward region based on hit/miss (binary) 34 

feedback. The second task investigated participant’s capacity to preserve performance with 35 

binary feedback after adapting to the rotation with full visual feedback. Our results demonstrate 36 

that higher SWM is associated with greater success and an enhanced capacity to reproduce a 37 

successful motor action, measured as change in reach angle following reward. In contrast, 38 

higher RWM was predictive of an increased propensity to express an explicit strategy when 39 

required to make large reach angle adjustments. Therefore, SWM and RWM were reliable but 40 

dissociable predictors of success during reward-based motor learning. Change in reach 41 

direction following failure was also a strong predictor of success rate, although we observed 42 

no consistent relationship with working memory. Surprisingly, no dopamine-related genotypes 43 

predicted performance. Therefore, working memory capacity plays a pivotal role in 44 

determining individual ability in reward-based motor learning.  45 

 46 

Significance statement 47 

Reward-based motor learning tasks have repeatedly been shown to lead to idiosyncratic 48 

behaviours that cause varying degrees of task success. Yet, the factors determining an 49 
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individual’s capacity to use reward-based feedback are unclear. Here, we assessed a wide range 50 

of possible candidate predictors, and demonstrate that domain-specific working memory plays 51 

an essential role in determining individual capacity to use reward-based feedback. Surprisingly, 52 

genetic variations in dopamine availability were not found to play a role. This is in stark 53 

contrast with seminal work in the reinforcement and decision-making literature, which show 54 

strong and replicated effects of the same dopaminergic genes in decision-making. Therefore, 55 

our results provide novel insights into reward-based motor learning, highlighting a key role for 56 

domain-specific working memory capacity. 57 

 58 

Introduction 59 

When performing motor tasks under altered environmental conditions, adaptation to the new 60 

constraints occurs through the recruitment of a variety of systems (Taylor and Ivry, 2014). 61 

Arguably the most studied of those systems is cerebellum-dependent adaptation, which consists 62 

of the implicit and automatic recalibration of mappings between actual and expected outcomes 63 

through sensory prediction errors (Morehead et al., 2017; Tseng et al., 2007). Besides 64 

cerebellar adaptation, other work has demonstrated the involvement of a cognitive, deliberative 65 

process whereby motor plans are adjusted based on structural understanding of the task (Bond 66 

and Taylor, 2015; Taylor and Ivry, 2011). We label this process ‘explicit control’ (Codol et al., 67 

2018; Holland et al., 2018), although it has also been referred to as strategy (Taylor and Ivry, 68 

2011) or explicit re-aiming (Morehead et al., 2015). Recently it has been proposed that 69 

reinforcement learning, whereby the memory of successful or unsuccessful actions are 70 

strengthened or weakened, respectively, may also play a role (Huang et al., 2011; Izawa and 71 

Shadmehr, 2011; Shmuelof et al., 2012). Such reward-based reinforcement has been assumed 72 

to be an implicit and automatic process (Haith and Krakauer, 2013). However, recent evidence 73 

suggests that phenomena attributed to reinforcement-based learning during visuomotor rotation 74 



4 
 

tasks can largely be explained through explicit processes (Codol et al., 2018; Holland et al., 75 

2018).  76 

One outstanding feature of reinforcement-based motor learning is the great variability 77 

expressed across individuals (Codol et al., 2018; Holland et al., 2018; Therrien et al., 2016, 78 

2018). What factors underlie such variability is unclear. If reinforcement is explicitly grounded, 79 

it could be argued that individual working memory capacity (WMC), which is reliably related 80 

to the propensity to employ explicit control in classical motor adaptation tasks (Anguera et al., 81 

2010, 2012; Christou et al., 2016; Holland et al., 2018; Sidarta et al., 2018), would also predict 82 

performance in reinforcement-based motor learning. Anguera et al. (2010) demonstrated that 83 

mental rotation WMC (RWM), unlike other forms of working memory such as verbal WMC 84 

(VWM), correlates with explicit control. Recently, Christou et al. (2016) reported similar 85 

results with spatial WMC (SWM). If this extends to reward based motor learning, this would 86 

strengthen the proposal that it bears a strong explicit component.  87 

Another potential contributor to this variability is genetic profile. In previous work (Codol et 88 

al., 2018; Holland et al., 2018), we argue that reinforcement-based motor learning performance 89 

relies on a balance between exploration and exploitation of the task space, a feature reminiscent 90 

of structural learning and reinforcement-based decision-making (Daw et al., 2005; Frank et al., 91 

2009; Sutton and Barto, 1998). A series of studies from Frank and colleagues suggests that 92 

individual tendencies to express explorative/exploitative behaviour can be predicted based on 93 

dopamine-related genetic profile (Doll et al., 2016; Frank et al., 2007, 2009). Reinforcement 94 

has consistently been linked to dopaminergic function in a variety of paradigms, and thus, such 95 

a relationship could also be expected in reward-based motor learning (Pekny et al., 2015). 96 

Specifically, Frank and colleagues focused on Catecholamine-O-Methyl-Transferase (COMT), 97 

Dopamine- and cAMP-Regulated neuronal Phosphoprotein (DARPP32) and Dopamine 98 
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Receptor D2 (DRD2), and suggest a distinction between COMT-modulated exploration and 99 

DARPP32- and DRD2-modulated exploitation (Frank et al., 2009).  100 

Consequently, we investigated the influence of WMC (RWM, SWM, and VWM) and genetic 101 

variations in dopamine metabolism (DRD2, DARP32, and COMT) on individuals’ ability to 102 

perform reward-based motor learning. We examined this using two established reward-based 103 

motor learning tasks. First, a task analogous to a gradually introduced rotation (Holland et al., 104 

2018) required participants to learn to adjust the angle at which they reached to a slowly and 105 

secretly shifting reward region (Acquire); second, a task with an abruptly introduced rotation 106 

(Codol et al., 2018; Shmuelof et al., 2012) required participants to preserve performance with 107 

reward-based feedback after adapting to a visuomotor rotation (Preserve). The use of these two 108 

tasks enabled us to examine whether similar predictors of performance explained participant’s 109 

capacity to acquire and preserve behaviour with reward-based feedback. 110 

 111 

Methods 112 

Prior to the start of data collection, the sample size, variables of interest and analysis method 113 

were pre-registered. The pre-registered information, data and analysis code can be found online 114 

at https://osf.io/j5v2s/ and https://osf.io/rmwc2/ for the Preserve and Acquire tasks, 115 

respectively.  116 

 117 

Participants 118 

121 (30 male, mean age: 21.06, range: 18-32) and 120 (16 male, mean age: 19.24, range: 18-119 

32) participants were recruited for the Acquire and Preserve tasks, respectively. All participants 120 

provided informed consent and were remunerated with either course credit or money 121 

(£7.50/hour). All participants were free of psychological, cognitive, motor or uncorrected 122 

https://osf.io/j5v2s/
https://osf.io/rmwc2/
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visual impairment. The study was approved by and performed in accordance with the local 123 

research ethics committee of the University of Birmingham, UK. 124 

 125 

Experimental design 126 

Participants were seated before a horizontally fixed mirror reflecting a screen placed above, on 127 

which visual stimuli were presented. This arrangement resulted in the stimuli appearing at the 128 

level on which participants performed their reaching movements. The Acquire (gradual) and 129 

Preserve (abrupt) tasks were performed on two different stations, with a KINARM (BKIN 130 

Technology, London, Ontario; sampling rate: 1000Hz) and a Polhemus 3SPACE Fastrak 131 

tracking device (Colchester, Vermont; sampling rate: 120Hz), employed respectively. The 132 

Acquire task was run using Simulink (The Mathworks, Natwick, MA) and Dexterit-E (BKIN 133 

Technology), while the Preserve task was run using Matlab (The Mathworks, Natwick, MA) 134 

and Psychophysics toolbox (Brainard, 1997). The Acquire task employed the same paradigm 135 

and equipment as in Holland et al. (2018), with the exception of the maximum reaction time 136 

(RT), which was increased from 0.6s to 1s, and the maximum movement time, which was 137 

reduced from 1s to 0.6s. The Preserve task used the same setup and display as in Codol et al. 138 

(2018); however, the number of ‘refresher’ trials during the binary feedback (BF) blocks was 139 

increased from one to two in every 10 trials. The designs were kept as close as possible to their 140 

respective original publications to promote replication and comparability across studies. In 141 

both tasks reaching movements were made with the dominant arm. Both the Acquire and 142 

Preserve tasks have previously been examined in isolation from each other (Acquire Task: 143 

Cashaback et al., 2017, 2019; Holland et al., 2018; Therrien et al., 2016, 2018; Preserve: Codol 144 

et al., 2018; Shmuelof et al., 2012) and we maintain this distinction here. However, it should 145 

be noted that the two tasks are essentially visuomotor rotation tasks. One of the aims of this 146 

study was to determine if similar mechanisms underly the use of binary feedback in both the 147 
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learning of a gradual rotation and maintenance of a previously learnt abrupt rotation. Therefore, 148 

despite the similarities we analyse the results of each task in isolation in addition to comparing 149 

the results across tasks.  150 

 151 

Reaching tasks 152 

Acquire task. Participants performed 670 trials, each of which followed a stereotyped timeline. 153 

The starting position for each trial was in a consistent position roughly 30cm in front of the 154 

midline and was indicated by a red circle (1cm radius). After holding the position of the handle 155 

within the starting position, a target (red circle, 1cm radius) appeared directly in front of the 156 

starting position at a distance of 10cm. Participants were instructed to make a rapid ‘shooting’ 157 

movement that passed through the target. If the cursor position at a radial distance of 10cm was 158 

within a reward region (±5.67°, initially centred on the visible target; grey region in Figure 1a) 159 

the target changed colour from red to green and a green tick was displayed just above the target 160 

position, informing participants of the success of their movement. However, if the cursor did 161 

not pass through the reward region, the target disappeared from view and no tick was displayed, 162 

signalling failure (binary feedback). After each movement, the robot returned to the starting 163 

position and participants were instructed to passively allow this.  164 

For the first 10 trials, the position of the robotic handle was displayed as a white cursor (0.5 165 

cm radius) on screen. Following this practice block, the cursor was extinguished for the 166 

remainder of the experiment and participants only received binary feedback. The baseline block 167 

consisted of the first 40 trials under binary feedback. During this period the reward region 168 

remained centred on the visible target. Subsequently, unbeknownst to the participant, the 169 

reward region rotated in steps of 1° every 20 trials; the direction of rotation was 170 

counterbalanced across participants. After reaching a rotation of 25°, the reward region was 171 

held constant for an additional 20 trials. Performance during these last 20 trials was used to 172 
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determine overall task success. Subsequently, binary feedback was removed, and participants 173 

were instructed to continue reaching as they were (maintain block) for the following 50 trials. 174 

Following this, participants were then informed that the reward region shifted during the 175 

experiment but not of the magnitude or the direction of the shift. They were then instructed to 176 

return to reaching in the same manner as they were at the start of the experiment (remove block, 177 

50 trials). During the learning phase of the task participants were given a 1-minute rest after 178 

trials 190 and 340.  179 

Preserve task. Participants performed 515 trials in total. On each trial participants were 180 

instructed to make a rapid ‘shooting’ movement that passed through a target (white circle, 181 

radius: 0.125cm) visible on the screen. The starting position for each trial was indicated by a 182 

white square (width: 1cm) roughly 30cm in front of the midline and the target was located at 183 

angle of 45° from the perpendicular in a counter clockwise direction at a distance of 8cm. The 184 

position of the tracking device attached to the fingertip was displayed as a cursor (green circle, 185 

radius: 0.125cm). When the radial distance of the cursor from the starting position exceeded 186 

8cm, the cursor feedback disappeared, and the end position was displayed instead. 187 

First, participants performed a baseline period of 40 trials, during which the position of the 188 

cursor was visible, and the cursor accurately reflected the position of the fingertip. In the 189 

adaptation block (75 trials), participants were exposed to an abruptly introduced 20° clockwise 190 

visuomotor rotation of the cursor feedback (Figure 1b). Subsequently, all visual feedback of 191 

the cursor was removed, and participants received only binary feedback. If the end position of 192 

the movement fell within a reward region, the trial was considered successful and a tick was 193 

displayed; otherwise a cross was displayed. The reward region was centred at a clockwise 194 

rotation of 20° with respect to the visual target with a width of 10°, that is, it was centred on 195 

the direction that successfully accounted for the previously experienced visuomotor rotation. 196 

Binary feedback was provided for 200 trials divided into 2 blocks of 100 trials (asymptote 197 
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blocks). Furthermore, participants experienced 2 ‘refresher’ trials for every 10 trials, where 198 

rotated visual feedback of the cursor position was again accessible (Codol et al., 2018; 199 

Shmuelof et al., 2012). This represents an increase compared to Codol et al. (2018) because 200 

participants in this study tended to have poorer performance under binary feedback, possibly 201 

due to a fatigue effect following the WM tasks (Anguera et al., 2012; see discussion). Finally, 202 

two blocks (100 trials each) with no performance feedback were employed in order to assess 203 

retention of the perturbation (no-feedback blocks). Before the first of those two blocks, 204 

participants were informed of the visuomotor rotation, asked to stop accounting for it through 205 

aiming off target and to aim straight at the target. 206 

 207 
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 208 

 209 

Figure 1: Experimental design. A: Time course of the Acquire task with the different 210 

experimental periods labelled. The grey region represents the reward region, which gradually 211 
rotated away from the visual target after the initial baseline period. The rectangle enclosing the 212 

green tick above the axes represents trials in which reward was available, and the rectangle 213 
with the ‘eye’ symbol indicates when vision was not available. B: Time course of the Preserve 214 
task. After adapting to an initial rotation with vision available, vison was removed (eye symbol) 215 

and reward-based feedback was introduced (tick and cross above the axes). Prior to the no-216 

feedback blocks participants were instructed to remove any strategy they had been using. C: 217 
WMC tasks, the three tasks followed a stereotyped timeline with only the items to be 218 
remembered differing. Each trial consisted of 4 phases (Fixation, Encoding, Maintenance, and 219 

Recall) with the time allocated to each displayed below. 220 

 221 

 222 
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Working memory tasks 223 

Participants performed three WM tasks, all of which followed the same design with the 224 

exception of the nature of the items to be remembered (Figure 1c). All WM tasks were run 225 

using Matlab (The Mathworks, Natwick, MA) and Psychophysics toolbox (Brainard, 1997). 226 

At the start of each trial, a white fixation cross was displayed in the centre of the screen for a 227 

period of 0.5 to 1s randomly generated from a uniform distribution (fixation period in Figure 228 

1c). In the encoding period, the stimuli to be remembered was displayed for 1s and then 229 

subsequently replaced with a blue fixation cross for the maintenance period which persisted 230 

for 3s. Finally, during the recall period, participants were given a maximum of 4s to respond 231 

by pressing one of three keys on a keyboard with their dominant hand. The ‘1’ key indicated 232 

that the stimuli presented in the recall period was a ‘match’ to that presented in the encoding 233 

period, the ‘2’ key indicated a ‘non-match’, and ‘3’ indicated that the participant was unsure 234 

as to the correct answer. Each WM task contained 5 levels of difficulty with the 12 trials 235 

presented for each; 6 of which were trials in which ‘match’ was the correct answer and 6 in 236 

which ‘non-match’ was the correct answer. Consequently, each WM task consisted of 60 trials 237 

and the order in which the tasks were performed was pseudorandomised across participants. 238 

Prior to the start of each task participants performed 10 practice trials to familiarise themselves 239 

with the task and instructions. For both the Acquire and Preserve tasks, the WM tasks were 240 

performed in the same experimental session as the reaching. However, in the case of the 241 

Acquire task the WM tasks were performed after the reaching task whereas for the Preserve 242 

task the WM tasks were performed first.  243 

In the RWM task (Figure 1c, top row), the stimuli consisted of six 2D representations of 3D 244 

shapes drawn from an electronic library of the Shepard and Metzler type stimuli (Peters and 245 

Battista, 2008). The shape presented in the recall period was always the same 3D shape 246 

presented in the encoding period after undergoing a screen-plane rotation of 60°, 120°, 180°, 247 
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240° or 300°. In ‘match’ trials, the only transform applied was the rotation; however, in ‘non-248 

match’ trials an additional vertical-axis mirroring was also applied. The difficulty of mental 249 

rotation has been demonstrated to increase with larger angles of rotation (Shepard and Metzler, 250 

1971) and therefore the different degrees of rotation corresponded to the 5 levels of difficulty. 251 

However, given the symmetry of two pairs of rotations (60 and 300, 120 and 240), these 5 252 

levels were collapsed to 3 for analysis.  253 

In the SWM task (Figure 1c, middle row), stimuli in the encoding period consisted of a variable 254 

number of red circles placed within 16 squares arranged in a circular array (McNab and 255 

Klingberg, 2008). In the recall period, the array of squares was presented without the red circles 256 

and instead a question mark appeared in one of the squares. Participants then answered to the 257 

question ‘Was there a red dot in the square marked by a question mark?’ by pressing a 258 

corresponding key. In ‘match’ trials the question mark appeared in one of the squares 259 

previously containing a red circle and in ‘non-match’ trials it appeared in a square that was 260 

previously empty. Difficulty was scaled by varying the number of red circles (i.e. the number 261 

of locations to remember) from 3 to 7.  262 

In the VWM task (Figure 1c, bottom row), participants were presented with a list of a variable 263 

number of consonants during the encoding period. In the recall period a single consonant was 264 

presented, and participants answered to the question ‘Was this letter included in the previous 265 

array?’. Thus, the letter could either be drawn from the previous list (‘match’ trials) or have 266 

been absent from the previous list (‘non-match’ trials). Difficulty in this task was determined 267 

by the length of the list to be remembered, ranging from 5 to 9. 268 

Both the SWM and RWM tasks have been suggested to fall under the general umbrella term 269 

of spatial ability (Buszard and Masters, 2018). However, Miyake et al. (2001) suggest that 270 

although both RWM and short term storage of spatial information (i.e. SWM) are within the 271 

spatial domain, RWM appears to rely more heavily on executive function and SWM on basic 272 
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short term storage of spatial information. Furthermore, previous studies have found 273 

relationships between motor learning and this SWM task (Christou et al., 2016; Vandevoorde 274 

and Orban de Xivry, 2019) and tasks similar to our RWM task (Anguera et al., 2010). Therefore, 275 

we included both tasks to investigate if there was any severability in their relationships with 276 

reaching performance and leveraged our use of two separate reaching tasks and large cohorts 277 

to probe if this was due to specific task parameters.  278 

 279 

Genetic sample collection and profiling 280 

COMT is thought to affect DA function mainly in the prefrontal cortex (Egan et al., 2001; 281 

Goldberg et al., 2003), a region known for its involvement in WM and strategic planning 282 

(Anguera et al., 2010; Doll et al., 2015), whereas DARPP32 and DRD2 act mainly in the basal 283 

ganglia to promote exploitative behaviour, possibly by promoting selection of the action to be 284 

performed (Frank et al., 2009). Consequently, we focused here on single-nucleotide 285 

polymorphisms (SNP) related to those genes: RS4680 (COMT) and RS907094 (DARPP32). 286 

Regarding DRD2, there are two potential SNPs available, RS6277 and RS1800497. Although 287 

previous studies focusing on exploration and exploitation have assessed RS6277 expression 288 

(Doll et al., 2016; Frank et al., 2007, 2009), it should be noted that this SNP varies greatly 289 

across ethnic groups, with some allelic variations being nearly completely absent in non-290 

Caucasian-European groups (e.g. see RS6277 in 1000 Genomes Project (The 1000 Genomes 291 

Project Consortium et al., [2015]). This has likely been inconsequential in previous work, as 292 

Caucasian-European individual represented the majority of sampled groups; here however, this 293 

represents a critical shortcoming, as we aim at investigating a larger and more representative 294 

population including other ethnic groups. Consequently, we based our analysis on the 295 

RS1800497 allele of the DRD2 gene (Pearson-Fuhrhop et al., 2013). 296 
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At the end of the task, participants were asked to produce a saliva sample which was collected, 297 

stabilized and transported using Oragene.DNA saliva collection kits (OG-500, DNAgenotek, 298 

Ontario, Canada). Participants were requested not to eat or drink anything except water for at 299 

least two hours before sample collection. Once data collection was completed across all 300 

participants, the saliva samples were sent to LGC (Hoddeson, Hertfordshire; 301 

https://www.lgcgroup.com/) for DNA extraction (per Oragene protocols: 302 

https://www.dnagenotek.com/) and genotyping. SNP genotyping was performed using the 303 

KASP SNP genotyping system. KASP is a competitive allele-specific PCR incorporating a 304 

FRET quencher cassette. Specifically, the SNP-specific KASP assay mix (containing two 305 

different, allele specific, competing forward primers) and the universal KASP master mix 306 

(containing FRET cassette plus Taq polymerase in an optimised buffer solution) were added to 307 

DNA samples and a thermal cycling reaction performed, followed by an end-point fluorescent 308 

read according to the manufacturer’s protocol. All assays were tested on in-house validation 309 

DNA prior to being run on project samples. No-template controls were used, and 5% of the 310 

samples had duplicates included on each plate to enable the detection of contamination or non-311 

specific amplification. All assays had over 90% call rates. Following completion of the PCR, 312 

all genotyping reaction plates were read on a BMG PHERAStar plate reader. The plates were 313 

recycled until a laboratory operator was satisfied that the PCR reaction had reached its endpoint. 314 

In-house Kraken software then automatically called the genotypes for each sample, with these 315 

results being confirmed independently by two laboratory operators. Furthermore, the duplicate 316 

saliva samples collected from 5% of participants were checked for consistency with the primary 317 

sample. No discrepancies between primary samples and duplicates were discovered. 318 

 319 

 320 

 321 
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Data analysis 322 

Acquire task: Reach trials containing movement times over 0.6s or less than 0.2s were removed 323 

from analysis (6.9% of trials). The end point angle of each movement was defined at the time 324 

when the radial distance of the cursor exceeded 10cm. This angle was defined in relation to the 325 

visible target with positive angles indicating clockwise rotations. End point angles and target 326 

angles for participants who experienced the counter clockwise rotations were sign-transformed. 327 

The explicit component of retention was defined as the difference between the mean reach 328 

angle of the maintain block and the remove block, while the implicit component was the 329 

difference between the mean reach angle of the remove block and baseline (Werner et al., 2015). 330 

Participants that achieved a mean reach angle within the reward region during the final 20 trials 331 

before the maintain block were considered ‘successful’ in learning the rotation; otherwise they 332 

were considered ‘unsuccessful’. As in Holland et al. (2018), for unsuccessful participants, the 333 

largest angle of rotation at which the mean reach angle fell within the reward region was taken 334 

as the end of successful performance, and only trials prior to this point were included for further 335 

analysis. Success rate was defined as the percentage of trials during the learning blocks in 336 

which the end point angle was within the reward region. In order to examine the effect of 337 

reward on the change in end point angle on the subsequent trial, we examined the magnitude 338 

and variability of changes in end point angle between consecutive trials (Holland et al., 2018; 339 

Sidarta et al., 2018; Therrien et al., 2016, 2018). To calculate the median absolute change 340 

following rewarded (ΔR) and unrewarded (ΔP) trials we extracted the changes in reach angle 341 

following each trial type and calculated the median of the absolute values of these changes for 342 

each participant. These measures therefore represent the median of the magnitude of changes 343 

in reach angle, regardless of direction. Furthermore, in order to examine the variability of trial-344 

by-trial adjustments (MAD[ΔR] and MAD[ΔP] for rewarded and unrewarded trials, 345 

respectively) we calculated the median absolute deviation of the changes in reach angle. It is 346 
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important to note that ΔR and ΔP are calculated from the absolute magnitude of the changes in 347 

reach angle, whereas, MAD[ΔR] and MAD[ΔP] are calculated from the non-absolute values 348 

(including the direction of change).    349 

Preserve task: Reach trials containing movement times over 1s were removed from analysis 350 

(2.38% of trials). The end point angle for each movement was defined at the time that the radial 351 

distance of the cursor from the start position exceeded 8cm. Trials in which the error was 352 

greater than 80° were excluded from further analysis (0.94% of trials). As in Codol et al. (2018), 353 

learning rate was calculated by fitting an exponential function to the angular error between 354 

cursor and target for trials in the adaptation block, with the β value taken as the learning rate 355 

(mean R2=0.34±0.15). The β estimates attained from all fits were first sign transformed and 356 

then log-transformed to counteract skewness prior to entering the regression analysis. Using 357 

this method, a value close to 0 indicated faster learning, whereas more negative values 358 

indicated slower learning. Similar to Codol et al (2018), success rate, corresponding to 359 

percentage of rewarded trials, was measured separately in the first 30 and last 170 trials of the 360 

asymptote blocks and labelled early and late success rate, respectively. This reflects a 361 

dichotomy between a dominantly exploration-driven early phase and a later exploitation-driven 362 

phase. The analysis of changes in reach angle (ΔR and ΔP) was confined to the last 170 trials 363 

of the asymptote blocks. Implicit retention was defined as the difference between the average 364 

baseline reach direction and the mean reach direction of the last 20 trials of the last no-feedback 365 

block (Codol et al., 2018). Analysis of changes in reach angle following rewarded trials were 366 

not pre-registered but were included post-hoc.  367 

Exploratory analysis of reaching data: In order to understand which outcome variables in the 368 

reaching tasks were predictive of overall task success, we split the learning period into two 369 

sections for every participant. We assessed trial-by-trial changes in end point angle in the first 370 

section and compared them to success rate in the second section. For the Acquire task, we 371 
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assessed trial-by-trial adjustments during the learning block, excluding the final 20 trials, and 372 

compared them to success rate in the last 20 trials of the learning block. In the Preserve task, 373 

we measured adjustments in the first 100 trials of the asymptote blocks and compared them to 374 

success rate in the last 100 trials of the asymptote blocks. 375 

WM tasks: WM performance was defined as the average percentage of correct responses across 376 

the 3 highest levels of difficulty for each task. In the case of the RWM task, the symmetrical 377 

arrangement of the angles of rotation in effect produced three levels of difficulty and therefore 378 

all trials were analysed.  379 

Genetics: Genes were linearly encoded, with heterozygote alleles being 0, homozygote alleles 380 

bearing the highest dopaminergic state being 1, and homozygote alleles bearing the lowest 381 

dopaminergic state being -1 (Table 1). All groups were assessed for violations of the Hardy-382 

Weinberg equilibrium. The participant pool in the Preserve task was in Hardy-Weinberg 383 

equilibrium for all three genes considered. In the Acquire task population, COMT and DRD2 384 

were in Hardy-Weinberg equilibrium, but DARPP32 was not (p=0.002), with too few 385 

heterozygotes. Therefore, the DARPP32 alleles were recoded, with the heterozygotes (0) and 386 

the smallest homozygote group (C:C, -1) combined and recoded as 0.  387 

 388 

 389 

 390 
 391 
 392 

 393 
 394 
 395 
 396 

 397 
 398 
 399 

 400 
 401 
 402 
 403 
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SNP location Allele code -1 Allele code 0 Allele code 1 

rs4680 COMT G:G (val:val) 

31, 33 

A:G (met:val) 

68, 61 

A:A (met:met) 

17, 21 

rs1800497 DRD2 T:T (lys:lys) 

8, 7 

T:C (lys:glu) 

48, 51 

C:C (glu:glu) 

64, 62 

rs907094 DARPP32 C:C 

10, 21 

C:T 

54, 38 

T:T 

56, 62 

 404 
Table 1: Coding for SNPs. The name of the SNP is provided along with the code assigned to 405 
each allele. The numbers represent the counts for the specific allele in the two tasks (Preserve, 406 

Acquire). 407 
 408 

Statistical analysis  409 

Regressions were performed using the linear Lasso method (Tibshirani, 1996; lasso function 410 

in MatLab’s Statistics and Machine Learning Toolbox). Lasso regression employs a shrinkage 411 

method that allows for some predictors to be shrunk to a value of 0, effectively removing them 412 

from the regression model. Therefore, the method acts as a selection method for predictors in 413 

an analogous way to stepwise regression. We used a 10-fold cross validation approach to 414 

calculate the Mean Squared Error (MSE) over a range of values of a penalty term λ. Specifically, 415 

as λ increases, the shrinkage of predictor values increases. For λ=0, the model reduced to a 416 

standard linear regression, as all predictors were included without any shrinkage. Cross 417 

validation protects against the problem of over-fitting by calculating the MSE on data ‘unseen’ 418 

by the model during fitting. For any given outcome variable, if its MSE(λ) function exhibited 419 

a minimum value within its defined boundaries, the model associated with that minimum value 420 

was considered selected. If no minimum was observed, this signified that an empty model was 421 

a better fit than any other possible model. If such minimum was detected in the MSE(λ) 422 

function, the β estimates from that model (i.e. at that value of λ) were taken. We repeated this 423 
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procedure 1000 times to obtain the distribution of the true β from the estimates (Hastie et al., 424 

2015). In order for a potential variable to be considered a selected predictor, that predictor 425 

should be selected (i.e. β≠0) in at least 80% of the repetitions. The threshold of 80% was chosen 426 

as to maintain sufficient sensitivity whilst still returning relatively sparse models. We report 427 

the median β estimate in the text for all selected predictors. 428 

In order to understand what genetic and WM factors are predictive of performance in the 429 

Acquire task, we performed a lasso regression of the seven predictors (three allelic variations, 430 

three WM and ethnicity) onto each of several outcome measures representative of performance: 431 

success rate, implicit and explicit retention, ΔR, MAD[ΔR], ΔP, MAD[ΔP].. For the Preserve 432 

task, we performed separate lasso regressions using the same seven predicators for the 433 

following outcome variables: baseline reach direction as a control variable, learning rate in the 434 

adaptation block, early and late success rate in the asymptote blocks (first 30 and last 170 trials; 435 

Codol et al., 2018), retention in the no-feedback blocks, and ΔR and ΔP during the asymptote 436 

blocks. We adopted a parsimonious approach when interpreting the results of the regression 437 

analysis and gave particular credence to results reproduced by the analysis across both tasks.  438 

Prior to the regression analysis, all predictors and predicted variables were standardised (z-439 

scored). For all non-ordinal variables, individual data were considered outliers if further than 440 

3 standard deviations from the mean and were removed prior to standardisation. 441 

Multicollinearity of predictors was also assessed before regression with Belsley Collinearity 442 

Diagnositcs (collintest function in MatLab’s Econometrics Toolbox) and no predictors were 443 

found to exhibit condition indexes over 30, indicating acceptable levels of collinearity. When 444 

considering retention for both tasks, unsuccessful participants were removed from the 445 

regression analysis. We further characterised the relationships between predictor variables by 446 

combining the data for the two tasks for the working memory (WM) tasks and the genetic codes 447 
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(N=241). We analysed relationships between the WM tasks with correlations and between 448 

genetics and WM tasks with one-way ANOVAs.  449 

Exploratory mediation analysis: We performed a mediation analysis to test if the relationship 450 

between SWM and SR was mediated by ΔR. Our hypothesis was that higher SWM enables 451 

smaller changes after correct trials (ΔR) and this then explains the relationship between SWM 452 

and SR. To ensure that separate trials were used in the calculation of ΔR and SR, we split the 453 

trials into two equally sized folds. The SR was then calculated for one-fold as a percentage of 454 

correct trials, and ΔR was calculated as the median absolute change of reach angle after correct 455 

trials in the other fold. For the Acquire task only successful subjects were included in the 456 

mediation analysis. We employed Baron & Kenny’s three step mediation analysis (Baron and 457 

Kenny, 1986): first regress SR on SWM, then regress ΔR on SWM, and finally regress SR on 458 

both SWM and ΔR. Subsequently, we performed a Sobel test to determine if there was a 459 

significant reduction in the relationship between SWM and SR when including ΔR. The Sobel 460 

test examines if the amount of variance in SR explained by SWM is significantly reduced by 461 

including the mediator (Sobel, 1986). For a significant effect to be found, SWM must be a 462 

significant predictor of ΔR and ΔR must also be a significant predictor of SR after controlling 463 

for the effect of SWM on SR. We repeated this procedure 1000 times with the allocation of 464 

trials to each fold randomised on each repetition. We present results in terms of the 95% 465 

confidence intervals for the R2 values for each of the regressions and the median p-value of the 466 

Sobel test, along with the associated 95% confidence intervals. An alternative possibility to the 467 

hypothesized model is that the relationship between SWM and ΔR is mediated by SR. In order 468 

to compare the size of the mediation effect for these alternate models, we follow the Mackinnon 469 

and Dwyer (1993) procedure and normalize the size of the indirect effect by dividing it by the 470 

sum of the direct and indirect effects. This analysis allows to express the mediation effect in 471 
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terms of percentage of the total effect. We present the median of the normalized value for the 472 

1000 repetitions on both the hypothesized and alternate models.  473 

 474 

Results 475 

Acquire task 476 

In the Acquire task, participants had to learn to compensate for a secretly shifting reward region 477 

in order to obtain successful feedback (Figure 2, 3). As in Holland et al. (2018), about a quarter 478 

(28.1%) of participants failed to learn to compensate for the full extent of the rotation (Figure 479 

3a).  The inability of a significant proportion of participants to learn the full extent of the 480 

rotation is also consistent with previous reports in reward-based motor learning paradigms 481 

(Cashaback et al., 2019; Codol et al., 2018; Saijo and Gomi, 2010; Therrien et al., 2016, 2018). 482 

Successful participants retained most of the learnt rotation (mean 80.7% ± 28.0% SD) in the 483 

maintain block. This level of retention is in accordance with that reported previously in similar 484 

paradigms (Holland et al., 2018; Therrien et al., 2016). However, upon being asked to remove 485 

any strategy they had been employing, their performance returned to near-baseline levels. 486 

Consequently, a large explicit component to retention was found for successful participants 487 

(Figure 3b), whereas both successful and unsuccessful participants manifest a small but non-488 

zero implicit component (t(86)=9.90, p=7.43×10-16, d=1.061 and t(33)=4.53, p=7.39×10-5, 489 

d=0.776, respectively; Figure 3c). The persistent implicit retention is a common finding of 490 

retention periods in which no visual feedback is provided and may reflect a combination of 491 

implicit reinforcement (Shmuelof et al., 2012), use-dependent plasticity (Diedrichsen et al., 492 

2010), perceptual bias (Vindras et al., 1998), or perceptual recalibration (Modchalingam et al., 493 

2019). Furthermore, in accordance with Holland et al (2018), we found that participants made 494 

larger (t(120)=15.80, p=4.32×10-31, d=1.900) and more variable changes in reach angle 495 

following unrewarded trials (t(120)=14.54, p=3.144×10-28, d=1.667; Figure 3d-g). However, in 496 
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participants who would go on to fail, the post-error adjustments were smaller than in successful 497 

participants (t(119)=3.33, p=0.001, d=0.672; Figure 3d). Changes following rewarded trials 498 

were similar between the groups (t(119)=0.71, p=0.48, d=0.143; Figure 3f,g). The results 499 

obtained in this sample (N=121) therefore replicate results from a previous study (N=30) and 500 

provides further confirmation that performance in this task is fundamentally explicitly driven 501 

(Holland et al., 2018). 502 

 503 

 504 

Figure 2: Reaching performance in the Acquire task. The grey region represents the 505 
gradually rotating rewarded region, the blue line represents mean reach angle for each trial, 506 
and the shaded blue region represent SEM. Vertical dashed lines represent different experiment 507 

blocks or breaks. Average performance for the full cohort falls within the reward region and 508 

demonstrates a clear reduction in reach angle when asked to remove strategy. N=121. 509 
 510 

In order to understand what genetic and WM factors are predictive of performance in the 511 

reaching task, we performed a lasso regression of the seven predictors (three allelic variations, 512 

three WM and ethnicity) onto each of several outcome measures representative of performance: 513 

success rate, implicit and explicit retention, ΔR, MAD[ΔR], ΔP, MAD[ΔP].  514 

 515 
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 516 

Figure 3: Acquire task split by success at final angle. A: Average reach angle for the 517 

successful (green) and unsuccessful (orange) groups, shaded regions represent SEM and grey 518 
shaded region represents the rewarded region. Despite similar initial performance, a clear 519 

divergence can be seen between the two groups and an explicit component to retention is only 520 
visible in the successful group, whereas implicit retention is similar between groups. B-G: 521 
subplots displaying derived measures, which acted as outcome variables for the regression 522 

analysis, separated into successful and unsuccessful participants overlaid with individual data 523 
points. Error bars represent 95% bootstrapped confidence intervals. ΔR and ΔP refer to changes 524 

made in reach angle after rewarded and unrewarded trials respectively. The bar plots in panels 525 

D and F display the median absolute change and panels E and G display the median absolute 526 
deviation of the changes in angle after each trial type. 527 
 528 

For success rate, SWM, RWM and DRD2 were selected as predictors (median β=0.31, 0.06, 529 

and 0.03, respectively; Figure 4a), with the strongest predictor being SWM. Figure 5 displays 530 

the effect of the strongest predictor selected for each outcome variable and shows that there 531 

was a positive relationship between SWM and success rate (Figure 5a). To ensure that the 532 

relationship between SWM and success rate was not due to failure at a later point in the task, 533 

success rate was measured during the initial period in which subjects who could not fully 534 
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account for the displacement are still successful; for those who could, the full learning block 535 

was included.  536 

 537 

 538 

Figure 4: Lasso regression results for the Acquire task. Each row (A-G) represents the 539 
results from one outcome variable. The left column indicates the MSE as a function of changing 540 

the shrinkage parameter λ, with larger values of λ representing greater penalization and sparser 541 
models. A minimum in the MSE within its defined boundaries indicates the suitability of that 542 
choice of λ and is indicated with a vertical line. Given the presence of a minimum, the values 543 

of the β for each predictor are taken. We performed 1000 repetitions of the lasso regression for 544 
each outcome variable and box plots indicating the distribution of the coefficient estimates are 545 
displayed in the middle panel. The rightmost column indicates the percentage of times that the 546 
individual predictors were assigned non-zero coefficients. We employed a threshold of 80% 547 

(indicated with a dashed vertical line) to signify that a particular predictor was robustly selected, 548 
and these variables are highlighted in green. Median absolute change in reach angle after 549 
rewarded (ΔR) and unrewarded (ΔP) trials. Median absolute deviation of change in reach angle 550 

after rewarded (MAD[ΔR]) and unrewarded (MAD[ΔP]) trials.  551 
 552 
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Next, retention was assessed by splitting up the explicit and implicit components such as in 553 

Holland et al. (2018). No predictor was related to the implicit component, but the explicit 554 

component was strongly and positively associated with RWM (β=0.27; Figure 4b, 5b) with a 555 

weaker association between DARPP32 and explicit retention (β=0.03). These results suggest 556 

positive relationships for both RWM and SWM with task performance: greater RWM predicts 557 

a greater contribution of explicit processes to learning, whereas greater SWM predicts a greater 558 

percentage of correct trials. 559 

 560 

 561 

Figure 5: Added variable plots for selected predictors in the Acquire task. Each plot 562 
displays the relationship between the strongest predictor selected by the lasso regression (x-563 
axis), and the corresponding outcome variable (y-axis). Added variable plots display the 564 

residuals of regressing the response variable with all remaining independent variables, and the 565 

residuals of the regression of the selected predictor to the remaining predictors. The resulting 566 

relationship corresponds to the effect of the selected predictor on the outcome measure after 567 
controlling for the remaining predictors. SR: Success Rate. Median absolute change in reach 568 
angle after rewarded (ΔR) and unrewarded (ΔP) trials. MAD(ΔR): Median absolute deviation 569 
of change in reach angle after rewarded trials.  570 
 571 
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In Holland et al (2018), the amplitude of the changes in reach angle participants made following 572 

unrewarded trials was found to be predictive of task success, that is, greater ΔP was predictive 573 

of an increased chance of overall task success. Thus, it could be that RWM and SWM, that are 574 

shown to associate with performance in this study, are themselves predictors of changes in 575 

reach angle. Conformingly, the regression results demonstrated that a large ΔR was inversely 576 

related to SWM (β=-0.11; Figure 4f, 5d), as was MAD[ΔR] (β=-0.17; Figure 4g, 5e). The 577 

results indicate that greater SWM was predictive of smaller and less variable changes in reach 578 

angle after successful trials, suggesting high SWM enables the maintenance of rewarding reach 579 

angles. It was also found that changes in reach angle following unrewarded trials (ΔP) were 580 

negatively associated with VWM (β=-0.13, Figure 4d, 5c). This result was unexpected as it 581 

suggests that greater WMC predicts smaller changes following unrewarded trials, whereas 582 

previous results suggest a positive relationship between the amplitude of these changes and 583 

overall task success. Although the difference may be due to the domain of WM under 584 

consideration, it is unclear as to the reason for this relationship. Another important aspect of 585 

the analysis of trial-to-trial changes to control for is that the numbers of trials analysed and 586 

their phase in the experiment differs between successful and unsuccessful subjects. Therefore, 587 

we repeated the Lasso regression while only including successful subjects. The predictors that 588 

were selected were identical to those selected when using the full participant pool.  589 

Overall, WM (in particular RWM and SWM) successfully predicted various aspects of 590 

performance in the Acquire task, while genetic predictors generally failed to do so. Specifically, 591 

greater SWM predicted smaller and less variable changes after correct trials. This suggests that 592 

SWM underlies one’s capacity to preserve and consistently express an acquired reach direction 593 

to obtain reward. Furthermore, SWM also directly predicted success rate. In addition, greater 594 

RWM was a strong predictor of explicit control. The inverse relationship between VWM and 595 

the magnitude of changes after unrewarded trials was unexpected. However, one possible 596 
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explanation is that participants with poorer WMC make larger errors which require larger 597 

corrections.  598 

 599 

Preserve task 600 

In this task, we addressed how well participants can maintain a previously learnt adaptation 601 

after transitioning to binary feedback. As participants are unable to compensate for a large 602 

abrupt displacement of a hidden reward region (van der Kooij and Overvliet, 2016; Manley et 603 

al., 2014), participants first adapted to an abruptly introduced 20° clockwise rotation with full 604 

vision of the cursor available. Subsequently, visual feedback of the cursor position was 605 

replaced with binary feedback; participants were rewarded if they continued reaching towards 606 

the same angle that resulted in the cursor hitting the target during the adaptation phase. Overall, 607 

participants adapted to the visuomotor rotation successfully (Figure 6, 7a-c) before 608 

transitioning to the binary feedback-based asymptote blocks. However, from the start of the 609 

asymptote blocks onward, participants exhibited very poor performance, expressing an average 610 

45.0 ± 24.2 SD% success rate when considering all 200 asymptote trials (Figure 6, 7a, d,e). We 611 

have previously shown in (Codol et al., 2018) that this drop in performance (Shmuelof et al., 612 

2012) represents exploratory behaviour that arises due to a lack of transfer of the cerebellar 613 

memory between the two contexts. Separating successful and unsuccessful participants (40% 614 

success rate cut-off; Figure 7a) revealed that successful participants expressed behaviour 615 

greatly similar to that observed in Codol et al. (2018), in which unsuccessful participants were 616 

excluded, using the same cut-off (40% success rate). The ‘spiking’ behaviour observed in reach 617 

angles during the asymptote blocks (Figure 7a) is due to the presence of the ‘refresher’ trials, 618 

with the large positive changes in reach angle corresponding to trials immediately following 619 

the refresher trials. This pattern of behaviour is particularly pronounced in the unsuccessful 620 

participants. Finally, participants demonstrated at least a residual level of retention even after 621 
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being instructed to remove any strategy they had employed (t(69)=7.268, p=3.345x10-10, 622 

d=0.869; Figure 7a,f). Therefore, the results obtained in this sample (N=120) replicate results 623 

from a previous study (Codol et al., 2018; N=20, BF-Remove group) and provides further 624 

confirmation that performance in this task is fundamentally explicitly driven. It should also be 625 

noted that the successful group displayed higher implicit retention than the unsuccessful 626 

participants. As with the Acquire task successful participants displayed larger changes in angle 627 

after unrewarded trials than their unsuccessful counterparts (t(117)=3.847, p=1.952x10-4, 628 

d=0.717; Figure 7h). However, in contrast to the Acquire task, successful participants also 629 

displayed smaller changes in angle after rewarded trials (t(115)=-7.534, p=1.218x10-11, 630 

d=1.421; Figure 7g). 631 

 632 

 633 

Figure 6: Reaching performance in the Preserve task. The grey shaded area represents the 634 

rewarded region, and the thick black line represents the perturbation. The vertical dashed lines 635 
represent block limits. The blue line indicates mean reach angle for every trial and blue shaded 636 

areas represent SEM. After successfully adapting to the visuomotor rotation performance 637 
deteriorates at the onset of binary feedback, subsequently success rate increases towards the 638 
end of the asymptote blocks. Following the removal of all feedback, and the instruction to 639 

remove any strategy, a small amount of implicit retention remains. N=120. 640 
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 641 

Figure 7: Preserve task split into two groups on the basis of success rate. A: Shaded regions 642 

represent SEM. B-H: Derived variables, which acted as outcome variables for the regression 643 
analysis, for the two groups, error bars on the bars represent 95% bootstrapped confidence 644 

intervals and individual data points are displayed. SR: Success Rate. Median absolute change 645 
in reach angle after rewarded (ΔR) and unrewarded (ΔP) trials.  646 

 647 

As in the Acquire task, we examined if performance in any of the WM tasks or genetic profile 648 

could predict participants’ behaviour in the reaching task. We performed separate lasso 649 

regressions for the following outcome variables: baseline reach direction as a control variable, 650 

learning rate in the adaptation block, early and late success rate in the asymptote blocks (first 651 

30 and last 170 trials; Codol et al., 2018), retention in the no-feedback blocks, and ΔR and ΔP 652 

during the asymptote blocks. The most striking result was that both early and late success rate 653 

could be reliably predicted by RWM (early: β=0.17, late: β=0.12; Figure8c,d, and 9a,b), with 654 

greater RWM associated with increased success rates. An additional positive relationship was 655 

found between SWM and success rate but only during the later period (β=0.02; Figure8c).  656 
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 657 

Figure 8: Results of the Lasso regressions for the Preserve task. The format is identical to 658 

Figure 4 with each row (A-G) representing the predictors of a single outcome measure. Selected 659 
predictors are highlighted in green, with the middle panels displaying the β estimates and the 660 

right panels displaying the probability of each predictor being selected. SR: Success Rate. 661 
Median absolute change in reach angle after rewarded (ΔR) and unrewarded (ΔP) trials.  662 
 663 

Genetic profile did not predict any aspect of performance. In contrast, greater SWM 664 

successfully predicted reduced ΔR (β=-0.15; Figure 8g, 9c) similarly to the Acquire task. 665 

Additionally, there was a weaker relationship between RWM and ΔR (β=-0.06; Figure8g) 666 

which was absent in the Acquire task. Despite the presence of a local minimum in the MSE for 667 

the regression involving retention, no individual predictor was consistently selected in more 668 

than 80% of repetitions (Figure 8e).  669 

  670 
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 671 

Figure 9: Added variable plots for selected predictors in the Preserve task. Each panel (A-672 

C) displays the effect of the considered predictor when accounting for the effect of all other 673 
predictors. Results are displayed for the strongest selected predictor for each outcome measure. 674 

SRe: Early Success Rate. SRl: Late Success Rate. ΔR: Median absolute change in reach angle 675 
after rewarded trials. 676 

 677 

Overall, the regression results across both tasks exhibited a pattern similar, with greater RWM 678 

predicting improved performance on the reaching task and greater SWM predicting smaller 679 

changes in reach angle after rewarded trials. The weak relationships found between genetic 680 

variables and performance measures in the Acquire task (DRD2-Success rate and DARPP32-681 

Explicit retention) were not replicated in the Preserve task, questioning the reliability of these 682 

relationships.  683 

Furthermore, we analysed the data using group lasso (Boyd, 2010; Yuan and Lin, 2006) 684 

regression in order to check for the possibility that our analysis was insensitive to categorical 685 

predictors (the genetic variables). The group lasso is an extension to lasso regression in which 686 

predictor variables can be assigned to groups. Although each member of a group can be 687 
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assigned a different β, the group lasso applies the regularisation penalty to all members of the 688 

group, leading to the removal of all members of the group from the model at the same value of 689 

λ. We employed reference dummy variable coding for each genetic variable and treated the 690 

dummy variables representing each SNP as a group for the purposes of the group lasso; this 691 

ensures that the dummy variables representing each genetic factor are removed from the 692 

regression at the same time. The results of the group lasso analysis replicate those of the 693 

standard lasso and furthermore no genetic predictors were found for any outcome variable in 694 

either task. The results obtained for both tasks via the lasso regression methods are similar to 695 

those obtained using a stepwise regression procedure. All data and code are available online, 696 

including the procedures, results, and significance tests of the lasso and stepwise regression 697 

analysis.  698 

 699 

Relationships between predictors 700 

In the full sample (n=241), we assessed the relationship between the predictor variables. 701 

Despite the collinearity of the variables being within recommended values for use in regression 702 

(See methods section), we did find significant relationships between all three WM tasks. VWM 703 

and SWM were the most closely correlated (r=0.393, p=3.153x10-10), followed by SWM and 704 

RWM (r=0.384, p=7.491x10-10), and finally RWM and VWM (r=0.189, p=0.003). When 705 

examining the relationships between genetics and WM tasks, only one relationship was 706 

significant (DRD2 and SWM, F(236,2)=3.927, p=0.021). However, this relationship did not 707 

survive correction for multiple comparisons.  708 

 709 

Partial Correlation Analysis 710 

In order to understand if the RWM and SWM measures have separable effects on the outcome 711 

measures considered here, we performed a partial correlation analysis examining the 712 
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relationships between RWM, SWM, and success rate in both tasks. After controlling for the 713 

effect of RWM, SWM remained significantly correlated with success in both tasks (r=0.343, 714 

p=0.005 Preserve, r=0.488, p=6.823x10-6 Acquire). However, the partial correlation between 715 

RWM and success rate was not significant for either task, indicating that even in the Preserve 716 

task SWM plays a dominant role in determining success rate. 717 

 718 

Exploratory analysis 719 

As a relationship exists between SWM and ΔR in both the Acquire and Preserve paradigms, 720 

we ran exploratory regressions to assess the relationship between ΔR and success rate across 721 

both tasks. Since ΔR and success rate are conceptually strongly related variables, and 722 

measuring on the same data set would render them non-independent, we split each individual’s 723 

reaching data into two sections and assessed whether ΔR or ΔP in the first section could reliably 724 

predict success rate in the second (see methods for details). Although we found no predictors 725 

of ΔP in our primary analysis, results here in combination with previous work (Holland et al., 726 

2018) has demonstrated a link between ΔP and task success, with a greater ΔP indicative of 727 

greater success. Therefore, we also performed the same analysis for ΔP. 728 

 729 

 730 

 731 
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 732 

Figure 10: Slice plots showing regression results for prediction of late success rate (SR) 733 

by changes in reach angle following rewarded (A) and unrewarded (B) trials during the 734 
early learning period. The central axis of each panel displays the individual data from the 735 
Acquire (yellow) and Preserve (pink) task, a histogram displaying the distribution of the data 736 
in each dimension is presented on the corresponding axis. Solid lines represent the prediction 737 

of the regression model when the other predictor is held at its mean value. SR: Success Rate. 738 

Median absolute change in reach angle after rewarded (ΔR) and unrewarded (ΔP) trials. 739 
 740 

In the Acquire task, ΔR and ΔP in the first section of learning trials predicted success rate in 741 

the final twenty trials, though ΔP appeared as the strongest predictor (ΔR: β=-0.274, p=0.015; 742 

ΔP: β=0.581, p=3.89x10-6; Figure 10a,b, yellow; Table 2). Similarly, for the Preserve task, ΔR 743 

and ΔP in the first half of asymptote trials predicted success rate in the second half (ΔR: β=-744 

0.750, p=1.07x10-12; ΔP: β=0.229, p=0.007; Figure 10a,b, pink; Table 2). In both tasks, the 745 

directions of these relationships were opposite; greater success rate was predicted by smaller 746 

ΔR and greater ΔP. In summary, we found that for both tasks the magnitude of changes in 747 

behaviour in response to rewarded and unrewarded trials early in learning were strongly 748 

predictive of future task success across both the Acquire and Preserve tasks. 749 

 750 

 751 

 752 

 753 
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  ΔR ΔP Model 

Acquire β 

SE 

p 

-0.274 0.581 

F(115,2)=11.9 

p=2.09×10-5 
 0.111 0.120 

 0.015 3.89×10-6 

Preserve β 

SE 

p 

-0.750 0.229 

F(112,2)=35.3 

p=1.28×10-12 
 0.093 0.084 

 1.07×10-12 0.007 

 754 

Table 2: Regression results for split data for both the Acquire and Preserve tasks. 755 
Ordinary least squares linear regressions were performed with both ΔR and ΔP included as 756 
predictors. The regression coefficient, standard error and p value for each predictor are reported 757 
along with the significance of the comparison between the model and an intercept only model. 758 
In both tasks there is an opposing relationship between ΔR and ΔP and success rate, with 759 

smaller changes after rewarded trials and larger changes after unrewarded trials predictive of 760 
success. SR: Success Rate. Median absolute change in reach angle after rewarded (ΔR) and 761 
unrewarded (ΔP) trials. 762 

 763 

Mediation analysis 764 

Finally, to test whether the effect observed between SWM and SR was explained by an indirect 765 

effect through ΔR, we performed an exploratory mediation analysis on both tasks. For both the 766 

Acquire and Preserve tasks, the results indicate a significant proportion (median p=7.10x10-4 767 

and p=0.04 respectively) of the relationship between SWM and SR can be explained by a 768 

mediation from SWM via ΔR to SR (Figure 11). However, in the case of the Acquire task 769 

(Figure11a), a significant relationship between SWM and SR also remained, indicating that not 770 

all of the effect of SWM on SR could be explained by the indirect pathway. Of note, in the 771 

Preserve task (Figure 11b) the SWM-ΔR relationship was weaker and was not significant on 772 

every repetition, occasionally leading to an insignificant mediation effect, despite the median 773 

p-value indicating an effect when considering all repetitions. We also examined an alternative 774 

possibility to the hypothesized model in which relationship between SWM and ΔR is mediated 775 

by SR. We found that 31.20% of the total effect is mediated in the Acquire task using the 776 
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hypothesized model, in contrast to only 0.17% in the alternative model. Similarly, in the 777 

Preserve task the hypothesized model displayed a substantially larger mediation effect 778 

(44.77%) than the alternative model (5.02%). These results support the application of the 779 

hypothesized model. 780 

 781 

 782 

Figure 11: Mediation Analysis for both the Acquire (A) and Preserve (B) tasks. The 783 
numbers associated with each arrow display the 95% confidence intervals for each of the 784 
relationships (R2 and p-values) across the 1000 repetitions. Below the figure, the results of 785 
the Sobel test are displayed indicating the amount of variance explained by the indirect 786 

pathway and the 95% confidence intervals and median p-value. SR: Success Rate. ΔR: 787 
Median absolute change in reach angle after rewarded trials. 788 

 789 

Discussion 790 

In this study, we sought to identify if genetic background or specific domains of WMC could 791 

explain the variability observed in performance levels during reward-based motor learning 792 

tasks. We found that RWM and SWM predicted different aspects of the Acquire and Preserve 793 

tasks, whereas VWM only related to one performance measure (ΔP), but not consistently across 794 

tasks. Specifically, RWM predicted the explicit component of retention in the Acquire task and 795 
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success rate in the Preserve task, whereas SWM predicted success rate in the Acquire task and 796 

the late period of the Preserve task. Furthermore SWM negatively predicted ΔR in both tasks. 797 

Conversely, allelic variations of the three dopamine-related genes (DRD2, COMT and 798 

DARPP32) did not consistently predict any behavioural variables across both tasks. This 799 

suggests that SWM predicts a participant’s capacity to reproduce a rewarded motor action, 800 

while RWM predicts a participant’s ability to express an explicit strategy when making large 801 

behavioural adjustments. Therefore, we conclude that WMC plays a pivotal role in determining 802 

individual ability in reward-based motor learning.  803 

Recently, Wong et al. (2019) described a positive relationship between SWM and the 804 

development of explicit strategies in visuomotor adaptation, complementing previous reports 805 

(Anguera et al., 2012; Christou et al., 2016; Vandevoorde and Orban de Xivry, 2019). However, 806 

in contrast to the current findings the previous experiments employed relatively small sample 807 

sizes, which may render correlations unreliable. The large group sizes employed here, and the 808 

confirmation of relationships across two tasks, provides strong evidence that these relationships 809 

are robust, replicable, and extend from visuomotor adaptation to reward-based motor learning. 810 

An interesting dichotomy was the reliance on SWM and RWM for the Acquire and Preserve 811 

task, respectively. While the Preserve task required the maintenance of a large, abrupt 812 

behavioural change, the Acquire task required the gradual adjustment of behaviour considering 813 

the outcomes of recent trials. Therefore, RWM may underscore one’s capacity to express a 814 

large correction consistently over trials with binary feedback, whereas SWM reflects one’s 815 

capacity to maintain a memory of previously rewarded actions and adjust behaviour 816 

accordingly. Accordingly, McDougle and Taylor (2019) demonstrated a mental rotation 817 

process is employed in countering a visuomotor rotation, and Sidarta et al. (2018) reported that 818 

higher SWM is associated with reduced movement variability in a reward-based motor learning 819 

task. Here, the magnitude of ΔR was negatively related to SWM but not RWM in both tasks, 820 
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suggesting high SWM enables the maintenance of rewarding actions. Additionally, explicit 821 

retention, an element of the Acquire task requiring a large, sudden change in reach direction, 822 

was predicted by RWM rather than SWM. Notably, RWM and SWM were often selected as 823 

predictors simultaneously. The overlapping but distinct pattern of relationships between RWM, 824 

SWM, and outcome measures considered here supports the view that they share substrates but 825 

have different patterns of dependency on executive functions (Miyake et al., 2001). 826 

A notable feature of the Preserve task is the ‘spiking’ behaviour observed immediately 827 

following ‘refresher’ trials, suggesting a central role of refresher trials in binary feedback-based 828 

performance when included (Codol et al., 2018; Shmuelof et al., 2012). The transient nature of 829 

this decrease in error demonstrates this is insufficient to promote generalisation to binary 830 

feedback trials, at least in unsuccessful participants. It remains an open question whether 831 

superior performance of successful participants was partly due to a capacity to generalise 832 

information from ‘refresher’ trials. McDougle and Taylor (2019) suggest that two separate 833 

strategies are employed in visuomotor adaptation: response-caching and mental rotation. The 834 

balance between the two strategies is a function of task demands. The relationships between 835 

RWM and SWM to success rate in the Preserve and Acquire tasks respectively may reflect a 836 

different balance of the use of these strategies. Visual feedback in ‘refresher’ trials in the 837 

Preserve task may engage mental rotation processes, whereas the slow updating of behaviour 838 

in the Acquire task engages the response-caching memory system. This would imply that 839 

response-caching is associated with SWM. 840 

Surprisingly, although ΔP was a strong predictor of success in both tasks, it was not 841 

consistently predicted by any variable across both tasks.  The lack of a consistent predictor of 842 

ΔP was unexpected given the importance of errors for the induction of structural learning in 843 

reinforcement learning (Daw et al., 2011; Manley et al., 2014; Sutton and Barto, 1998) and 844 

reward-based motor learning (Maxwell et al., 2001; Sidarta et al., 2018).  845 
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If RWM is important for explicit control and the main element predicting success in the 846 

Preserve task, it is worth considering whether gradual designs (as in the Acquire task) are more 847 

suitable to engage implicit reinforcement learning, at least initially. However, the Acquire task 848 

still bears a strong explicit component (Holland et al., 2018). How can these two views be 849 

reconciled? In reward-based motor learning tasks, it is observed that participants begin to 850 

reflect upon task structure and develop strategies upon encountering negative outcomes (Leow 851 

et al., 2016; Loonis et al., 2017; Maxwell et al., 2001), which occurs nearly immediately in the 852 

Preserve task after the introduction of binary feedback, due to a lack of generalisation of 853 

cerebellar memory (Codol et al., 2018). In contrast, in the Acquire task, participants experience 854 

an early learning phase with mainly rewarding outcomes, possibly suppressing development of 855 

explicit control and allowing for this early window of implicit reward-based learning. Other 856 

studies have demonstrated that minor adjustments in reach direction under reward-based 857 

feedback can occur, though none has assessed their explicitness directly in the very early stages 858 

(Izawa and Shadmehr, 2011; Pekny et al., 2015; Therrien et al., 2016). Notably, Izawa and 859 

Shadmehr, (2011) observed that after 8° shifts of a similarly-sized reward region, participants 860 

indeed noticed the perturbation, but awareness was not assessed for smaller shifts. 861 

In Holland et al., (2018), the addition of a RWM-like dual-task was very effective in preventing 862 

explicit control, leading to participants invariably failing at the reaching task. Therefore, it may 863 

seem surprising that RWM does not predict success rate in the Acquire task. A possible 864 

explanation is that RWM and SWM share the same memory buffer (Anguera et al., 2010; 865 

Beschin et al., 2005; Cohen et al., 1996; Jordan et al., 2001; Suchan et al., 2006). Similarly, in 866 

force-field adaptation the early component of adaptation – considered as bearing a strong 867 

explicit element – is selectively disrupted with a VWM dual-task (Keisler and Shadmehr, 2010). 868 

However, we found no consistent relationship with VWM across our reward-based motor tasks. 869 
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It may be possible that reward-based motor performance relies more on spatial instances of 870 

WM as opposed to tasks such as force-field adaptation.  871 

The absence of DA-related genetic relationships with behaviour is a surprising result as a 872 

substantial body of literature points to a relationship between dopamine and performance in 873 

reward-based tasks, including those with motor components (Deserno et al., 2015; Doll et al., 874 

2016; Frank et al., 2007, 2009; Gershman and Schoenbaum, 2017; Izawa and Shadmehr, 2011; 875 

Nakahara and Hikosaka, 2012; Pekny et al., 2015; Therrien et al., 2016). There is a growing 876 

appreciation of the links between decision-making and motor learning (Chen et al., 2017, 2018; 877 

Haith and Krakauer, 2013). However, the results presented here suggest that genetic predictors 878 

of exploration and exploitation in decision-making tasks are not also predictive of similar 879 

behaviours in reward-based motor learning. 880 

Our sample sizes were defined a priori for 90% power based on previous work (Doll et al., 881 

2016; Frank et al., 2009; see pre-registrations), and are unlikely to be underpowered. Another 882 

possibility is that we employed the wrong variables to assess behaviour. However, given the 883 

informative and coherent relationships between WM and motor learning, it could be that the 884 

SNPs we selected do not meaningfully relate to performance in reward-based motor tasks 885 

compared to WM. A similar claim was made in the decision-making literature (Collins and 886 

Frank, 2012). In line with this, a recent study showed that DA pharmacological manipulation 887 

did not alter reward effects in a visuomotor adaptation task (Quattrocchi et al., 2018). However, 888 

previous work has shown that Parkinson’s disease patients show impaired reward-based motor 889 

performance (Pekny et al., 2015). It is possible that genetic variations may simply not impact 890 

reward-based motor learning significantly, especially compared to the wide depletion of 891 

dopaminergic neurons in Parkinson’s disease. It is also important to note that while we refer to 892 

both of our tasks as reward-based motor learning, they are both in essence visuomotor rotation 893 
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paradigms. In future it is important to investigate if these findings extend to more complex 894 

reward-based motor learning paradigms. 895 

In summary, despite employing two distinct tasks and an independent participant pool on 896 

different devices, we find strikingly similar results in reward-based motor learning. While 897 

SWM strongly predicted a participant’s capacity to reproduce successful motor actions, RWM 898 

predicted a participant’s ability to express an explicit strategy when required to make large 899 

behavioural adjustments. Surprisingly, no dopamine-related genotypes predicted performance. 900 

Therefore, WMC plays a pivotal role in determining individual ability in reward-based motor 901 

learning. This could have important implications when using reward-based feedback in applied 902 

settings as only a subset of the population may benefit.  903 
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