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Abstract 
Diabetic Retinopathy (DR) is the one among other main reasons of blindness in the adult population. Early 
discovery of DR through screening programs and successive treatment is critical in order to avoid visual 
blindness. The early signs of DR as manifested in retinal images include micro-aneurysms, hemorrhages 
and exudates. In this paper, we have presented an ensemble classifier of bootstrapped decision trees for 
multiscale localization and segmentation of exudates in retinal fundus images. The candidate exudates 
are extracted at fine grain and coarse grain levels using morphological reconstruction and Gabor filter 
respectively. The contextual cues are applied to the candidate exudates, which greatly reduces false 
positives in exudate segmentation. Several region based features are computed from candidate regions 
to train the ensemble classifier for classification of pixel as exudate and non-exudate region. The method 
has been evaluated on four publically available databases; DIARETDB1, e-Ophtha EX, HEI-MED and 
Messidor. The method has achieved the segmentation accuracy as (0.8772, 0.8925, 0.9577, and 0.9836) 
and area under ROC as (0.9310, 0.9403, 0.9842, and 0.9961) for each of the dataset respectively. The 
algorithm appears to be an efficient tool for automated detection of exudates in large population based 
DR screening programs, due to the attained accuracy, robustness, simplicity and speed.  

Keywords: Medical Image Analysis; Feature Extraction; Ensemble Classification; Exudate Segmentation; 
Machine Learning; Diabetic Retinopathy 

1 Introduction 
Diabetes is a major chronic disease faced by the world population today and it is characterized by high 
levels of glucose in the blood. Diabetes manifests itself, when lack of insulin or insufficient action of insulin 
takes place in human metabolism, which leads to high blood glucose levels and is known as 
Hyperglycemia. Diabetes can damage small as well as large blood vessels, nerve cells, and resultantly 
cause damage to vital organs including brain, heart, kidneys and eyes. Damage to eyes primarily includes 
retinal complications collectively known as Diabetic Retinopathy (DR). The damage to retinal vasculature 
can lead to progressive retinal damage and result in partial vision loss or complete blindness [1]. DR is the 
most common reason for new cases of blindness among adult population[2]. The problem is increasing in 
scale, with diabetes identified as a significant growing global public health problem. 

Clinicians commonly use retinal images for the screening of epidemic eye diseases like retinal edema and 
DR. The increasing pervasiveness of diabetes and low number of clinical specialists, increases the need for 
automatic methods to help reduce the work load on physicians [3].  

*Manuscript
Click here to view linked References

mailto:moazam.fraz@seecs.edu.pk
mailto:mian.hamayun@seecs.edu.pk
mailto:s.barman@kingston.ac.uk
http://ees.elsevier.com/bspc/viewRCResults.aspx?pdf=1&docID=4357&rev=1&fileID=102486&msid={1CFA4190-3CBA-4B37-89DA-20C55D188282}


Exudates are one of the earliest signs of DR and are formed by leakage of fluid from injured/damaged 
retinal blood vessels. The fluid has high content of proteins, white blood cells and cellular debris and 
appears as bright yellowish patches in the retinal images. This paper focuses on the detection of exudates, 
which are one of the main clinical symptoms of the presence of DR and Macular Edema. Due to their high 
contrast values, the exudates can be discerned more effectively from the retinal background in 
comparison with blood vessels and other anatomical structures. The leaked fluid can flow freely without 
restraint in the ocular fundus, therefore the exudates can form various irregular shapes and sizes. The 
noise, uneven illumination and contrast variations in images due to varying conditions during image 
capture, in addition to variability in shape, size and intensity add to the challenges of automated exudate 
detection from retinal images. 

2 Related Work 
There are a number of methodologies available in the literature for exudates detection in retinal fundus 
images [4]. Generally, the exudate detection approaches can be sub-divided into two main groups. 

The first group contains methods based on mathematical morphology. Walter et al. [5] applied 
morphological closing for blood vessel elimination, followed by calculation of local standard deviation and 
thresholding to locate the candidate exudate regions. These techniques apply the morphological 
reconstruction to locate the exudate boundaries. Sopharak et al. [6] employed optimally adjusted 
mathematical morphology followed by morphological reconstruction to detect exudates in non-dilated 
retinal images. A coarse level segmentation of exudates was carried out by Jaafar et al. [7] using local 
variation calculation of image pixels, in order to outline the candidate boundaries. The adaptive 
thresholding results that have been obtained using the coarse level segmentation are further refined using 
a morphological operation. Welfer et al. [8] used the contrast enhanced L channel of L*U*V* color spaces 
to apply morphological operations as well as H-maxima transform for exudate detection. An Atlas based 
technique is proposed by Ali et al. [9]. Harangi et al. [10] have proposed an active contour-based region-
wise method for identifying exudates. Most of these methods are prone to false positives near the 
vascular arch. 

The second group is composed of machine learning based methods. These methods usually start with 
image normalization, followed by optic disc localization and removal. Then, the set of candidate regions, 
i.e. the structures similar to exudates are identified, followed by feature-set computations for each 
candidate region and classification for exudate regions. Different types of features have been suggested 
in literature. Pixel-wise features, which include pixel intensity, local variance, edge detection responses 
from sobel, Gaussian, difference of Gaussian and Gabor operators and wavelets [11]. Naive Bayes and 
fuzzy C-means have been used as classifiers in these cases. The pixel-wise features are supplemented with 
the addition of features like area, length or perimeter of candidate exudate regions [12]. This high 
dimensionality feature vector is computationally intensive to formulate. Acharya et al. [13] have used a 
Support Vector Machine (SVM) classifier fed with the non-linear feature vector computed from higher 
order spectra. Garcia et al.  [14] proposed a classification methodology using multilayer perceptron, radial 
basis function and SVM classifier. Akram et al. [15] used a hybrid classifier comprising of a Gaussian 
mixture model (GMM) and SVM for improved exudates detection. The combination of GMM and SVM is  
also computationally demanding. Zhang et al. [16] has employed  image normalization and de-noising 
followed by mathematical morphology to compute the feature vector, which is used to train Random 
Forest classifier for exudates detection. Pereira et al. [17] have used Ant colony optimization after 



identifying candidate exudate regions using connected component analysis. A method that includes 
features set based on color and trains the classifier using automatic lesion segmentation and wavelet 
decomposition has been introduced by Giancardo et al. [18]. Sánchez et al. [19] proposed a methodology 
which utilizes contextual information to improve lesion detection in medical images, resulted in significant 
gain in classification accuracy of pathologies.  

In this paper, we present a methodology for exudates localization, detection and segmentation, which 
uses bootstrapped (bagged) decision trees based ensemble classifier. We combine the morphological 
operations, Gabor filter responses, contextual information obtained from retinal pathologies and machine 
learning techniques within a single unified framework. Most of the computer assisted systems use local 
information only to classify the candidate lesions, and do not consider the global image information. The 
proposed method takes into account the global image information as well as the relationship of candidate 
lesions with their neighboring anatomical structures within the retinal images. We have employed the 
spatial relationship between candidate exudates and surrounding anatomical structures (vascular arch, 
macula and optic disc) within the retinal image to improve the candidate exudate localization and the 
computation of quantifiable feature vector. The use of heuristic approach in feature vector generation 
has proved itself to be very beneficial in removing the artefacts and lesions that cause false exudate 
detection. 

Another key contribution of the proposed technique is the use of ensemble classifier of bootstrapped 
decision trees for the classification of candidate regions into exudates and non-exudates. The ensemble 
classifier uses a feature vector obtained from Gabor filter responses, morphological reconstruction and 
top-hat filter application. The feature vector is a set of nine features that are used to characterize a given 
region as exudate or non-exudate region. The bootstrapped decision trees based ensemble, is a classic 
ensemble classifier that has been extensively applied in numerous image analysis application areas. To 
the best of our knowledge, the ensemble classifier has not been broadly employed for exudates 
segmentation in retinal funds images. Additional significant features of our bootstrapped ensemble 
classifier based exudate detection method include high classification accuracy, feature set computation 
and the conduct of training phase without requiring test data, which provides appreciable computational 
efficiency. The proposed algorithm is computationally fast during the training phase in addition to 
classification, as it needs fewer samples for training as compared to other supervised algorithms available 
in literature. The proposed algorithm has been evaluated for classification accuracy and robustness on 
four public image databases namely DIARETDB1, Messidor, e-Ophtha EX and HEI-MED. Last but not the 
least, and to the best of our knowledge, this algorithm is the first one to be evaluated simultaneously on 
these four datasets. 

This paper is organized as follows: Section 2 summarizes the exudate segmentation methodology, the 
feature vector formation and the ensemble classification approach. In section 3, the experimental 
evaluation, quantitative performance measures, and the robustness of the methodology are discussed in 
detail. We conclude this paper in section 4 and provide insights into future directions. 

3 The Methodology 
The exudates and other anatomical structures that are commonly found in retinal images are illustrated 
in Fig. 1 



  
Fig. 1: Exudates and other anatomical structures in retinal images 

Exudates show highest contrast with the background in the green channel of an RGB image, thus we have 
used the green channel of RGB images for exudates detection and segmentation. The green channel 
images are preprocessed for shade correction and normalization of uneven illumination. A series of image 
processing techniques are applied to get the candidate exudate regions. These techniques include 
morphological closing, histogram normalization, Gabor filter application, adaptive thresholding, 
morphological reconstruction and top-hat filtering.  

A feature vector, consisting of nine features, has been designed to identify the candidate exudate regions 
and to compute the quantifiable measure for each candidate region. The ensemble classifier of bagged 
decision trees is employed to classify the candidate regions into exudates and non-exudates. The 
contextual information is used to remove regions in the retinal images that cause false exudate detection. 
These regions include the Optic Disc (OD), the main vascular arch area and the artefacts on the boundary 
of retinal images. The flowchart given in Fig. 2 illustrates different steps of proposed methodology for 
exudates detection. 

 

Fig. 2:  Segmentation of Exudates in Retinal Images 



3.1 Preprocessing 
The green channel of an RGB image gives maximum contrast between exudates and the neighboring 
regions [20]. The shade variability and contrast variations in retinal images largely contribute to false 
identification of candidate exudate regions in retinal images. Therefore, the green channel of RGB images 
is processed for normalization of contrast and luminosity. A variety of algorithms for contrast and 
luminosity normalization in retinal images are available in literature, and  these methodologies are either 
based on subtracting the estimated background from the original image [21] or on dividing the later by 
the former [22, 23]. However, experiments [21] show that the results of both methods are similar with no 
appreciable advantage of one over the other. We have used the subtractive method as it has been 
reported in [21]. Firstly, the background values are estimated and later the difference between the 
estimated background and the green channel is computed to produce the normalized image. The 
estimation of retinal image background, denoted by “Ibg” is computed by the filtering the green channel 
image with a large arithmetic mean kernel. The filter kernel size is not a crucial parameter, for the reason 
that its size should be such that the resultant blurred image does not contain any visible anatomical 
structure. In this work, we have used an 89 × 89 pixel kernel. The difference between the estimated 
background “𝐼𝐼𝑏𝑏𝑏𝑏” and the morphologically opened image “𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜” is calculated on pixel basis. Thus the 
background normalized image “𝐼𝐼𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛” is obtained using: 

𝐼𝐼𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛 (𝑥𝑥,𝑦𝑦)  =  𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑥𝑥,𝑦𝑦) – 𝐼𝐼𝑏𝑏𝑏𝑏  (𝑥𝑥, 𝑦𝑦)     (1) 

Due to different illumination conditions in the acquisition process, there may be significant intensity 
variations between images. These intensity variations make it hard to use a best possible technique for all 
of the images, thus shade corrections were necessary and have been applied. A global linear 
transformation function is applied to modify the pixel intensities such that the whole range of possible 
gray-levels ( [0-255] , referred to 8-bit images) is covered. 
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where 𝐼𝐼𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) is the shade corrected image, 𝐼𝐼𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛(𝑥𝑥,𝑦𝑦) is the background normalized image, 
glmax _pixels is the grey-level value of the highest pixel occurrence in the background normalized image 
𝐼𝐼𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛(𝑥𝑥,𝑦𝑦). The pixels with this intensity value glmax _pixels corresponds to the retinal background pixels. 
the background pixels [24]. These background pixels are set to 128 (for 8-bit grayscale image) hence the 
pixels with different illumination condition standardize their intensity around this value. The global 
transformation function illustrated in eq. (3) normalizes or shade corrects the image, which can be 
observed in Fig. 3. 



 
(a) 

 
(b) 

 
(c) 

Fig. 3: Luminosity and Contrast Normalization: (a) Green Channel Image (b) Estimated Background 
Image (Ibg) (c) Normalized Image 

3.2 Artefacts Removal 
There are several bright and dark artefacts in the retinal images, which can be erroneously identified as a 
candidate exudate. The bright artefacts include the Optical Disc (OD) and the area along the main vascular 
arch. The dark artefacts are the retinal blood vessels, hemorrhages and microaneurysms. The variability 
in contrast of the aforementioned artefacts with respect to the neighboring regions causes false detection 
of candidate regions and is a potential cause of poor performance of the exudate detection algorithms. 

3.2.1 Bright Artefacts Removal 
The OD and connected blood vessels in the main vascular arch area are the main cause of false exudates 
detection. Generally, these regions have a significant contrast with respect to their neighboring regions, 
thus they appear similar to exudates. From the contextual information of the retinal images, we have 
observed that there are almost always no exudates in the areas containing the optic disk and the vascular 
arch area [1]. Accurate OD detection, identification of main vascular arch area and removal of candidate 
exudates from this region in retinal images, greatly enhances the system accuracy. An efficient OD 
localization and boundary extraction methodology has been proposed in our research effort [25], and it 
gives 100% accuracy for OD detection in our dataset. After the detection of OD, a parabolic curve fitting 
is performed for the approximation of main vascular arch area [26]. The OD location and the 
approximation of main vascular arch by parabolic curve fitting on a retinal image are shown in Fig. 4. The 
candidate exudates from these regions are later removed. 

 

 

 

 



  

  
Column A Column B 

Fig. 4: Column A) OD Detected in Retinal Images; Column B) Parabolic Curve Fitting applied for bright 
artefacts removal 

3.2.2 Dark Artefacts Removal 
Vessels and other dark artefacts cause false exudate detection due to their contrasting nature as 
compared to the neighboring regions. Thus these dark artefacts should be removed. In order to eliminate 
the vessels and unwanted dark regions from the retinal fundus images, we use the image in-painting 
technique by applying morphological closing [27].  

Mathematical morphology [27] is revealed to be a very useful technique for quantifying pathologies in 
retinal images [28]. Morphological closing operation removes most of the unwanted dark artefacts. The 
“Octagon” structuring element is used for closing operation. The size of the octagon has been chosen 
according to the width of the largest vessel in the image, similar to the approach proposed in [24]. This 
gives a suitable approximation of vessel width ‘d’ for all the datasets under consideration. The removal of 
the retinal vasculature is shown in Fig. 5. 

 



 
(a) 

 
(b) 

Fig. 5 : Dark artefact removal (a) Largest vessel size marked as ‘d’  (b) Vessels removed from the 
retinal image 

3.3  Candidate Extraction 
The exudates appear in variable sizes and shapes, with regions ranging from a few pixels to considerably 
large areas. Most of the exudate detection algorithms available in the literature do not cater for the 
variability in exudate sizes and treat them similarly. We have employed a two pronged strategy for 
candidate exudates identification. After the removal of artefacts, the retinal images are processed using 
a series of image processing techniques focusing on identification of large and small candidate regions 
independently.  

3.3.1 Coarse Grain Exudate Candidates Extraction 
The preprocessed image is used for the large candidate exudates identification at coarse grain level. 
Adaptive contrast enhancement is applied to the preprocessed (vessel removed) images, in order to 
improve the contrast between potential exudates and their neighboring regions. A sample result of 
adaptive contrast enhancement is illustrated in Fig. 6 (a). A Gabor filter is applied to the contrast enhanced 
images to find the boundaries of candidate exudates. In general, the Gabor filter is employed for multi-
directional and multi-scale detection of edges. The Gabor filter has the property that it can be easily tuned 
to specific frequencies, directions and scale, thus possessing the capability of low level feature extraction 
and background noise suppression. The Gabor filter kernel can be illustrated as the product of a complex 
sinusoid and a Gaussian kernel, which is mathematically expressed as, 

' 2 '2 '

2
1( , ) exp[ ( )] exp[ (2 )]
2 2

x y xg x y iγ π ψ
λσ

+
= − +      (4) 

Where, ' .cos .sinx x yθ θ= + , ' .sin .cosy x yθ θ= − + ; Ө represents the orientation, ψ characterize the phase 
offset, σ shows the Gaussian envelop scale and λ illustrates the spatial aspect ratio. The Gabor filter is 
implemented as described in [29].  The Gabor filter is constructed at two scales (numeric values 2 and 5), 
on two orientations (pi/4 and pi/2) and the set of frequencies are [0.5 and 2]. 
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(d) 

Fig. 6: (a) Contrast Enhanced Image (b) Gabor Filter Response (c) Result of morphological 
reconstruction (d) Candidate exudates removed based on contextual information 

The Gabor Filter Response (GFR) image is illustrated in Fig. 6 (b). It has been observed that the shape of 
large exudates is not very accurate if Otsu’s adaptive thresholding [30] has been applied to the GFR image. 
Therefore, in order to attain a better approximation of the shape of large candidate exudates, a hysteresis 
thresholding based morphological reconstruction is applied to the GFR image. The details of this 
procedure have been reported by the authors elsewhere [31, 32]. In this technique, the GFR image which 
is actually a grey level image has been thresholded for two ranges of pixel intensity values, thus employing 
a bi-threshold procedure. In the first instance, the GFR image is thresholded by a narrow range (T1), which 
results in the segmentation of high confidence exudate pixels as well as many false negative responses. 
This image is labelled as the “marker image”. After wards, a wide range threshold (T2) is applied to the 
GFR image to produce a “mask image”. These threshold values (T1 and T2) are obtained from the intensity 
histogram of the non-null pixels of the GFR image. The T1 or T2 are computed as the highest pixel intensity 
value such that pixel count with the intensities above this limit (T1 or T2) is greater or equal to a predefined 
percentage in the histogram. This percentage value is empirically selected for T1 and T2 as 90% and 95% 
respectively. The obtained marker and mask images are used for morphological reconstruction [31].  
 
In general, from the contextual information of retinal pathology, it is known that the exudates are not 
present near the OD and main vascular arch area. The regions of the OD and main vascular arch in the 



retinal image are approximated as explained in section 2.2.1, and illustrated in Fig. 4. Therefore, the 
candidate regions in the aforementioned area of the morphologically reconstructed image are removed 
in order to reduce the false positive detection of candidate exudates, as illustrated in Fig. 6 (d). 
 
3.3.2 Fine Grain Exudate Candidates Extraction 
The fine grain candidate exudate regions are extracted by applying a morphological top-hat operation 
using the octagon shaped structuring element followed by adaptive thresholding using Otsu’s algorithm 
[30]. 

The morphological erosion followed by the dilation procedure which is also known as the morphological 
opening operator (MOO) removes those objects from the image which are smaller in size than the 
Structuring Element (SE) used by the operator [27]. The objects which are removed by the MOO are 
enhanced in contrast if the morphologically opened image is subtracted from the original image. Without 
loss of generality, we assume that the exudates are irregular shaped bright patterns on the dark 
background. Due to their irregular roundish shapes, the MOO with the octagon shaped SE are utilized for 
contrast enhancement of candidate exudates in the retinal fundus images. MOO using an octagon shaped 
SE will remove the candidate exudates when its size large enough such that it cannot be enclosed within 
the candidate exudate region. The size of octagon shaped SE is chosen to be approximated to the half 
radius of the maximum vessel width in the retinal images, a similar approach has been used by [24]. The 
morphological top-hat operation is illustrated in (5) where IFG represents the fine grain candidate exudate 
image obtained by the top-hat transformation, I is the image to be processed and Se is the octagon shaped 
structuring elements for morphological opening “o”.  

𝐼𝐼FG = 𝐼𝐼 − ( 𝐼𝐼 𝑜𝑜 𝑆𝑆e )                                                             (5) 

𝐼𝐼cand_exudates =    𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐼𝐼FG , 𝐼𝐼CG )      (6) 

In order to combine the candidate exudate regions at the coarse grain and fine grain levels, the supremum 
of the images obtained at each of the scales is taken as is illustrated in (6). 𝐼𝐼cand_exudates is the image 
containing candidate exudate regions, 𝐼𝐼FG and 𝐼𝐼CG are the candidate exudate images at fine grain and 
coarse grain levels, respectively. The results of the fine grain exudate extraction and supremum operator 
are presented in Fig. 7. 
 

(a) 
 

(b) (c) 
Fig. 7 : a) Top-hat filtered image b) Fine grain candidate exudate regions c) Candidate Exudate 

Regions obtained by Supremum Operator 



3.4 Feature Vector   
Each candidate region in the retinal image is characterized by a feature vector in 9-D feature space, in 
order to distinguish between the candidate regions as exudates and non exudates 

1 2 9( , ) [ ( , ),. ( , )...... ( , )]Fv x y f x y f x y f x y=     (7) 

A classification technique allocates one of the classes from CEXUDATE (exudate) or CNON-EXUDATE (non-exudate) 
to each candidate region when its representation in feature space ( , )Fv x y  becomes known.  

Clinical experts have been asked how they identify the exudate regions in the retinal images, so that the 
feature extraction process incorporates the cues used by the clinician’s for exudate detection in retinal 
image. After deliberations, the size, color, texture and the shape are found to be the most significant 
features that are considered for exudate classification by ophthalmologists. We try to mimic a clinician’s 
expertise by extracting relevant features from the candidate regions for differentiating between exudate 
pixels and non-exudate pixels. Each candidate exudate region is represented by a feature vector 
containing nine region based features. The chosen feature vector is explained in Table 1. 

Table 1 : Feature Vector for Candidate Exudates 

S. No Feature 
Name Details Mathematical Expression 

1 Area (A) The size of the candidate 
region Total pixel count in the candidate region 

2 Compactness 
(C) 

Magnitude of density of the 
candidate region 𝐶𝐶 =

perimeter^2
4 ∗ pi ∗ area

 

3 
Mean green 
channel 
intensity (µg) 

Average green channel 
intensity of the candidate 
region 

�µ𝑏𝑏� =
Sum of Green channel intensity of pixels in region

Number of pixels in the region  
 

4 

Mean Hue 
Channel 
Intensity in 
HSV color 
space 
(µh) 

Average Hue channel intensity 
of the candidate region in HSV 
color space. It is an attribute of 
visual sensation according to 
which an area appears to be 
similar to the perceived color 

(µℎ) =  
Sum of hue value of pixels in region

Number of pixels in the region
 

 

5 

Mean 
Saturation in 
HSV color 
space 
(µs) 

Average “S” channel intensity 
of the candidate region in HSV 
color space. It depicts the 
strength or purity of the color 
of the candidate region.  

(µ𝑆𝑆) =
Sum of saturation value of pixels in region

Number of pixels in the region
 

6 

Mean “V” 
value of HSV 
color space 
(µv), which is 
the Lightness 
component 

Average of the “V” channel 
value of the candidate region 
in HSV color space. It is the 
representation of brightness of 
color in the candidate region. 

(µ𝑉𝑉) =
Sum of the Lightenss value of pixels in region

Number of pixels in the region
 

 

7 
Mean gradient 
magnitude 
(µgrad_mag) 

Directional change in intensity 
of the candidate region pixels. _

(gradient img pixel intensity in region)
No. of pixels in the regiongrad magµ ∑

=  

8 Entropy (Ent) 
A statistical metric to measure 
the randomness. Entropy 
characterize the texture of 
candidate exudate region 

𝐸𝐸𝐸𝐸𝐸𝐸 =  −�𝑃𝑃(𝑥𝑥𝑖𝑖)𝑙𝑙𝑜𝑜𝑙𝑙2 𝑃𝑃(𝑥𝑥𝑖𝑖)
𝑖𝑖

 

 

9 Energy (Enr) Measure of how the spectral 
density varies with frequency. 

Enr = sum of intensity squares of all pixel values in green 
channel of RGB 

 



3.5 Ensemble Classification 
Ensemble classification is the methodology for generation and combination of multiple classifiers with the 
aim to find an optimal solution of a particular machine learning problem [33]. Ensemble classification is 
used for improving the prediction performance of the classifiers in combination with the reduction in 
probability of false prediction. Ensemble classification uses the approach used in daily life, where people 
seek suggestions from different people about a problem’s solution, weigh them and then decide in order 
to make a better and well-informed decision. The usage of multiple classifiers in the ensemble methods 
improve the predictive performance, by aggregating the outcomes of multiple weak learners in to a single 
ensemble classifier. In the proposed methodology, the decision trees are used weak learner and their 
outcome is combined with bagging also known as bootstrap aggregation. [34]. One of the key advantages 
of bagged ensemble classifiers is that their predictive performance can be tested by using Out-Of-Bag 
(OOB) training samples without supplying any test data. 
3.5.1 Bootstrap Aggregation 
The bootstrapped aggregation algorithm also known as bagging, proposed by Breiman’s [34], is one of the 
earliest, most intuitive and simplest to implement ensemble based algorithm. In bagging, the component 
classifiers (the decision trees in this case) are trained on the bootstrap replicas of the training data. The 
bootstrapped training data is generated by random selection of P training samples out of Q, where Q is 
the size of training set. The individual classifier’s predictive outcome is strategically combined by majority 
voting. The ensemble classifier decision is the label chosen by majority of the weak learners.  

Let us suppose that the original training set is “T”, the multiple sets of training data “TM” are formed by 
random sampling of training set “T” with replacement. “M” is the number of decision trees used in the 
ensemble. The random selection with replacement make sure that each training set “TM” contains not 
more that 67% of the original training samples. The implementation details of bagging algorithm as 
explained in [35] are shown as, 

Given the original training set D, multiple sets of training data Dm are created, where m ∈ {1,2, . . . N} by 
randomly sampling D with replacement. M is the number of component classifiers used in the ensemble 
system. On average, each training set Dm only contains two-thirds of the original samples. The bagging 
algorithm as explained in is illustrated below, 

Bagging Algorithms Inputs 
• Training data 1 2( , ,........, },     m iT a a a a Mε= , with correct labels 1{ ,...., }i Cl l l∈Ω =  
• Decision Tree Learning algorithm DTLearn(), 
• Integer K, specifying the training iterations. 

Training the Classifier 
Do k = 1, . . . , K 

1) Create bootstrap sample with replacement mT by randomly drawing m instances from T. 

2) Call DTLearn() with training set mT and obtain the trained component classifier :kC Y →Ω . 

3) Add kC to the ensemble, E. 
End Do Loop 

Test: The Classifier —given the unlabelled instance “z” 
1. The Ensemble classifier 1 2{ , ....., }BE C C C= is evaluated on test data “Z” 

2. The outcome given to class jl by the component classifier kC be 



,
1,          if  picks class 
0,                        otherwise
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3. The total vote got by each class is obtained by majority voting as 

,
1

,     1,......, .
K

j k j
k

V v j C
=

= =∑  

4. The class that has obtained the highest total vote is chosen as the final label of test data 
3.5.2 Out-Of-Bag Classification Error 
The picking up of X out of Y training samples with replacement, leave behind on average 37% of the 
training samples for each weak learner, which is the decision tree in his case. These samples are known 
as “Out-Of-Bag” (OOB) observations on the training set, which are not used in the individual decision tree 
training. Thus, these observations can be used to estimate the predictive power of a classifier as well as 
the importance of each individual feature from the feature vector, in the decision-making process.  
 
The OOB predicted outcomes are compared with the known outcomes of training samples in order to 
compute OOB classification error, which can be considered as the approximation of ensemble 
classification error. For estimating the importance of particular feature in prediction, the OOB data is 
randomly permutated across one variable at a time and resulted variance of OOB classification error is 
analyzed. The higher the value of OOB classification error, more significant the feature will be in the 
classification. In this way the approximation of classifier’s predictive power and the importance of a 
particular feature in classification can be computed during the classifier training without using the test 
data. These capabilities make the ensemble a smart choice for classification. 
Fig. 8 shows the plot of OOB classification error computed for the classifiers comprising of 100 decision 
trees, which have been trained with 5600, 10000 and 12000 samples. It can be seen in the graph that 
there will be insignificant increase in classification accuracy at the cost of processing time, if 40 or more 
decision trees are used to construct the ensemble classifier. Therefore, 40 decision trees have been 
chosen for constructing the ensemble classifiers.  Moreover, it has been observed that the OOB 
classification error for the ensemble trained with 5600, 10000 and 12000 training samples, is 
approximately same. Therefore, the ensemble can be optimally trained using 5600 training samples thus 
further reducing the computational load. 



 

Fig. 8: OOB Classification Error for estimating the optimal number of Decision Trees and Training 
Samples 

3.6 Exudates Ground Truths Marking Tool 
To validate the exudates classification performed by the proposed algorithm, we need a reference 
standard or a ground truth for comparison purposes. The exudates in the retinal images should be 
manually marked by clinical experts. This ground truth will be used for classifier training and later on for 
calculating the performance measures of our classifier on a set of test retinal images.  
Keeping in mind the above requirement, a software tool has been developed, in which a retinal fundus 
image can be loaded, magnified and zoomed to various levels. This tool allows the clinical experts to 
precisely mark the exudates in retinal images, even up to a pixel level using simple mouse clicks. The 
clinical experts can edit their marking as well. A snapshot of this tool is given in Fig. 9. 
 



 
Fig. 9: Exudates Segmentation Tool 

4 Results and Discussion 
The exudates detection performance can be evaluated at two different levels; the pixel level validation 
and the image level validation. The prerequisite for the pixel level validation is the availability of manually 
segmented exudates created by clinical experts. For this purpose, we have created an interactive software 
tool for clinical experts. This tool provides the functionality of precise marking of exudates in the retinal 
images at pixel level (section 2.6). The retinal images were provided to our clinical collaborators i.e. the 
ophthalmologists at the Armed Forces Institute of Ophthalmology, Rawalpindi, Pakistan. Our clinical 
experts have manually created the exudates ground truths using our software tool. At the pixel level 
validation, the evaluation is performed by counting the correctly identified pixels in the retinal image as 
exudates and non-exudates, in comparison with the manually created ground truths. The performance 
metrics of Sensitivity, Specificity, Accuracy and Precision are computed by using the number of correctly 
identified exudate and non-exudate pixels. The details of our evaluation methodology are given in the 
following sub-sections. 
 

4.1 Materials 
The method is evaluated of four public retinal image datasets (DIARETDB1, e-Ophtha Ex, HEI-MED and 
Messidor). The exudates in the retinal images are manually marked by clinical experts using the software 
tool described in the section 2.6. The manually marked retinal images are considered as the reference 
standard and utilized for the evaluation of proposed methodology.  

4.1.1 DIARETDB1 
DIARETDB1 database [36] consists of 89 colored retinal images. The training set containing 26 images and 
the test set consists of 63 images.  The ensemble classifier is trained using 3600 samples.  



4.1.2 e-Ophtha EX 
The e-Ophtha EX database [37] consists of 82 colored retinal images. Approximately 2200 samples from 
22 images are used for training and the test set is comprised of 60 images. 

4.1.3 HEI-MED 
HEI-MED database [38] consists of 169 colored retinal images. The training set is comprised of 39 images 
and a test set contains 110 images. The ensemble classifier is trained using 5600 sample observations.  

4.1.4 Messidor 
158 images have been taken from the Messidor retinal image-set [39] containing exudates and similar 
pathologies.  The training set contains 50 images and a test set is comprised of 108 images. The ensemble 
classifier training is performed using 12000 sample observations.  

4.2 Performance Measures 
In the classification of candidate regions, the candidate image region is either classified as exudate or a 
non-exudate. There are four main events in classification of exudates. Two of them are classifications and 
the other two are misclassifications as shown in Table 2. 

Table 2 : Exudate Classification 

 Exudate pixels in manually 
segmented image 

Non-Exudate pixels in 
manually segmented image 

Exudate pixels detected by algorithm True Positive (TP) False Positive (FP) 

Non-exudate pixels detected by algorithm False Negative (FN) True Negative (TN) 

Sensitivity (SN) is the ability of method to detect exudate pixels among candidate regions. Specificity (SP) 
measure shows the ability to detect non-exudate pixels among candidate regions. Accuracy (Acc) is 
calculated as the ratio between the count of accurately identified exudate pixels and the total pixel count 
in the candidate regions. The Positive Predicted Value (PPV) is considered as the probability that identified 
exudate pixel is true positive. The False Detection Rate (FDR) is taken as the probability that identified 
exudate is false positive. These performance parameters are listed in Table 3. 

Table 3 : Performance Measures 

Performance Measure     Mathematical Formula 
SN TP / ( FN + TP ) 
SP TN / ( FP + TN ) 
Acc (TN + TP) / (FP + TP + FN + TN) 
PPV TP / ( FP + TP ) 
FDR FP / ( FP + TP ) 

In our experiments, these performance parameters are calculated over all test images. Additionally, the 
algorithm performance is evaluated by using the Area Under Receiver Operating Characteristic (ROC) 
curve. An ROC curve is a graph of Sensitivity (SN) and the false positive fraction (1-SP). 

4.3 Exudate Classification Results 
Each candidate exudate region is characterized by a feature vector. The ensemble classifier assigns one 
of the classes CEXUDATE (exudate) or CNON_EXUDATE (non-exudate) to each of the pixel in the candidate exudate 
region. This method designates one of the class label CEXUDATE or CNON_EXUDATE to each of the exudate region. 



The outcome of ensemble classifier is the confidence measure of each candidate region to be an exudate 
or non-exudate. The classifier generates a probability map for candidate exudate regions, where each 
value can be considered as the confidence measure for every pixel to be classified as an exudate or non-
exudate region.  

The probability map image is thresholded to produce a binary image in such a way that each pixel in the 
PM image is assigned with one of the class label (CEXUDATE or CNON_EXUDATE), depending upon its associated 
probability value. The assignment of binary values 1 and 0 to the class labels can be given mathematically 
as,  

𝐼𝐼𝑅𝑅𝑅𝑅𝑆𝑆(𝑥𝑥,𝑦𝑦) = �
1 (≡ 𝐶𝐶𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑜𝑜), 𝜌𝜌(𝐶𝐶𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑜𝑜 | 𝐹𝐹𝐹𝐹(𝑥𝑥, 𝑦𝑦))  ≥ 𝑇𝑇

 0 �≡  𝐶𝐶𝑁𝑁𝑜𝑜𝑜𝑜_𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑜𝑜�,𝑂𝑂𝐸𝐸ℎ𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠    (10) 

Where ( | ( , ))ExudateC Fv x yρ  is the probability of a pixel (x,y)  belongs to class C EXUDATE  given the feature set 
Fv(x,y).  

The binary image is generated for several threshold values and the respective accuracy is computed for 
each particular threshold value. The threshold value associated with best accurate is selected for each of 
the retinal image-set. Fig. 10 illustrates the graph of accuracy versus the threshold values T on the 
probability map image, which are used for computing the IRES as defined in (10), for each of the retinal 
image datasets. 

 
Fig. 10 :  Method Accuracy vs. the optimal threshold for CEXUDATES 

The OOB observations are used to determine the optimal number of decision trees utilized to create the 
ensemble classifier, as well as the count of training samples for classifier training. We have created one 
ensemble classifier for each of the retinal images datasets, using 40 bootstrapped decision trees and 
trained it with 10000 training samples. The trained classifier is then employed for exudate detection on 
the DIARETDB1, e-Ophtha EX, HEI-MED and Messidor images. A vector of SN and SP is obtained for test 



data of respective image databases. The ROC is plotted for each database and the area under ROC is 
computed using these vectors, as shown in Fig. 11. The ROC values for the databases are summarized in 
Table 4. 

Table 4 : Area under ROC for exudate classification in different retinal image datasets 

Database Area under ROC 
DIARETDB1 0.9310 
e-Ophtha EX 0.9403 
HEI-MED 0.9842 
Messidor 0.9961 

 

 
Fig. 11: ROC plots for different retinal image datasets 

The methodology is implemented in Matlab R2015b, and is evaluated on Dell XPS 13 Corei7 with 8GB of 
RAM on Windows 8 Operating System. The performance metrics and processing time for each of the 
retinal image datasets are given in Table 5.  

Table 5 : Exudates Classification performance measure on different retinal image datasets 

Database AUC Acc SN SP PPV FDR Processing Time 
(per image) 

DIARETDB1 0.9310 0.8772 0.9242 0.8125 0.8714 0.1286 72 sec 
e-Ophtha EX 0.9403 0.8925 0.8120 0.9460 0.9091 0.0909 96 sec 
HEI-MED 0.9842 0.9577 0.9463 0.9641 0.9372 0.0628 87 sec 
Messidor 0.9961 0.9836 0.9231 0.9903 0.9137 0.0863 77 sec 
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Fig. 12 : Sample exudate classification results on different retinal images  



4.4 Comparison with other Methods 
The comparison of presented method with previously reported methods in literature is difficult, due to 
the unavailability of a common retinal image-set and the performance metrics. The performance of 
proposed methodology has been evaluated at pixel level, by counting the number of correctly identified 
pixels as exudates and non-exudates in comparison with manually segmented exudates identified by the 
clinical experts. To the limit of our knowledge, this is one of the few exudate segmentation methods [16], 
where the pixel based evaluation has been reported. The performance measures of proposed 
methodology and existing techniques are compared in Table 6. The details about the number of images 
used for test and training for each retinal image dataset is illustrated in section 4.1.  It has been observed 
that Jaafar et al [7] got an impressive average accuracy of 99%. However, they have used 47 out of 89 
images in their experimentation. We are unable to replicate their performance measure because the 
implementation of their methodology and the ground truths they have used are not available online. As 
mentioned earlier, most of the algorithms described in literature have not been evaluated on these 
databases, neither do these methodologies report all of the performance metrics reported by our 
algorithm. 

Table 6: Comparison with other methods 

Database Methodology AUC Acc SN SP PPV 

DIARETDB1 

Walter [5] - - 0.76 - 0.59 
Jaafar et al [7] - 0.99 0.89 0.993 - 
Welfer [8] - - 0.704 0.988 0.92 
Harangi [10] - 0.82 0.86 - 0.84 
Harangi [40] - - 0.73 - 0.69 
Proposed Method 0.9310 0.8772 0.9242 0.8125 0.8714 

HEI-MED 

Ali et al. [9] 0.83 0.82 - - - 
Harangi et.al [10] - 0.86 0.87 0.86 - 
Zhang et al. [16] 0.94 - - - - 
Proposed Method 0.9842 0.9577 0.9463 0.9641 0.9372 

e-Ophtha Ex Zhang et al. [16] 0.95 - 0.74 - 0.79 
Proposed Method 0.9403 0.8925 0.8120 0.9460 0.9091 

Messidor 
Zhang et al.[16] 0.93 - - - - 
Agurto [41] 0.96 0.93 0.79 0.92 - 
Proposed Method 0.9961 0.9836 0.9231 0.9903 0.9137 

5 Conclusion 
We have presented and extensively evaluated an algorithm for localization and segmentation of exudates 
in retinal fundus images, based on an ensemble classifier of bagged decision trees. The methodology can 
successfully deal with images with uneven background illumination, variability in contrast during image 
acquisition, different background pigmentation and presence of artefacts. The proposed methodology 
performs exudate detection and candidate exudate region identification at fine grain and coarse levels to 
deal with the variability in size of exudate regions. Contextual information about exudates is used to refine 
the process of candidate exudate delineation, which has greatly reduced the false positives in segmented 
exudates. The exudates do not appear randomly in whole of the retinal. Generally they are not present in 
the region of main vascular arch. This contextual information is used to refine the candidate exudate pixels 



in such a way that the exudate candidates in the vascular arch region are filtered out. The feature vector 
is computed from the candidate exudate regions. The feature vector encodes information which can 
successfully quantify the variable sized exudates in the retinal images with multiple artefacts. An 
ensemble classifier of bootstrapped decision trees has been used to classify the candidate regions as 
exudates and non-exudates. To the best of our knowledge, this classic ensemble classifier has been 
utilized for the first time for pixel-level segmentation and classification of exudates in retinal images. 

A significant feature of ensemble classifier of bagged decision trees is that the approximation of classifier’s 
predictive power and the importance of a particular feature in classification can be computed during the 
classifier training without using the test data. Moreover, the optimal number of decision trees used to 
construct the ensemble classifier as well as the number of training sample can be reliably estimated during 
the classifier training, thus reducing the computational load with increased efficiency, as elaborated in 
section 2.5.1. 

The performance of proposed methodology has been evaluated on four publically available databases 
with an array of performance metrics. Extensive quantitative evaluation of exudate segmentation is 
performed the obtained performance measures, robustness and accuracy are comparable with the state-
of-the-art methodologies available in the literature. 

The performance of the proposed exudate detection algorithm can be evaluated at two different levels. 
This assessment can be performed at the distinct exudate level when an accurate pixel level segmentation 
of exudates performed by clinical experts is available. This pixel level evaluation method is particularly 
interesting, when we are comparing different exudate detection algorithms. We have developed a 
software tool for clinical experts, which enables them to precisely create ground truths for exudates at 
pixel level interactively, as explained in section 2.6. 

The second level of assessment is the evaluation at image level for the presence or absence of exudates. 
This image level evaluation is of importance from clinical aspect, for executing screening programs for 
early detection of DR in large population based studies. To the best of our knowledge, the proposed 
method is the first one that has been evaluated on four publicly available datasets simultaneously, with a 
number of performance metrics. Our contribution could be considered as a first step towards a common 
framework for the evaluation of different exudate segmentation algorithms and could be integrated into 
an image level evaluation framework. 

Lastly, the demonstrated simplicity and computational speed in training/classification have made this 
ensemble-based supervised exudate segmentation method to be an appropriate tool for incorporation 
into an automated system for timely discovery of DR. We have already developed a fully automated 
software system named QUARTZ [32], which can extract a number of quantifiable measures from retinal 
vessel morphology. These measures are analyzed/studied by the epidemiologists and other 
medical/statistical experts in order to evaluate the association of retinal vessel abnormalities with other 
systemic diseases. In future, we aim to enhance the aforementioned software system and extend its 
functionality by incorporating a module for early DR detection in large population based studies. The 
presented method for reliable exudate localization and segmentation can be seen as a first step towards 
the development of a diabetic retinopathy detection module. 
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