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The Impact of Tropical Storms on Households: 

Evidence from Panel Data on Consumption 

 

 

 

Abstract 

 

This paper investigates the impact of tropical storms on Jamaican household consumption. 

We build a panel dataset that follows individual households over time thus enabling us to take 

account of time invariant household and location unobservables that could be correlated with 

mean tropical storm exposure. Our results show that while the average damaging hurricane 

reduces per capita consumption by approximately 1.1 per cent,  more destructive events can 

cause losses multiple times this amount. There are, however, heterogeneous impacts across 

households, where only those that live in buildings with less wind resistant walls are affected.  

Additionally, we find that households are able to partially buffer the negative impact on 

consumption through remittances and savings, as well as by shifting funds away from non-

regular expenditures.  Again, households differ in the nature of this buffering according to the 

wind resistance of their buildings. 
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Section I: Introduction 

 

Tropical storms cause considerable economic losses across the world.  For example, 

estimates on their monetary damages suggest that losses have amounted to over $33 billion 

since 2000.1  Worryingly, developing countries are those disproportionately affected by these 

extreme weather events (Doocy et al., 2013).  Moreover, developing countries are unlikely to 

have the social security safety nets that are typically available in developed countries after a 

natural disaster; see Deryugina (2017). A growing literature has now investigated what the 

aggregate wealth implications of tropical storms are, although the conclusions have been 

rather mixed; see Noy and DuPont (2016) and Klomp and Valckx (2014) for reviews.2 

However, aggregate data may be masking considerable heterogeneity of the impact of these 

storms across the various actors within an economy. As a matter of fact, in developing 

countries, it is often households that are vulnerable and of the greatest concern to 

policymakers due to their inability to cope with negative shocks.  Nevertheless, the number of 

studies that have explicitly investigated the impact of tropical storms, or even natural disasters 

more generally, on households have been few and their conclusions have varied widely.     

A telling insight into the current state of the literature of natural disasters on households is 

the recent meta-analysis by Karem and Noy (2014).  In their review of 38 papers on the topic, 

the authors conclude that while there is a general tendency to find a negative impact on 

household welfare3, this impact appears to be only short-term.  Importantly, however, even 

for those studies that found clear evidence of consumption reduction, the actual quantitative 

                                                           
1 Source: Emergency Events Database (EM-DAT) 
2 For instance, Smith (2008), Hisang (2010), Strobl (2011), Strobl (2012), and Elliott et al. (2015) find short-

term effects, while the study by Hsiang and Jina (2014) shows evidence of a long-term impact.   
3 Note that this literature has used an array of different measures for measuring welfare, including 

consumption (Kurosaki, 2010; Thomas et al., 2010; Anttila-Hughes and Hsiang, 2012; Arouri et al., 2015; 
Karim and Noy, 2014), income (Karim and Noy, 2014; Aurori et al., 2015; Ishizawa and Miranda, 2018) and 
assets (Carter et al., 2007). 
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extent of these losses differs widely, thus making it difficult to evaluate the urgency of 

explicitly employing policies to help households deal with these negative shocks.     

Even if one explicitly focuses on tropical cyclones, rather than natural disasters in general, 

it is difficult to draw any conclusions with regard to the impact, at least quantitatively, on 

household consumption. For example, Thomas et al. (2010) and Arouri et al. (2015) find that 

the impact of storms resulted in Vietnamese households experiencing a 52% and 1.5% 

reduction in consumption with the use of cross-sectional and commune level panel data, 

respectively. In contrast, provincial panel data for the Philippines show a reduction between 

5.9% and 7.1% in consumption (Anttila-Hughes and Hsiang, 2012), while Central American 

countries experience a decline ranging between 2% and 4% (Ishizawa and Miranda, 2018). 

Baez et al.’s (2015) use of panel data also show a fall in the consumption of Guatemalan 

households by 12.6%. Thus, these storm-focused studies demonstrate a large disparity in 

tropical storm impact, making it difficult to draw definitive conclusions on how household 

consumption is affected.4  

There could of course be many reasons as to why there is such an array of different results 

on the household welfare impact of natural disasters in general, and tropical cyclones in 

particular.  Perhaps the most obvious, is the difference in the measurement of tropical cyclone 

destruction.  Earlier studies tended to use storm incidence or wind speed categories (see 

Thomas et al., 2010 and Arouri et al., 2015).  In contrast, more recent papers modeled local 

damage explicitly with physical wind field models; see, for instance,  Strobl (2012) and 

Ishizawa and Miranda (2018).  Importantly, capturing the appropriate functional form of the 

damage function will reduce measurement error and hence the possibility of attenuation bias.  

                                                           
4 Note that the discrepancy between long versus short term impacts is also prevalent in studies for developed 
countries.  For instance, Deryugina et al. (2018) find a long term impact of Hurricane Katrina on its victims, 
while Shaughnessy et al. (2010) found that the same storm decreased income inequality. 
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Another potentially important reason is that, as of date, most studies on the impact of 

tropical storms on household consumption have been restricted to using cross-sectional data.5 

Arguably, however, unless one has a very rich set of controls, not being able to control for 

household fixed effects can lead to biased estimates, particularly in a household consumption 

context (Jenkins and Siedler, 2007; Kurosaki, 2010; Aurori et al., 2015). More specifically, 

households should rationally choose to locate in those areas that are less likely affected by 

tropical cyclones. However,   the ability to do so may be related to other (unobserved) factors 

that determine consumption. In the only study that used panel household data in a tropical 

storm context, Baez and Santos (2007) focus on a single event, i.e., the impact of Hurricane 

Mitchell on Nicaragua, and classify households as being located in affected municipalities or 

not. In comparing adult share of consumption of tobacco and alcohol, they find that these are 

not impacted by the storm.6   

The different results on the effect of tropical cyclones in the literature may also be due to 

the widely heterogeneous sample of countries examined. In particular, one might suspect that 

the manner in which households may in the absence of formal insurance mechanism try to 

buffer these negative shocks could differ substantially across and within countries. Some 

households may try to smooth their consumption through informal mechanisms such as 

borrowing, drawing on savings, or the liquidation of assets (Morduch, 1995; Van de Berg and 

Burger, 2008). However, others without access to these financial funds may have to reallocate 

their budget to necessary consumption, such as food, from non-food and other non-necessary 

                                                           
5 The only exception in this regard is Ishizawa and Miranda (2018) in their study of several Central American 

countries. However, while they use panel data derived from household surveys, the panel is constructed from 
cross-sectional household level data and aggregated to regional level.  They are thus not able to account for 
household specific fixed effects.     

6 The main focus of the paper is on how the storm affected child vulnerability, and they hence did not 
explicitly investigate the impact on total household welfare.   
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expenditure (Skoufias, 2003).7  Indeed, for natural disasters there is some evidence that 

households may smooth their food consumption by reducing the consumption of non-food 

items. Plausibly, not taking account of the complexity of these insurance mechanisms may be 

a driving factor behind the large variety of results found in the existing empirical literature.    

In this study, we attempt to addresses the highlighted potential shortcomings in the existing 

literature using the case study of household consumption and tropical cyclones in Jamaica.  In 

particular, we build a panel of households for which we can observe households up to 4 years 

over a 21 year period. This allows us in our econometric analysis to take account of household 

fixed effects and thus to interpret the tropical cyclone shocks as random realizations of the 

probability distribution of storms.  Additionally, we construct a hurricane damage index that 

is location specific and based on the physical characteristics of the storm, which some of the 

more recent literature has shown to be important.8 We also investigate whether treatment 

effects are different for households residing in buildings with walls of different wind 

resistance.  Finally, we estimate the importance of both informal insurance mechanisms, as 

well as the reallocation of consumption across goods, as a way of buffering the negative 

consequences of cyclone strikes.    

  For the purpose here, Jamaica is arguably a particularly relevant case to study not only 

because of data availability, but also because it is subject to frequent tropical storms. For 

instance, over our sample period, 1990 to 2010, we identified 15 damaging storms. As a 

matter of fact, Jamaica is ranked number three behind Haiti and the Dominican Republic in 

terms of the number of storms experienced between 1990 and 2008 (ECLAC, 2010) and is 

cited as being one of the most vulnerable countries in the Caribbean on the environmental 

                                                           
7 There are of course many other ways that households have been shown to buffer consumption shocks, such 

as adjusting their labour supply (Kochar 1999; Garuiglia and Kim, 2003; and Skoufias, 2003) or increasing child 
labor (Jacoby and Skoufias, 1998).   

8 See, for instance, Strobl (2012) and Spencer, Polachek and Strobl (2016). 



 

6 
 

vulnerability index (Kaly et al., 2004). Tropical cylcones have at times been detrimental to the 

Jamaican economy. For example, the most damaging hurricane ever to hit Jamaica in modern 

times was Gilbert in 1988, causing damages amounting to US$4 billion (Pan American Health 

Organization, 1988). Other damaging storms were hurricanes Ivan in 2004 and Dean in 2007, 

where the former resulted in US$139 million damage to the agriculture sector and significant 

damage to the homes of over 700,000 Jamaicans (Planning Institute of Jamaica (PIOJ), 2004), 

while the latter generated around US$81 million damage in agriculture with housing suffering 

over 84% of losses (Planning Institute of Jamaica, 2007). 

Our analysis produces a number of interesting findings with considerable relevance to the 

existing literature. Firstly, we show that not controlling for time invariant unobservables can 

produce biased estimates of the impact of tropical cyclones on household consumption. We 

also demonstrate that there are differential treatment effects across household’s building type 

in terms of their wall’s wind resistance.  Interestingly, our results show that Jamaican 

households tend to employ both buffering through informal financial mechanisms, such as 

drawing on savings or receiving remittances, and reallocating budgets across necessary and 

non-necessary good types as partial coping strategies. More generally, however, in line with 

most of the literature, the impact on welfare, even for those households that cannot buffer the 

shocks through financial resources, is short lived, small on average, and only large for the rare 

extremer events. 

The remainder of the paper is organized as follows. In the next section we discuss the data 

and the construction of the hurricane damage index. Section 3 presents some summary 

statistics. Section 4 follows with the econometric estimations and results. Section 5 concludes.  

 
Section II: Data and Summary Statistics 

II.A. Household Data 
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Our source of data for Jamaican households is the Jamaica Survey of Living Conditions 

(JSLC). This survey was first introduced in 1988 and has collected information annually9 

since then, except for 2011.10 In general, each JSLC questionnaire has included modules on 

housing, health, education, consumption, and nutrition.  Importantly, the JSLC is constructed 

on a rotating panel basis. More specifically, in those years that the master sampling frame is 

not updated, half of the households surveyed from the previous year are re-surveyed. On 

occasion as many as four successive JSLC samples were drawn from the master frame.  

Overall, the system of rotation of the JSLC enables the construction of panels of households 

for the periods 1990-1992, 1993-1994, 1995-1996, 1997-1998, 1998-2000, 2002-2003, 2004-

2006, and 2007-2010. Given that the sampling is done of dwellings rather than households, 

we follow the procedure of Handa (2008) to match households across survey rounds.11 

Overall, this allowed us to create an unbalanced panel of 9,553 households, of which the 

average number of observations was 2.48.   

We use the SLC to calculate total consumption (expenditure) per capita.  In the data, total 

consumption can also be decomposed on a consistent basis over surveys in terms of food 

consumption, non-food consumption, and non-regular consumption. Food consumption 

consists of fruits, vegetables, protein and all forms of carbohydrate intake, while non-food 

consumption includes items such as household supplies, electronics, furniture, personal care 

items, clothing and education expenses. In contrast, non-regular consumption items consist of 

expenditure on weddings, funerals, gambling, life and general insurance payments, and 

donations. Per capita values of all these consumption variables are obtained by normalizing 

by the number of household members. Since the JSLC interviews are conducted during 
                                                           

9 Originally the JSLC was conceived to be a semi-annual survey but in 1990 annual surveying was deemed to 
be sufficient. 

10 The JSLC covers on average about 0.3 per cent of total households in Jamaica.   
11 Once a unique household identifier is constructed, households are matched across years if the sex of the 

household head remained the same, if his/her age did not change by more than 2 years, and if the number of 
members in the household did not change by more than 2 people.  According to this criteria, similar to Handa 
(2008), our match rate was about two thirds, with slightly higher rates in later years of the sample period.    
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various months of the year, we use the monthly Consumer Price Index data from STATIN 

corresponding to the month of the interview to deflate our expenditure variables to 2010 

values.    In terms of location, we know the enumeration district each household is located in.  

The spatial breakdown of the 6,327 districts is shown in Figure B1 in Appendix B. 

As our main time varying household level control we calculate the share of children,: 

defined as the proportion less than or equal to 14 years of age in a household.12 The JSLC also 

consistently collected information on whether a household received remittances. Specifically, 

households are asked to indicate yes or no as to whether they received support from specific 

sources including children, parents, spouse and other relatives living overseas. Finally, we 

processed information on whether households received interest payments from financial 

institutions, which we use as an indicator of the existence of savings by the household.  

The JSLC also consistently collected information on the main material of the outer walls of 

the buildings that households reside in.  More specifically, the JSLC categorizes the outer 

main walls of a household’s building into 7 main types: wood, stone, brick, concrete nog, 

block and steel, wattle and adobe, and other.  

 

 

II.B. Hurricane Destruction Index 

While the earlier literature on the economic impact of tropical cyclones  used incidence 

dummies or ex-post damage estimates as proxies of storm destruction, recently it has become 

much more common to construct a proxy of damages based on the physical characteristics of 

the event and to allow this to vary across space; see, for instance, Strobl (2012) and Ishizawa 

                                                           
12 Unfortunately, the JSLC did not consistently collect much more household level information over time that 

would not be potentially considered as ‘bad controls’ in the Angrist & Pischke (2009) sense.   
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and Miranda (2018). More specifically, this approach allows one to take account of the many 

features of a hurricane that will determine the spatial heterogeneity in wind speeds 

experienced locally, as, for instance, the position relative to the storm, the maximum wind 

speed of the storm, the movement of the storm, and landfall.13   

To construct a hurricane index that takes into account how the features of a storm impact 

local wind speed, we take a set of households, i=1,…, I, located in regions, j=1,…., J, that 

experience a set of hurricanes, k=1,…, K, with life times of s=1,…,S. Then the hurricane 

destruction for household i during the year t is defined as: 

( )∑∑
= =

=
K

k

S

s
tskjitji WH

1 1

3
,,,,,,     *

,,,,, jitskji WW ≥   (1)  

where W is the measured wind speed in region j during a storm k at point s of its life time and 

W* is the household specific threshold above which wind is damaging.  Thus, the two main 

required inputs for the construction of the index are W and W*. As can be seen, we allow local 

destruction to vary with wind speed in a cubic manner since, as noted by Wang and Xu (2010) 

and Emanuel (2011), kinetic energy from a storm dissipates roughly to the cubic power with 

respect to wind speed and this energy release scales with the wind pressure acting on a 

structure.  By summing the values of W over its life time s we account for the duration of 

exposure.  Moreover, we allow for the possibility of more than one damaging storm occurring 

in a year by using the sum of the cubic value of W across storms within years.   As a threshold 

for damage to occur we set W* at 119 km/hr, which corresponds to the cut-off point for the 

lowest definition of a hurricane, i.e., a Saffir-Scale of 1.  One should note that damage at this 

level is by the National Hurricane Center (NHS) described as: 

                                                           
13 Importantly this allows one to take account of the fact that even if storms do not make landfall, they can 

cause considerable damage due to strong winds.   
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“Well-constructed frame homes could have damage to roof, shingles, vinyl siding and gutters. 

Large branches of trees will snap and shallowly rooted trees may be toppled. Extensive 

damage to power lines and poles likely will result in power outages that could last a few to 

several days.”14 

As noted above, what level of wind a region j will experience during a passing storm, i.e., 

W, depends crucially on that region’s position relative to the storm and the storm’s movement 

and features, and thus requires explicit wind field modeling. We use Boose et al.’s (2004) 

version of the well-known Holland (1980) wind field model which, given hurricane track 

data, can estimate the wind experienced at any local point relative to the storm during its life 

span.  Details of this model are described in detail in Appendix A.  

Since the location indicator that we have for households is at the enumeration district level, 

we use these as our regions, j=1,…., J, and calculate the maximum wind speed for each storm 

relative to each district’s centroid.  The relevant storms over our sample period that produced 

local wind speeds of at least 119 km/hr in at least one of the enumeration districts are listed in 

Table 1. Accordingly, in total there were 15 damaging storms, one of which (Gilbert) made 

landfall at hurricane strength. These storms were not evenly distributed over years, with 2005 

and 2008 experiencing the most incidences. We depict their tracks in Figure 1.  

 It is important to point out that H is constructed taking into consideration the month of 

interview of households. More specifically, households are potentially interviewed during 

different months in a year.  Thus in constructing H at time t for household i we consider the 

hurricane events that took place within the twelve months of household i’s interview month.  

Hence, even two households within the same enumeration district may have different 

measures of H if they were interviewed in different months.  One may want to note that H 

                                                           
14 See https://www.nhc.noaa.gov/aboutsshws.php. 
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does not have a straightforward interpretation. Rather it can be considered as the sum of 

energy dissipated during a storm, measured in km per hour.   

II.C. Other Climatic Controls 

 Since, as noted by Auffhammer et al. (2013), tropical cyclones could be correlated with 

other climatic aspects that in our context may also affect household’s economic consumption, 

we also construct a number of other climatic controls.  More specifically, we took information 

from the Climatic Research Unit ( CRU) TS v. 3.24 dataset compiled by the CRU at the 

University of East Anglia, which provides monthly precipitation and average temperatures at 

the 0.5×0.5 degree resolution globally for land surface areas.  The relevant cells were masked 

out for Jamaica and then each district attributed to the weather cell centroid it was closest to.  

We then constructed monthly average rainfall and temperature for each enumeration district. 

II.D. Summary Statistics 

Table 2 provides descriptive statistics for all variables used in our analysis. As can be seen, 

mean consumption per capita is about J$16,000.  The distribution of consumption per capita is 

also shown in Figure B2 in Appendix B, along with the official poverty line (J$21,895 – see 

PIOJ, 2011).  Accordingly, about 17.6% are below the poverty line.  In term of consumption 

components, food has the largest average share (0.61), followed by non-food (0.36), and non-

regular (0.03) consumption. The mean household has an average share of children of 26 per 

cent. Remittances and interest receipts from loans average around 0.55 and 0.05, respectively. 

Finally, the mean value of our hurricane index when it takes on non-zero values, i.e., when it 

is damaging, is 0.37 (normalized by 1.0e+09).15  

 
Section III: Econometric Estimation and Results 

                                                           
15 For example, if a district experienced wind speeds above 119 km/hr for 24 hours, changing from 119km/hr  

in the first 12 hours, to 200km/hr during the subsequent 8 hours, and to 121km/hr in the final four hours, then the 
index would be: (12*1193 + 8*2003 + 4*1213)/1.0e+09=0.913.   
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III.A Econometric Specification 

Our task is to determine the impact of hurricane destruction on household per captia 

consumption as follows: 

log(Cijt) = α + β1Hijt + β2Xijt + mit + λt + µi + εijt      (2) 

where ijtC , is total consumption per capita for household i , district j  and year t, ijtH is the 

household specific hurricane destruction index defined in (1), X is a vector of household and 

climatic controls, namely share of children in the household and mean (over the year) monthly 

rainfall and temperature, m are interview month indicators, λ are year dummies, and µ time 

invariant household specific unobservables possibly correlated with our other explanatory 

variables. Note that we divide H through by 1.0e+09 so as to make the estimates more 

readable.  

An important aspect to consider is how to calculate the standard errors, given that 

treatment will be correlated across households. If this is not taken into account then the 

estimate could be biased downward.16  As noted by Schlenker and Roberts (2009) and Hsiang 

(2016), this may be particularly a problem when examining the effect of climatic phenomena, 

which are likely to be spatially correlated. They both suggest explicitly modeling this spatial 

dependence.  The choice then is how far this spatial correlation reaches.  One challenge in this 

regard with respect to storms is that they can differ in size and local effects.  We thus 

identified the enumeration districts affected in each of the storms over our sample period, and 

calculated the distances between these.  This was on average about 60 km, and thus we used 

this as a ‘natural’ benchmark threshold distance within which to model spatial dependence, 

employing the approach by Hsiang (2010).  

                                                           
16 See Bertrand et al. (2004).   
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III.B Total Consumption 

We first estimate the impact of hurricanes on total consumption expenditure per capita 

without controlling for household fixed effects, µ, and other controls, as shown in the first 

column of Table 3. This produces a negative but insignificant coefficient on H, suggesting 

that there is no impact on household consumption. We next included our climatic controls, 

rainfall and temperature, as well as the share of children in the household, as controls.  While 

the coefficient, depicted in the second column, increases fourfold it remains insignificant.   

As discussed earlier, there may be other unobserved aspects of a household that are 

correlated with their mean hurricane exposure, such as choice of location.17  In the third 

column of Table 3 we re-estimate the specification in the second column but now also control 

for household fixed effects.  Accordingly, this produces a negative and statistically significant 

effect and suggests that not being able to control for time invariant observables in cross-

sectional data may substantially underestimate the impact of tropical storm damage on 

household consumption.  Using the estimated coefficient and multiplying this by the mean 

non-zero value of H suggests that when a damaging hurricane occurs consumption falls by 

about 1.1 per cent.18  This result can also be considered in terms of its implications for 

poverty in Jamaica.  For example, in 2010 about 12 per cent of households would be 

considered to be below the poverty line.19 An average size hurricane would consequently, 

taking into consideration the distribution of wall types, make about a further 1 per cent of 

households temporarily poor.   

                                                           
17 To document whether poorer HHs locate in more hurricane prone areas, we proceeded as follow. We ran 

our wind field model for storms going back to 1855 at the enumeration district level and then for each district 
calculated out the number of incidences of storms that caused local wind speeds greater than 119 km/hr.  We 
merged this data with the average income per capita derived from the (exhaustive) 2011 Census per household. 
The correlation was positive and statistically significant, although only 0.08. 

18 Since consumption is logged, the effect in percentage terms is simply H*βH, for any chosen value of H. For 
example, for the mean non-zero value of H_WEAK, this would simply be 0.57*0.019=0.01083. 

19 The official poverty line in Jamaica is 12,000 per capita Jamaican dollars.   
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One should note that our estimated effect is smaller than the average impact of between 5.9 

and 7.1 per cent that Antilla-Hughes and Hsiang (2012) find for the Philippines.  However, 

given that the authors cannot control for household fixed effects, some caution must be drawn 

in making such a direct comparison.  In their study of the impact of the strongest tropical 

cyclone ever to strike Guatemala in modern times, Baez et al. (2015) find that the impact on 

per capita consumption was 12.6 per cent. This is more than double the implied impact (5.2 

per cent) of the largest observed value of our damage index over our sample period, which 

implied a 5.5 percentage rise in poverty.  While not within the context of natural disasters, 

Beegle et al. (2008) find using a panel of Tanzanian households that adult mortality shocks 

cause consumption to drop by about 7 per cent.   

One should note that the estimated coefficient on H thus far captures the `average 

treatment’ effect of hurricane damages on household consumption.  However, households 

may differ widely in their vulnerability. For example, one important factor is the type of 

dwelling they are residing in, where the material of the outer walls is crucial in terms of a 

building’s resistance to tropical cyclone winds. As a matter of fact, in an extensive study of 

common building and wall types and their resistance to hurricane winds in Jamaica, the 

Agency for International Development (1981) identified a number of outer wall types that 

were substantially more vulnerable to hurricane wind exposure.  More specifically, housing 

made of wattle and daub, concrete nog, or wood, or some combination of these types was 

found to be especially vulnerable.  We thus define households as residing in hurricane wind 

weakly resistant housing if the outer walls of their building consists of these types and 

strongly resistant otherwise.20  In our matched panel sample, 37 per cent of households 

accordingly reside in buildings that are weakly resistant to hurricane winds. Also, over our 

                                                           
20The importance of modeling differences in vulnerabilities across building types in this manner was previously 
demonstrated by Unanwa et al. (2000) using damage and wind exposure information gathered from a large 
number of studies for the US. 
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sample period the proportion of households living in weakly resistant housing has fallen 

considerably from 53 to 28 per cent.  Importantly, one should note that we are not able to 

disentangle the use of wind resistant walls from other factors that could be correlated with 

household consumption and living in an area that is on average more exposed to hurricane 

damage.  Thus, while the hurricane shocks themselves - after controlling for household fixed 

effects - can be considered exogenous, any differences in consumption response to hurricane 

damages across wall types cannot be strictly interpreted causally.   

We next used our building classification to create dummies for strong and weak wall type 

households and interacted these with H to create two interaction terms, H_WEAK and 

H_STRONG. This allow us to disentangle the heterogenous treatment effects of H across 

these two household types, where results using a fixed effects model with our time varying 

controls are depicted in the fourth column of Table 3.  Accordingly, we find a negative and 

significant impact of hurricane destruction for weak walled households, while the negative 

impact for those households residing in more wind resistant buildings is insignificant.  This 

possibly suggests that only households in weakly resistant housing reduce their consumption 

after a damaging hurricane, although one should note it may also be a result of insufficient 

power.21  Using the estimated coefficient and multiplying this by the mean non-zero value of 

H_WEAK suggests that when a damaging hurricane occurs consumption rises by about 1.2 per 

cent.  The largest observed value of damage, as occurred during Hurricane Ivan, indicates a 

fall of 15.8 per cent in per capita consumption. 

In the fifth and sixth columns of Table 3 we investigated whether there were any longer-

term effects of storms on household consumption.  However, as can be seen, while the 

contemporaneous impact for weaker wall households remains, there is no evidence of a 

                                                           
21 A joint test of significance implied that the two coefficients were jointly significant at the five per cent level.   
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lagged (or delayed) effect for either group.22 Thus we find only a short-lived effect of 

hurricanes on household consumption in Jamaica, a result that has been echoed in at least 

some of the other household level studies, as outlined earlier.   

Given the heterogeneous impacts across building wall classification, we, for the rest of the 

analysis, continue to decompose the impact of hurricanes across these two household types.  

The full set of results for this, our benchmark specification, are shown in Table C1 in 

Appendix C.  In this regard the estimated coefficients on our control variables indicated that a 

change in the share of children in the household over time significantly reduced consumption 

expenditure per capita, as would be expected since they tend to consume less.  With regard to 

the climatic variables, only rainfall significantly reduced consumption.  This may be capturing 

the impact of floods which are a relatively frequent occurrence in Jamaica; see Burgess et al. 

(2014).  Note also that not including the full set of time varying controls does not change our 

estimates on the hurricane indices noticeably, as shown in the last column of Table C1. 

III.C Robustness Checks and Functional Form 

We conduct a number of robustness checks. Firstly, since after controlling for fixed 

effects, hurricane shocks from the perspective of the household are arguably just random 

unanticipated realizations of their distribution. If we thus were to artificially reassign 

hurricane shocks to a year before they occurred then they should have no effect.  This means 

essentially assigning the destruction indices from time t to time t+1 in equation (2).  As can 

be seen in the last column of Table 3 one indeed finds no significant impact.   We next took 

our data and systematically discarded the relevant sample for each storm, i.e., those 

observations of households during the month or up to 11 months after the storm, and re-

estimated the specification of Column 4 of Table 3.  The results shown in Table C2 in 
                                                           

22 As with our index at time t, these are constructed by considering hurricanes within 12-24 and 24-36 months 
for t-1 and t-2, respectively.  For those households where we do not have a survey within these lagged periods, 
we assume that they were located in the same building and construct the index accordingly.   
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Appendix C indicate that for H_WEAK this only marginally changes the size of the 

coefficient, which at all times remains negative and significant.  In contrast, the coefficient on 

H_STRONG remains insignificant for all `leave out a storm’ samples.  This provides evidence 

that our results are not driven by any particular storm.   

We also conducted a Fisher type randomization test where we randomly re-allocated 

years to households a thousand times, allowing us to compute the probability of observing our 

significant estimates compared to randomly assigning years.  Histograms of the t-statistics 

from the coefficients of H_WEAK and H_STRONG shown in panels (a) and (b) of Figure C1 

in Appendix C suggest that the results from Column 4 of Table 3 are unlikely due to chance.  

As a matter of fact, the corresponding p-value for the former was 0.04 and that of the latter 

0.26.  In a similar manner, we next randomized H_WEAK and H_STRONG across 

enumeration districts and years, and depict the corresponding histograms of the t-statistics in 

panels (a) and (b) of Figure C2 in Appendix C.  Again these strongly suggest that our results 

are unlikely due to chance where the p-value was 0.022 for H_WEAK and 0.1 for 

H_STRONG.   

 The standard errors thus far are calculated assuming that on average treatment is 

spatially correlated according to the average extent of storm damage across enumeration 

districts, i.e., 60km, as noted earlier.  To verify that this spatial dependence choice is not 

driving the significance of our estimated coefficients we experimented with a number of other 

thresholds, namely 10, 30, 100, and 200 km.  As the results in Table C3 in Appendix 3 show, 

this makes little difference however.   

 While the functional form of our hurricane damage index is based on the physical 

characteristics of the storm and its energy dissipation, it is nevertheless insightful to compare 

results using other treatment definitions.  We first took the output from our wind field model 
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for each storm, and rather than cubing and summing it over duration of exposure, we simply 

included the maximum wind speed experienced in the district (WINDMAX_WEAK and 

WINDMAX_STRONG), thus imposing a linear relationship independent of the duration of the 

storm.  The results of this exercise are shown in the first two columns of Table 4.   

Accordingly, the coefficients for weak and strong walled households are still negative, but 

both insignificant, suggesting considerable measurement error when damage is modelled in 

this more simplistic way.   

We next created dummies for the terciles of the distribution of H_WEAK and 

H_STRONG, which essentially models damage as a spline function between these points.  The 

results, shown in the second column of Table 4, demonstrate that for weak walled households 

only the middle and end part of the distribution damage values have a significant impact.  In 

contrast, there is no significant impact for any of the three splines of H_STRONG.   

We also tried to conduct something more akin to a traditional Difference-in-

Differences (DID) analysis.  More specifically, we as in Currie and Rossin-Slater (2013) 

defined treatment groups as those that were located within 30km of the eye of storms.  Again, 

we allowed for heterogeneous effects by multiplying the treatment dummy by our two wall 

types.  We first show the results of including these two dummies (DID_WEAK and 

DID_STRONG) and time dummies, i.e., no household or other fixed effects, in column three 

of Table 4.   As can be seen, this indicates a negative non-significant treatment effect for weak 

walled and a positive significant impact for strong walled households. However, once we 

include regional (parish) and time effects, shown in the subsequent column, there is no longer 

any impact for strong walled households, but the negative impact on weak walled households 

doubles in size and becomes statistically significant.   Including a full set of household fixed 

effects, as depicted in the last column, still produces a negative and significant impact for 

weak walled households, although the coefficient falls by 40 per cent.  For households 
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residing in buildings with strong walls the estimated impacted is still insignificant, but 

reverses signs.  Thus taking account of household fixed effects is clearly important in trying 

to identify the causal effect of hurricanes on household consumption.  

Finally, we experimented with lowering the minimum threshold of damage from 119 

km/hr to 92 km/hr, i.e., the minimum level at which wind damage is likely to occur (see 

Emmanuel, 2011).  The coefficients on this lower threshold damage index interacted with the 

two wall type dummies (TS_WEAK and TS_STRONG) are shown the last column of Table 4.  

Accordingly, choosing what is arguably too low of a threshold produces insignificant 

coefficients.    

III.D Consumption Decomposition 

As noted in the introduction, households may react to negative shocks, such as natural 

disasters, by reallocating funds away from less to more necessary consumption goods.  We 

re-ran the specification of Column 4 Table 3 for each of our three broad consumption good 

groups, the estimates of which are shown in Table 5.23 Accordingly, while the coefficient on 

H_STRONG is insignificant, possibly again due to a lack of power, H_WEAK has a 

significant negative effect in the food goods specification, indicating that in the face of 

hurricane damages households with weakly resistant walls reduce their consumption 

expenditure on food.  The size of the coefficient is slightly smaller than that on total 

consumption, and suggests that the average damage due to a hurricane causes food 

consumption to fall by 1.0 per cent, whereas the largest observed damage would induce a 

14.3 per cent drop.  Allowing for lagged impacts, in the second column, does not suggest that 

the reduction in food consumption lasts beyond a year.  

                                                           
23 For food and non-food consumption only 5 and 65 observations were zero, while for non-regular 

consumption 23 per cent were zero.  We added the value of 0.01 to these so as to keep our sample size consistent 
across specifications when we logged the dependent variables.   
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There appears to be no significant, or at least not precisely estimated, reduction effect for 

non-food consumption when a hurricane strikes, contemporaneously or within a year; see 

columns three and four of Table 5. One reason may be that non-consumption goods in our 

case is a fairly heterogeneous basket, where, for instance, the expenditure for some goods, 

like clothing, is likely to decrease, but others, like construction material, may increase in 

response to the damages of a tropical cyclone.  In contrast, like food consumption, the 

purchase of non-regular consumption goods decreases for both household wall type groups, 

as depicted in the fifth column.24  Moreover, for the weak walled group the coefficient is 

multiple times larger than that on the food consumption specification, suggesting that these 

households strongly substitute away from non-regular consumption goods in meeting the 

costs due to hurricanes. As a matter of fact, our estimated coefficient suggests that the 

average hurricane over our sample period reduced weak walled household’s non-regular 

consumption by 7.6 per cent, while the largest incidence decreased it by 112.5 per cent.  For 

strong walled households, the impact on non-regular consumption is slightly higher, standing 

at 8.8 per cent and 129.1 per cent, for the average and maximum observed damage.  We also 

experimented with including lags in the non-regular consumption specification in the final 

column. While this does not change the conclusion regarding the impact on households that 

reside in less wind resistant building, it does seem to suggest that there may also be a large 

positive effect for households in buildings with wind resistant walls a year after the event.  A 

possible reason is that richer households with stronger walls are smoothing consumption of 

non-regular items and purchasing them the year after the storm by meaningful amounts.  

Moreover, this counter-cyclical effect seems to be serially correlated enough to be biasing 

our estimate. This may not be surprising since many of the storms were clustered within 2 

year periods, as can be seen from the storm years listed in Table 1.   

                                                           
24 One should note that dropping the zero value observations did not change our results qualitatively, although 

it did reduce them somewhat quantitatively for H_STRONG.  
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In comparison, Antilla-Hughes and Hsiang (2012) find negative impacts for food and 

items that would in our case be classified as non-regular, such as recreation and special 

events, but also, for goods that would be included in our non-food group, such as clothing, 

fuel, education, and personal care. Comparing coefficients across the larger array of their 

goods seems to indicate that food, at least as an aggregate group, is less responsive to 

tropical cyclone damage than the other goods for which a reduction in consumption 

expenditure is observed.  This is in line with our results if one compares food to non-regular 

consumption.  However, their implied impact is about 5 per cent compared to our 1 per cent, 

and thus multiple times larger.  In contrast, Baez et al. (2015) discover an impact of about 10 

per cent reduction in food consumption for the severe storm in Guatemala, compared to the 

implied 4.9 per cent drop for the largest value of the damage index for our data.   

III.E Buffer Mechanisms 

Another form of dealing with negative shocks such as tropical cyclone destruction may be 

to use informal forms of insurance.  In this regard, one may want to note that in Jamaica a 

major channel of financial flows for households are remittances.  In fact, remittances 

constitute on average 14 per cent of GDP.25 Remittances are typically seen as a factor 

affecting consumption or a way to alleviate poverty in developing countries (see Acosta et al., 

2007; Gupta et al., 2009; and Lubambu, 2014). Indeed, there is some evidence that in Jamaica 

remittances may act as important buffers for negative shocks (see Clarke and Wallsten, 2003; 

and Beuermann et al., 2014). While we do not have information on the actual amount of 

remittances received, as noted earlier, the JSLC does indicate whether households receive 

remittances or not. To investigate their role in possibly buffering the shock to consumption 

induced by hurricanes we re-ran our benchmark specification for total consumption per capita 

as well as for each of its three components, also including the variable itself as well as its 

                                                           
25 Authors’ own calculation using World Bank data.   
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interaction term with H_WEAK and H_STRONG.26 The results of this in Table C4 in 

Appendix C show that that neither remittances (at t-1 values) nor its interaction with the two 

hurricane indices are significant determinants of total per capita consumption.  In contrast, the 

positive and significant interaction term on H_STRONG and Remittances indicates that 

remittances can serve to reduce the negative effect of hurricane damages on non-regular 

consumption for strong walled households.  The size of the coefficient suggests that 

remittances can reduce the effect on non-regular consumption for the average hurricane 

damage to about 4.5 per cent27, whereas for households that do not receive remittances the 

impact at the mean would be 12.3 per cent.  When we introduce lags for both types of 

households the standard errors of the contemporaneous effects increase, while there is a 

lagged positive effect on non-regular consumption for strong walled households, further 

enhanced by remittances.  This may again be because many of the storms over our sample 

came within short temporal clusters, as noted above.   

Households may also draw on their savings to buffer reduction in consumption 

expenditure.  While we do not have a direct measure of savings, the JSLC does provide us 

with information on whether a household receives interest payments and we take this as an 

indicator of having access to savings.  The results of interacting the hurricane destruction 

index with a dummy variable for the receipt of interest payment (at t-1 values) in Table C5 in 

Appendix C suggest that savings can act as an efficient mechanism to buffer hurricane 

damage shocks for total consumption for weak walled households.  As a matter of fact, if we 

take the estimated coefficients at face value then it can more than compensate for any overall 

potential reduction in consumption expenditure. However, in examining the effect of savings 
                                                           

26 One may want to note that one problem is that the incidence of remittances itself may be affected by 
hurricane shocks, and thus its inclusion could constitute what Angrist and Pischke (2009) term a `bad control’.  
However, in a fixed effects logit model of remittances receipt on the positive incidence of our two hurricane 
indices, as well as all our other controls, hurricane destruction was not a significant predictor of remittances 
either at time t or lagged at time t-1.   

27 An F-test revealed that the sum of the coefficients was statistically different from zero (F = 6.01; p value = 
0.0025).  
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on the three consumption goods it is apparent that there are some heterogeneous dynamics 

underlying this overall result, in that it induces households not to reduce their food 

consumption but rather to increase their non-food consumption.  As a matter of fact, an 

average damaging hurricane causes a weak walled household to increase expenditure on non-

food goods by 4.8 per cent.  This may be because they need to buy material to deal with the 

repairs of damage done by the hurricane.  For strong walled households we find that receiving 

interest payments actually substantially reinforces the negative impact of hurricane damages. 

 

Section IV: Sample Selection Bias 

There are a number of potential sample selection bias issues with regard to our use of the 

Jamaican data that merit further scrutiny. Firstly, one worry is that our constructed panel is 

not representative of all households surveyed in the JSLC, particularly with regard to 

hurricane wind exposure.  To investigate this, we calculated H_WEAK and H_STRONG for all 

households not in our panel sample, pooled the two samples28, and then ran a linear probit 

model (allowing for spatial correlation) of whether the incidence of non-zero damages can 

predict inclusion in the sample, including our other controls. However, the coefficients were 

insignificant.29   

A related concern is that even within our restricted panel not all households that should 

have been would have been re-surveyed in subsequent years. One reason for this could be that 

households most affected by the storms may have migrated30 or substantially changed 

composition so that they would not be matched via Handa’s (2008) matching procedure. To 

                                                           
28 The mean for the strong and weak incidence dummy was 0.08 and 0.18, respectively.   
29 The coefficient on H_WEAK was 0.032 and its standard error 0.047, while that on H_STRONG was 0.053 

with a standard error of 0.045.   
30 The disaster-migration literature demonstrates that natural disasters can positively impact the movement of 

people outside of their countries of origin (including Reuveny and Moore, 2009; Drabo and Myabe, 2015). This 
view is also evident in the Central America and Caribbean region, where the average hurricane increases 
migration by about 6% (Spencer and Urquhart 2018).    
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gain some insight into whether this might potentially be a problem, we created an indicator 

variable of whether a household drops out of a panel even though it potentially could have 

been resurveyed. We then ran a linear probit model (allowing for spatial correlation) on 

whether a non-zero H can predict dropout for weak and strong walled households, including 

our other controls. Again, hurricane destruction was not a significant predictor for either.31   

Finally, household composition may change as a result of hurricane damages.32  We utilize 

data from the JSLC that reports whether individuals are still or no longer members since the 

last survey and if there are any new members. These information allow us to construct the 

proportion of household members that are no longer members, and we regressed the two 

hurricane destruction indices on this share to see whether there is any evidence of this change 

in household composition due to hurricane strikes.  But the insignificant coefficients on 

H_STRONG and H_WEAK did not suggest that migration was induced by hurricane 

destruction.33   

 

Section V: Conclusion 

This paper investigated the impact of hurricane strikes on household consumption in 

Jamaica. To achieve this we constructed a panel of households and measures of their 

consumption and linked this to an index of hurricane damages that takes into account the 

detailed physical characteristics of the storm and the location of the household relative to the 

storm.  In congruence with most of the literature we find that household consumption are 

negatively impacted by tropical cyclones, and that this effect is only short-term. Moreover, 

while the average storm will not reduce household consumption too much, large storms can 

                                                           
31 Coefficients (standard errors) were -0.015 (0.038) and -0.030 (0.034) for H_WEAK and H_STRONG, 

respectively.  
32 As noted by Currie and Rossin-Slater (2013), endogenous migration is likely to be a problem in many 

studies on hurricanes.   
33 Coefficients (standard errors) were 0.001 (0.005) and 0.002 (0.012) for H_WEAK and H_STRONG, 

respectively. 
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have a considerable impact. Importantly, our econometric results demonstrate that not 

controlling for household time invariant unobservables, as for instance in only having access 

to cross-sectional data, may bias any negative impact downward.  We also investigate whether 

there is a different treatment effect on households depending on whether they reside in 

hurricane wind resistant versus less resistant building types.  This is indeed the case, where 

total consumption per capita is only impacted in households in buildings with weaker walls. 

We explored whether households, in the absence of formal insurance mechanisms, buffer 

the negative effects of hurricanes in Jamaica.  Firstly, subsequent to these storms, there is 

considerable reallocation of a household’s budget across goods.  More specifically, 

households in weakly wind resistant walled buildings reduce non-regular consumption 

substantially more than expenditure on food, suggesting that they reallocate their budget 

towards necessities after a negative shock.  In contrast, although there was no apparent change 

in total consumption, there is some evidence that households in less vulnerable housing also 

reduce their non-regular consumption.  Further inquiries into possible informal financial 

buffers suggest that these also play a role.  In particular, households in more wind resistant 

buildings possibly buffer the loss in non-regular consumption by receipt of remittances.  In 

contrast, households living in buildings that are more susceptible to hurricane damage appear 

to use savings to increase their non-food consumption, possibly due to higher expenditure to 

accommodate repairs.  

More generally, our results suggest that households in developing countries can be 

vulnerable to hurricane shocks at least in the short-term, and if they live in less wind damage 

resistant buildings.  However, they do have some buffering mechanisms in place, in the form 

of other financial flows and reallocation of their spending across goods, in order to deal with 

these shocks.  Thus, any assessment of the need for more formal tropical cyclone damage 

insurance should take current existing buffering practices into account. Finally, one should 
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note that our analysis is restricted to examining only one aspect of the impact, namely 

household consumption.  There are of course other aspects of households that may be 

impacted which will not be easily picked up by consumption patterns, such as birth outcomes, 

and children’s education and health, where these may have a much more long lasting effect.34 

This could be a fruitful direction of future research in the Jamaican context.  
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Figures and Tables 

 

Figure 1: Hurricanes Affecting Jamaica over 1988-2010 

 

Note: The red portion of the line indicates when the storm was classified as a hurricane (minimum maximum 

wind speed of 119 km/hr) and as a tropical storm otherwise.  
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Table 1: Damaging Storms: 1990-2010 

STORM YEAR (MONTH) 
Saffir-

Simpson 
Parish Most 
Affected 

Landfall (as 
Hurricane) 

GILBERT 1988 (September) 5 St. Andrew Yes 

GORDON 1994 (November) 1 St. Mary No 

MITCH 1998 (October) 5 Westmoreland No 

IRIS 2001 (November) 4 Clarendon No 

ISIDORE 2002 (September) 3 Westmoreland No 

LILI 2002 (September) 3 Hannover No 

CHARLEY 2004 (August) 3 Westmoreland No 

IVAN 2004 (September) 5 Clarendon No 

DENNIS 2005 (July) 3 Portland No 

EMILY 2005 (July) 5 Westmoreland No 

WILMA 2005 (November) 5 Westmoreland No 

DEAN 2007 (August) 5 St. Elizabeth No 

GUSTAV 2008 (August) 4 Portland No 

IKE 2008 (September) 3 St. Mary No 

PALOMA 2008 (November) 3 Hannover No 

TOMAS 2010 (November) 1 St. Thomas No 
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Table 2 Descriptive Statistics 

Variable Mean Std. Dev. Min Max 

Expenditure per capita variables     

Consumption  per capita 15776.97 17372.63 90.45 1452460 

Share of consumption:     

Food 0.61 0.18 0 1 

Non-food 0.36 0.18 0 1 

     Non-regular 0.03 0.14 0 1 

Share of children  0.26 0.27 0 1 

Remittances 0.55 0.49 0 1 

Interest 0.05 0.21 0 1 

H/1.0e+09 (>0) 0.37 1.20 0.0001 8.33 

H_WEAK 0.63 1.62 0.0002 8.33 

H_STRONG 0.54 0.99 0.0001 4.00 

WINDMAX_WEAK 176.2 54.4 119.1 347.9 

WINDMAX_STRONG 194.1 61.7 119.0 359.0 

SSS1_2_WEAK  0.05 0.22 0 1 

SSS1_2_STRONG  0.12 0.32 0 1 

SSS3_+_WEAK  0.03 0.17 0 1 

SSS3_+_STRONG  0.11 0.32 0 1 

DID_WEAK 0.06 0.24 0 1 

DID_STRONG 0.10 0.30 0 1 
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Table 3:  Regression Results - Total Consumption 

Model: (1) (2) (3) (4) (5) (6) (7) 

Ht -0.001 -0.004 -0.019*     

 (0.014) (0.012) (0.008)     

H_WEAKt    -0.019* -0.021* -0.020*  

    (0.008) (0.010) (0.010)  

H_STRONGt    -0.010 -0.016 -0.013  

    (0.017) (0.022) (0.022)  

H_WEAKt-1     -0.006 -0.006  

     (0.012) (0.012)  

H_STRONGt-1     -0.012 -0.012  

     (0.028) (0.027)  

H_WEAKt-2      -0.050  

      (0.242)  

H_STRONGt-2      0.355  

      (0.358)  

H_WEAKt+1       0.020 

       (0.011) 

H_STRONGt+1       0.001 

       (0.002) 

Model: OLS OLS HH FE HH FE HH FE HH FE HH FE 

Controls: No Yes Yes Yes Yes Yes Yes 

Spatial Dep.: 60km 60km 60km 60km 60km 60km 60km 

Obs.: 23,611 23,611 23,611 23,611 23,611 23,611 23,611 

Nr. of HHs: 9,546 9,546 9,546 9,546 9,546 9,546 9,546 

Notes: (i) Time (Month-Year) dummies included; (ii) ** and * are 1 and 5 per cent significance levels 
respectively; (iii) Spatial dependence corrected standard errors are in parentheses.   
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Table 4:  Functional Form 

Model: (1) (2) (3) (4) (5) (6) 
WINDMAX_WEAKt -0.0003      
 (0.0003)      

WINDMAX_STRONGt -0.0001      

 (0.0003)      

H_WEAK(1st tercile)t  12.027     

  (7.594)     

H_WEAK(2nd tercile)t  -1.320*     

  (0.585)     

H_WEAK(3rd tercile)t  -0.021**     

  (0.007)     

H_STRONG(1st tercile)t  -3.041     

  (22.258)     

H_STRONG(2nd tercile)t  -0.272     

  (2.044)     

H_STRONG(3rd tercile)t  -0.009     

  (0.017)     

DID_WEAKt   -0.069 -0.151** -0.079*  

   (0.041) (0.049) (0.037)  

DID_STRONGt   0.137* 0.030 -0.067  

   (0.039) (0.049) (0.036)  

TS_WEAK      -0.041 

      (0.021) 

TS_STRONG      -0.002 

      (0.017) 

Model: HH FE HH FE OLS RE FE HH FE HH FE 

Controls: Yes Yes Yes Yes Yes Yes 

Spatial Dependence: 60km 60km 60km 60km 60km 60km 
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Notes: (i) Time (Month-Year) dummies included; (ii) ** and * are 1 and 5 per cent significance levels 
respectively; (iii) Spatial dependence corrected standard errors are in parentheses; (iv) Sample size is 23,611.    
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Table 5: Regression results – Consumption Components 

Model: (1) (2) (3) (4) (5) (6) 

H_WEAKt -0.017** -0.018 -0.012 -0.014 -0.135** -0.111* 

 (0.006) (0.009) (0.011) (0.014) (0.043) (0.048) 

H_STRONGt -0.021 -0.027 -0.002 -0.009 -0.155* -0.036 

 (0.016) (0.024) (0.024) (0.029) (0.066) (0.075) 

H_WEAKt-1  -0.001  -0.010  0.037 

  (0.012)  (0.017)  (0.045) 

H_STRONGt-1  -0.013  -0.017  0.242* 

  (0.028)  (0.038)  (0.079) 

Dep. Var: Food Food Non-Food Non-Food Non-Regular Non-Regular 

Model: HH FE HH FE HH FE HH FE HH FE HH FE 

Controls: Yes Yes Yes Yes Yes Yes 

Spatial Dependence: 60km 60km 60km 60km 60km 60km 

Notes: (i) Time (Month-Year) dummies included; (ii) ** and * are 1 and 5 per cent significance levels 
respectively; (iii) Spatial dependence corrected standard errors are in parentheses; (iv) Sample size is 
23,611.   

 



 

 

Appendix A: Wind Field Model 

We use Boose et al.’s (2004) version of the well-known Holland (1980) wind field model.  

More specifically, the wind experienced at time t due to hurricane k at any point P=j, i.e., Wjk is 

given by: 
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where Vm is the maximum sustained wind velocity anywhere in the hurricane, T is the 

clockwise angle between the forward path of the hurricane and a radial line from the hurricane 

center to the pixel of interest, P=j, Vh is the forward velocity of the hurricane, Rm is the radius of 

maximum winds, and R is the radial distance from the center of the hurricane to point P. The 

remaining ingredients in (A1) consist of the gust factor G and the scaling parameters F, S, and B, 

for surface friction, asymmetry due to the forward motion of the storm, and the shape of the wind 

profile curve, respectively. 

In terms of implementing (A1), one should note that Vm is given by the storm track data 

described in the data section, Vh can be directly calculated by following the storm’s movements 

between locations along its track, and R and T are calculated relative to the point of interest P=j.  

All other parameters have to be estimated or assumed.  For instance, we have no information on 

the gust wind factor G, but a number of studies (e.g., Paulsen and Schroeder, 2005) have 

measured G to be around 1.5, and we also use this value. For S we follow Boose et al. (2004) and 

assume it to be 1.  While we also do not know the surface friction to directly determine F, 

Vickery et al. (2009) note that in open water the reduction factor is about 0.7 and reduces by 

14% on the coast and 28% further 50 km inland.  We thus adopt a reduction factor that linearly 
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decreases within this range as we consider points i further inland from the coast.  To determine B 

we employ Holland’s (2008) approximation method, whereas we use the parametric model 

estimated by Xiao et al. (2009) to estimate Rmax. Our source for hurricane track data is the 

HURDAT Best Track Data, which provides six hourly data on all tropical cyclones in the North 

Atlantic Basin, including the position of the eye and the maximum wind speed of the storm.  

These tracks are linearly interpolated to hourly positions.   Finally, as set of points, j=1,…J we 

take the centroid of the enumeration districts in Jamaica.   
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Appendix B: Additional Statistics 

 

Figure B1: Enumeration Districts in Jamaica 

 

 

Figure B2: Distribution of Consumption Expenditure Per Capita 

 

Notes: (i) Graph of kernel density distribution using a Gaussian kernel and a plug-in bandwidth; 
(ii) The red line is the consumption-based poverty threshold of J$21,895 using data from the 
Survey of Living Conditions (PIOJ, 2011). 
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Appendix C: Additional Robustness Checks 

Figure C1: Histograms of T-Statistics of Randomization Tests of “Leave One Storm 
Out’ 

 

Notes: (i) Red vertical lines indicate estimated t-statistic from non-randomized regressions.    
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Figure C2: Histograms of T-Statistics of Randomization Tests of Randomly assigned 
Damage across Space and Time 

 

 

0
.1

.2
.3

D
en

si
ty

-4 -2 0 2 4
t-Statistic on H_WEAK

0
.1

.2
.3

.4
D

en
si

ty

-4 -2 0 2 4
t-Statistic on H_STRONG



 

5 
 

Table C1: Full Regression Results – Benchmark Specification (with and time varying without 
controls) 

Model: (1) (2) 

H_WEAKt -0.019* -0.018* 

 (0.008) (0.008) 

H_STRONGt -0.010 -0.007 

 (0.017) (0.017) 

SHARE_CHILDt -0.444**  

 (0.040)  

Raint -0.0004**  

 (0.0001)  

TEMPERATUREt -0.105  

 (0.0.48)  

Model: HH FE  

Controls: Yes  

Spatial Dependence: 60km  

Observations: 23,611  

Notes: (i) Time (Month-Year) dummies included; (ii) ** and * are 1 and 5 per cent significance levels 
respectively; (iii) Spatial dependence corrected standard errors are in parentheses.   
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Table C2: Regression Results - ‘Leave Out Storm’ Specifications 

Omitted Storm: βH_WEAK Std.ErrorH_WEAK βH_STRONG Std.ErrorH_STRONG 

Gordon -0.019* (0.008) -0.011 (0.017) 

Mitch -0.019* (0.008) -0.009 (0.016) 

Iris -0.018* (0.008) -0.009 (0.016) 

Isidore -0.019* (0.008) -0.010 (0.016) 

Lili -0.019* (0.008) -0.010 (0.016) 

Charley -0.023* (0.010) -0.022 (0.021) 

Ivan -0.024* (0.010) -0.016 (0.020) 

Dennis & Emily -0.022* (0.009) -0.025 (0.019) 

Wilma -0.022* (0.010) -0.014 (0.021) 

Dean -0.019* (0.008) -0.010 (0.017) 

Gustav -0.017* (0.007) -0.009 (0.017) 

Ike -0.018* (0.007) -0.010 (0.017) 

Paloma -0.018* (0.008) -0.010 (0.017) 

Thomas -0.019* (0.008) -0.010 (0.017) 

Model: HH FE  HH FE  

Controls: Yes  Yes  

Spatial Dep.: 60km  60km  

Notes: (i) Time (Month-Year) dummies included; (ii) ** and * are 1 and 5 per cent significance levels 
respectively; (iii) Spatial dependence corrected standard errors are in parentheses; (iv) Sample size is 
23,611.   
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Table C3:  Alternative Spatial Dependence  

Model: (1) (2) (3) (4) 

H_WEAKt -0.019* -0.019* -0.019** -0.019* 

 (0.008) (0.008) (0.007) (0.008) 

H_STRONGt -0.010 -0.010 -0.010 -0.010 

 (0.017) (0.016) (0.014) (0.012) 

Model: HH FE HH FE HH FE HH FE 

Controls: Yes Yes Yes Yes 

Spatial Dependence: 10km 30km 100km 200km 

Notes: (i) Time (Month-Year) dummies included; (ii) ** and * are 1 and 5 per cent significance levels 
respectively; (iii) Spatial dependence corrected standard errors are in parentheses; (iv) Sample size is 
23,611.   
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Table C4: Regression Results – Role of Remittances (Remit) 

Model: (1) (2) (3) (4) (5) (6) (7) (8) 

H_WEAKt -0.019* -0.022* -0.017* -0.018 -0.016 -0.018 -0.132* -0.107 

 (0.009) (0.011) (0.008) (0.011) (0.012) (0.015) (0.054) (0.057) 

H_STRONGt -0.013 -0.020 -0.026 -0.033 -0.003 -0.013 -0.216* -0.010 

 (0.017) (0.023) (0.016) (0.023) (0.027) (0.033) (0.067) (0.074) 

H_WEAKt-1  -0.009  -0.003  -0.009  0.043 

  (0.014)  (0.014)  (0.018)  (0.050) 

H_STRONGt-1  -0.021  -0.021  -0.025  0.254** 

  (0.029)  (0.029)  (0.041)  (0.089) 

H_WEAKt*Remit 0.001 0.001 0.0002 0.001 0.008 0.009 -0.002 -0.002 

 (0.009) (0.009) (0.0134) (0.013) (0.012) (0.012) (0.060) (0.060) 

H_STRONGt*Remit 0.006 0.008 0.010 0.012 0.004 0.007 0.137* 0.138* 

 (0.009) (0.010) (0.011) (0.011) (0.019) (0.019) (0.067) (0.067) 

H_WEAKt-1*Remit  0.005  0.005  -0.0004  -0.013 

  (0.009)  (0.009)  (0.0141)  (0.046) 

H_STRONGt*Remit  0.018  0.016  0.016  -0.026 

  (0.010)  (0.011)  (0.020)  (0.066) 

Remit 0.004 0.002 0.008 0.006  0.004 0.014 0.017 

 (0.007) (0.007) (0.006) (0.007) () (0.013) (0.030) (0.030) 

Dep. Var: Total Total Food Food Non-
Food 

Non-
Food 

Non-Regular Non-
Regular 

Model: HH FE HH FE HH FE HH FE HH FE HH FE HH FE HH FE 

Controls: Yes Yes Yes Yes Yes Yes Yes Yes 

Spatial 
Dependence: 

60km 60km 60km 60km 60km 60km 60km 60km 

Notes: (i) Time (Month-Year) dummies included; (ii) ** and * are 1 and 5 per cent significance levels 
respectively; (iii) Spatial dependence corrected standard errors are in parentheses; (iv) Sample size is 
23,611.   
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Table C5: Regression Results – Role of Interest Receipt (Int) 

Model: (1) (2) (3) (4) (5) (6) (7) (8) 

H_WEAKt -0.021** -0.024* -0.02** -0.018 -0.015 -0.018 -0.137** -0.111* 

 (0.008) (0.010) (0.006) (0.009) (0.011) (0.014) (0.043) (0.045) 

H_STRONGt -0.008 -0.014 -0.021 -0.027 0.001 -0.005 -0.137* -0.019 

 (0.017) (0.021) (0.016) (0.024) (0.024) (0.029) (0.068) (0.076) 

H_WEAKt-1  -0.006  -0.001  -0.009  0.031 

  (0.012)  (0.012)  (0.017)  (0.045) 

H_STRONGt-1  -0.010  -0.012  -0.011  0.218** 

  (0.027)  (0.028)  (0.037)  (0.082) 

H_WEAKt*Int 0.058** 0.058** 0.011 0.011 0.085** 0.085* 0.006 0.027 

 (0.020) (0.020) (0.015) (0.015) (0.030) (0.030) (0.187) (0.187) 

H_STRONGt*Int -0.019 -0.019 -0.001 -0.001 -0.038 -0.040 -0.446** -0.435* 

 (0.027) (0.028) (0.022) (0.023) (0.049) (0.049) (0.105) (0.107) 

H_WEAKt-1*Int  0.0122  0.006  0.018  0.183 

  (0.018)  (0.016)  (0.030)  (0.202) 

H_STRONGt-

1*Int 
 -0.020  -0.002  -0.044  0.339* 

  (0.023)  (0.026)  (0.041)  (0.147) 

Int -0.001 -
0.00001 

0.013 0.013 -0.002 0.001 -0.073 -0.126 

 (0.017) (0.0180
7) 

(0.018) (0.019) (0.027) (0.028) (0.075) (0.077) 

Dep. Var: Total Total Food Food Non-
Food 

Non-
Food 

Non-
Regular 

Non-
Regular 

Model: HH FE HH FE HH FE HH FE HH FE HH FE HH FE HH FE 

Controls: Yes Yes Yes Yes Yes Yes Yes Yes 

Spatial Dep: 60km 60km 60km 60km 60km 60km 60km 60km 

Notes: (i) Time (Month-Year) dummies included; (ii) ** and * are 1 and 5 per cent significance levels 
respectively; (iii) Spatial dependence corrected standard errors are in parentheses; (iv) Sample size is 
23,611.   

 


