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Abstract 

New δ13Ccarb and microfacies data from Hereford-Worcestershire and the West 

Midlands allow for a detailed examination of variations in the Homerian carbon isotope 

excursion (Silurian) and depositional environment within the Much Wenlock Limestone 

Formation of the Midland Platform (Avalonia), UK. These comparisons have been 

aided by a detailed sequence stratigraphic and bentonite correlation framework. 

Microfacies analysis has identified regional differences in relative sea-level change 



and indicates an overall shallowing of the carbonate platform interior from Hereford-

Worcestershire to the West Midlands. Based upon the maximum δ13Ccarb values for 

the lower and upper peaks of the Homerian carbon isotope excursion (CIE) the 

shallower depositional setting of the West Midlands is associated with values that are 

0.7‰ and 0.8‰ higher than in Hereford-Worcestershire. At the scale of 

parasequences the effect of depositional environment upon δ13Ccarb values can also 

be observed, with a conspicuous offset in the position of the trough in δ13Ccarb values 

between the peaks of the Homerian CIE. This offset can be accounted for by 

differences in relative sea-level change and carbonate production rates. While such 

differences complicate the use of CIEs as a means of high-resolution correlation and 

caution against correlations based purely upon the isotopic signature, it is clear that a 

careful analysis of the depositional environment can account for such differences and 

thereby improve the use of carbon isotopic curves as a means of correlation. 

 

Key Words: carbon isotope stratigraphy, microfacies, Much Wenlock Limestone 

Formation, high-resolution correlation 

 

1. Introduction 

The stratigraphic variation of the 13C/12C values in marine carbonate (δ13Ccarb) is 

increasingly used as a correlation tool (Saltzman & Thomas, 2012) with carbon 

isotopic excursions, such as the pronounced negative carbon isotope excursion (CIE) 

at the Ypresian GSSP (base Eocene) (Vandenberghe et al. 2012), used as the primary 

means of global correlation. Similarly, where key stratigraphic boundaries remain 

undefined (e.g. large parts of the Cambrian (Peng & Babcock, 2011)) or useful 

biostratigraphic markers are facies dependent (e.g. conodonts and graptolites within 



the Ordovician and Silurian (Bergström et al. 2012)) the identification and correlation 

of CIEs has significantly aided our ability to correlate. Indeed, our knowledge of the 

carbon isotopic record is such that standard δ13Ccarb curves are available for much of 

the Phanerozoic, including the Silurian (Cramer et al. 2011; Melchin et al. 2012). 

However, the generalised character of these standard curves masks significant local 

variations in the magnitude and morphology of many CIEs (e.g. Buggisch & Mann, 

2004, figs. 12 and 13; Price et al. 2016, figs. 6 and 8). In particular, sedimentation 

upon carbonate platforms is typically dominated by biogenic benthic shallow-water 

carbonate producers, with the associated heterogeneity of carbonate platforms (e.g. 

lagoons, shoals, intershelf basins, barrier reefs, patch reefs) resulting in much local 

isotopic variability. These local isotopic variations are principally related to 

palaeobathymetry and its impact upon the types of carbonate producers, carbonate 

sedimentation and production rates and the exchange of waters between isotopically 

different reservoirs (e.g. open-ocean versus epicontinental seas), as well as 

secondary diagenetic processes (e.g. Holmden et al. 1998; Weissert et al. 2008; Da 

Silva & Boulvain, 2008; Swart, 2008; Saltzman & Thomas, 2012). For example, within 

the Silurian Baltic Basin absolute δ13Ccarb values of the Homerian Carbon Isotope 

Excursion are generally observed to decrease with increasing palaeobathymetry, with 

peak values above 4‰ within lagoonal settings decreasing to below 1‰ within the 

outer shelf (Jarochowska & Munnecke, 2015). While these changes are 

geographically rather gradual across the low-relief ramp topography of the Baltic Basin 

(on average −1‰ per 100 km within the East Baltic), the localised response of 

carbonate factories to episodes of sea-level change can result in rapid temporal and 

spatial changes in paleobathymetry and isotopic values. For example, a sea-level fall 

may result in the rapid progradation of isotopically heavier shallow marine carbonates 



into a deeper-water isotopically lighter setting. Similarly, a sea-level rise may result in 

all or parts of the carbonate platform back-stepping, giving-up, catching-up or keeping-

up, each with their own influence on paleobathymetry and isotopic values. Thus, the 

local responses of a carbonate platform to sea-level change will result in local isotopic 

variations and hinder our ability to clearly establish the onset, termination and internal 

subdivisions of CIEs and therefore our ability to correlate CIEs. 

Here we demonstrate the carbon isotope variability associated with a well-

known Silurian CIE (Homerian Carbon Isotope Excursion; also termed the Mulde 

Carbon Isotope Excursion by some authors), as expressed on a relatively small 

Silurian carbonate platform (Midland Platform, Avalonia) and within an age 

synchronous platform interior carbonate succession (Much Wenlock Limestone 

Formation) (Fig. 1). Based upon a high-resolution sequence stratigraphic and 

bentonite framework it is apparent that local variations in relative sea-level influence 

the magnitude and morphology of the carbon isotopic record (δ13Ccarb) within marine 

carbonate rocks. 

 



Figure 1. Locality maps for the Midland Platform. (a) Areas attributed to the Midland 

Platform and Welsh Basin showing the broad location of the study area. (b) Outcrop 

of the Much Wenlock Limestone Formation across the northern and central part of the 

Midland Platform with study areas located. (c) The Storridge and Suckley (Hereford-

Worcestershire) areas showing the location of measured sections at Whitman’s Hill 

Quarry (SO 7490 4830) and Bruff Business Park (SO 7365 5065); d. the Dudley (West 

Midlands) area showing the location of measured sections at Castle Hill, Wren’s Nest 

Hill and Mons Hill: Castle Mill Basin (CMB) (SO 9454 9164), Reef Knoll Stairwell (RKS) 



(SO 9363 9202), Lower NCC Cutting (LNC) (SO 9380 9222), Seven Sisters Quarry 

North (SSQ) (SO 9358 9188), Upper NCC Cutting (UNC) (SO 9382 9222), Reef Knoll 

Quarry (RKQ) (SO 9356 9200 and SO 9358 9210), Snake Pit Quarry (SPQ) (SO 9383 

9228) and Lion’s Mouth Cavern (LMC) (SO 9354 9161). 

 

2. Geological setting 

The upper Wenlock Series (Homerian Stage) Much Wenlock Limestone Formation 

(MWLF) reflects shallow-marine mixed carbonate and siliciclastic deposition upon the 

gently subsiding Midland Platform of eastern Avalonia (Bassett et al. 1992). During 

Homerian times the Midland Platform was within the tropics, situated some 13° 

degrees south of the equator (Torsvik et al. 1993); as reflected by an abundance of 

tropical patch-reefs and a diverse fossil biota (Ratcliffe & Thomas, 1999; Ray & 

Thomas, 2007). In general terms the MWLF thins and shows diachroneity between 

the platform interior and its western margin with the Welsh Basin. Within the platform 

interior the MWLF achieves a thickness of 37 m to 57 m and broadly corresponds to 

the latest Cyrtograptus lundgreni to Colonograptus ludensis graptolite biozones (Fry 

et al. 2017). In addition, the MWLF has been subdivided into three members (Lower 

Quarried Limestone, Nodular Beds and Upper Quarried Limestone members) 

according to the relative abundances of limestone and silty-mudstone, with such 

variations broadly reflecting episodes of relative sea-level change. Lastly, the MWLF 

is under- and over-lain by thick successions of occasionally graptolitic silty-mudstone, 

the Coalbrookdale and Lower Elton formations respectively. The transitional facies 

between these silty-mudstones and the MWLF have been informally and locally 

referred to as the Basement Beds and Passage Beds (Butler, 1939), and their local 

inclusion in the MWLF has resulted in minor diachroneity across the platform interior. 



As a means of removing this diachroneity and synchronising litho- and chrono- 

stratigraphy, we consider the locally identifiable Basement Beds as belonging to the 

uppermost Coalbrookdale Formation and the regionally identifiable Passage Beds as 

belonging to the uppermost MWLF. 

Previous carbon isotope studies of the Midland Platform have documented the 

dual peaked Homerian CIE, with the most extensive records derived from the Silurian 

inliers of the Dudley, West Midlands (Corfield et al. 1992; Marshall et al. 2012). In 

addition, parts of the Homerian CIE have been documented elsewhere upon the 

Midland Platform, with records from the type Wenlock and Ludlow areas (Much 

Wenlock and Ludlow) being particularly important for age calibration (Blain et al. 2016; 

Fry et al. 2017). 

 

2a. Stratigraphic precision within the study area 

The ability to accurately resolve the stratigraphic record is critical to understanding 

past global change and the variability of the carbon isotopic record. Unfortunately, for 

the majority of Wenlock sections that document the Homerian CIE the stratigraphic 

resolution is below that required to test such variability, with the result that the peaks 

and troughs in the carbon isotopic record are considered near-isochronous and form 

the basis of correlation. However, high-resolution stratigraphic techniques such as the 

correlation of changes in sea-level caused by Milankovitch forcing of ice sheet 

dynamics and the correlation of volcanic ash layers can approach isochronous 

correlation, and can therefore be used to examine differences between local carbon 

isotopic curves. 

The sections described herein are from the Dudley (West Midlands), Storridge 

and Suckley (Hereford-Worcestershire) areas and are considered characteristic of the 



platform interior (Fig. 1b), in that they reflect the earliest onset of the deposition of the 

MWLF, which begins with an interval of microbial carbonates (Lower Quarried 

Limestone Member) indicative of restricted circulation within a platform interior setting 

(Ratcliffe, 1988). Based upon comparison with the Geologic Time Scale 2012 (Melchin 

et al. 2012) and the alternative absolute age determinations of Cramer et al. (2012), 

the MWLF and the Homerian CIE likely equate to an interval of 0.6 to 1.9 million years, 

with a high-resolution radioisotopic date from near the top of the MWLF at Dudley 

providing an in situ upper absolute age limit of 427.86 ± 0.32 Ma (Cramer et al. 2012). 

Correlation between these sections (approximately 48 km between the most distal 

sections) has been achieved by means of high-resolution sequence stratigraphy and 

the geochemical correlation of a prominent volcanic ash horizon (bentonite) within 

middle of the formation. 

The details of correlation across the study area are given in Ray et al. (2013), 

but are summarised here. In terms of sequence stratigraphy, the MWLF is represented 

by two regressive episodes separated by a marked transgression. These broad sea-

level changes are well documented from a number of palaeocontinents (e.g. Avalonia, 

Baltica, Gondwana and Laurentia) and are considered to be eustatic in nature (e.g. 

Johnson 2006). The expression of these eustatic variations across the study area and 

the wider Midland Platform (e.g. Ray et al. 2010; Ray et al. 2013; Fry et al. 2017) 

allows the MWLF to be subdivided into sequence stratigraphic systems tracts (see 

Simmons, 2012) according to the rate and direction of sea-level change. Furthermore, 

each systems tract (i.e. transgressive, highstand and falling stage systems tracts) has 

been further subdivided into multiple upward shallowing cycles (parasequences), 

which can be distinguished from each other and correlated according to differences in 

thickness and the magnitude of relative sea-level change. Thus, sea-level trends may 



be observed through successive parasequences, and these stacking patterns reflect 

broader lithological trends that are expressed as systems tracts. Such correlations 

allow for the subdivision of the MWLF into twelve parasequences (PS1 to PS12), and 

based upon a 0.6 to 1.9 million years duration for the MWLF, suggest a mean 

parasequence duration in the order of 50 to 150 ka. Accordingly, it seems likely that 

the parasequences, being part of a broader eustatic trend, may be reflective of short 

eccentricity Milankovitch cycles of ~100 ka duration and therefore suitable for high-

resolution correlation. 

The sequence stratigraphic subdivision and correlation of the MWLF has been 

additionally confirmed by the geochemical fingerprinting and correlation of volcanic 

ash layers (bentonites; also termed K-bentonites or metabentonites by some authors). 

The correlation of bentonites within the MWLF is of particular significance in that the 

deposition of the bulk of volcanic ejecta can be considered instantaneous on 

geological timescales (see Huff 2016). Across the study area the presence of volcanic 

apatite crystals within the bentonites and the rare earth element (REE) geochemical 

signature of the apatite crystals has been used as a means of distinguishing between 

individual bentonites (Ray et al. 2013). In particular, apatite REE data from most 

bentonites within the MWLF probably originated from a granodiorite magmatic source, 

with the exception of a bentonite horizon within the middle of the formation that has a 

distinctively mafic composition; more akin to that of a gabbro or syenite. This 

distinctively mafic bentonite has been geochemically identified in sections at Dudley 

(Wren’s Nest Hill) and Storridge (Whitman’s Hill) and occurs in the flooding interval at 

the base of parasequence 8 (PS8), thereby confirming the near isochronous 

deposition of PS8, the highstand systems tract and the Nodular Beds Member. In 

addition, this bentonite is notably thicker than the majority of other bentonites (120-



200 mm) thereby allowing for easy identification in other sections across the area, 

including in the Bruff Business Park section (Ray et al. 2013). 

Within the wider Wenlock of the Midland Platform bentonite geochemistry has 

also been used to confirm the synchronicity of sequence stratigraphic correlations. For 

example, a bentonite has been correlated within the MWLF from Dudley (West 

Midlands) to Wenlock Edge (Shropshire) and confirms the correlation of PS10 over a 

distance of approximately 40 km (Ray et al. 2011). Similarly, within the lower Wenlock 

a bentonite has been used to confirm the correlation of a parasequence (cycle 5) within 

the uppermost Buildwas and Woolhope Limestone formations, over a distance of 62 

km (Hughes & Ray, 2016). Based upon these combined bentonite-sequence 

stratigraphic studies it is apparent that the parasequences of the Midland Platform 

represent discrete and approximately age synchronous depositional episodes that 

likely result from Milankovitch cycles (i.e. short eccentricity), and as such ideal for the 

comparison of carbon isotopic values across the study area. 

 

3. Sampling and analytical methods 

The succession of Hereford-Worcestershire has not previously been subject to 

detailed carbon isotopic analysis and has consequently formed the focus of our 

sampling efforts (Fig. 1c). The Whitman’s Hill Quarry contains the uppermost 

Coalbrookdale Formation (15.8 m) and the lower two-thirds of the MWLF (24.4 m) and 

has been sampled in its entirety. Approximately 2.5 km north-northwest of Whitman’s 

Hill is the Bruff Business Park section which contains the whole of the MWLF, as well 

as parts of the under- and over-lying formations. Owing to faulting near the base of the 

MWLF (Fig. 2) our sampling has focused upon the interval above this fault zone and 

immediately above a distinctively thick (120 mm) and a regionally traceable marker 



bentonite (WH9 of Ray et al. 2013). Accordingly, at Bruff Business Park the upper half 

of the MWLF (21.9 m) and the basal Lower Elton Formation (8.2 m) has been sampled. 

In combining samples from both Whitman’s Hill Quarry and Bruff Business Park a local 

composite carbon isotope curve has been made and based upon the correlation of the 

marker bentonite and parasequences, there is an approximate sampling overlap of 6 

m between sections. In terms of sedimentology, the results of hand-specimen analysis 

and a limited number of thin sections have previously been reported for the Hereford-

Worcestershire succession (Penn, 1971; Ray et al. 2013; Päßler et al. 2014), 

alongside more regional studies (Phipps & Reeve, 1967). However, as a means of 

further improving our understanding of the succession, a number of thin sections were 

created to confirm and improve upon the existing sedimentological descriptions and 

to investigate intervals that show considerable regional variability and may 

consequently impact upon the local carbon isotopic signature. 

Given the existing and detailed sedimentological (Butler, 1939; Oliver, 1981; 

Ratcliffe, 1988; Ratcliffe & Thomas, 1999; Ray & Thomas, 2007; Ray et al. 2010) and 

carbon isotopic records (Corfield et al. 1992; Marshall et al. 2012) from the Dudley 

area (West Midlands) a duplication of such works would superficially be of limited 

merit. However, a comparison of the carbon isotopic record of Corfield et al. (1992) 

and Marshall et al. (2012) reveals some differences in the shape of the resultant 

curves. Furthermore, while only the curve of Marshall et al. (2012) has been linked to 

the available sequence stratigraphic record, it has been shown by Blain et al. (2016, 

p 729) that there may be a degree of uncertainty as to the exact position of the carbon 

isotopic data and the parasequences identified by Ray et al. (2010). Finally, both 

curves are based upon sections which contain minor faulting, particularly at the lower 

and upper boundaries of the MWLF, and are also reliant on accurate correlation 



between sections. In the case of the Corfield et al. (1992) it is apparent that the use of 

the trench and quarry face on the eastern side of Wren’s Nest Hill (SO 9382 9220) 

would have likely resulted in approximately 5 m of the uppermost Nodular Beds 

Member being unaccounted for in their curve (Ray et al. 2010, p 139). 

While the previously published carbon isotope curves demonstrate the broad 

nature of the Homerian CIE, it is unclear how accurately they relate to the 

parasequences established within the Dudley area, and therefore with the data 

collected from Hereford-Worcestershire. Thus, in order to confirm the isotopic trends 

within each parasequence we have resampled the succession. In particular, we have 

undertaken high-resolution sampling (typically 0.20 m or less) across the formation 

boundaries (Coalbrookdale, Much Wenlock Limestone and Lower Elton formations) 

and somewhat lower-resolution sampling (typically every 0.50 m) for the remainder of 

the succession. Such a sampling strategy is intended to improve upon the stratigraphic 

resolution of the onset and termination of the Homerian CIE (across the formation 

boundaries), as well as to determine the broad isotopic trend within the remainder of 

the succession. 

Alongside isotopic sampling within the Dudley area a limited number of thin 

sections were created to improve upon previous descriptions (e.g. Oliver, 1981; 

Ratcliffe, 1988; Ratcliffe & Thomas, 1999) and link more precisely to the sequence 

stratigraphic units described by Ray et al. (2013). In particular, we have focused upon 

the Basement and Passage beds as these represent intervals of significant lithological 

and environmental change. 

After collecting limestone samples from the Hereford-Worcestershire and West 

Midlands areas, stable carbon and oxygen stable isotope measurements were carried 

out in the stable isotope laboratory of the GeoZentrum Nordbayern, Erlangen, 



Germany. Unweathered samples of vein-free bulk rock were powdered using a hand 

drill. This method of analysing bulk rock for stable isotopes, which inevitably does 

contain some skeletal material, has been shown to provide reliable results in other 

Silurian studies (e.g. Cramer et al. 2006; Kaljo & Martma, 2006; Hughes & Ray, 2016). 

The carbonate powders were reacted with 100% phosphoric acid at 70°C using a 

Gasbench II connected to a Thermo Finnigan Five Plus mass spectrometer. All values 

are reported in per mille relative to V-PDB by assigning δ13C and δ18O values of 

+1.95‰ and −2.20‰ to international standard NBS19 and −46.6‰ and 26.7‰ to 

international standard LSVEC, respectively. Reproducibility and accuracy were 

monitored by replicate analysis of laboratory standards calibrated to NBS19 and 

LSVEC and were better than ±0.06‰ (1σ) and ±0.04‰ (1σ), respectively. In total, 459 

of the analysed samples provided geochemical results, typically at sample spacing of 

0.1 to 0.5 m (Supplementary Material). 

 

3.a. Whitman’s Hill and Bruff Business Park carbon isotope stratigraphy 

Carbon isotope values in the upper part of the Coalbrookdale Formation are rather 

variable and range between -1.3‰ and 1.8‰ δ13Ccarb (Fig. 2). Broadly there is a 

positive trend within the formation, but it is only within the uppermost 1.0 m that values 

start to exceed 1.0‰. Within the basal 0.9 m of the Lower Quarried Limestone Member 

(MWLF) (15.64-16.54 m) values increase from 0.9‰ to 4.6‰ and correspond to the 

onset of the Homerian CIE. This marked positive shift in values takes place within the 

basal parasequence (PS1) of the MWLF and a peak value of 4.8‰ is achieved in the 

overlying parasequence (PS2). From this peak (lower peak of the Homerian CIE), 

values progressively fall throughout the remainder of the Lower Quarried Limestone 

Member (PS2 to PS5) and into the Nodular Beds Member, as exposed at Whitman’s 



Hill (PS6 to basal PS10), with values falling to around 1.7‰ by the top of the section. 

Particularly notable features of this fall in values are its uniform nature and its 

occasional punctuation by more negative values, the most notable of which (occurs 

across multiple samples) is high within PS7. 

At Bruff Business Park (Fig. 2) the overlapping part of the succession (PS8 to 

basal PS10) appears to show the continuation of the decline in values observed at 

Whitman’s Hill. Based upon a consideration of both sections this trend ends around 

the PS9-PS10 boundary, above which values rise from 1.7‰ to 3.0‰ (Bruff Business 

Park 9.60-15.10 m) towards the top of PS10 and within the lower part of the Upper 

Quarried limestone Member. This peak corresponds to the upper peak of the 

Homerian CIE, above which values progressively fall throughout the remainder of the 

MWLF and into the basal Lower Elton Formation. Broadly the apparent rate of fall is 

greatest within the Passage Beds of the Upper Quarried Limestone Member (PS12) 

indicating that the Homerian CIE ends at the top of MWLF. Within the Lower Elton 

Formation values are still elevated when compared with the pre-excursion 

Coalbrookdale Formation and range from 1.0‰ to 1.9‰. 

 





Figure 2. Stratigraphic overview of Whitman’s Hill Quarry and Bruff Business Park 

modified from Ray et al. (2013), showing the carbon isotopic values, the position of 

parasequences (PS), bentonite correlations (Marker Bentonite), lithostratigraphic units 

and transitional intervals (Passage Beds). 

 

3.b. The Dudley area carbon isotope stratigraphy 

The succession within the Dudley area (Castle Hill, Wren’s Nest Hill and Mons Hill) 

has been uplifted, folded and faulted during the Caledonian and the Variscan 

orogenies and outcrops in a series of discontinuous quarries. Consequently no one 

outcrop offers access to the entirety of the succession. Here we document both the 

carbon isotopic trends and the correlations necessary to stitch together this composite 

carbon isotope curve (Figs. 1d and 3). 

 



Figure 3. Stratigraphic overview of the Dudley area modified from Ray et al. (2013), 

showing the position of the measured sections, carbon isotopic values, the position of 

parasequences (PS), marker bentonite beds (WNH), lithostratigraphic units and 

transitional intervals (Basement and Passage beds) (see Figure 2 for the key). Within 

the study area are the following systems tracts and their bounding surfaces: SB/TS - 

sequence boundary and combined transgressive surface; ETST - early transgressive 



systems tract; SMSS - surface of maximum sediment starvation; LTST - late 

transgressive systems tract; MFS - maximum flooding surface; HST - highstand 

systems tract; SFR - surface of forced regression; FSST - falling stage systems tract. 

 

The stratigraphically lowest part of the succession has been investigated at the 

Castle Mill Basin (Castle Hill) and the Reef Knoll Stairwell (Wren’s Nest Hill). Here the 

sections contain the transitional interval between the Coalbrookdale Formation and 

Lower Quarried Limestone Member (MWLF). In addition, as neither section was 

sampled by Corfield et al. (1992) or Marshall et al. (2012), they provide additional 

documentation of the onset of the Homerian CIE within the Dudley area. 

The Castle Mill Basin succession is the most stratigraphically extensive of the 

sections (Fig. 4a, b) and one the most complete in the area (location CH12 of Butler, 

1939). It begins within the uppermost Coalbrookdale Formation (2.60 m). The 

Coalbrookdale Formation isotopic values initially range from 0.8‰ to 1.7‰ δ13Ccarb, 

before rising markedly from 1.4‰ to 3.1‰ within the Basement Beds. Unfortunately, 

a 1.00 m interval of no-exposure within the section corresponds to the boundary 

between the Coalbrookdale Formation and Lower Quarried Limestone Member, but 

values continue to rise into the lowest MWLF to an initial peak of 3.9‰ (3.80 m), above 

which the rate of rise is reduced. Such an arrangement indicates that the onset of the 

Homerian CIE broadly corresponds to the Coalbrookdale-Much Wenlock Limestone 

formation boundary, but begins in the uppermost Coalbrookdale Formation (Basement 

Beds). Stratigraphically above values briefly remain between 3.5‰ and 3.9‰, before 

dropping to -0.8‰ (5.00 m). This pronounced negative excursion occurs over a 0.8 m 

interval, above which values rebound and continue to rise to a maximum value of 

4.2‰, all be it with significantly more variability (between 1.7‰ and 4.2‰); these 



isotopic variations are likely reflective of lithological variability in association with 

bioherms. 

The Reef Knoll Stairwell sections contains only 0.68 m of the succession that 

approximates to the boundary between the Coalbrookdale Formation and the MWLF 

(Fig. 3). As with the Castle Mill Basin section, values show a marked increase in 

isotopic values with the stratigraphically lowest and highest values typical of this trend 

(0.7‰ to 2.1‰). Based upon a comparison with the absolute isotopic values taken 

from the Castle Mill Basin section, this small outcrop likely corresponds to a prominent 

grainstone lens within the Basement Beds, rather than the base of the Lower Quarried 

Limestone Member. 

 

Figure 4. The carbon isotopic record across the Coalbrookdale-Much Wenlock 



Limestone Formation boundary at Dudley. (a) The Castle Mill Basin section (Wren’s 

Nest Tunnel Portal) and the carbon isotopic record. (b) Stratigraphic overview of 

Castle Mill Basin section. 

 

 Lower NCC Cutting at Wren’s Nest Hill occurs at the northern end of a trench, 

cut to extract the Lower Quarried Limestone Member. This section contains minor 

faulting at the base of the Lower Quarried Limestone Member and in the immediately 

overlying Nodular Beds Member. Correlation with the Castle Mill Basin section has 

been achieved by the correlation of a bentonite (WNH2; Ray et al. 2011) between the 

sections. This bentonite and an immediately overlying bentonite are key markers 

within the Lower Quarried Limestone Member of the Dudley area and occur within 

PS2. In addition, measurements from the base of the Lower Quarried Limestone 

Member to the bentonite are consistent between the sections. This part of the isotopic 

curve begins immediately below the marker bentonite (WHN2) and shows a continued 

rise in δ13Ccarb values to 5.5‰ by the top of PS2. Above values initially plateau within 

PS3 before progressively declining (minimum value of 2.5‰) through to the top of 

PS5, the end of the measured section and the top of the Lower Quarried Limestone 

Member. 

 The boundary between the Lower Quarried Limestone and Nodular Beds 

member is commonly faulted and appears particularly unpromising in the Lower NCC 

Cutting. Of the sections available, a pillar in limestone workings near the Seven Sisters 

Caverns (Seven Sisters Quarry North) offers the most complete and accessible 

example of PS6 and the base of the Nodular Beds Member; despite some minor 

quarrying-related slumping at its base. Within PS6 the decline in δ13Ccarb values 

continue to a low of 2.2‰ by the top of the parasequence. 



 Parasequences 7 to 9 can be accessed in their entirety within the Upper NCC 

Cutting (a continuation of the Lower NCC Cutting above the faulted interval). Here 

values continue to decline to a clear trough within the upperpart of PS7 (minimum 

value of -0.6‰ at 4.00 m). Above values rapidly rise through the remainder of PS7 

and peak in PS8 at 2.6‰. Values then fall slightly within the lower part of PS9 to a 

secondary trough (minimum value of 1.7‰ at 9.00 m), above which values again rise 

towards the top of PS9, with values above 3.0‰. 

 The lower part of PS10 occurs in the Upper NCC Cutting and can be traced 

across the Dudley area by the presence of a prominent hardground and bentonite 

(WHN10; Ray et al. 2011) at its base and an overlying succession containing multiple 

bentonite horizons. In order to access the entirety of PS10 two sections within the 

large Reef Knoll Quarry (Wren’s Nest Hill) have been used, with the highly distinctive 

Clematocrinus Bed (see Ray & Thomas, 2007) used to precisely tie the sections 

together. Within PS10 isotopic values continue to rise with peak values (3.8‰) 

achieved within the lower 4.0 m of the parasequence. This peak corresponds to the 

upper peak of the Homerian CIE, above which values progressively fall throughout the 

remainder of the PS10 and the MWLF. 

 The transition from the Nodular Beds Member to the Upper Quarried Limestone 

Member takes place approximately 0.5 m below the Ripple Beds (a highly distinctive 

mega-rippled grainstone bed) (Davies et al. 2011). This distinctive bed marks the top 

of the measured section in the Reef Knoll Quarry and allows for correlation to Snake 

Pit Quarry (Mons Hill) where the entirety of PS11 can be accessed (Davies et al. 2011). 

Here PS11 broadly reflects a plateau in isotopic values with most values slightly above 

2.0‰. 



The boundary between PS11 and PS12 and the transition between the Upper 

Quarried Limestone Member (MWLF) and the Lower Elton Formation is faulted in 

Snake Pit Quarry. Accordingly, the stratigraphically overlapping Lion’s Mouth Cavern 

section (Wren’s Nest Hill) has been used to document this transition, with the widely 

traceable stromatoporoid pavement at the base of PS12 used to correlate between 

sections. In addition, as the boundary between PS11 and PS12 is considered to 

approximate to the Wenlock-Ludlow Series boundary (Blain et al. 2016), a 1.7 m 

overlap in stratigraphic position of isotope samples was made to demonstrate the 

correlation between the sections. Furthermore, the isotopic sampling of the entirety of 

the Lion’s Mouth Cavern section was considered important as it has not previously 

been analysed for carbon isotopes and contains a high-resolution radioisotopic date 

(Cramer et al. 2012) (Figs. 3 and 5). Within the Lion’s Mouth Cavern section, δ13Ccarb 

values in the Upper Quarried Limestone Member initially range from 2.2‰ to 1.9‰ 

(0.00 m to 1.68 m) and occur within the upper part of PS11. Above values fall markedly 

to 0.6‰ (2.71 m) within the lower part of PS12 (Passage Beds) and are considered to 

correspond to the end of the Homerian CIE. Values then recover slightly to a minor 

peak of 1.2‰, before falling again into the basal Lower Elton Formation (PS13) to a 

minimum value of 0.2‰. 

 



Figure 5. The carbon isotopic record across the Much Wenlock Limestone-Lower Elton 



Formation boundary at Dudley. (a) The Lion’s Mouth Cavern section and the carbon 

isotopic record. (b) Stratigraphic overview of the Lion’s Mouth Cavern section. 

 

4. A comparison of composite carbon isotope curves from Hereford-

Worcestershire and the West Midlands 

In a broad sense the Homerian CIE, as identified in both Hereford-Worcestershire 

(Storridge and Suckley) and West Midlands (Dudley) show rather similar features (Fig. 

6), in that they identify a dual-peaked positive excursion that is chiefly confined to the 

MWLF, with peak values achieved near the bottom and top of the formation. However, 

in detail there are a number of notable differences, which can be stratigraphically 

located by the correlation of parasequences (Ray et al. 2013). For example, onset of 

the Homerian CIE in both sections takes place close to the Coalbrookdale-Much 

Wenlock Limestone formation boundary, but within the West Midlands a pronounced 

rise in values from 1‰ to 3‰, which may be taken at the onset of the CIE, occurs 

within the Basement Beds (PS0; uppermost Coalbrookdale Formation), while in 

Hereford-Worcestershire the same positive shift in values occurs within the basal 

Lower Quarried Limestone Member (PS1; basal MWLF). Above, both areas show a 

continued rise in carbon isotopic values within PS1 of the Lower Quarried Limestone 

Member, with the peak values achieved within PS2. However, while the position of the 

lower peak of the Homerian CIE is consistent with respect to the parasequence 

assignment, the absolute maximum values of the lower peak are 0.7‰ higher in the 

West Midlands area. A gradual decline in values from the Lower Quarried Limestone 

Member into the Nodular Beds Member is observed in both areas, but with the broad 

trough (minimum) in values occurring in PS7 in the West Midlands and around the 

PS9-PS10 boundary in Hereford-Worcestershire. Notably, the trough in values in the 



West Midlands has an obvious equivalent within PS7 in Hereford-Worcestershire; the 

correlation of which is strongly supported by the immediately overlying bentonite 

correlation. Similarly, the main trough in values in Hereford-Worcestershire appears 

to be equivalent to a secondary trough in values within PS9 in the West Midlands, 

above which values increase to the upper peak of the Homerian CIE. The upper peak 

of the Homerian CIE occurs within PS10, but within the middle part of the 

parasequence in the West Midlands and near its top in Hereford-Worcestershire. In 

addition, the maximum isotope values associated with the upper peak are 0.8‰ higher 

in West Midlands. Finally, the decline in values towards the end of the CIE shows 

considerable similarities with the excursion ending within the Passage Beds (PS12). 

 



Figure 6. A comparison between the composite carbon isotopic curves derived from 

the Hereford-Worcestershire (Storridge and Suckley) and the West Midlands (Dudley) 

areas (see Fig. 2 for the key). 

 

As outlined above, the Homerian CIE, as identified in both Hereford-

Worcestershire and West Midlands show notable differences superimposed upon a 

common trend. The origin of such apparent differences in carbon isotopic trends may 

be interpretative (e.g. identifying the start and finish of a CIE), the impact of 

palaeobathymetry upon the carbon isotopic values, or primary and diagenetic rock 

mineralogy. Using the high-resolution stratigraphic framework outlined above we will 



investigate variation in palaeobathymetry across the study area and assess their 

impact upon carbon isotopic values. Mineralogy and diagenetic overprints are further 

qualitatively assessed in thin sections. 

 

5. Facies, depositional environments and relative sea-level change 

Interpretations of facies, depositional environments and relative sea-level change 

have been previously published for the Storridge, Suckley (Hereford-Worcestershire) 

and Dudley (West Midlands) areas (e.g. Butler, 1939; Phipps & Reeve, 1967; Oliver, 

1981; Ratcliffe, 1988; Ratcliffe & Thomas, 1999; Ray & Thomas, 2007; Ray et al. 2010; 

Ray et al. 2013; Päßler et al. 2014; Jarochowska et al. 2018). Therefore, here we 

provide an overview with a focus upon those parts of the succession that show 

considerable regional variability and may consequently impact upon the local carbon 

isotopic signature (Figs. 2, 3, 6). 

 

5.a. Coalbrookdale Formation 

The Coalbrookdale Formation is more than 200 m thick within the platform interior 

(Cocks et al. 1992), though poor exposure typically restricts access to all but a few 

metres below the base of the MWLF. Across the platform interior the transition 

between the outer-shelfal silty-mudstones of the Coalbrookdale Formation and the 

inner-shelfal carbonates of the MWLF represents a major relative sea-level fall and 

sequence boundary of probable eustatic origin (see Johnson, 2006). However, in 

detail, a limestone-rich uppermost few metres to the Coalbrookdale Formation is only 

well-developed within the Dudley area (the Basement Beds), suggesting a slightly 

shallower depositional setting in this area, when compared to Whitman’s Hill Quarry 

(Hereford-Worcestershire). 



Thin section analysis of this interval further supports this interpretation of the 

uppermost Coalbrookdale Formation. At Whitman’s Hill Quarry thin sections (Figs. 2, 

7) reveal mudstones with an admixture of silt-sized quartz grains and with lenses of 

bioclastic packstone to floatstone bounded by erosional surfaces (Fig. 7i). Near the 

very top of the formation layers and nodules of laminated, very well sorted, fine-

grained peloidal grainstones with rare subplanar burrowing traces (Fig. 7j-k) are 

present. In addition, bioclasts are commonly encrusted by the problematicum 

Allonema (Fig. 7h). 

Based upon these thin sections the Coalbrookdale Formation at Whitman's Hill 

Quarry is interpreted to have been deposited in an environment predominantly below 

the fair-weather wave base, but above the storm wave base, as indicated by episodes 

of erosion and reworking resulting in deposition of coquinas composed of poorly 

sorted, barely fragmented brachiopod shells. Intercalations of laminated peloidal 

grainstones with erosional bases in the uppermost part are here interpreted as 

produced by waning storm flows. Almost completely preserved lamination and sparse 

bioturbation indicate event deposition contrasting with the thorough bioturbation of the 

surrounding sediments. 

By way of contrast the silty-mudstones of the Coalbrookdale Formation and 

overlying Basement Beds at Castle Mill Basin, West Midlands (Figs. 4, 7) contain 

crinoidal wacke- to packstones with grainstone nodules (Fig. 7a). Putative 

cyanobacteria Rothpletzella (Fig. 7d) and Girvanella, green algae Rhabdoporella (Fig. 

7a) and Dimorphosiphon (Fig. 7c) are abundant. Common components include 

bryozoans (Fig. 7b), unidentified spherical fossils with very thin recrystallized shells 

(Fig. 7g), tentaculitids (Fig. 7f), trilobites, gastropods, phosphatic microfossils, and rare 



brachiopods. Finally, as with Whitman’s Hill Quarry, bioclasts are commonly encrusted 

by the problematicum Allonema (Fig. 7b, e). 

Based upon these thin sections the Coalbrookdale Formation at Castle Mill 

Basin is interpreted to have been deposited in a soft-bottom protected environment 

within the euphotic zone, oscillating near the fair-weather wave base, and therefore 

within a somewhat shallower setting than that for Whitman’s Hill Quarry. 

 

Figure 7. Microfacies of the uppermost part of the Coalbrookdale Formation; see 

figures 2 and 3 for thin section (TS) locations). (a) Transition from crinoidal wacke- to 

grainstone; arrows point to Rhabdoporella, thin section 2 (TS2), Castle Mill Basin, 



scale bar 1 mm. (b) Bryozoan encrusted with Allonema, thin section 1 (TS1), Castle 

Mill Basin, scale bar 500 µm. (c) Calcareous green alga Dimorphosiphon?, thin section 

1 (TS1), Castle Mill Basin, scale bar 750 μm. (d) Crinoidal packstone with 

recrystallized shells encrusted with Rothpletzella, thin section 2 (TS2), Castle Mill 

Basin, scale bar 100 μm. (e) Close-up of Allonema in (b), scale bar 200 µm. (f) 

Tentaculite, thin section 2 (TS2), Castle Mill Basin, scale bar 1 mm. (g) Spherical 

unidentified components with thin recrystallized walls, thin section 3 (TS3), Castle Mill 

Basin, scale bar 1 mm. (h) Brachiopod shell encrusted with Allonema, thin section 4 

(TS4), Whitman’s Hill, scale bar 500 μm. (i) Bioclastic pack- to floatstone over an 

erosional boundary cutting into a poorly fossiliferous mudstone, thin section 4 (TS4), 

Whitman’s Hill, scale bar 3 mm. (j) Laminated peloidal grainstone with sparse 

bioturbations (arrows), thin section 5 (TS5), Whitman’s Hill, scale bar 3 mm. (k) Close-

up of the peloidal grainstone in (j), scale bar 200 μm. 

 

5.b. Lower Quarried Limestone Member of the Much Wenlock Limestone 

Formation 

The Lower Quarried Limestone Member of the MWLF is regionally variable in 

thickness and ranges from as little as 4.3 m at Whitman’s Hill Quarry to 8.2 m at Bruff 

Business Park, and to between 9.8 m and 16.2 m in the West Midlands (Ray et al. 

2010; Ray et al. 2013). An important factor in determining the thickness of any one 

section is the presence of reefal masses, with greater thicknesses attributed to 

variations in compaction and lithification caused by their presence (Ratcliffe, 1988). 

However, regional variations in the bedded lithology are present and indicate a 

thinning and eventual loss of these limestones at the transition with the exterior part 

of the platform (see Ratcliffe & Thomas, 1999; Ray et al. 2010; Fry et al. 2017). In 



detail the bedded parts of the succession can be divided into five parasequences (PS1 

to 5) with the top of PS1 corresponding to a combined sequence boundary and 

transgressive surface (Ray et al. 2013). Above, relative sea-level is interpreted to 

gradually increase at Whitman’s Hill Quarry, while within the West Midlands relative 

sea-level fell throughout much of the remainder of the member, reflecting differing local 

responses of carbonate production to sea-level rise within the early transgressive 

systems tract (Figs. 2, 3, 6). 

The boundary between the Coalbrookdale Formation and Lower Quarried 

Limestone Member at Whitman’s Hill Quarry represents a major relative sea-level fall 

(Fig. 2). PS1 differs from the overlying strata of the member: its base is formed by 

mudstone with an admixture of silt-sized quartz with rare, thoroughly fragmented and 

partly pyritized brachiopods, ostracods, bryozoans, and trilobites. Within this matrix, 

large in situ favositid corals can be traced to Penny Hill Quarry (~13 km north of 

Whitman’s Hill Quarry) (Ray et al. 2013). The top of this parasequence is visible in the 

field as an iron oxide-stained, scoured surface marking erosion at a sequence 

boundary. It consists of a moderately sorted crinoidal grainstone layer with cortoids 

(Fig. 8b), reworked lithoclasts, and porostromate oncoids (Fig. 8d-e). Above, the 

parasequences of the early transgressive systems tract are formed of two facies types. 

The first is oncoidal floatstones with moderately diverse benthic fauna, including 

gastropods, rugose corals, crinoids, bryozoans, and ostracods (Fig. 8a). Most 

bioclasts are encrusted with both spongio- and porostromate problematica (Fig. 8c), 

e.g. Girvanella. The matrix is clotted and peloidal, suggestive of microbially 

precipitated micrite. This interval also contains reefs, not examined here, but 

characterized previously by Penn (1971) and Päßler et al. (2014). The second and 

stratigraphically higher facies is mud- to wackestones with rare complete rugose corals 



in life positions. This interval is partly dolomitic, as indicated by the lack of reaction 

with acetic acid (Jarochowska et al. 2017), but neither obvious dolomitization affecting 

rock texture nor microbial structures typical for primary dolomite have been observed 

in thin sections or macroscopically. This allows the possibility that dolomite was 

present in the fine fraction, as reported from other carbon isotope excursion intervals 

(Kozłowski & Sobień, 2012; Frýda & Frýdova, 2016). Oncoids are absent and putative 

cyanobacteria are less common, typically in association with the non-microbial 

problematicum Allonema (Fig. 8f-g), which also encrusts most available substrates. 

The matrix is bioturbated, giving the rock amalgamated appearance. Benthic fauna is 

fragmented and consists of gastropods, ostracods, trilobites, and rare crinoids. 

 Based upon the microfacies descriptions the base of PS1 was deposited 

between storm and fair-weather wave base. The scarcity of benthic fauna and lack of 

green algae indicate either restricted conditions or relatively deep environment. The 

high degree of fragmentation is suggestive of long transport, supporting the latter 

explanation. On the other hand, the very large size and high degree of colony 

integration in favositids are commonly taken as indicator of their photosymbiotic mode 

of growth (e.g. Stanley & Lipps, 2011) and large colonies might indicate position within 

the photic zone. The remainder of PS1 records a rapid lowering of the erosional base, 

with the scoured surface at the top of the parasequence indicating submarine 

winnowing. The iron oxide mineralization of this surface is likely derived from the 

overlying bentonite (WH4 of Ray et al. 2013) that was preserved during the onset of 

relative sea-level rise associated with the proceeding parasequence. 

The presence of green algae within much of the overlying Lower Quarried 

Limestone Member indicates deposition within the euphotic zone (Päßler et al. 2014). 

All oncoids observed are small, smooth-surfaced, and spherical to subspherical (Type 



A oncoids of Ratcliffe, 1988) and indicate deposition within fair-weather wave base. 

Only the topmost part of the member was deposited below the fair-weather wave base 

and the euphotic zone (Päßler et al. 2014), with the amalgamation through burrowing 

organisms suggestive of low depositional rates at this time. 

At Dudley the microfacies of the Lower Quarried Limestone Member have been 

documented in detail (Ratcliffe, 1988; Ratcliffe & Thomas, 1999), with three 

microfacies attributed to the bedded part of the succession (peloidal packstones; 

skeletal packstones and wackestones; loosely packed skeletal wackestones) and 

three attributed to reefal masses and their immediate surroundings (coralline 

framestones (= graticulacean algae); crinoidal grainstones; algal micrites). More 

generally the common occurrence of oncoids and green algae indicates that 

deposition took place mostly within the euphotic zone. With respect to relative sea-

level change and depositional energy much insight has been gained from the analysis 

of oncoid morphology. Broadly, the oncoids range from large (< 70 mm), highly 

irregular branched forms to small (5–10 mm) subspherical forms, with the degree of 

rolling during formation responsible for differences in morphology. Using a simple 

classification of oncoid morphology (types A, B and C), Ratcliffe (1988) demonstrated 

that across the West Midlands there is a vertical transition from irregular Type C 

oncoids to subspherical Type A forms. Such an arrangement indicates an overall 

increase in depositional energy from an environment close to storm wave base, being 

characterised by low energy with little turbulence (Type C oncoids), to an environment 

within fair-weather wave base, with Type A oncoids requiring constant but gentle 

rolling (Ratcliffe, 1988). 

Based upon a regional comparison of the environmental changes within the 

uppermost Coalbrookdale Formation and Lower Quarried Limestone Member it is 



apparent that as sea-level fell across the platform interior the position of the highest 

depositional energy shifted from the West Midlands (the Basement Beds) to Hereford-

Worcestershire and Whitman’s Hill Quarry (basal Lower Quarried Limestone 

Member). This shift resulted in the dissipation of wave energy within formerly low 

energy deeper water areas (i.e. Whitman’s Hill Quarry), and the establishment of a 

sheltered lagoon across the West Midlands. Above the sequence boundary the onset 

of sea-level rise (early transgressive systems tract) resulted in an eventual return of 

high-energy deposition to the West Midlands (Type A oncoids of the higher part of the 

Lower Quarried Limestone Member), while at Whitman’s Hill Quarry deposition 

returned to below fair-weather wave base and the euphotic zone. It is of note that high-

energy deposition within the West Midlands during parasequences 4 and 5 most likely 

reflected the onset of relative sea-level rise, as inferred by features such as 

parasequence thickness and lithological variability (Ray et al. 2010). 

 



Figure 8. Microfacies of the Lower Quarried Limestone (a-g) and Nodular Beds (h-j) 

members; see figures 2 and 3. (a) Oncoid-gastropod floatstone, arrows show algal 

coating on recrystallized gastropod shell, thin section 7 (TS7), Whitman’s Hill, scale 

bar 2 mm. (b) Crinoidal pack- to grainstone with cortoids, thin section 6 (TS6), 

Whitman’s Hill, scale bar 4 mm. (c) Oncoid formed by probable Girvanella, thin section 

7 (TS7), Whitman’s Hill, scale bar 500 m. (d) Close-up of a porostromate 



problematicum forming an oncoid, thin section 6 (TS6), Whitman’s Hill, scale bar 200 

m. (e) Truncated oncoid formed by a porostromate problematicum, thin section 6 

(TS6), Whitman’s Hill, scale bar 500 m. (f) Aggregation of Girvanella and Allonema 

floating in the matrix, thin section 8 (TS8), Whitman’s Hill, scale bar 500 m. (g) Close-

up of Girvanella in (f), scale bar 200 m. (h) Girvanella floating in a grainstone, thin 

section 9 (TS9), Whitman’s Hill, scale bar 500 m. (i) Contact between crinoidal 

bioturbated wacke- to packstone and crinoidal grainstone with peloids, thin section 11 

(TS11), Bruff Business Park, scale bar 4 mm. (j) Sponge spicules in a wackestone 

matrix, thin section 10 (TS10), Bruff Business Park, scale bar 500 m. 

 

5.c. Nodular Beds Member of the Much Wenlock Limestone Formation 

The Nodular Beds Member of the MWLF increases in thickness from 23.0 m within 

Hereford-Worcestershire (Bruff Business Park) to 27.8-31.0 m within the West 

Midlands. The member consists of nodular and bedded limestones separated by silty 

mudstones of a similar thickness. In terms of relative sea-level change, the member 

begins with a marked sea-level rise (late transgressive systems tract) of probable 

eustatic origin (transgression 5a of Johnson, 2006), above this sea-level falls, slowly 

at first and then more rapidly within the upper part of the member (highstand and falling 

stage systems tracts) (Ray et al. 2010, 2013). Based upon the common occurrence of 

reefs and skeletal limestones, the succession in the West Midlands appears to be 

developed within a somewhat shallower setting than that within Hereford-

Worcestershire. In particular, at Dudley skeletal limestones and reefs return within 

PS7, above which PS8 is particularly notable as a massively bedded interval 

consisting of packstones and grainstones with reefal masses (i.e. a high-energy 



setting within the euphotic zone). The onset of this reefal facies is observable across 

the West Midlands (Ray & Thomas, 2007; Ray et al. 2010) and marks the beginning 

of pronounced shallowing, that culminates in the wave-rippled grainstone beds and 

the uppermost Nodular Beds and Upper Quarried Limestone member. 

At Whitman’s Hill Quarry and Bruff Business Park the beds of the Nodular Beds 

Member are partly amalgamated and obliterated by formation of nodules. The lower 

part of the member (PS6) is a partly dolomitized mudstone with crinoids, small, solitary 

rugose corals, and a high content of clay and siliciclastic mud. Stratigraphically higher 

in the member (PS8 and 9) the proportion of clay is lower and nodularity is more 

pronounced. Nodules are surrounded by silty mudstones with dissolution seams and 

formed by very fine-grained bioclastic wackestone with crinoids and abundant sponge 

spicules (Fig. 8j). The contact with the uppermost parasequence (PS10) (Fig. 8i) 

shows an abrupt shift to purer carbonates formed by wacke- to packstones with 

grainstone nodules containing Dimorphosiphon-like green algae. 

Based upon the microfacies descriptions the basal parasequence (PS6) of the 

Nodular Beds Member was deposited near the storm wave base at very low rates of 

carbonate production and is considered characteristic of the late transgressive 

systems tract. The top of PS9 is reflective of a general shallowing trend (highstand 

systems tract) with increasing abundance and diversity of benthic fauna. However, the 

absence of photic zone indicators and high abundance of sponges indicates relatively 

deep environment below storm wave base. Finally, the base of PS10 represents the 

surface of forced regression and marks an abrupt shallowing to the euphotic zone. In 

addition, the increasing proportion of grainstones in this unit indicates deposition 

initially near and subsequently above the fair-weather wave base (falling stage 

systems tract). 



Based upon a regional comparison of the Nodular Beds Member it is clear that 

a high-energy setting within the euphotic zone was achieved much earlier within the 

West Midlands (PS7), while within Hereford-Worcestershire such a setting is only 

achieved by PS10. Thus, for a significant portion of the deposition of the Nodular Beds 

Member the West Midlands represented a potentially restricted patch-reef setting, 

while Hereford-Worcestershire reflected the relatively open waters of the margin of the 

platform interior. 

 

5.d. Upper Quarried Limestone Member of the Much Wenlock Limestone 

Formation 

The thickness of the Upper Quarried Limestone Member varies from 7.51 m (including 

the Passage Beds; PS12) at Bruff Business Park to between 8.6 m to 10.2 m across 

the West Midlands (Aldridge et al. 2000). Across the study area the member begins 

within thickly bedded to massive grainstones that develop towards the top of PS10. 

The top of PS10 is a combined sequence boundary and transgressive surface and 

represents the peak of a major relative sea-level fall of probable eustatic origin (see 

Johnson, 2006). Above, the succession is considerably more variable in lithology and 

thickness (PS11 and PS12). Such variations reflect the onset of regional sea-level rise 

(early transgressive systems tract), differences in palaeobathymetry and the localised 

development of grainstone shoals (Ray et al., 2010, 2013; Blain et al. 2016). Finally, 

the onset of rapid regional sea-level rise (late transgressive systems tract) replaces 

the inner-shelfal carbonates of the MWLF with the outer-shelfal silty mudstones of the 

Lower Elton Formation. We here confine our descriptions to the successions at Bruff 

Business Park (Suckley) and Lion’s Mouth Cavern (Dudley) (Figs. 2, 5, 6). 



 Microfacies analysis at the Bruff Business Park identifies the massive nodular 

limestones that develop towards the top of PS10 as consisting of a poorly sorted 

crinoidal grainstone with diverse ostracods, bryozoans, brachiopods and echinoderms 

(Fig. 9a). Above PS11 consists of evenly bedded silty mudstones intercalating with 

limestone nodules and thin limestone beds. The mudstones are moderately 

bioturbated and have a diverse ostracod and bryozoan fauna. Grainstone beds formed 

by well-sorted crinoids and ostracods have been found cutting erosionally into the 

mudstones (Fig. 9c). Limestone beds show planar lamination formed by very well 

sorted, very fine sand fraction peloidal grainstones with abundant organic-walled 

fossils – scolecodonts and chitinozoans, and Planolites-like burrows (Fig. 9b). The 

Passage Beds equivalent occurs in parasequence 12 and may be distinguished by a 

slightly more nodular appearance than the overlying Lower Elton Formation (included 

in the Lower Elton Formation of Ray et al. 2013), but otherwise is broadly similar. This 

unit is distinguished by a shift to fine-grained sedimentation and the formation of silty 

nodular mudstones with sparse bioturbation. Lenses of bioclastic float- to rudstones 

with diverse bryozoans, crinoids, brachiopods, trilobites, ostracods, and halysitid 

corals (Fig. 9d) appear partially reworked by bioturbation. 

In contrast to the Bruff Business Park section, at Lion’s Mouth Cavern (Dudley, 

West Midlands) PS11 is developed as coarse thick-bedded crinoidal grainstones. 

Above, the Passage Beds (PS12) begin with a very coarse grainstone with shale and 

limestone rip-up clasts, stromatoporoids and corals both rolled and in situ, and very 

coarse crinoid ossicles. This unit is followed by thin-bedded, amalgamated crinoidal 

rudstones grading into grainstones and fine-grained, well-sorted packstones with 

quartz grains in the fine sand size fraction. In the upper part numerous crinoid ossicles 

are phosphatized (Fig. 9e-f). 



 Based upon the microfacies descriptions the variability in depositional 

environment and relative sea-level within the Upper Quarried Limestone Member and 

immediately overlying Lower Elton Formation may be assessed. At Bruff Business 

Park the initial grainstone succession at the top of PS10 is interpreted as deposition 

in a shoal environment, i.e. above the fair-weather wave base. Above PS11 is 

representative of relative sea-level rise and the onset of the early transgressive 

systems tract. Here deposition occurred in a soft-bottom environment. Low faunal 

abundance and the lack of photic zone indicators point to a relatively deep 

environment. Distal tempestites formed as laminated grainstones, identical to those in 

the upper part of the Coalbrookdale Formation, point to deposition above the storm 

wave base. Within the overlying Passage Beds and basal Lower Elton Formation 

relative seal-level continued to rise. A low diversity of benthic fauna indicates 

deposition in a relatively deep environment, but above the storm wave base, as 

indicated by storm beds bringing shallow-water material. In addition, limited 

bioturbation might suggest comparatively high depositional rates or limited oxygen 

availability. 

By contrast PS11 at Lion’s Mouth Cavern is reflective of deposition in a high-

energy shoal environment and indicates continued relative sea-level fall within the 

Dudley area. It is not until the overlying Passage Beds (PS 12) that relative sea-level 

notably rises. Here the Passage Beds reflect oscillation near the fair-weather wave 

base, and the phosphatization of bioclasts is interpreted to represent sediment-

starvation as sea-level increased. 

 



  

Figure 9. Microfacies of the Upper Quarried Limestone Member (a-c, e-f) and Lower 

Elton Formation (d); see figures 2 and 4. (a) Partly dolomitized crinoidal packstone, 

sample 12 (TS12), Bruff Business Park, scale bar 3 mm. (b) Laminated peloidal 

grainstone with Planolites-like bioturbations, sample 14 (TS14), Bruff Business Park, 

scale bar 3 mm. (c) Erosional contact between bioturbated bioclastic wackestone and 

crinoidal grainstone, sample 13 (TS13), Bruff Business Park, scale bar 3 mm. (d) 

Erosional contact between bioturbated bioclastic float- to rudstone and crinoidal pack- 

to grainstone, sample 15 (TS15), Bruff Business Park, scale bar 3.5 mm. (e) 



Bioturbated crinoidal packstone with phosphatized crinoids, sample 16 (TS16), Lion’s 

Mouth Cavern, scale bar 2.5 mm. (f) Close-up of (e), scale bar 500 μm. 

 

Based upon a regional comparison of the Upper Quarried Limestone Member, 

it is apparent that with the onset of the early transgressive systems tract the relatively 

deeper-water carbonates of Hereford-Worcestershire failed to keep pace with sea-

level rise, while those in the West Midlands initially outpaced sea-level rise. This 

resulted in markedly different depositional environments cross PS11 and PS12, above 

which the increased rate of sea-level rise (late transgressive systems tract) regionally 

replaced the inner-shelfal carbonates of the MWLF with the outer-shelfal silty-

mudstones of the Lower Elton Formation. 

 

6. The impact of depositional environment upon the Homerian Carbon Isotope 

Excursion 

The subdivision and correlation of the Much Wenlock Limestone Formation and the 

immediately under- and overlying formations by parasequences allows for the 

investigation of age synchronous, but depositionally divergent environments (Figs. 2, 

3, 6). Based upon the analysis of microfacies herein these differences have been 

qualitatively assessed in terms of their position with respect to storm and fair-weather 

base and the euphotic zone, thereby allowing for a better understanding of the 

environmental differences between sections. These depositional differences can now 

be compared with differences in the carbon isotopic record. 

 At the broadest scale it is apparent that for any given time interval the 

shallowest depositional setting is consistently developed within the West Midlands. 

This observation is most apparent during episodes of rapid (eustatic) sea-level change 



where higher-energy (and shallower) microfacies occur earlier during sea-level fall and 

persist later during sea-level rise. In terms of the effect upon carbon isotopic values it 

has been well documented that lighter δ13Ccarb values are recorded from more distal 

settings and heavier values from shallower settings, and this relationship has been 

demonstrated in near-age equivalent successions on Avalonia (Blain et al. 2016), 

Baltica (Jarochowska & Munnecke, 2015), and Perunica (Frýda & Frýdova, 2016). 

Based upon the maximum δ13Ccarb values for the lower and upper peaks of the 

Homerian CIE this also holds true for the MWLF with values in the West Midlands 

0.7‰ and 0.8‰ higher than in Hereford-Worcestershire. The likely range of isotopic 

values within the carbonates of the Midland Platform may be established for the lower 

peak of the Homerian CIE, with values ranging from as low as 2.8‰ (Fry et al. 2017) 

for the most distal extreme of the carbonate deposition (Farley Member of the 

Coalbrookdale Formation at Eaton Track near Much Wenlock) to 5.5‰ for the most 

proximal setting at Dudley (i.e. a difference of 2.7‰). 

 At the scale of members and parasequences the effect of depositional 

environment and paleobathymetry upon carbon isotopic values can also be observed. 

These differences are most conspicuous within the Nodular Beds Member, where 

there is a regional difference between the position of the broad trough in values which 

separates the dual peaks of the Homerian CIE. In particular, within the West Midlands 

the broad minimum in values and turnaround to rising values occurs in PS7, while 

within Hereford-Worcestershire this occurs around the PS9-PS10 boundary (Fig. 6). 

From the perspective of paleobathymetry change, within the West Midlands the upper 

part of PS7 corresponds to the onset of reef development and the beginning of a 

pronounced shallowing, while within Hereford-Worcestershire a relatively deep 

environment below storm wave base and the euphotic zone persists until the base of 



PS10, after which pronounced shallowing begins. Thus, the broad minimum in isotopic 

values and the turnaround to rising values appears to mirror the onset of pronounced 

shallowing within both areas. One possible interpretation of the stratigraphic off-set 

between troughs could be a mis-correlation of parasequences; which seems unlikely 

given the additional bentonite correlation within this critical interval. Moreover, 

superimposed upon the broad carbon isotopic trends of both areas are lesser troughs 

in values which appear to represent age equivalent isotopic events or local 

petrographic variations (Fig. 6). However, no support for the effect of diagenetic 

alterations or admixture of detrital minerals that might have shifted the isotopic values 

(see e.g. Kozłowski & Sobień, 2012) has been observed in thin sections. A strong 

diagenetic overprint on the isotopic values can be excluded based on the lack of 

relationship between δ18Ocarb and δ13Ccarb values (Supplementary Material). 

Accordingly, regional differences in the rate of paleobathymetric change and nature of 

the associated carbonates appear to control and off-set the broad trend in isotopic 

values, while shorter-term events are observable across the study areas. 

Within the upper MWLF there is approximate synchronicity between the areas 

with respect to the position of the upper peak of the Homerian CIE. However, while 

the upper peak occurs in both areas within PS10, its position within the parasequence 

does differ. In particular, peak values occur in the lower half of PS10 in the West 

Midlands and the upper half PS10 in Hereford-Worcestershire. As previously this off-

set may also be the result of differing paleobathymetries upon isotopic values, but 

given the general upward shallowing nature of each parasequence and the similarly 

rapid fall in sea-level observed across the region this explanation seems less 

apparent. Thus, an alternative explanation might be that the intra-parasequence off-

set of the peak values may reflect variable sedimentation rates and or minor regional 



diachronism. This view is additionally supported by the correlation of a bentonite within 

PS10 between Dudley and Wenlock Edge (Ray et al. 2011). As with the position of the 

isotopic peak, the bentonite horizon occurs lower in the parasequence at Dudley and 

at a relatively higher position towards the platform margin at Wenlock Edge. 

Irrespective of the cause, such minor differences do highlight the limit of the regional 

stratigraphic resolution and question significance of minor off-sets in the start and 

finish of the Homerian CIE highlighted herein. 

Lastly, our ability to clearly identify the end of the Homerian CIE is of particular 

significance owing to its close proximity to the Wenlock-Ludlow boundary. Based upon 

the correlation of parasequences with the Gorstian GSSP (base Ludlow Series) at 

Ludlow (Shropshire) (Fig. 1b) (Melchin et al. 2012; Blain et al. 2016; Fry et al. 2018) 

this boundary corresponds to the PS11-PS12 boundary (the Much Wenlock 

Limestone-Lower Elton Formation boundary at Ludlow). Accordingly, the carbon 

isotopic records within the West Midlands and Hereford-Worcestershire would argue 

for the end of the Homerian CIE within the very earliest Ludlow (intra-PS12). However, 

the end of the Homerian CIE is far from clear within the Ludlow area (Fry et al. 2018) 

and this lack of clarity has been linked to platform margin depositional setting of the 

Ludlow area (Blain et al. 2016). In particular, within deeper-water settings the 

environmental difference between the latest Wenlock limestones of the MWLF (PS11) 

and the shales and limestones of the lowest Lower Elton Formation (PS12) becomes 

less marked and this is reflected by less variability within carbon isotopic record; 

thereby making the accurate establishment of the end of the CIE difficult. Conversely, 

within the platform interior the end of the Homerian CIE coincides with a marked sea-

level rise and equally marked environmental change, which may have the effect of 

reducing carbon isotopic values and bringing to an end the Homerian CIE. Thus, the 



end of the Homerian CIE upon the Midland Platform may be partly reflective of local 

environmental changes, rather than global change within the carbon cycle. 

Furthermore, it is clear from this study that the variability of platform carbonates in 

response to sea-level has a significant impact upon the carbon isotopic record and this 

impact can only be understood by a careful analysis of depositional environment and 

paleobathymetry. 

 

7. Conclusions 

New δ13Ccarb and microfacies data from Hereford-Worcestershire (Storridge and 

Suckley) and the West Midlands (Castle Hill, Mons Hill and Wren’s Nest Hill) allow for 

a detailed examination of variations in the Homerian CIE and depositional environment 

within the Much Wenlock Limestone Formation of the interior of the Midland Platform. 

The main conclusions are summarised below: 

1. The entirety of the dual-peaked Homerian CIE is recognised for the first time 

with the Much Wenlock Limestone Formation of Hereford-Worcestershire and 

allows for a detailed comparison of new carbon isotope data from the West 

Midlands area using the sequence stratigraphic and bentonite correlation 

framework of Ray et al. (2013). 

2. Thin section descriptions and microfacies analysis confirm the regional 

differences in relative sea-level change identified by Ray et al. (2013). In 

particular, the Much Wenlock Limestone Formation of West Midlands is 

developed within a somewhat shallower platform interior setting than that seen 

in Hereford-Worcestershire. This is most apparent during episodes of rapid 

(eustatic) sea-level change where higher-energy (and shallower) microfacies 

occur earlier during sea-level fall and persist later during sea-level rise. 



3. Based upon the maximum δ13Ccarb values for the lower and upper peaks of the 

Homerian CIE the shallower depositional setting of the West Midlands is 

associated with values that are 0.7‰ and 0.8‰ higher than in Hereford-

Worcestershire. Thus, lighter δ13Ccarb values are recorded from more distal 

settings and heavier values from shallower settings. 

4. At the scale of members and parasequences the effect of depositional 

environment upon carbon isotopic values has been observed. In particular, 

there is a clear off-set in the position of the trough in isotopic values between 

the peaks of the Homerian CIE. This offset can be attributed to notably 

shallower parts of the succession within the West Midlands area. It appears to 

reflect differences in relative sea-level change and carbonate production rates. 

Furthermore, it may be influenced by rock mineralogy and the corresponding 

δ13C fractionation, with higher values in shallower settings due to higher 

proportions of dolomite or aragonite. 

5. Local differences in carbon isotopic values complicate their use as a means of 

high-resolution correlation. However, from this study it is clear that a careful 

analysis of the depositional environment and paleobathymetry can account for 

these differences and thereby improve our utilisation of this stratigraphic tool. 
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