
 
 

University of Birmingham

Virtual infrastructure orchestration for cloud service
deployment
Qadeer, Arsalan; Malik, Asad Waqar; Rahman, Anis ur; Hamayun, Mian Muhammad; Ahmad,
Arsalan
DOI:
10.1093/comjnl/bxz125

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Qadeer, A, Malik, AW, Rahman, AU, Hamayun, MM & Ahmad, A 2019, 'Virtual infrastructure orchestration for
cloud service deployment', The Computer Journal. https://doi.org/10.1093/comjnl/bxz125

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is a pre-copyedited, author-produced version of an article accepted for publication in The Computer Journal following peer review. The
version of record Arslan Qadeer, Asad Waqar Malik, Anis Ur Rahman, Hamayun Mian Muhammad, Arsalan Ahmad, Virtual Infrastructure
Orchestration For Cloud Service Deployment, The Computer Journal, bxz125, is available online at: https://doi.org/10.1093/comjnl/bxz125

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Apr. 2024

https://doi.org/10.1093/comjnl/bxz125
https://doi.org/10.1093/comjnl/bxz125
https://birmingham.elsevierpure.com/en/publications/8043f630-c826-4d8e-82f2-c472c563e57d


Virtual Infrastructure Orchestration
for Cloud Service Deployment

Arslan Qadeer1, Asad Waqar Malik1,2, Anis Ur Rahman1,2,
Mian Muhammad Hamayun1,3 and Arsalan Ahmad1

1School of Electrical Engineering & Computer Sciences, National University of Sciences &
Technology (NUST), Islamabad, Pakistan

2Department of Information System, Faculty of Computer Science & Information
Technology, University of Malaya, Malaysia

3School of Computer Science, University of Birmingham, Dubai, United Arab Emirates

Email: {14msitaqadeer, asad.malik, anis.rahman, mian.hamayun,

arsalan.ahmad}@seecs.edu.pk

Cloud adoption has significantly increased using the infrastructure-as-a-service
(IaaS) paradigm, in order to meet the growing demands of computing, storage,
and networking, in small as well as large enterprises. Different vendors provide
their customized solutions for OpenStack deployment on bare metal or virtual
infrastructure. Among these many available IaaS solutions, OpenStack stands out
as being an agile and open source platform. However, its deployment procedure
is a time taking and complex process with a learning curve. This paper addresses
the lack of basic infrastructure automation in almost all of the OpenStack
deployment projects. We propose a flexible framework to automate the process of
infrastructure bring-up for deployment of several OpenStack distributions, as well
as resolving dependencies for a successful deployment. Our experimental results
demonstrate the effectiveness of the proposed framework in terms of automation
status and deployment time; that is, reducing the time spent in preparing a basic

virtual infrastructure by four times, on average.

Keywords: Cloud Computing; Cloud Deployment; Virtual Infrastructure; Orchestration;
OpenStack

Received The Computer Journal; revised Preprint version, accepted: Sept 2019

1. INTRODUCTION

With the ever-increasing need of IT infrastructure
for computing and storage in almost all domains,
the traditional approach of installing and maintaining
local computing resources has become risky, costly,
inflexible and non-fault-tolerant. These issues are
effectively addressed by cloud computing, as it provides
an alternate solution for computing, storage and
application services. Additional benefits of cloud
services include scalability and flexibility for growing
businesses such as scale-up and scale-down for a capital
expenditure savings (pay-as-you-go) including upfront
capital cost reduction [1]. Further, all major industry
players are offering cloud solutions. For instance,
Amazon EC2, Microsoft Azure, Google Cloud and IBM
blue cloud are available to their clients globally.

Cloud computing offers different service models
such as infrastructure-as-a-service (IaaS), platform-
as-a-service (PaaS) and software-as-a-service (SaaS).
The IaaS service model is used to host operating
systems, servers, storage, networking and other

infrastructure components to build a cloud based
hardware platform. In this model, the end users manage
their operating system and application requirements.
In the PaaS service model, a cloud provider delivers
the aforementioned infrastructure resources, including
operating system, as well as middleware, runtime
environments and a set of tools required for application
development. Lastly, in the SaaS model, a
provider hosts all resources with pre-installed software
applications and makes them available for its customers
on the cloud. The end-users are not required to
maintain anything, including hardware and software.

A cloud deployment model defines how a cloud
environment and its services are deployed and made
accessible to its clients. These models govern
the purpose and nature of the cloud deployed.
The deployment models are often influenced by
the proprietorship, size and access patterns under
consideration. There are three basic types of cloud
deployment models i.e. a private cloud owned and used
by a single organization, a public cloud provisioned for
public use and a hybrid cloud, which is a mix of the

The Computer Journal, Vol. ??, No. ??, ????



2 A. Qadeer et al.

FIGURE 1. Cloud Deployment Models

previous two models and provides greater flexibility as
illustrated in Fig 1.

The main focus of this paper is the deployment of
a cloud setup using the IaaS service model, as it is
the fundamental cloud service model and poses many
technical challenges. All of these challenges are also
inherited in the PaaS and SaaS models, as both of
these models use IaaS as their foundation. Currently,
several proprietary and a few open-source IaaS solutions
exist, including Amazon AWS, Windows Azure, Google
Compute Engine, IBM SmartCloud, Rackspace Open
Cloud and HP Enterprise Converged Infrastructure.

Over the years, OpenStack [2] has received significant
acceptance from the cloud community due to its
open source nature and pluggable architecture. The
OpenStack solution provides IaaS with computing,
network, and storage services, which are all managed
via a dashboard. Many industry players offer their own
flavors of such solutions and most of them are based
on OpenStack; that is, around thirty distributions are
available that deploy and setup OpenStack in private
as well as public clouds [2]. Moreover, according
to a survey report [3], OpenStack is being used in
IT/telecommunications, academia/research, media and
financial institutions. Notably, IT covers 68% of
the total usage of OpenStack with 65% of the total
deployments running at the production stage. The main
reasons behind the popularity of OpenStack include
cost savings, increased operational efficiency and the
ability of organizations to innovate and compete by
deploying applications faster.

Many studies on the OpenStack deployment process,
as discussed in detail in the next section, have
highlighted the potential limitations of the current
deployment strategies. Some of the significant
limitations motivating this work includes the time
taken per deployment, the need for extensive manual
efforts and the high probability of human errors.
We propose an automated OpenStack deployment
framework for the IaaS service model that shows a
significant reduction in the overall deployment times,
reduces manual efforts drastically and decreases the
probability of human errors to almost zero. With

the help of the proposed virtual infrastructure toolkit,
researchers and developers will be able to efficiently
deploy any number of OpenStack based cloud instances
in no time and will be able to test and validate different
features quite easily. This will have a significant positive
impact on the cloud adoption in all domains, and even
naive users are expected to deploy OpenStack for their
organizational needs.

The rest of the paper is organized as follows:
Section 2 presents a comparative study of existing IaaS
deployment solutions and discusses OpenStack and its
partially automated deployment strategies. Section 3
formulates the problem by outlining the system model
and its requirements. Section 4 describes the proposed
automation framework to bring-up a complete virtual
infrastructure, which is ready for deployment of
multiple OpenStack distributions. Sections 5 and 6
include the implementation details and experimental
results for the proposed framework. Finally, Section 8
concludes the paper with a general summary and
possible future directions to enhance the proposed
solution.

2. RELATED WORK

Automatic infrastructure deployment plays a significant
role in increasing the adoption of a particular
framework.

In general, the main objectives of automation include:
i) to increase productivity due to simple and repeatable
deployments, ii) reduce the overall deployment costs
both in terms of time and money, and iii) ensure
quality and functionality of the deployment, with no
deployment errors. Particularly, in the context of
cloud framework automation, for instance, the cloud
software developers can focus on particular research
areas such as provisioning of resources in real-time,
infrastructure components, resource monitoring and
adaption of cloud features to the existing platforms.
However, the existing open-source cloud deployment
solutions lack the necessary features, which in turn
makes them difficult to use for the development and
testing of cloud software.

Generally, two types of approaches are used for
deployment i.e. top-down and bottom-up [4]. The
former is mainly model-driven and enforces middle-
ware abstraction and promotes flexibility. However,
this approach is semi-automatic and requires serious
efforts to replicate. These solutions often involve the
use of a description standard to specify application
deployment and management parameters, for instance,
TOSCA [5] is an XML-based language using a typed
topology graph for application deployment. The
format used is ideally portable and modular making
the deployment easier across multiple platforms. On
the other hand, the bottom-up approach uses some
kind of DevOps Some example of such DevOps are:

The Computer Journal, Vol. ??, No. ??, ????



Virtual infrastructure orchestration for cloud service deployment 3

Chef1, Puppet2, Crowbar3, Control-tier, Capistrano4,
CFEngine 35, MCollective, Juju6, AWS cloudformation
and AWS opsWorks7, which are client-server based,
whereas SmartFrog and SLIM [6] use a P2P setting.
In all cases, the approaches are application-specific and
offers limited flexibility.

Many of the cloud stacks use the aforementioned
automation approaches primarily to create and manage
cloud services including resource management, user
management, access APIs and GUIs. Some example
of cloud stacks are: OpenNebula [7], Nimbus [8],
OpenStack [2], Eucalyptus [9], CloudStack [10] and
vCloud8. Many of these are open-source solutions
allowing the users to write scripts for cloud deployment
and management; but, they lack in automation of basic
networking infrastructure setup, as well as creation and
deployment of compute nodes.

To support the cloud stacks, many open-source
libraries and frameworks are available that allow the
users to get started with cloud application deployment.
Generally, the libraries including jCloud 9 and
MADCAT [11] provide an abstraction of different cloud
features for cloud application development, deployment
and control. Other libraries like PaaSage [12]
supports model-based development, configuration,
optimization and deployment; MODAClouds enables
the cross-cloud migration to exploit available resources
on multiple clouds; ARTIST [13] supports re-
engineering and migration of legacy software to cloud-
based environments; CELAR [14], 4CaaSt [15] and
CloudScale [16] help manage allocation of resources for
cloud applications, as well as, provisioning of cloud
services and applications.

Apart from the aforementioned stacks and libraries,
OpenStack is getting popular among the different open-
source cloud solution providers. In contrast to the
other solutions, it supports multiple cloud API sets,
providing a comfort level preventing lock-in of cloud
workloads [17, 18]. Moreover, with a faster release
cycle, it is evidently emerging as an industry leader in
cloud solutions. From a functional and architectural
perspective, a number of studies have compared
OpenStack to other IaaS solutions and concluded it
as being massively scalable and agile as discussed
in [19, 20]. For instance, Bashir et al. [21] present a case
study using OpenStack to demonstrate the feasibility
of migration from a traditional web service to a cloud-
based solution. A similar study to analyze migration
of scientific applications to a cloud-based environment
concludes that cloud-based solution results in negligible

1https://www.chef.io/
2https://puppet.com/solutions/cloud-management
3http://crowbar.github.io/
4http://capistranorb.com/
5electric-cloud.com
6https://jujucharms.com/
7https://aws.amazon.com/cloudformation/
8https://www.vmware.com/
9https://jclouds.apache.org/

performance degradation [22]. It is worthwhile to
note that even such short-term experiments consume
significant amount of time and effort, just to bring-
up the basic infrastructure for OpenStack or similar
cloud environments. Thus, the cloud infrastructure
automation toolkit can significantly reduce time and
effort.

Similar experimental cloud bring-up challenge is
demonstrated in [23, 24] where the authors deploy
different open source cloud solutions for comparison and
present a list of steps followed during the deployment
process. It is evident that the task is hectic, even
a minor human error can lead to a cloud setup in
an unstable state. Additionally, the steps followed
are far more difficult to revert back, and in most
cases the installation effort has to be restarted from
scratch. This becomes more challenging when deploying
a private cloud [25] or a cloud on a multi-node
environment [26] using OpenStack. Notably, most of
the aforementioned studies have either ignored the pre-
requisites of OpenStack deployment or lack focus on
basic infrastructure automation.

Particular to this study, even the latest distributions
of OpenStack require manual infrastructure setup. The
OpenStack Ubuntu distribution [27], an open-source
IaaS solution for both private and public clouds, uses
Juju and Charms to deploy OpenStack. Moreover,
the distribution requires VM called metal-as-a-service
(MaaS) node where all the required packages must be
installed and configured.

As the initial steps to install the distribution
are manual, they take considerable effort, and are
even troublesome as they can lead to an error-prone
configuration. DevStack [2] does provide automation
to deploy a minimal OpenStack setup on a single
or multiple nodes but still assumes that the basic
infrastructure is already available.

RackSpace10, an OpenStack distribution for public
and private clouds, uses Ansible [28] for configuration
management. It does offer an all-in-one solution for
testing and demonstration purposes but still lacks the
basic infrastructure bring-up; that is, installation of op-
erating system, network configurations, nodes interface
configurations, setting-up of bridges, password-less SSH
access and many other settings have to be performed
manually. Similarly, RDO OpenStack [29] is an RPM
distribution for stable, scalable and secure cloud de-
ployment. However, the deployment work-flow is quite
different and has a steep learning curve involving many
manual steps for setting up the environment for cloud
including the installation of operating system, the net-
work configurations of director and overcloud nodes,
packages installation etc.

In another comprehensive study [30] of a substantial
approach to fully automate the key phases of
NFV service lifecycle, software-based management,

10https://www.rackspace.com

The Computer Journal, Vol. ??, No. ??, ????



4 A. Qadeer et al.

and orchestration (MANO) stack is presented which
operates with OpenStack and OpenDaylight controllers.
The key phases specifically include resource discovery
and matching, service mapping, service deployment,
and monitoring. The authors present a modular
approach in a service-oriented architecture, where each
of the components can be discretely consumed in a
plug-and-play manner. As stated, this framework only
addresses the native service lifecycle challenges of NFV
and does not consider the underlying infrastructure
orchestration for OpenStack which is under discussion.
In another study, [31] learning scenarios in the
area of IaaS, SaaS, and academia are presented by
deploying OpenStack cloud for University campus. The
cloud deployment began after manual configuration of
hardware nodes and network interfaces. The manual
setup is time-consuming, prone to errors and required
expertise in Linux environment. It is evident that
all the distributions discussed above require manual
infrastructure setup and configurations, which is a
tedious and error-prone task. Table 1 illustrates a
summary of the currently available solutions offering
automated tasks to bring-up an OpenStack cloud. It
is evident that to prepare the initial infrastructure for
OpenStack deployment, all of the dependencies must
be resolved manually, requiring hectic efforts. Thus,
an automated infrastructure deployment solution is
strongly desired to avoid misconfiguration errors.

3. PROBLEM FORMULATION

In this section, we present the system model assumed
in our work and formulate the problem of deployment
orchestration for the cloud.

3.1. Terminology

We define a virtual infrastructure as a set of functions
that enable the sharing of physical resources of
machines across the entire infrastructure in a prodigious
way. It distributes the software layer from underlying
hardware in order to aggregate physical servers, storage
cabinets and underlay networks into a shared pool of
resources. Thereafter, allowing the provision of these
accumulated inexpensive building blocks to applications
dynamically, securely and reliably.

We depict an orchestrator as a tool automating the
entire application life cycle on a virtual infrastructure,
we follow a simple definition of an application. This
includes its creation and deletion following a set of
steps, commands, and instructions for provisioning the
aforementioned building blocks.

The primary feature among all is virtual machine
(VM) configuration wherein computing resources are
provisioned to a VM for an actual program to execute.
Prior to this, a virtual network is set up to render
isolated paths among communicating VMs, usually

homogeneous belonging to the same application or
tenant. This is followed by the installation of
packages acting like tools and daemons for use with the
applications. The result of such virtual infrastructure
orchestration is a set of VMs organized in a specific
topology aiming to provide resources and failovers to
maintain high availability of services.

3.2. System Model

For virtual cloud orchestration model, consider a
cloud computing platform providing IaaS. The platform
supports execution of N physical systems acting as
servers. These servers are used to run various services
on the platform. Moreover, the servers are used
to assign VMs to users U . Every physical node
can support up to k virtual machines. The system
configuration of each machine is represented as Ci.
Based on the physical system and VM configuration,
only q VMs can be hosted on a single server. In
the proposed framework, we assume that servers are
directly connected or placed at the same location, and
hence, the network delay for VM migration and the time
taken to perform other tasks at servers is negligible.

Let η represent the number of nodes available
for cloud orchestration. The node responsible for
network management is denoted as ϑ, ψ represents the
controller nodes used to provision cloud resources ξ
over computing nodes. Furthermore, a separate node
is required to configure storage represented as %. The
proposed infrastructure deployment framework starts
its execution from a configuration file. The user needs
to specify core deployment parameters such as the type
of cloud computing infrastructure, the number of nodes,
and related configurations for the control, storage and
compute nodes. User-initiated computing requests are
first received at the ψ node, which provisions resources
at ξ nodes and configures the network with the help of
ϑ.

Once a specified cloud configuration has been
deployed, a ξ module tests all interfaces through control
messages. The ψ node checks the entire system set
up as per the initial configuration specified by the
user. Furthermore, the ψ node checks its connection
with ξ and % nodes. For a successful deployment,
the user is required to mention ψ, ξ and at least
one % in the configuration file. A typical distributed
system framework relies on multiple levels of services;
that is, services executing on lm layer may coordinate
with other services executing at lm−1 layer for correct
execution. Notably, manual deployment of such multi-
layer services can become a time-consuming effort,
which is prone to errors. Similarly, other essential
services including monitoring, synchronization, and
resource allocation need such automation for efficient
cloud orchestration and management.

The Computer Journal, Vol. ??, No. ??, ????



Virtual infrastructure orchestration for cloud service deployment 5

TABLE 1. Distribution-wise task automation support.

Distribution Infrastructure setup Network configuration OS installation Packages installation

DevStack × × × ×
Rackspace × × × ×
Canonical × × X X
RDO × × X X

3.3. Requirement Analysis

A virtual infrastructure orchestration is a complex
deployment system and relevant research efforts have
proposed a wide range of goals for an orchestrator. We
identify the following functional properties:

Coordination: Monolithic server-side applications
are being migrated into microservices based architec-
ture comprising front-end, business logic, database ac-
cess and application integration with other services via
REST API. This layered approach aims at the decom-
position of an application into a set of manageable ser-
vices for faster development, making them easier to un-
derstand and maintain. Notably, coordination in a large
complex and distributed system is critical, which can be
ensured by implementing effective deployment proce-
dures. The challenges in such deployment are keeping
track of services and their synchronization. Further-
more, the definition of proper networking work-flows
and installation steps is important to guarantee coordi-
nation among services through inter-service communi-
cation.

Automation: Monolithic applications can be
replicated on different servers. In contrast, a micro-
service poses a distributed system containing a large
number of services. Each of these services further relies
on other services that need to be spawned, configured,
scaled and monitored. Such multi-level complex
deployment requires a high level of automation.

Resource provision and monitor: The most
significant part of orchestration is the effective
scheduling of resources, which is necessary for cost
saving. Traditional approaches lead to inefficient
utilization of underlying hardware resources, as it is
difficult to manually monitor setup of modules for
rescheduling resources and to manage faulty nodes
and services. Therefore, the goal is to tackle
the aforementioned issues by abstracting rudimentary
operations, while ensuring the integrity of coordination,
automation, resource provisioning and monitoring.

3.4. Problem Statement

OpenStack is emerging as an industry leader in open
source cloud solutions. Figure 2 shows a bare
minimum OpenStack deployment. In order to setup
OpenStack, all components including the controller, the
compute nodes, storage and network must be installed
and configured correctly with all of the dependencies
resolved beforehand. This process requires prodigious

manual effort and sound technical knowledge, as there
is no proper automation mechanism available that can
perform all of the initial set-up for a quick OpenStack
deployment. Thus, a manual cloud bring-up can
lead to an error-prone set-up and subsequently a mis-
configured OpenStack deployment.

FIGURE 2. OpenStack deployment setup and configura-
tion

Due to the complex set-up procedure, a systematic
and automated mechanism is required that can rapidly
deploy complex open source cloud infrastructures to
facilitate researchers, developers and even those who
are low on technical skills. The proposed framework,
as explained in the following section, is built around
the afore-mentioned OpenStack distribution with the
design flexibility to make it work with any available
open source distribution. In order to increase the
proliferation of OpenStack and facilitate technology
adoption, automation of cloud deployment has become
a necessity.

4. DESIGN AND ARCHITECTURE

In this section, we discuss core modules of our proposed
toolkit. The modules are flexibly designed to support
various software configurations. Figure 3 shows the
main modules: toolkit deployment manager, network
infrastructure manager, platform setup manager,
software manager and service manager. The details and
working of each of these modules are discussed in the

The Computer Journal, Vol. ??, No. ??, ????



6 A. Qadeer et al.

FIGURE 3. Architecture Design of the Proposed Toolkit

following sections.

4.1. Toolkit Deployment Manager

Toolkit deployment manager (TDM) module acts as the
overall in-charge of the proposed toolkit. It is respon-
sible for monitoring other modules and upon failure,
it re-initiates the failing process. It also maintains all
logs and the running history of all modules. The user
interacts with the deployment module for setup config-
urations. Furthermore, the module also manages user
network specification that may vary depending on the
OpenStack distribution. User deployment-specific con-
figuration includes features like DHCP-enabled or NAT-
based networking. Previously, these configurations were
managed via a command line interface; in contrast, the
proposed deployment toolkit handles all of these depen-
dencies and other network related issues itself and the
end user is not required to intervene.

As discussed above, the users interact with the toolkit
deployment module, state initial user setup parameters
in the form of an XML file. These parameters are used
to provision the virtual machines and configure them.
The file also includes information such as the number
of VMs, the type of VMs, the OS image, the number
of network interfaces attached to each VM and many
other parameters. Currently, the XML file is written
in Ruby syntax. Furthermore, a single configuration
XML file defines one project that is transparent to other
provisioned resources. Since one project may contain
more than one VM, at present, there is no restriction on
the number of resources that can be provisioned at any
time, but the resulting performance is strongly linked
to the underlying hardware.

4.2. Network Infrastructure Manager

Network infrastructure manager (NIM) is responsible
for managing network interfaces within every project.
Note that every OpenStack distribution requires

different network settings; that is, comprising of a single
or multiple network interfaces and bridges connected
to other virtual machines within the same cloud
setup. For example, RackSpace requires a single
management network supporting NAT. It also needs
multiple bridges like br-vxlan, br-vlan, br-mgmt and br-
storage to support Linux Containers [28]. Similarly,
other cloud distributions have their own requirements
for networking that are catered using the NIM module.
Moreover, it automatically configures the maximum
transmission unit (MTU) of the network interfaces, if
required.

4.3. Platform Setup Manager

Platform setup manager (PSM) is responsible for
provisioning of virtual machines to deploy identical
working environments. Generally, it uses a customized
package containing an operating system with pre-
installed libraries and applications. The customization
is in terms of the operating system distribution, the
kernel version and other system and/or application-
specific settings. The PSM module provides the
aforementioned functionality using a pre-configured
vagrant box added in the vagrant domain. We have used
the vagrant-libvirt to bring-up the configured number
of virtual machines with specified network settings. It
should be noted that libvirt has been used instead of the
default provider i.e. VirtualBox, in order to support the
kernel virtual machine (KVM) module.

4.4. Software Manager

Software manager (SWM) module is responsible for
the resolution of missing dependencies on the newly
created hosts. This is accomplished via a dependency
checking procedure that verifies all pre-requisites for a
successful installation. The SWM module can support
different distributions, setup/create networks in the

The Computer Journal, Vol. ??, No. ??, ????



Virtual infrastructure orchestration for cloud service deployment 7

libvirt domain, create the required configurations for
VMs and trigger other events.

4.5. Service Manager

Service manager (SM) module aims to configure
virtual machines automatically. This module uses
Ansible [28], which is an open source automation engine
for cloud provisioning, configuration management,
and application deployment. Ansible provides an
agent-less architecture, which does not require any
servers, daemons or databases. The Ansible engine is
installed on a single node, referred to as the deploy
node and it requires password-less SSH access to an
inventory file containing information about the remote
machines. The SM module is also responsible for
configuring and deploying all required applications
for successful OpenStack deployment. It works by
connecting to the remote machines over SSH and
pushing customized programs called Ansible Modules
to the remote VMs, where these modules perform
configuration management tasks.

4.6. Toolkit Work-flow

Using the proposed work-flow, a user can download
and complete the cloud deployment procedures using
a wrapper script. The script requires necessary details
and performs the needed required steps without any
user intervention. This can be done in two ways:

(a) Set the wrapper to ask for the detailed parameters
as input, as per requirement.

(b) Define a configuration file with some variables and
provide this as a parameter file to the wrapper.

The later option is more user friendly as it avoids
most of the human errors, and hence has been adopted
in this work. The configuration file can be re-used
multiple times and would result in exactly the same
cloud configurations.

To make it simpler for end users, the proposed frame-
work requires fewer parameters related to deployments
such as the number of nodes to bring-up, number of
controllers/compute nodes and some other information
depending upon the selected distribution. During the
later stages, it allows the users to enter subnet details
for the mentioned network type. Since different and
multiple networks are required for different distribu-
tions; for example, for DevStack a management network
is required, whereas RDO OpenStack needs two net-
works: a provisioning network and an external network
(under-cloud) in a converged networking model. Once
the network is created in libvirt and the corresponding
bridges are setup on the base machine, a Vagrantfile
is populated automatically. All dependencies are then
automatically resolved, packages are downloaded and
installed. Once the dependencies are resolved, vagrant
brings up the virtual machines using Vagrantfile and

libvirt provider. Vagrant then invokes Ansible on the
up and running virtual machines, which uses playbooks
to provision machines with specific package installations
and configurations. The initial infrastructure setup is
hence complete and ready to deploy an OpenStack clus-
ter, which has been chosen as a case study for this work.
Figure 4 illustrates the details of the proposed work-flow
for all currently supported OpenStack distributions.

5. IMPLEMENTATION DETAILS

The primary purpose of this work is to automate the
complex procedure of configuring and installing a cloud
environment. Hence, the cloud users are required
to launch the proposed framework that manages the
complete process and provides the user with ample
options to configure the desired cloud setup. The
main objective of this work is to automatically handle
all dependencies and install the pre-requisite packages.
Interestingly, the proposed framework can attract more
researchers to adopt the use of a cloud platform for
research and development. It is worthwhile to mention
that users with limited knowledge of the Linux usually
feel reluctant to use it due to the lack of technical
expertise to resolve different system related issues. In
this work, we aim to bridge this gap as well.

5.1. Toolkit Deployment Manager

The TDM is responsible for collecting all the relevant
information from the system as well as the user,
validating it and storing it for later use. This
information is gathered using a terminal comprising
all configurations necessary to bring up the desired
infrastructure or distribution. Afterwards, the user
entry is validated using regular expressions and other
algorithms to identify any invalid user inputs. This
step also includes provision of an IP address range in
a specific format. In order to build a virtual network,
XML file format is used with a separate section for IP,
DHCP and other required network configurations.

Furthermore, the TDM is also responsible for
resolving dependencies after checking of available
packages on the required systems, if necessary,
the manager can download and install any missing
packages. Basically, it is a helper module that contains
the list of packages, libraries, and dependencies required
by different components of the toolkit. For instance, all
packages required are installed before the installation
of Vagrant, Ansible, libvirt etc. In order to install
the packages, a simple package manager provided with
various operating systems is used, such as APT/DPKG
in Ubuntu while Yum installer in CentOS. Moreover, to
install the required plugins, the vagrant command line
is used.

The Computer Journal, Vol. ??, No. ??, ????



8 A. Qadeer et al.

FIGURE 4. Detailed Workflow of the Proposed Deployment Toolkit

5.2. Network Infrastructure Manager

The NIM is responsible for creating a virtual network
that is required by the specified distribution. It starts
the required distribution followed by virtual network
deployment in the libvirt domain. Moreover, the
network interfaces are identified and created. The
manager uses libvirt CLI to create a virtual network
using the XML configuration file recorded by the toolkit
deployment manager. All the required network-related
information is extracted from the XML file such as
IP ranges, DHCP enabled (yes/no) and other settings.
Thus, as a result of these steps, a complete Vagrant box
with pre-packaged development environment is added,
and a virtual network is made available for the selected
cloud distribution.

5.3. Platform Setup Manager

The PSM module is responsible for the platform
setup. It invokes the virtual machines using the
specified drivers such as libvirt. Primarily, Vagrant
is used to create virtual machines whereas libvirt is
the main provisioning tool that provides a runtime for
the virtual machines to run and operate. All nodes
related information is maintained by Vagrant including
the number of nodes and their specifications. These
specifications include information regarding the CPUs,
RAM, NICs, hard disk, provisioning tools etc. The
vagrant box is created using all the required information
and added to the vagrant domain. During the last step,
the PSM module spawns all of the VMs using the libvirt
as provisioner and Vagrant as configuration provider.

5.4. Software Manager

Once the VM is setup, the next step is to install
the packages and resolve dependencies within the VMs
required for OpenStack setup. Ansible is mainly used
at this stage, which is initialized by vagrant. The tool
is used to configure and setup nodes remotely; that
is, to prepare a complete node for deployment. It
starts with the package installation that is common in
all the distributions. However, Ansible uses playbooks
for each individual role. These playbooks define each
individual task and configuration settings that are to be
performed inside a VM. Note that the software manager
module also includes a proper validation mechanism to
identify any missing packages and installs them before
proceeding further. The SWM module results in up and
running nodes required for the setup requested at the
initial stage. The checklist of these dependencies (and
sub-dependencies) is listed below:

• libvirt (libvirt-bin, qemu-kvm, ubuntu-vm-builder,
bridge-utils, qemu, qemu-system, libvirtd, virt-
manager)

• ansible
• vagrant
• vagrant-libvirt (ruby-libvirt, libxslt-dev, libxml2-

dev, libvirt-dev, zlib1g-dev, ruby-dev)
• fog-libvirt

5.5. Service Manager

The Service Manager module is responsible for
configuring all the required settings and gathers
clustered information to show it to the user. Ansible
is used again in this module. For gathering IP
address related information from VMs, the traditional

The Computer Journal, Vol. ??, No. ??, ????



Virtual infrastructure orchestration for cloud service deployment 9

Linux command ip is used. Moreover, libvirt CLI is
used to find the MAC addresses whereas the director
node credentials are already known to this module
from the initial configuration file generated using the
user input. Later on, the networks inside the VMs
are configured. This step is also common across
all distributions. Moreover, the SM module is also
responsible for distribution-specific configuration such
as SSH settings. In addition to the afore-mentioned
procedures, Canonical and RDO distributions require
some additional information such as credentials of the
MaaS node (in case of canonical) and the director
node (for RDO), as well as the MAC addresses of all
target nodes to be used for OpenStack installation.
All these node-specific settings are shown to the user
in an easy and readable format. The outcome of
this module is a complete installation of required
packages and dependencies, and all of the required
configurations for installation of a specific OpenStack
distribution. Furthermore, it displays the clustered
information and exits the toolkit workflow with a final
status message that the infrastructure is ready for
OpenStack installation.

6. EVALUATION RESULTS

In this section, we present a short description of the
measurement metrics used to evaluate the proposed
toolkit, followed by details of an experiment to gather
these metrics. The obtained results are then presented
and analyzed in terms of effort required to setup a basic
virtual infrastructure environment for different cloud
platform distributions.

6.1. Measurement of Deployment Effort

For this study, deployment effort corresponds to the
effort of deploying a cloud computing platform. This
quality attribute is used to evaluate deployability
using the proposed orchestration toolkit. In order to
measure this, we use a measurement framework based
on the ISO/IEC SQuaRE quality model [32] including
metrics average deployment time (ADT), deployment
reliability (DR), number of deployment steps (NDS),
and deployment steps parameters (DSP). The last three
metrics are summed up to get two more metrics: effort
of deployment steps (EDS) and deployment effort (DE).
A description of each of these metrics is given below:

• Average Deployment Time (ADT) is the
average duration between invocation of deployment
script and its completion, leading to the cloud up
and running.

• Deployment Reliability (DR) corresponds to
the deployment reliability. It is the fraction
of successful deployments among a number of
attempts; that is, DR = 1 represents 100% success
rate.

• Number of Deployment Steps (NDS) is the
total number of steps to complete a task. It
corresponds to the effort required for a successful
deployment; that is, more the steps greater the
effort.

• Deployment Steps Parameters (DSP) is the
number of times a deployment script prompts
for user intervention or asking for user input for
custom parameter configuration.

• Effort of Deployment Steps (EDS) is the
effort done to initiate a deployment script and its
completion. A simple sum of NDS and DSP .

• Deployment Effort (DE) totals up the effort for
a successful deployment.

DE = ((1 −DR) + 1) ∗ EDS

6.2. Execution of Measurements

To compute the aforementioned metrics, we conduct a
deployment experiment. Each individual deployment
script invocation is timed using a typical timer
function. Basically, the test comprises an initial IaaS
infrastructure deployment followed by different cloud
platform deployments. This test is run ten times to get
an evaluation for each platform. The resulting metrics
are shown in Table 2.

6.3. Effort Analysis

• Average Deployment Time (ADT). The mean
of the deployment time is 60 min for manual
deployment with a deviation of 22 min, while
the automated solution takes only 14 min on
average. We observe that the latter produces small
differences among different distributions used for
deployment of a cloud platform with a deviation
of 4 min. Overall, the deployments are on
average almost ∼4 times faster than the manual
deployment. Note that timing results exclude
download and troubleshooting times.

• Deployment Reliability (DR). For some
distributions, we experience deployment failures
while setting up the basic infrastructure ready
for cloud deployment. Some recurrent problems
result in lower DR values of 0.6, especially when
preparing the physical nodes (OS and package
installations with network settings), which is
followed by the creation of virtual machines and
bringing up of the underlying virtual network
infrastructure for cloud deployment. In the case of
automated deployment, on average, we experienced
fewer failures resulting in higher DR values of 0.8.

• Number of Deployment Steps (NDS). In the
case of automated deployment, we use scripts,
and hence, the effort represents the total lines of
code executed excluding logging and comments.

The Computer Journal, Vol. ??, No. ??, ????



10 A. Qadeer et al.

TABLE 2. Deployment efforts.

devStack RackSpace Canonical RDO

Effort of deployment steps (EDS)
Manual > 444 > 344 > 550 > 389
Automated 381 235 438 314

Number of deployment steps (NDS)
Manual > 376 > 230 > 431 > 309
Automated 376 230 431 309

Deployment steps parameters (DSP)
Manual > 68 > 114 > 119 > 80
Automated 5 5 7 5

Deployment reliability (DR)
Manual 0.6 0.7 0.6 0.5
Automated 0.8 0.8 0.8 0.8

Average deployment time (ADT) in minutes
Manual > 60 > 40 > 90 > 50
Automated 9 15 18 15

Deployment effort (DE)
Manual > 622 > 447 > 770 > 583
Automated 457 282 526 377

On average this number is 336 operations with a
deviation of 87. Note that in both deployment
cases: manual and automated, the total operations
are necessarily same; however, in the former case
it is done by manual entering commands into the
terminal while in the latter being a script runs
automatically.

• Deployment Steps Parameters (DSP). Often
deployment process prompts a user to input
parameters to set some variables or configurations.
This is an effort when deploying manually or
using automation. But some of these parameters
are either asked redundantly or are dependent
on previous configurations. A script used for
automation can store these parameters in variables
to reuse for upcoming deployment steps, and hence,
reducing effort. On average, manual deployment
asks for 95 parameters with a deviation of 25. On
the other hand, automated deployment requires 5
parameters with a deviation of 1 parameter across
different distributions.

• Effort of Deployment Steps (EDS). The
combined metric uses NDS and DSP to compute
the effort of deployment steps to successfully
deploy a cloud platform. On average, the metric
for manual deployment is 432 with a deviation of
89, whereas the metric for automated deployment
is significantly low with an effort of 342 ranging
within a deviation of 87 for different distributions.
Some distributions require more steps, whereas
others require fewer steps but more parameters.
DevStack is driven by a concise deployment
workflow. In contrast, Rackspace, Canonical, and
RDO require a cumbersome configuration of the

initial infrastructure. Moreover, in the case of
Rackspace, the low EDS value of 235 is contrasted
by a large configuration file. The automation
reduces effort with respect to the EDS through
parameter reuse, even though the metric does not
take into account the automation of execution of
deployment steps.

• Deployment Effort (DE). The metric takes
into account the failures and computes the total
deployment effort after automation, with an
average of 410 and a standard deviation of 105.
This shows a significantly lower effort compared to
manual deployment averaging at 606.

6.4. Summary of deployment times

Figure 5 illustrates the overall reduction in time to
setup and configure infrastructure for the mentioned
distributions. Note that download and troubleshooting
times are excluded; however, during experimentation,
the time is longer. For devStack virtual setup, it
takes more than two hours to prepare the host for the
first time. The preparation includes setting virtual
machines in multi-node setup and OS installation,
network settings, and installing dependencies. With
our proposed work-flow, the complete procedure takes
around 8 to 9 minutes to bring-up and provision
virtual infrastructure, which is ready to run DevStack.
Similarly, Rackspace needs one deployment node, three
controller nodes and two compute nodes for a standard
deployment, which takes vast time (almost 6 hours)
from bringing-up virtual machines and setting the
networks. It may also include VLANs configuration
at switches. Using the proposed work-flow, it

The Computer Journal, Vol. ??, No. ??, ????



Virtual infrastructure orchestration for cloud service deployment 11

only takes 12 to 15 minutes to bring-up a ready-
to-use Rackspace standard virtual infrastructure for
OpenStack deployment.

DevStack Rackspace Canonical RDO
0

20

40

60

80

100

60

40

90

50

9

15
18

15

T
im

e
(m

in
u

te
s)

Manual
Toolkit

FIGURE 5. Time Spent on Preparing Basic Virtual
Infrastructure with and without Toolkit for OpenStack
Distributions/Installers

Canonical and RDO have some additional responsi-
bilities such as apart from installing some additional
packages which take more than usual time, canonical
also downloads a bootstrap image, which is used to com-
mission nodes (Controllers, Compute Nodes, bootstrap
node) [27]. RDO brings-up the configured number of
controllers, compute nodes and shuts them off, which
is required and returns their MAC addresses that are
used later for introspection [33]. Manually, in regular
lab exercises it takes more than 8 hours to reach un-
til this point but the proposed work-flow has not only
reduced the manual efforts but also significantly saved
the required time.

6.5. Summary of task automation

The steps followed to deploy a cloud platform using
different available distributions are somewhat similar;
notably, there exists no standardized set of these steps.
This comes with a learning curve every time; that
is, understanding workflow of the distribution for its
automation.

Table 3 illustrates the status of task automation when
using the proposed toolkit. It shows that everything is
automated by the toolkit as compared to Table 1, which
helps to remove all of the manual steps and improves
user experience by reducing tremendous amount of time

consumed in manual efforts. Moreover, the proposed
framework has significant impact on removing the
human errors due to the automation process. We expect
that the proposed work-flow gives significant boost to
the OpenStack development community and its users
to easily try it in-house for multiple distributions and
adopt the suitable for production use.

The proposed framework is to facilitate OpenStack de-
ployment over local bare-metal systems. Primarily, tar-
geted at applications in a controlled cloud environment
for testing and research purposes. Nevertheless, the
framework can be adapted to work over Amazon EC2
and other cloud infrastructures. In the case of EC2,
network-specific constraints need to be considered to al-
low packet flow between the deployed VMs such as their
MAC and IP address bindings. For a stand-alone in-
stallation over EC2, no such modifications are required
to support OpenStack deployment using the proposed
framework. Therefore, making the framework architec-
ture flexible and capable of replication across any cloud
orchestration engine or edge/cloud fabric.

The currently implemented work-flow does not
provide support for vagrant to create virtual machines
on multiple hardware machines. Apart from that a
specific network setting such as bonds (provides HA
and fail-over) cannot be tested with the current release
of the proposed toolkit.

7. AVAILABILITY

The proposed framework is an open source project and
is anonymously available on a source repository hosted
by GitHub at https://github.com/arslan-qadeer/droid.
We expect other researchers to utilize the proposed
framework for their in-house cloud deployment.

8. CONCLUSIONS

With the growing need of IT infrastructure in
Cloud computing, multiple open source solutions like
OpenStack to provide IaaS, are gaining significant pace
in academia and industry. Developers have to face
a number of issues while validating a small change
in the code to verify a bug fix in the absence of
any infrastructure bring-up tool. Without proper
knowledge of OpenStack, it is also difficult for a
researcher to establish cloud provisioning infrastructure
for experimental purposes. The proposed toolkit based
work-flow helps researchers as well as developers, to
deploy OpenStack based cloud environments, in a
quick and efficient manner. It also helps professionals
for urgent and in-house proof of concept deployments
without worrying about the underline details. It brings
manual efforts to minimal, while sustaining the stability
of complete cycle, ultimately providing a solution that
is fully automated and human error free. Last but not

The Computer Journal, Vol. ??, No. ??, ????



12 A. Qadeer et al.

TABLE 3. Distribution-wise task automation support with the proposed toolkit.

Distribution Infrastructure setup Network configuration OS installation Packages installation

DevStack X X X X
Rackspace X X X X
Canonical X X X X
RDO X X X X

the least, it also helps to setup demos in academic
sector for experimental purposes and to share the
state-of-the-art work in cloud computing domain. The
proposed framework is designed in a way that it can be
enhanced for any type of cloud deployment to provide
not only IaaS model but also PaaS and SaaS models
without much effort. However, in PaaS or SaaS, the
deployment lifecycle has to follow the same conventional
way of manual operations. Though the issues are not
particularly related to PaaS or Saas but still similar to
IaaS orchestration. To further elaborate, consider an
example application that is intended to be run in cloud
environment. To validate such application one has to
replicate the exact cloud environment. Even though the
application could be deployed, configured and scaled
in a fully automated way, but the preparation of the
underlying infrastructure is similar for the entire cloud
ecosystem including PaaS or SaaS.

9. FUTURE ENHANCEMENTS

The current design of toolkit allows to test OpenStack
distributions on a single hardware node requiring
slightly more resources to hold several virtual machines
running cloud inside, which lacks scalability testing and
can cause bottleneck for performance testing. This
can be enhanced to multiple hardware nodes, which
can be a scalable as well as an efficient solution
for performance testing. As mentioned earlier, the
proposed toolkit supports OpenStack deployments to
provide IaaS service model but support for other service
models e.g PaaS, SaaS and for latest agile solutions
like “Docker”, “Mesos” and “Kubernetes” can also be
added.

10. FUNDING

This research received no specific grant from any
funding agency in the public, commercial, or not-for-
profit sectors.

REFERENCES

[1] Sefraoui, O., Aissaoui, M., and Eleuldj, M. (2014)
Cloud computing migration and it resources rational-
ization. Multimedia Computing and Systems (ICMCS),
2014 International Conference on, pp. 1164–1168.
IEEE.

[2] Ismail, M. A., Ismail, M. F., and Ahmed, H. (2015)
Openstack cloud performance optimization using linux

services. Cloud Computing (ICCC), 2015 International
Conference on, pp. 1–4. IEEE.

[3] Org., O. (2016) Openstack user survey. Technical
report. OpenStack Org.

[4] Evans, N., Bozonnet, S., Wang, D., Fredouille, C., and
Troncy, R. (2012) A comparative study of bottom-
up and top-down approaches to speaker diarization.
IEEE Transactions on Audio, Speech, and Language
Processing, 20, 382–392.

[5] Binz, T., Breitenbücher, U., Kopp, O., and Leymann,
F. (2014) Tosca: portable automated deployment and
management of cloud applications. Advanced Web
Services, pp. 527–549. Springer.

[6] Papaioannou, A., Metallidis, D., and Magoutis,
K. (2015) Cross-layer management of distributed
applications on multi-clouds. Integrated Network
Management (IM), 2015 IFIP/IEEE International
Symposium on, pp. 552–558. IEEE.

[7] Milojičić, D., Llorente, I. M., and Montero, R. S. (2011)
Opennebula: A cloud management tool. IEEE Internet
Computing, 15, 11–14.

[8] Muralidharan, K. and Gupta, P. (2006) Nimbus: A
task aware/context aware mobile computing platform.
Software Technologies for Future Embedded and Ubiq-
uitous Systems, 2006 and the 2006 Second Interna-
tional Workshop on Collaborative Computing, Integra-
tion, and Assurance. SEUS 2006/WCCIA 2006. The
Fourth IEEE Workshop on, pp. 6–pp. IEEE.

[9] Baun, C. and Kunze, M. (2009) Building a private cloud
with eucalyptus. E-Science Workshops, 2009 5th IEEE
International Conference on, pp. 33–38. IEEE.

[10] Mullerikkal, J. P. and Sastri, Y. (2015) A comparative
study of openstack and cloudstack. Advances in
Computing and Communications (ICACC), 2015 Fifth
International Conference on, pp. 81–84. IEEE.

[11] Inzinger, C., Nastic, S., Sehic, S., Vogler, M., Li,
F., and Dustdar, S. (2014) Madcat: A methodology
for architecture and deployment of cloud application
topologies. Service Oriented System Engineering
(SOSE), 2014 IEEE 8th International Symposium on,
pp. 13–22. IEEE.

[12] Achilleos, A. P., Kapitsaki, G. M., Constantinou, E.,
Horn, G., and Papadopoulos, G. A. (2015) Business-
oriented evaluation of the paasage platform. Utility
and Cloud Computing (UCC), 2015 IEEE/ACM 8th
International Conference on, pp. 322–326. IEEE.

[13] Menychtas, A., Santzaridou, C., Kousiouris, G.,
Varvarigou, T., Orue-Echevarria, L., Alonso, J.,
Gorronogoitia, J., Bruneliere, H., Strauss, O., Senkova,
T., et al. (2013) Artist methodology and framework: A
novel approach for the migration of legacy software on
the cloud. 2nd Workshop on Management of resources

The Computer Journal, Vol. ??, No. ??, ????



Virtual infrastructure orchestration for cloud service deployment 13

and services In Cloud And Sky computing (MICAS
2013).

[14] Giannakopoulos, I., Papailiou, N., Mantas, C.,
Konstantinou, I., Tsoumakos, D., and Koziris,
N. (2014) Celar: automated application elasticity
platform. Big Data (Big Data), 2014 IEEE
International Conference on, pp. 23–25. Citeseer.

[15] Garćıa-Gómez, S., Escriche-Vicente, M., Arozarena-
Llopis, P., Jimenez-Ganan, M., Lelli, F., Taher, Y.,
Biro, J., Momm, C., Spriestersbach, A., Vogel, J.,
et al. (2012) 4caast: Comprehensive management of
cloud services through a paas. Parallel and Distributed
Processing with Applications (ISPA), 2012 IEEE 10th
International Symposium on, pp. 494–499. IEEE.

[16] Shen, Z., Subbiah, S., Gu, X., and Wilkes, J. (2011)
Cloudscale: elastic resource scaling for multi-tenant
cloud systems. Proceedings of the 2nd ACM Symposium
on Cloud Computing 5. ACM.

[17] Sefraoui, O., Aissaoui, M., and Eleuldj, M. (2012) Com-
parison of multiple iaas cloud platform solutions. Pro-
ceedings of the 7th WSEAS International Conference on
Computer Engineering and Applications,(Milan-CEA
13). ISBN, pp. 978–1.

[18] Voras, I., Mihaljević, B., Orlić, M., Pletikosa, M.,
Žagar, M., Pavić, T., Zimmer, K., Čavrak, I., Paunović,
V., Bosnić, I., et al. (2011) Evaluating open-source
cloud computing solutions. MIPRO, 2011 Proceedings
of the 34th International Convention, pp. 209–214.
IEEE.

[19] Sotomayor, B., Montero, R. S., Llorente, I. M., and
Foster, I. (2009) Virtual infrastructure management in
private and hybrid clouds. IEEE Internet computing,
13.

[20] Malik, S. U., Khan, S. U., and Srinivasan, S. K. (2013)
Modeling and analysis of state-of-the-art vm-based
cloud management platforms. IEEE Transactions on
Cloud Computing, 1, 1–1.

[21] Mohammed, B. and Kiran, M. (2014) Experimental
report on setting up a cloud computing environment
at the university of bradford. Technical report.

[22] Niranjani, S., Jehadeesan, R., Vanishree, S., and
Karthick, P. (2015) A prototype for private cloud imple-
mentation using open-source platform. International
Journal of Emerging Technology in Computer science
and Electronics (IJETCSE), 13.

[23] Kumar, R., Gupta, N., Charu, S., Jain, K., and Jangir,
S. K. (2014) Open source solution for cloud computing
platform using openstack. International Journal of
Computer Science and Mobile Computing, 3, 89–98.

[24] Li, Z., Zhang, Y., and Liu, Y. (2017) Towards a
full-stack devops environment (platform-as-a-service)
for cloud-hosted applications. Tsinghua Science and
Technology, 22, 1–9.

[25] Girish, L. and Guruprasad, H. (2014) Building private
cloud using openstack. International Journal of
Emerging Trends & Technology in Computer Science
(IJETTCS), 3, 142–145.

[26] Bonner, S., Pulley, C., Kureshi, I., Holmes, V.,
Brennan, J., and James, Y. (2013) Using openstack
to improve student experience in an he environment.
Science and Information Conference (SAI), 2013, pp.
888–893. IEEE.

[27] Pepple, K. (2011) Deploying openstack. ” O’Reilly
Media, Inc.”.

[28] Hall, D. (2013) Ansible configuration management.
Packt Publishing Ltd.

[29] Jeswani, J. T., Kurian, J. J., and Santiago, J. R.
(2016) Installation of openstack (liberty release)
using packstack. International Journal of Computer
Applications, 138.

[30] Kourtis, M., McGrath, M. J., Gardikis, G., Xilouris, G.,
Riccobene, V., Papadimitriou, P., Trouva, E., Liberati,
F., Trubian, M., Batall, J., Koumaras, H., Dietrich, D.,
Ramos, A., Ferrer Riera, J., Bonnet, J., Pietrabissa,
A., Ceselli, A., and Petrini, A. (2017) T-nova: An
open-source mano stack for nfv infrastructures. IEEE
Transactions on Network and Service Management, 14,
586–602.

[31] Sheela, P. S. and Choudhary, M. (2017) Deploying an
openstack cloud computing framework for university
campus. 2017 International Conference on Computing,
Communication and Automation (ICCCA), May, pp.
819–824.

[32] Suryn, W., Abran, A., and April, A. (2003). Iso/iec
square. the second generation of standards for software
product quality.

[33] Markelov, A. (2016) Getting to know openstack.
Certified OpenStack Administrator Study Guide, pp. 1–
6. Springer.

The Computer Journal, Vol. ??, No. ??, ????


