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ARTICLE

Genome-wide association study identifies genetic
loci for self-reported habitual sleep duration
supported by accelerometer-derived estimates
Hassan S. Dashti 1,2, Samuel E. Jones 3, Andrew R. Wood et al.#

Sleep is an essential state of decreased activity and alertness but molecular factors regulating

sleep duration remain unknown. Through genome-wide association analysis in 446,118 adults

of European ancestry from the UK Biobank, we identify 78 loci for self-reported habitual sleep

duration (p < 5 × 10−8; 43 loci at p < 6 × 10−9). Replication is observed for PAX8, VRK2, and

FBXL12/UBL5/PIN1 loci in the CHARGE study (n= 47,180; p < 6.3 × 10−4), and 55 signals

show sign-concordant effects. The 78 loci further associate with accelerometer-derived sleep

duration, daytime inactivity, sleep efficiency and number of sleep bouts in secondary analysis

(n= 85,499). Loci are enriched for pathways including striatum and subpallium development,

mechanosensory response, dopamine binding, synaptic neurotransmission and plasticity,

among others. Genetic correlation indicates shared links with anthropometric, cognitive,

metabolic, and psychiatric traits and two-sample Mendelian randomization highlights a

bidirectional causal link with schizophrenia. This work provides insights into the genetic basis

for inter-individual variation in sleep duration implicating multiple biological pathways.
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S leep is an essential homeostatically regulated state of
decreased activity and alertness conserved across animal
species, and both short and long sleep duration associate

with chronic disease and all-cause mortality1,2. Research in model
organisms (reviewed in refs. 3,4) has delineated aspects of the
neural circuitry of sleep–wake regulation5 and molecular com-
ponents including specific neurotransmitter and neuropeptide
systems, intracellular signaling molecules, ion channels, circadian
clock genes and metabolic and immune factors4, and more
recently phosphorylation of synaptic proteins6, but their specific
roles and relevance to human sleep regulation are largely
unknown. Prospective epidemiologic studies suggest that both
short (<6 h per night) and long (>9 h per night) habitual self-
reported sleep duration associate with cognitive and psychiatric,
metabolic, cardiovascular, and immunological dysfunction as well
as all-cause mortality compared to sleeping 7–8 h per night7–9.
Furthermore, chronic sleep deprivation in modern society may
lead to increased errors and accidents10. Yet, whether short or
long habitual sleep duration causally contributes to disease
initiation or progression remains to be established.

Habitual self-reported sleep duration is a complex trait with an
established genetic component (twin- and family-based herit-
ability (h2) estimates= 9–45%11–14). Candidate gene sequencing
in pedigrees and functional validation of rare, missense variants
established BHLHE41 (previously DEC2), a repressor of
CLOCK/ARNTL activity, as a causal gene15,16, supporting the role
of the circadian clock in sleep regulation. Previous genome-wide
association studies (GWASs), including a recent GWAS in up to
128,286 individuals, identified association of common variants at
or near the PAX8 and VRK2 genes, among other signals that have
not yet been replicated13,14,17–19.

Here, we extend GWAS of self-reported sleep duration in UK
Biobank, test for consistency of effects in independent studies of
adults and children/adolescents, determine their impact on
accelerometer-derived estimates, perform pathway and tissue
enrichment to highlight relevant biological processes, and explore
causal relationships with disease traits.

Results
GWAS for self-reported habitual sleep duration. Among UK
Biobank participants of European ancestry (n= 446,118), mean
self-reported habitual sleep duration was 7.2 h (1.1 standard
deviation) per day (Supplementary Table 1). GWAS using
14,661,600 imputed genetic variants identified 78 loci (P < 5 × 10−8;
Fig. 1a, Supplementary Data 1,2, Supplementary Figure 1a). Indi-
vidual signals exert an average effect of 1.04min (0.34 standard
deviation) per allele, with the largest effect at the PAX8 locus, with
an estimate of 2.44min (0.16 standard error) per allele. The 5% of
participants carrying the most sleep duration-increasing alleles
self-reported 22.2 min longer sleep duration compared to the 5%
carrying the fewest. The 78 loci explained 0.69% of the variance in
sleep duration, and genome-wide single-nucleotide polymorphism
(SNP)-based heritability was estimated at 9.8 (0.1)%. Of the 78
variants, 43 variants passed a more stringent multiple correction
threshold of P < 6 × 10−9 established by permutation testing for a
related sleep trait20.

Sensitivity analyses indicated that the 78 genetic associations
were largely independent of known risk factors (Supplementary
Data 3). Effect estimates at 15/78 loci were attenuated by 15–25%
upon adjustment for frequent insomnia symptoms, perhaps
reflecting contribution to an insomnia sub-phenotype with
physiological hyperarousal and objective short sleep duration21

(Supplementary Data 3). Effect estimates at 19/78 were also
slightly attenuated after adjustment of lifestyle factors. No signal
attenuation was observed when accounting for body mass index

(BMI) at rs9940646 at FTO, the established BMI-associated signal
(r2= 0.81 with rs993960922 and where the higher BMI allele
associated with shorter sleep duration). Analysis conditioned on
the lead SNPs in each genomic region identified 4 secondary
association signals at the VRK2, DAT1 (SLC6A3), DRD2, and
MAPT loci (Supplementary Table 2). Effect estimates were largely
consistent in GWAS excluding shift workers and those with
prevalent chronic and psychiatric disorders (excluding n=
119,894 participants) (Supplementary Data 1, 2, Supplementary
Table 3, Supplementary Figure 1b, 2). GWAS results were similar
for men and women (rg (SE)= 0.989 (0.042); P < 0.001)
(Supplementary Table 4, Supplementary Figure 1c, 1d, 3).

GWAS for self-reported short and long sleep. Separate GWAS
for short (<7 h; n= 106,192 cases) and long (≥9 h; n= 34,184
cases) sleep relative to 7–8 h sleep duration (n= 305,742 controls)
highlighted 27 and 8 loci, respectively, of which 13 were inde-
pendent from the 78 sleep duration loci (Fig. 1b, Supplementary
Data 2,4, Supplementary Table 5, Supplementary Figures 1e, 1f).
Only the PAX8 signal was shared across all three traits, con-
sistently indicating associations between the minor allele and
longer sleep duration. For most long sleep loci, we could exclude
equivalent effects on short sleep based on 95% confidence inter-
vals (CIs) of effect estimates (Supplementary Figure 4, Supple-
mentary Table 5). Sensitivity analyses accounting for factors
potentially influencing sleep did not alter the results (Supple-
mentary Data 5, Supplementary Table 6).

Replication of sleep duration loci in independent studies. We
tested for independent replication of lead loci in the CHARGE
(Cohorts for Heart and Aging Research in Genomic Epidemiol-
ogy) consortium GWAS of adult sleep duration (n= 47,180 from
18 studies14) and observed replication evidence for individual
association signals at the PAX8, VRK2, and FBXL12/UBL5/PIN1
loci (P < 6.4 × 10−4; Supplementary Data 2,6,7, Supplementary
Figure 5a), and nominal replication (P < 0.05) for 14 additional
loci. Of the 70 loci covered in the CHARGE consortium, 55 signals
showed a consistent direction of effect (binomial P= 6.1 × 10−7),
and a combined weighted genetic risk score (GRS) of the 70 sig-
nals was associated with a 0.66 min (95% CI: 0.54–0.78) longer
sleep per allele (P= 1.23 × 10−25) in the CHARGE con-
sortium (Table 1). Consistently strong genetic correlation was
observed between the CHARGE consortium and UK Biobank
studies (rg (SE)= 1.00 (0.123); P < 0.001; Supplementary Table 7).
In meta-analysis of CHARGE consortium and UK Biobank stu-
dies, 52/70 signals retained GWAS significance, and 38/70 signals
passed the more stringent multiple correction threshold of P < 6 ×
10−9 (Supplementary Data 6).

In the childhood/adolescent GWAS for sleep duration from the
EAGLE (EArly Genetics and Lifecourse Epidemiology) consor-
tium19 (n= 10,554), none of the 78 GWAS signals showed
independent replication (all P > 0.05; Supplementary Data 6, 7,
Supplementary Figure 5b). Of the 77 loci covered in the EAGLE
consortium, marginal evidence of association was observed for
the adult sleep duration loci, with 45/77 signals demonstrating
consistent directionality (binomial P= 0.031). For a combined 77
SNP GRS, we observed an effect of 0.16 min (95% CI: 0.02–0.30)
longer sleep per allele (P= 0.03; Table 1). No significant overall
genetic correlation was observed with GWAS of adult sleep
duration (rg (SE)= 0.098 (0.076), P= 0.20 with UK Biobank;
Supplementary Table 7). In meta-analysis of all three sleep
duration GWASs, 56/78 signals retained GWAS significance, and
40/78 passed the more stringent multiple correction threshold of
P < 6 × 10−9 (Supplementary Data 2, 6, 7, Supplementary
Figure 5c).
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Fig. 1 Plots for genome-wide association analysis results for sleep duration and short/long sleep. a Manhattan plot of sleep duration (n= 446,118) and b
Miami plot of short (cases n= 106,192/305,742) and long (cases n= 34,184/305,742) sleep. Plots show the −log10P values (y-axis) for all genotyped and
imputed single-nucleotide polymorphisms (SNPs) passing quality control in each genome-wide association study (GWAS), plotted by chromosome (x-
axis). Blue peaks represent genome-wide significant loci. Horizontal red line denotes genome-wide significance (P= 5 × 10−8)
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Association of sleep duration loci with objective sleep. Given
the limitations of self-reported sleep duration23,24, and in order to
explore underlying physiologic mechanisms, in secondary ana-
lyses, we tested the 78 lead variants for association with 8
accelerometer-derived sleep estimates in a subgroup who had
completed up to 7 days of wrist-worn accelerometry (n= 85,499;
Supplementary Table 8)25. The lead PAX8 genetic variant was
associated with 2.68 min (0.29) longer sleep duration (compared
to 2.44 min (0.16) by self-report), 0.21% (0.04%) greater sleep
efficiency, and 0.94 min (0.23) greater daytime inactivity duration
per minor A allele (P < 0.00064; Supplementary Data 8). The 5%
of participants carrying the most sleep duration-increasing alleles
were estimated to have 9.7 min (95% CI: 7.5–11.8) accelerometer
measured longer sleep duration compared to the 5% carrying the
fewest. The 78 SNP GRS associated with longer accelerometer-
derived sleep duration, longer duration of daytime inactivity,
greater sleep efficiency, and larger number of sleep bouts, but not
with day-to-day variability in sleep duration or estimates of sleep
timing (Table 1). A GRS of 27 short sleep variants was associated
with shorter accelerometer-derived sleep duration, lower sleep
efficiency, and fewer sleep bouts, whereas a GRS of 8 long sleep
variants associated with longer accelerometer-derived sleep
duration, higher sleep efficiency, and longer daytime inactivity
(Table 1, Supplementary Data 9).

Functional annotation for identified loci. The sleep duration
association signals encompass >200 candidate causal genes
determined by SNPsea26 through assessing linkage disequilibrium
(LD) intervals of each identified loci, defined by the furthest SNPs
in a 1Mb window with r2 > 0.05, and a summary of reported

gene–phenotype annotations is shown in Supplementary Data 10.
Compelling candidates include genes in the dopaminergic
(DRD2, SLC6A3), MAPK/ERK (mitogen-activated protein kinase/
extracellular signal-regulated kinase) signaling (ERBB4, VRK2,
KSR2), orexin receptor (HCRTR2), and GABA (GABRR1) sig-
naling systems4,27. Further, studies of sleep regulation in animal
models prioritize several candidates (GABRR1, GNAO1,
HCRTR2, NOVA1, PITX3, SLC6A3, DRD2, and VAMP2 for sleep
duration; PDE4B and SEMA3F for short sleep; PDE4D for long
sleep). Circadian genes within associated loci include PER3,
BTRC, and the previously implicated PER128, which may act
through glucocorticoid stress-related pathways to influence sleep
duration. Association signals at 4 loci directly overlapped with
other GWAS signals (r2 > 0.8 in 1KG CEU; from the National
Human Genome Research Institute (NHGRI)), with the shorter
sleep allele associated with higher BMI (FTO), increased risk of
Crohn’s disease (NFKB1, SLC39A8, BANK1 region), febrile sei-
zures and generalized epilepsy (SCN1A), and cardiometabolic risk
(FADS1/2 gene cluster), and decreased risk of interstitial lung
disease (MAPT/KANSL). Fine-mapping using credible set analysis
in PICS29 highlighted 52 variants (Supplementary Data 11, 12).
Partitioning of heritability by functional annotations identified
excess heritability across genomic regions conserved in mammals,
consistent with earlier findings18, and additionally in regions with
active promoters and enhancer chromatin marks (Supplementary
Data 13).

Gene- and pathway-based analysis. Gene-based tests identified
235, 54, and 20 genes associated with sleep duration, short sleep,
and long sleep, respectively (P≤ 2.29 × 10−6; Supplementary

Table 1 A risk score of genetic variants for self-reported sleep duration (78 SNPs), self-reported short (27 SNPs) or long (8
SNPs) sleep duration associates with self-reported sleep duration in the CHARGE (adult) consortium (n= 47,180), self-reported
sleep duration in the EAGLE (childhood/adolescent) consortium (n= 10,554), and activity-monitor-based measures of sleep
fragmentation, timing, and duration from 7-day accelerometry in the UK Biobank (n= 85,499)

Sleep duration GRS Short sleep GRS Long sleep GRS

Trait Beta or OR* (95% CI)
per effect allele

P value Beta or OR* (95% CI) per
effect allele

P value Beta or OR* (95% CI)
per effect allele

P value

CHARGE Study (n= 47,180); self-reported
sleep duration (min)a

0.66 (0.54 to 0.78) 1.23 × 10−25

EAGLE Study (n= 10,554); self-reported
sleep duration (min)b

0.16 (0.02 to 0.30) 2.80 × 10−2

UK Biobank 7-day accelerometry
(n= 85,499) sleep duration estimates
Sleep duration (min) 0.47 (0.40 to 0.53) 1.93 × 10−44 −0.43 (−0.56 to −0.31) 1.21 × 10−11 2.12 (1.65 to 2.59) 1.08 × 10−18

Short sleep duration (n= 13,760 cases,
66,110 controls)

0.98 (0.98 to 0.99)* 4.00 × 10−19 1.02 (1.01 to 1.02)* 4.91 × 10−6 0.94 (0.92 to 0.97)* 1.10 × 10−5

Long sleep duration (n= 5629 cases,
66,110 controls)

1.01 (1.01 to 1.02)* 3.78 × 10−9 0.99 (0.98 to 1.00)* 0.11 1.10 (1.07 to 1.14)* 1.29 × 10−8

Daytime inactivity duration (min) 0.08 (0.03 to 0.13) 2.74 × 10−3 0.01 (−0.09 to 0.11) 0.89 0.65 (0.28 to 1.02) 6.49 × 10−4

Sleep duration standard deviation (min) −0.02 (−0.07 to 0.02) 0.34 0.05 (−0.04 to 0.14) 0.26 −0.07 (−0.40 to 0.27) 0.69

Sleep fragmentation estimates
Sleep efficiency % 0.05 (0.04 to 0.06) 8.38 × 10−23 −0.05 (−0.07 to −0.04) 4.79 × 10−9 0.15 (0.08 to 0.22) 1.56 × 10−5

Number of sleep bouts (n) 0.02 (0.01 to 0.02) 1.59 × 10−10 −0.01 (−0.02 to 0.00) 2.42 × 10−3 0.02 (−0.01 to 0.05) 0.24

Sleep timing estimates

Midpoint of 5 h daily period of minimum
activity (L5 timing) (minutes)

−0.05 (−0.13 to 0.03) 0.23 0.07 (−0.09 to 0.22) 0.41 0.39 (−0.20 to 0.97) 0.20

Midpoint of 10 h daily period of maximum
activity (M10 timing) (minutes)

0.03 (−0.06 to 0.12) 0.51 −0.05 (−0.23 to 0.12) 0.55 0.65 (−0.02 to 1.32) 6.00 × 10−2

Sleep midpoint (min) −0.03 (−0.07 to 0.01) 0.20 0.01 (−0.07 to 0.08) 0.88 0.05 (−0.24 to 0.34) 0.74

Genetic risk scores for sleep duration, short sleep and long sleep were tested using the weighted genetic risk score calculated by summing the products of the sleep trait risk allele count for all 78, 27, or
8 genome-wide significant SNPs multiplied by the scaled effect from the primary genome-wide association study (GWAS) using the GTX package in R. Effect estimates (beta or OR) are reported per
additional effect allele for sleep duration, short sleep, or long sleep. Significant GRS associations (P < 0.05) are shown in bold.
SNP single-nucleotide polymorphism, CI confidence interval, GRS genetic risk score, OR odds ratio, CHARGE Cohorts for Heart and Aging Research in Genomic Epidemiology, EAGLE EArly Genetics and
Lifecourse Epidemiology
aSelf-reported and varied by cohorts, typically: “How many hours of sleep do you usually get at night (or your main sleep period)?”
bIn all cohorts, except in GLAKU, child sleep duration was assessed by a single, parent-rated, open question, “How many hours does your child sleep per day including naps?” In GLAKU, parents were
asked about the usual bed and rise times during school days, from which the total sleep duration could be estimated
*indicates OR (95% CI)
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Data 14, 15). Pathway analyses of these genes using MAGMA30

and Pascal31 indicated enrichment of pathways including stria-
tum and subpallium development, mechanosensory response,
dopamine binding, catecholamine production, and long-term
depression (Fig. 2a, b, Supplementary Table 9, 10). In agreement
with the FADS1/2 signal, we also observe enrichment in genes
related to unsaturated fatty acid metabolism. A custom pathway
analysis in Pascal indicated enrichment of association in a gene-
set of synaptic sleep-need-index phosphoproteins (SNIPPs),
which have recently been demonstrated to be differentially
phosphorylated based on sleep need in mouse models6 (Supple-
mentary Table 11; Pemp= 1.44 × 10−4). Of these, associations at
SCN1A and PDE4B are genome-wide significant.

Tissue enrichment analyses of gene expression from Genotype-
Tissue Expression (GTEx) tissues identified enrichment of
associated genes in several brain regions including the cerebellum,
a region of emerging importance in sleep/wake regulation32,
frontal cortex, anterior cingulated cortex, nucleus accumbens,
caudate nucleus, hippocampus, hypothalamus, putamen, and
amygdala (Fig. 2c, Supplementary Table 12). Enrichment was also

observed in the pituitary gland. Single cell enrichment analyses in
FUMA using a recently described Tabula Muris33 dataset showed
enrichment in brain neurons and pancreatic alpha cells (Supple-
mentary Data 16). Integration of gene expression data with GWAS
using transcriptome-wide association analyses in 11 tissues34

identified 38 genes for which sleep duration SNPs influence gene
expression in the tissues of interest (Supplementary Data 17).

Several lead SNPs were associated with one or more of 3144
human brain structure and function traits assessed in the UK
Biobank (P < 2.8 × 10−7, n= 9,707; Oxford Brain Imaging
Genetics Server;35 Supplementary Figure 6). These include
associations between the PAX8 locus with resting-state functional
magnetic resonance imaging networks (Supplementary Figure 6a,
6h, 6m), rs13109404 (BANK1; Supplementary Figure 6b) and
bilateral putamen and striatum volume, possibly relating to
functional findings on reward processing after experimental sleep
deprivation36, and rs330088 (PPP1R3B region; Supplementary
Figure 6c) and temporal cortex morphometry, which may relate
to recent findings showing extreme sleep durations predict
subsequent frontotemporal gray matter atrophy37.
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Genetic correlation and Mendelian randomization. Genome-
wide genetic correlations using LD score regression analyses38

indicated shared links between sleep duration and eight cognitive,
psychiatric, and physical disease traits (Fig. 3, Supplementary
Data 18). We observed modest positive genetic correlations
between sleep duration and schizophrenia, bipolar disorder, and
age at menarche, and a negative correlation with insomnia that
persisted even upon excluding participants with psychiatric
disorders, indicating that genetic relationships are not driven by
the presence of co-morbid conditions. In addition, both short and
long sleep showed positive genetic correlations with depressive
symptoms, waist circumference, and waist-to-hip ratio, and
negative correlations with years of schooling. For short sleep,
genetic correlations were also observed with insomnia, neuroti-
cism, and smoking, and for long sleep, positive correlations were
evident with schizophrenia, body fat, type 2 diabetes, and cor-
onary artery disease.

Mendelian randomization (MR) analyses to test for causal links
between sleep duration and genetically correlated traits suggested
longer sleep duration is causal for increased risk of schizophrenia
(two-sample MR: inverse variance weighted: 0.0088 (0.003) log
odds ratio per min, P= 3.70 × 10−3; weighted median: 0.008
(0.003) log odds ratio per min, P= 3.95 × 10−3) (Fig. 4,
Supplementary Table 13). These data suggest that a 1 h longer
sleep duration leads to a 69.6% increase in the risk for
schizophrenia. In leave-one-out sensitivity analyses, MR results
remained robust and consistent (all P < 6.86 × 10−3; Supplemen-
tary Data 19). Sensitivity MR analyses limited to signals from
GWAS adjusting for confounders (BMI, insomnia, or other
lifestyle traits) and using corresponding effect estimates remained
significant (Supplementary Table 14). In addition, MR remained
significant when restricted to the 56 signals that retained GWAS
significance in meta-analysis (Supplementary Table 14). Con-
versely, MR also indicated that risk of schizophrenia is causal for
longer sleep duration (inverse variance weighted: 0.025 min
(0.007) per log odds ratio, P= 6.05 × 10−4; two-sample MR:
weighted median: 0.026 min (0.006) per log odds ratio, P=
3.36 × 10−5) (Fig. 4, Supplementary Table 14). These data suggest
a 1.04 h longer sleep duration per doubling in risk of
schizophrenia. No other causal links were identified in two-
sample MR. Furthermore, using two-sample MR with data from
the GIANT consortium39 (n= 339,224) and DIAGRAM con-
sortium40 (n= 26,488 cases and n= 83,964 controls), we found
no evidence of causal effects of altered sleep duration with BMI
and type 2 diabetes (Supplementary Table 13, Supplementary
Figure 7).

Discussion
This study expands our understanding of the genetic architecture
of self-reported sleep duration, estimating SNP-based heritability
at 9.8%, consistent with earlier reports41. We identified 76 inde-
pendent loci beyond the two previously known loci (PAX8 and
VRK214,17,18). The largest effect remains at the PAX8 locus (2.44
min per allele), consistent with previous reports14,17,18. Whereas
individual signals exerted more modest effects on average (~1.04
min per allele), the aggregate effect of risk alleles could exceed 20
min, which is comparable to other well-recognized factors
influencing sleep duration, such as gender42. Our GWAS findings
were largely consistent upon adjustment for known risk factors,
including BMI; however, attenuated effects were seen for some
loci with adjustment for insomnia, reflecting some overlap
between these sleep characteristics.

In separate GWAS for short and long sleep duration, 13
additional independent variants were identified, and only the
PAX8 locus was shared across all 3 GWASs. Our distinct findings
for short and long sleep suggest the possibility of some distinct
underlying biological mechanisms. As all three sleep traits were
correlated, however, we did not account for multiple testing as
have been done in previous GWAS of multiple correlated traits18.
Future larger studies will be necessary to test if these loci reflect
partially distinct genetic effects on short or long sleep, or reflect
differences in statistical power in these dichotomized analyses.

The CHARGE consortium (adults) and EAGLE consortium
(children/adolescents) sleep duration GWAS studies represent the
largest independent available studies for replication, but are
considerably smaller than the UK Biobank discovery cohort
which limits opportunities for adequate replication43. Indeed, we
had limited power to replicate individual SNPs in the two repli-
cation cohorts: the CHARGE consortium study with ~1/10th the
sample size of the UK Biobank provided <12.5% power for all
SNPs that did not individually replicate, and the EAGLE con-
sortium study with ~1/40th the sample size of the UK Biobank
provided power <70% for all SNPs that did not individually
replicate. Despite these limitations, 52 loci remained significant
after meta-analysis of both adult studies and 56 loci remained
significant after meta-analysis of all three studies, a substantial
advance over knowledge from prior studies. Future replication is
necessary when appropriate resources become available, such as
the US Department of Veterans Affairs Million Veteran Program
and the All of Us Research program.

Furthermore, we validated effects of the combined sleep
duration GRS in both adults and children/adolescents, further
supporting our findings. Consistency between findings from the
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UK Biobank GWAS and sleep duration in independent studies
despite differences in demographics and sleep duration ascer-
tainment, two important extraneous factors that may influence
self-report44, reflect the generalizability of our signals. However,
smaller effect estimates of the GRS in children/adolescents
compared to adults supports previous studies that suggest the
genetic architecture of sleep duration might differ between chil-
dren and adults19. Furthermore, our finding of no significant
overall genetic correlation between the GWAS of adults and
children/adolescents sleep duration, as reported previously19,

supports changes in sleep patterns throughout the lifespan45–47,
and larger GWAS of sleep duration in children/adolescents are
needed.

Despite limitations of biases and imprecision in self-report, we
observed largely consistent effects of our 78 signals with
accelerometer-estimated sleep duration in a large subsample of
85,499 participants from the UK Biobank with up to 7 days of
wrist-worn accelerometer. Self-report, actigraphy, and poly-
somnography estimated sleep duration provide both unique and
overlapping information, have different sources of measurement
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Fig. 4 Bidirectional causal relationship of sleep duration with schizophrenia using Mendelian randomization. Association between single-nucleotide
polymorphisms (SNPs) associated with sleep duration and schizophrenia (a) or SNP associated with schizophrenia and sleep duration (c) and forest plots
show the estimate of the effect of genetically increased sleep duration on schizophrenia (b) or increased risk of schizophrenia on sleep duration (d). Lines
identify the slopes for three Mendelian randomization (MR) association tests (a, c). Forest plots show each SNP with the 95% confidence interval (gray
line segment; error bars) of the estimate and the inverse variance weighted, MR-Egger, and weighted median MR results in red

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08917-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1100 | https://doi.org/10.1038/s41467-019-08917-4 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


error, and may reflect different neurophysiological and psycho-
logical aspects23,24,44. Association of the sleep duration GRS with
increased sleep efficiency, longer duration of daytime inactivity,
but a larger number of sleep bouts, suggests that sleep duration
genetic loci might impact other correlated parameters such as
sleep latency, sleep fragmentation, and early awakening. There-
fore, this secondary analysis allows us to begin exploring phy-
siologic mechanisms underlying these associations. However,
considering that the UK Biobank subsample with accelerometer
data overlap with the discovery GWAS sample, these results
should be interpreted with caution and further validation in an
independent dataset is necessary. Furthermore, our study cannot
resolve if a longer sleep GRS always reflects improved, higher
quality sleep because of increased sleep efficiency, or may include
qualitatively poorer, longer sleep or greater sleep need, given
association with a larger number of sleep bouts and increased
daytime napping. Thus, further investigation of the role of these
loci in electroencephalography-derived physiological correlates of
sleep architecture and sleep homeostasis from polysomnography
and follow-up in cellular and animal models will help to dissect
functional mechanisms.

We found compelling evidence of association near genes
implicated with sleep traits in animal models, confirming that
sleep–wake regulation is a highly conserved process with
mechanisms shared between humans and model organisms. In
agreement with the FADS1/2 signal, we also observe an enrich-
ment in genes related to unsaturated fatty acid metabolism,
supporting experimental and observational evidence linking
polyunsaturated fatty acids with sleep and related diseases,
including neuropsychiatric disorders and depression48–50. We
demonstrate enrichment in sleep duration GWAS signals within/
near 80 genes identified as SNIPPs in mouse models6, high-
lighting the potential importance of synaptic phosphorylation in
sleep homeostasis in humans. A genetic variant, rs9382445, near
the orexin receptor HCRTR2 previously implicated for chron-
otype17 associated significantly with sleep duration and retained
significance and consistent effect estimates upon adjustment for
diurnal preference.

Lastly, we extended the comparative analysis of the genetic
architecture of sleep duration with other traits and found shared
links between continuous sleep duration and cognitive, psychia-
tric, and disease traits, as well as u-shaped genetic correlations
between short and long sleep duration and key lifestyle and dis-
ease traits including adiposity traits, years of schooling, and
depressive symptoms. In bidirectional two-sample MR analyses,
we observed causal links between longer sleep duration and
increased risk of schizophrenia, consistent with previous
findings18,51, and conversely, causal links between schizophrenia
and longer sleep duration. Associations remained robust in sen-
sitivity analyses and the bidirectional causal link may suggest
pleiotropy. Furthermore, MR effects may be biased due to collider
bias as individuals with a genetic liability to neuropsychiatric
diseases are underrepresented in studies such as the UK Biobank
compared to the general population, while some independent
protective factors for these conditions, including favorable sleep
patterns, may be over-represented52,53. No other causal links were
identified. Considering the non-specific and partially overlapping
signals between the sleep duration and short/long sleep GWAS,
we limited our MR analyses to sleep duration, and future MR
should be carried out for short/long sleep duration separately.
Follow-up MR analyses are warranted to verify null results
identified in the one-sample insomnia MR, as well as other out-
comes beyond those investigated.

In summary, our GWAS constitutes a large increase in asso-
ciated loci for sleep duration that implicate multiple biological
pathways and causal links to disease. This work and follow-up

studies will advance understanding of the molecular processes
underlying sleep regulation and have the potential to identify new
avenues of treatment for sleep and related disorders.

Methods
Population and study design. Study participants were from the UK Biobank
study, described in detail elsewhere54. In brief, the UK Biobank is a prospective
study of >500,000 people living in the United Kingdom. All people in the National
Health Service registry who were aged 40–69 years and living <25 miles from a
study center were invited to participate between 2006 and 2010. In total, 503,325
participants were recruited from over 9.2 million invitations. Extensive phenotypic
data were self-reported upon baseline assessment by participants using touchscreen
tests and questionnaires and at nurse-led interviews. Anthropometric assessments
were also conducted and health records were obtained from secondary care data
from linked Hospital episode statistics (HES) obtained up until 04/2017. For the
current analysis, 24,533 individuals of non-white ethnicity (as defined in geno-
typing and quality control) were excluded to avoid confounding effects. The UK
Biobank study was approved by the National Health Service National Research
Ethics Service (ref. 11/NW/0382), and all participants provided written informed
consent to participate in the UK Biobank study.

Sleep duration and covariate measures. Study participants (n ~ 500,000) self-
reported sleep duration at baseline assessment. Participants were asked: About how
many hours sleep do you get in every 24 h? (please include naps), with responses in
hour increments. Sleep duration was treated as a continuous variable and also
categorized as either short (6 h or less), normal (7 or 8 h), or long (9 h or more)
sleep duration. Extreme responses of less than 3 h or more than 18 h were exclu-
ded17 and Do not know or Prefer not to answer responses were set to missing.
Participants who self-reported any sleep medication (see Supplementary Method 1)
were excluded. Furthermore, participants who self-reported any shift work or night
shift work or those with prevalent chronic disease (i.e., breast, prostate, bowel or
lung cancer, heart disease, or stroke) or psychiatric disorders (see Supplementary
Method 2) were later additionally excluded in a secondary GWAS.

Participants further self-reported age, sex, caffeine intake (self-reported cups of
tea per day and cups of coffee per day), daytime napping (Do you have a nap
during the day?), smoking status, alcohol intake frequency (never, once/week, 2–3
times/week, 4–6 times/week, daily), chronotype (Do you consider yourself to be …,
with the following response options: Definitely a ‘morning’ person, More a
‘morning’ than ‘evening’ person, More an ‘evening’ than a ‘morning’ person, and
Definitely an ‘evening’ person), menopause status, and employment status during
assessment. Socio-economic status was represented by the Townsend deprivation
index based on national census data immediately preceding participation in the UK
Biobank. Weight and height were measured and BMI was calculated as weight (kg)/
height2(m2). Cases of sleep apnea were determined from self-report during nurse-
led interviews or health records using International Classification of Diseases
(ICD)-10 codes for sleep apnea (G47.3). Cases of insomnia were determined from
self-report to the question, Do you have trouble falling asleep at night or do you
wake up in the middle of the night? with responses never/rarely, sometimes, usually,
prefer not to answer. Participants who responded usually were set as insomnia
cases, and remaining participants were set as controls. Missing covariates were
imputed using sex-specific median values for continuous variables (i.e., BMI,
caffeine intake, alcohol intake, and Townsend index), or using a missing indicator
approach for categorical variables (i.e., napping, smoking, menopause,
employment, and chronotype).

Activity-monitor-derived measures of sleep. Actigraphy devices (Axivity AX3)
were worn 2.8–9.7 years after study baseline by 103,711 individuals from the UK
Biobank for up to 7 days55. Of these 103,711 individuals, we excluded 11,067
individuals based on accelerometer data quality. Samples were excluded if they
satisfied at least one of the following conditions (see also http://biobank.ctsu.ox.ac.
uk/crystal/label.cgi?id=1008): a non-zero or missing value in data field 90002 (Data
problem indicator), good wear time flag (field 90015) set to 0 (No), good cali-
bration flag (field 90016) set to 0 (No), calibrated on own data flag (field 90017) set
to 0 (No), or overall wear duration (field 90051) less than 5 days. Additionally,
samples with extreme values of mean sleep duration (<3 h or >12 h) or mean
number of sleep periods (<5 or >30) were excluded. After non-white ethnicity
exclusions, 85,502 samples remained. Sleep measures were derived by processing
raw accelerometer data (.cwa). First, we converted .cwa files available from the UK
Biobank to .wav files using Omconvert (https://github.com/digitalinteraction/
openmovement/tree/master/Software/AX3/omconvert) for signal calibration to
gravitational acceleration55,56 and interpolation55. The .wav files were processed
with the R package GGIR to infer activity-monitor wear time57, and extract the z-
angle across 5-s epoch time-series data for subsequent use in estimating the sleep
period time window (SPT-window)25 and sleep episodes within it58.

The SPT-window was estimated using an algorithm25 implemented in the
GGIR R package and validated using polysomnography (PSG) in an external
cohort consisting of 28 adult sleep clinic patients and 22 healthy good sleepers.
Briefly, for each individual, median values of the absolute change in z-angle
(representing the dorsal–ventral direction when the wrist is in the anatomical
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position) across 5-min rolling windows were calculated across a 24 h period,
chosen to make the algorithm insensitive to activity-monitor orientation. The 10th
percentile was incorporated into the threshold distinguishing movement from non-
movement. Bouts of inactivity lasting ≥30 min are recorded as inactivity bouts.
Inactivity bouts that are <60 min apart are combined to form inactivity blocks. The
start and end of longest block defines the start and end of the SPT-window25.

Sleep duration: Sleep episodes within the SPT-window were defined as periods
of at least 5 min with no change larger than 5° associated with the z-axis of the
accelerometer58. The summed duration of all sleep episodes was used as indicator
of sleep duration.

Sleep efficiency: This was calculated as sleep duration (defined above) divided
by the time elapsed between the start of the first inactivity bout and the end of the
last inactivity bout (which equals the SPT-window duration).

Number of sleep bouts within the SPT-window: This is defined as the number
of sleep bouts separated by last least 5 min of wakefulness within the SPT-window.
The least-active 5 h hours (L5) and the most-active 10 h (M10) of each day were
defined using a 5 h and 10 h daily period of minimum and maximum activity,
respectively. These periods were estimated using a rolling average of the
respectively time window. L5 was defined as the number of hours elapsed from the
previous midnight, whereas M10 was defined as the number of hours elapsed from
the previous midday.

Sleep midpoint: Sleep midpoint was calculated for each sleep period as the
midpoint between the start of the first detected sleep episode and the end of the last
sleep episode used to define the overall SPT-window (above). This variable is
represented as the number of hours from the previous midnight, e.g., 2am= 26.

Daytime inactivity duration: Daytime inactivity duration is the total daily
duration of estimated bouts of inactivity that fall outside of the SPT-window. A
minimum of 16 wear-hours was required for each night to be included. For non-
wear data, the sleep phenotypes were imputed. Briefly, a minimum of 16 wear-
hours was required for each night to be included. For each 15-min block that was
classified as non-wear, data were replaced by the average of blocks at the same time
periods from the other days in each individual record57. All activity-monitor
phenotypes were adjusted for age at accelerometer wear, sex, season of wear, release
(categorical; UK BiLeVe, UK Biobank Axiom interim, release UK Biobank Axiom
full release), and number of valid recorded nights (or days for M10) when
performing the association test in BOLT-LMM. Genetic risk scores for sleep
duration, short sleep, and long sleep were tested using the weighted genetic risk
score calculated by summing the products of the sleep trait risk allele count for all
78, 27, or 8 genome-wide significant SNPs multiplied by the scaled effect from the
primary GWAS using the GTX package in R.

Genotyping and quality control. Phenotype data are available for 502,631 subjects
in the UK Biobank. Genotyping was performed by the UK Biobank, and geno-
typing, quality control, and imputation procedures are described in detail here59. In
brief, the following was conducted by the UK Biobank. Blood, saliva, and urine was
collected from participants, and DNA was extracted from the buffy coat samples.
Participant DNA was genotyped on two arrays, UK BiLEVE and UK Biobank
Axiom with >95% common content and genotypes for ~800,000 autosomal SNPs
were imputed to two reference panels. Genotypes were called using Affymetrix
Power Tools software. Sample and SNPs for quality control were selected from a set
of 489,212 samples across 812,428 unique markers. Sample quality control (QC)
was conducted using 605,876 high-quality autosomal markers. Samples were
removed for high missingness or heterozygosity (968 samples) and sex chromo-
some abnormalities (652 samples). Genotypes for 488,377 samples passed sample
QC (~99.9% of total samples). Marker-based QC measures were tested in the
European ancestry subset (n= 463,844), which was identified based on principal
components of ancestry. SNPs were tested for batch effects (197 SNPs/batch), plate
effects (284 SNPs/batch), Hardy–Weinberg equilibrium (572 SNPs/batch), sex
effects (45 SNPs/batch), array effects (5417 SNPs), and discordance across control
replicates (622 on UK BiLEVE Axiom array and 632 UK Biobank Axiom array) (p
value < 10−12 or <95% for all tests). For each batch (106 batches total) markers that
failed at least one test were set to missing. Before imputation, 805,426 SNPs pass
QC in at least one batch (>99% of the array content). Population structure was
captured by principal component analysis on the samples using a subset of high-
quality (missingness < 1.5%), high-frequency SNPs (>2.5%) (~100,000 SNPs) and
identified the subsample of white British descent. In addition to the calculated
population structure by the UK Biobank, we locally further clustered subjects into
four ancestry clusters using K-means clustering on the principal components,
identifying 453,964 subjects of European ancestry. The UK Biobank centrally
further imputed autosomal SNPs to UK10K haplotype, 1000 Genomes Phase 3, and
Haplotype Reference Consortium (HRC) with the current analysis using only those
SNPs imputed to the HRC reference panel. Autosomal SNPs were pre-phased using
SHAPEIT3 and imputed using IMPUTE4. In total, ~96 million SNPs were
imputed. Related individuals were identified by estimating kinship coefficients for
all pairs of samples, using only markers weakly informative of ancestral back-
ground. In total, there are 107,162 related pairs comprising 147,731 individuals
related to at least one other participants in the UK Biobank.

Genome-wide association analysis. Genetic association analysis was performed
in related subjects of European ancestry (n= 446,118) using BOLT-LMM60 linear

mixed models and an additive genetic model adjusted for age, sex, 10 principal
components of ancestry, genotyping array, and genetic correlation matrix [jl2] with
a maximum per SNP missingness of 10% and per sample missingness of 40%. We
used a genome-wide significance threshold of 5 × 10−8 for each GWAS. Odds ratio
(OR; 95% CI) estimates for short/long sleep are from adjusted PLINK61 logistic
regression analyses where genetic association analysis was also performed in
unrelated subjects of white British ancestry (n= 326,224) using PLINK logistic
regression and an additive genetic model adjusted for age, sex, 10 PCs, and gen-
otyping array to determine SNP effects on sleep traits. We used a hard-call gen-
otype threshold of 0.1, SNP imputation quality threshold of 0.80, and a minor allele
frequency (MAF) threshold of 0.001. Genetic association analysis for the X chro-
mosome was performed using the genotyped markers on the X chromosome with
the additional –sex flag in PLINK. Similarly, sex-specific GWASs were also per-
formed using BOLT-LMM60 linear mixed models. Trait heritability was calculated
as the proportion of trait variance due to additive genetic factors measured in this
study using BOLT-REML60, to leverage the power of raw genotype data together
with low-frequency variants (MAF ≥ 0.001). Lambda inflation (λ) values were
calculated using GenABEL in R, and estimated values were consistent with those
estimated for other highly polygenic complex traits. Additional independent risk
loci were identified using the approximate conditional and joint association
method implemented in GCTA (GCTA-COJO)62.

Sensitivity analyses of top signals. Follow-up analyses on genome-wide sig-
nificant loci in the primary analyses included covariate sensitivity analyses
adjusting for BMI, insomnia (continuous only), chronotype (continuous only), or
caffeine intake adjustments individually, or a combined adjustment for lifestyle and
clinical traits, including day naps, Townsend index, smoking, alcohol intake,
menopause status, employment status, and sleep apnea in addition to baseline
adjustments for age, sex, 10 principal components of ancestry, and genotyping
array. Sensitivity analyses were performed using BOLT-LMM60 linear mixed
models using the same input set of SNPS (i.e., hard-call genotypes) as for the main
GWAS, and OR (95% CI) estimates for short/long sleep are from adjusted PLINK61

logistic regression analyses in unrelated subjects of white British ancestry.

Replication and meta-analyses of sleep duration loci. Using publicly available
databases, we conducted a lookup of lead self-reported sleep duration signals in
self-reported sleep duration GWAS results from adult (CHARGE; n= 47,180)
and childhood/adolescent (EAGLE; n= 10,554). If lead signal was unavailable, a
proxy SNP was used instead. As different imputation panels were used compared
to the UK Biobank, 8 of the 78 SNPs and 1 of the 78 SNPs were not covered in
the CHARGE consortium and EAGLE consortium, respectively. In addition, we
combined self-reported sleep duration GWAS results from adult (CHARGE) and
childhood/adolescent (EAGLE) with the UK Biobank (primary model) in fixed-
effects meta-analyses using the inverse variance weighted method in METAL63.
Meta-analyses were conducted first separately (UK Biobank+ CHARGE (n=
3,044,490 variants) or UK Biobank+ EAGLE (n= 7,147,509 variants)), then
combined (UK Biobank+ CHARGE+ EAGLE; n= 2,545,157 variants). A
genetic risk score (GRS) for sleep duration was tested using the weighted
GRS calculated by summing the products of the sleep duration risk allele count
for as many available SNPs of the 78 genome-wide significant SNPs in each
study (70 for CHARGE, 77 for EAGLE) multiplied by the scaled effect from the
primary GWAS using the GTX package in R64.

Gene, pathway, and tissue enrichment analyses. Genes overlapping the LD
interval of the identified loci, defined by the furthest SNPs in a 1Mb window with
r2 > 0.05, were identified by SNPsea26. Gene-based analysis was performed using
Pascal31. Pascal gene-set enrichment analysis uses 1077 pathways from KEGG,
REACTOME, BIOCARTA databases, and a significance threshold was set after
Bonferroni correction accounting for 1077 pathways tested (P < 0.05/1,077).
Pathway analysis was also conducted using MAGMA30 gene-set analysis in
FUMA65, which uses the full distribution of SNP P values and is performed for
curated gene sets and Gene Ontology (GO) terms obtained from MsigDB (total of
10,891 pathways). A significance threshold was set after Bonferroni correction
accounting for all pathways tested (P < 0.05/10,891). Using Pascal, we created a
custom pathway of the SNIPP genes6 using human orthologs identified in DAVID
(Database for Annotation, Visualization and Integrated Discovery; 79 out of 80
identified SNIPPs). We then verified enrichment of the pathway in our sleep
duration GWAS (continuous, short, and long sleep). Tissue enrichment analysis
was conducted using FUMA65 for 53 tissue types, and a significance threshold was
set following Bonferroni correction accounting for all tested tissues (P < 0.05/53).
Single cell enrichment analysis was conducted in FUMA65 utilizing the Tabula
Muris33 dataset, and a significance threshold was set following Bonferroni cor-
rection accounting for all tested cell types (P < 0.05/115). Integration of gene
expression data with GWAS using transcriptome-wide association analyses in 11
tissues34 identified 38 genes for which sleep duration SNPs influence gene
expression in the tissues of interest (Supplementary Table 28). Integrative
transcriptome-wide association analyses with GWAS were performed using the
FUSION TWAS package34 with weights generated from gene expression in 9 brain
regions and 2 tissues from the GTEx consortium (v6). Tissues for TWAS testing
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were selected from the FUMA tissue enrichment analyses and here we present
significant results that survive Bonferroni correction for the number of genes tested
per tissue and for all 11 tissues.

Genetic correlation analyses. Post-GWAS genome-wide genetic correlation
analysis of LD Score Regression (LDSC)66–68 using LDHub was conducted using all
UK Biobank SNPs also found in HapMap3 and included publicly available data
from 224 published genome-wide association studies, with a significance threshold
after Bonferroni correction for all tests performed (P < 0.05/224 tests). LDSC
estimates genetic correlation between two traits from summary statistics (ranging
from −1 to 1) using the fact that the GWAS effect-size estimate for each SNP
incorporates effects of all SNPs in LD with that SNP, SNPs with high LD have
higher X2 statistics than SNPs with low LD, and a similar relationship is observed
when single study test statistics are replaced with the product of z-scores from two
studies of traits with some correlation. Furthermore, genetic correlation is possible
between case/control studies and quantitative traits, as well as within these trait
types. We performed partitioning of heritability using the 8 pre-computed cell-type
regions, and 25 pre-computed functional annotations available through LDSC,
which were curated from large-scale robust datasets66. Enrichment both in the
functional regions and in an expanded region (+500 bp) around each functional
class was calculated in order to prevent the estimates from being biased upward by
enrichment in nearby regions. The multiple testing threshold for the partitioning of
heritability was determined using the conservative Bonferroni correction (P < 0.05/
25 classes). Summary GWAS statistics will be made available at the UK Biobank
web portal.

Mendelian randomization analyses. MR analysis was carried out using the R
package MR-Base69 (available: github.com/MRCIEU/TwoSampleMR), using the
inverse variance weighted approach as our main analysis method70, and MR-
Egger71 and weighted median estimation72 as sensitivity analyses. MR results
may be biased by horizontal pleiotropy—i.e., where the genetic variants that are
robustly related to the exposure of interest (here sleep duration) independently
influence levels of a causal risk factor for the outcome. Inverse variance weighted
(IVW) assumes that there is either no horizontal pleiotropy, or that across all
SNPs, horizontal pleiotropy is (i) uncorrelated with SNP-risk factor associations
and (ii) has an average value of zero. MR-Egger assumes (i) but relaxes (ii) by
explicitly estimating the non-zero mean pleiotropy, and adjusting the causal
estimate accordingly. Estimation of the pleiotropy parameter means that the
MR-Egger estimate is generally far less precise than the IVW estimate. The
weighted median approach is valid if less than 50% of the weight is pleiotropic
(i.e., no single SNP that contributes 50% of the weight or a number of SNPs that
together contribute 50% should be invalid because of horizontal pleiotropy).
Given these different assumptions, if all three methods are broadly consistent,
this strengthens our causal inference. For all our MR analyses, except insomnia,
we used two-sample MR, in which for all 78 GWAS hits identified in this study
for sleep duration, we looked for the per allele difference in odds (binary out-
comes) or means (continuous) with outcomes from summary publicly available
data in the MR-Base platform. Results are therefore a measure of ‘longer sleep
duration’ and sample 1 is UK Biobank (our GWAS) and sample 2 a number of
different GWAS consortia covering the outcomes we explored. For interpreta-
tion purposes, inverse variance weighted MR causal effect estimates were con-
verted in OR per hour by multiplying log ORs by 60 in order to represent the OR
per hour, and then exponentiating. For significant two-sample MR findings, in
sensitivity analyses, we further conducted leave-one-out analyses, MR using
sleep duration effect estimates adjusting for standard confounders including
BMI, insomnia, and other lifestyle factors, and restricted to those GWAS var-
iants from each respective analysis, MR restricted to the signals that retained
GWAS significance in meta-analysis, and lastly, reverse direction MR analysis.
For reverse direction MR, inverse variance weighted MR causal effect estimates
in minutes were first converted to hours by multiplying by 60, and then were
converted by multiplying by 0.693 (=ln(2)) in order to represent changes in
sleep duration in hours per doubling in odds of the binary exposure. The
number of SNPs used in each MR analysis varies by outcome because of some
SNPs (or proxies for them) not being located in the outcome GWAS. In addition,
for schizophrenia MR, we excluded two pleiotropic SNPs rs34556183 (near
HIST1H2BJ) and rs13109404 (near SLC39A8) from our analysis and, to test for
bidirectional links, we derived the schizophrenia instrumental variable using
GWAS variants reported by the Psychiatric Genomics Consortium Schizo-
phrenia working group73.

Data availability
Summary GWAS statistics are publicly available at the Sleep Disorder Knowledge Portal
(http://sleepdisordergenetics.org/) and the UK Biobank website (http://biobank.ctsu.ox.
ac.uk/).
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