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METHODOLOGY Open Access

The distribution of autistic traits across the
autism spectrum: evidence for discontinuous
dimensional subpopulations underlying the
autism continuum
Ahmad Abu-Akel1* , Carrie Allison2, Simon Baron-Cohen2 and Dietmar Heinke3

Abstract

Background: A considerable amount of research has discussed whether autism and psychiatric/neurodevelopmental
conditions in general are best described categorically or dimensionally. In recent years, finite mixture models have been
increasingly applied to mixed populations of autistic and non-autistic individuals to answer this question. However, the
use of such methods with mixed populations may not be appropriate for two reasons: First, subgroups within mixed
populations are often skewed and thus violate mixture models assumptions, which are based on weighted sum of
Gaussian distributions. Second, these analyses have, to our knowledge, been solely applied to enriched samples, where
the prevalence of the clinical condition within the study sample far exceeds epidemiological estimates.

Method: We employed a dual Weibull mixture model to examine the distribution of the Autism Spectrum
Quotient scores of a mixed sample of autistic and non-autistic adults (N = 4717; autism = 811), as well as of a
derived sample (from the enriched sample; N = 3973; autism = 67) that reflects the current prevalence of autism
within the general population.

Results: In a mixed autistic and non-autistic population, our model provided a better description of the
underlying structure of autistic traits than traditional finite Gaussian mixture models and performed well when
applied to a sample that reflected the prevalence of autism in the general population. The model yielded results,
which are consistent with predictions of current theories advocating for the co-existence of a mixed categorical
and dimensional architecture within the autism spectrum.

Conclusion: The results provide insight into the continuum nature of the distribution of autistic traits, support
the complementary role of both categorical and dimensional approaches to autism spectrum condition, and
underscore the importance of analyzing samples that reflect the epidemiological prevalence of the condition.
Owing to its flexibility to represent a wide variety of distributions, the Weibull distribution might be better suited
for latent structure studies, within enriched and prevalence-true samples.

Background
Autism spectrum condition (hereafter autism) is a
neurodevelopmental condition that affects 1 in 59 chil-
dren [1]. Autism is associated with difficulties in social
communication and interaction, alongside restricted,
repetitive pattern of behaviors and unusually narrow
interests [2]. Current diagnostic practice conceptualizes

autism categorically (i.e., absent or present). This
conceptualization is supported by taxometric procedures
identifying latent categorical structures within the popu-
lation [3]. However, epidemiological evidence challenges
such a taxonic point of view and suggests that autism
phenotypes are not bound by conventional diagnostic
thresholds, but rather blend imperceptibly with subclin-
ical expressions within the general population, otherwise
known as the broader autism phenotype [4–7]. Under-
standing the structure of the autism spectrum is import-
ant for improving diagnostic procedures, as well as for
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informing research design and the development of prog-
nostic instruments [6–8]. To extend this line of research,
we address shortcomings associated with the assump-
tions of analytical methods used to identify latent cat-
egorical structures within mixed populations and the
epidemiological composition of the sample tested with
these methods.
In recent years, univariate and multivariate finite nor-

mal mixture models, which are based on the weighted
sum of Gaussian distributions [9, 10], have been applied
to mixed populations data from children [11] and adults
[7], to evaluate whether these models can detect discrete
subgroups. Typically, such Gaussian mixture models
[10] fit Gaussian distributions to a given dataset using
an iterative search algorithm that varies the number of
Gaussian distributions and their parameters. The result-
ing number of Gaussian distributions is usually inter-
preted as the number of subgroups or clusters in the
data. The quality of fit for a given number of Gaussian
distributions is evaluated with the likelihood criterion.
Hence, if the fitting process was only guided by the like-
lihood criterion, the resulting number of subgroupings
would be the same as the number of data points. Conse-
quently, to estimate the most parsimonious number of
subgroupings, the fitting process is controlled by a
criterion balancing the number of subgroupings with the
likelihood criterion.
We identify two major methodological limitations

associated with the application of Gaussian mixture
models in this important line of research. First, it has
been noted that mixed populations, sampled from both
clinical and community groups [12], including those of
autistic and non-autistic populations [13], often consist
of subgroups that are skewed, which might result from
biases in ascertainment [3], or in psychometric proper-
ties of assessment scales [13]. Thus, Gaussian mixture
models may not be appropriate for such data. Indeed,
under such contexts, it has been recognized that a major
drawback of Gaussian mixture models is the identifica-
tion of spurious subgroups [9, 14, 15], probably precipi-
tated by the tendency of these models to yield a better
fit statistics as the number of Gaussian distributions
(subgroups) increases (see also [16]). It has been sug-
gested that information statistics (namely, the Akaike
information criterion and the Bayesian information cri-
terion) can be used to guide the identification of the
“correct” number of subgroups generated by Gaussian
mixture models applied to skewed data. However, it has
been shown that these criteria, which also assume nor-
mal distributions, tend to either under- or overestimate
the number of clusters due to their sensitivity to sample
size and favoring highly parameterized models [17, 18].
Second, these analyses have, to our knowledge, been solely
applied to enriched samples, i.e., where the prevalence of

the clinical condition within the study sample far exceeds
epidemiological estimates. This issue is of considerable
importance as the results from study samples that do not
reflect the epidemiological prevalence of the condition
may not be clinically useful or credible [19], particularly
when mixture modeling is used to establish a cutoff point
that is subsequently used in clinical settings, or more
broadly, when the results need to be generalizable.
The present study attempts to present solutions to these

two methodological issues. Accordingly, the present study
has two main aims. The first is to propose a model that can
address the problem of spurious subgroupings generated
by Gaussian mixture models when applied to samples con-
sisting of skewed data. Specifically, we propose a dual dis-
tribution model, which combines two Weibull distributions
[20] (see the “Methods” section). We chose the Weibull
distribution because it has been shown to be advantageous
when dealing with skewed distributions [21, 22], owing to
its flexibility to represent a wide variety of distributions
from nearly symmetric to highly skewed distributions [20].
The second aim is to see how the results of the dual Wei-
bull mixture model compare between an enriched versus a
prevalence-true sample (i.e., a sample that reflects the
epidemiological prevalence of autism in the general popula-
tion), which we generate from an enriched sample.
The proposed model is evaluated by examining the dis-

tribution of the Autism Spectrum Quotient scores (AQ)
[4] of a large enriched mixed sample of autistic and
non-autistic adults (N = 4717; autism = 811). The use of
the AQ scores is predicated on the assumption that autis-
tic traits lie on a continuously distributed spectrum,
wherein variations within both the general population and
clinically affected individuals are associated with common
underlying genetic influences [23, 24]. Given the potential
for sex-specific differences in the manifestation of autistic
phenotypes [25, 26], the model is also applied to the distri-
butions of autistic traits in the male and female subsam-
ples. Finally, the model is evaluated within a subsample
that reflects the current prevalence of autism within the
general population [1].

Methods
Participants
This is a convenience sample, collected online, and
which has previously been described and analyzed [26]
to address whether normative sex differences in the
general population are also observed in autistic people
in terms of autistic, systemizing and empathizing traits.
Briefly, the sample consisted of 4717 autistic and neuroty-
pical adults. The overall sample (Mage (SD) = 34.47(13.16),
age range = 18–75) consisted of 3016 females and 1701
males. The neurotypical group (N = 3906; Mage (SD) =
34.43(13.15)) consisted of 2562 females and 1344 males.
The autistic group (N = 811; Mage (SD) = 34.66(13.21))
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consisted of 454 females and 357 male. The autistic indi-
viduals self-reported having a formal clinical diagnosis of
an autism spectrum condition as follows: Asperger syn-
drome (n = 506), high-functioning autism (n = 41), autism
(n = 11), pervasive developmental disorder (n = 15), and
autism spectrum condition (participants who did not spe-
cify a subtype) (n = 238). As has been previously reported
[26], participants were excluded from both groups if they
reported any of the following diagnoses/conditions: bipolar
disorder, epilepsy, schizophrenia, attention-deficit/hyper-
activity disorder, obsessive-compulsive disorder, learning
disability, an intersex/transsexual condition, or psychosis.
There were no significant age differences between

the autistic and neurotypical groups (F (1, 4715) =
0.20, p = 0.65), or between the males and females of
the autistic (F (1, 809) = 0.17, p = 0.68) or the neuroty-
pical (F (1, 3904) = 0.00, p = 0.96) groups. However,
gender distribution across the autistic and the neurotypi-
cal groups was significantly different (χ2 = 26. 91, df = 1,
p < 0.001), such that females were overrepresented in both
the neurotypical (χ2 = 379. 81, df = 1, p < 0.001) and autis-
tic (χ2 = 11. 60, df = 1, p = 0.001) groups.

Measures
The Autism Spectrum Quotient
This self-report questionnaire consists of 50 items that
measure the presence of traits associated with the aut-
ism spectrum in individuals with average or above aver-
age IQ [4]. These traits comprise five domains and
include communication, social skills, attention to detail,
imagination, and attention switching. Each item is given
a score of 0 or 1. Higher total scores indicate the pres-
ence of greater autistic tendencies. The AQ has good
sensitivity in capturing variation in quantitative autistic
traits along the autism spectrum [4, 6].

Model
Here, we describe the development of a dual distribution
model to assess the latent structure of a skewed distribu-
tion of AQ scores in a mixed adult population, including
autistic and non-autistic individuals. We propose that
the Weibull distribution could be the best description of
the AQ score distribution, since a visual inspection of
the histogram of the AQ scores of the entire sample
suggests that the distribution is positively skewed (see
Fig. 1a in the "Results" section). However, from Fig. 1a,
we can also see that the distribution of high AQ scores
showed a small hump, suggesting that the skewed distri-
bution is overlaid with another, yet negatively skewed
Weibull distribution. Given that our sample consists of
both autistic and neurotypical individuals, the positive
and negative distributions can conceivably be linked to
the neurotypical and autistic groups, respectively. This

suggests that the overall distribution might consist of
two non-normal distributions (see [27] for a similar ap-
proach, but in the context of assessing
anti-thyroglobulin antibody positivity as a marker of
chronic thyroiditis—also known as Hashimoto’s disease).
Our observation for this bimodality in the overall distri-
bution of the data is corroborated by the Hartigan’s dip
statistic [28], which indicated that the distribution devi-
ated significantly from a unimodal distribution (Harti-
gan’s dip = 0.023, p < 0.001—implemented in R Version
3.3.3), thus indicating the existence of multiple distinct
subgroups (Additional file 1: Figure S1). Taken together,
we accordingly describe the data with a two-component
mixture model of Weibull distributions.
The first Weibull distribution can be written as

follows:

f 1 xð Þ ¼ β1
η1

� x
η1

� �β1−1

� e−
x
η1ð Þβ1 ð1Þ

And the second distribution can be written as follows:

f 2 xð Þ ¼ β2
η2

� x
η2

� �β2−1

� e−
x
η2ð Þβ2 ð2Þ

For both distributions, the scale parameters (η1, η2) are
analogous to the standard deviation in a normal distri-
bution. The shape parameters (β1, β2) reflect the skew-
ness of the distributions, where for values smaller than
3, the distribution is skewed to left (negatively skewed),
and for values larger than 3, the distribution is skewed
to the right (positively skewed).
To reflect these observations regarding the overall

shape of the AQ scores, we introduce a finite Weibull
mixture model that combines both Weibull distributions
through a weighted sum (see also [29]):

m xð Þ ¼ 1−wð Þ � f 1 xð Þ þ w� f 2 xð Þ ð3Þ
The final dual distribution model, where m represents

the probability density function (PDF) of the mixture
model, thus estimates the value of five parameters as
follows: scale η1, shape parameter β1, scale η2, shape
parameter β2, and weight (w).
Note that the weight parameter (w) (known also as the

mixing probability parameter [29]), which weighs the
contribution of the two distributions to the overall
shape, was introduced to the model since it is not clear
how much each of the distributions contributes to the
overall distribution. So for each AQ score, the two distri-
butions indicate the probability of belonging to one of
the two groups, such that a low AQ score is more likely
to be classified as of a neurotypical individual (1 − w),
while a very high AQ score is more likely to be classified
as of an autistic individual (w).
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The intersection point of the densities of the two dis-
tributions, i.e., the cutoff point (θ), would indicate the
point at which the probability of belonging to one of the
groups changes (see [30] for computational details). This
approach is consistent with the use of the cutoff points
provided by finite mixture models to identify discrete
classes or components. This has been applied, for
example, in the demarcation of short and long white
matter fiber tract classes [31] and the positivity of
anti-thyroglobulin antibody—a marker of Hashimoto’s
disease [27].

Model fitting
We used the principle of maximum likelihood to meas-
ure the goodness of fit of the dual-distribution model:

L x ; η1; β1;w; η2; β2ð Þ ¼
YN
i¼1

m xið Þ ð4Þ

x is the vector of AQ scores (data). N is the number of
data points. As the multiplication of small values results
in numerical issues, we followed standard practice and
used log-likelihoods.

a b

c d

Fig. 1 a The distribution of the AQ scores broken down according to diagnosis, neurotypical controls (NC; N = 3906), and autism groups (N =
811). b The histogram of the AQ scores of the overall sample (N = 4717) and the results of dual Weibull distribution model. c The histogram of
the males’ AQ scores (NC = 1344; autism = 357) and the results of the dual Weibull distribution model. d The histogram of the females’ AQ scores
(N = 2562; autism = 454) and the results of the dual Weibull distribution model. b–d The black dotted line represents the total model; the yellow
and blue lines represent the Weibull1 (left) and Weibull2 (right) distributions, respectively. The red line indicates the intersection (cutoff) point
between the two distributions. Each of the depicted plots (b–d) is of the bootstrapped sample whose threshold is closest to the mean threshold
of all bootstrapped samples. We interpret the intersection point as the threshold score between the autistic individuals and the
neurotypical controls
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Statistical analysis
To find the best fitting parameters, we employed
Matlab’s fminsearch [32]. In general, fminsearch is a spe-
cial case of an iterative algorithm. The aim of this par-
ticular iterative algorithm is to determine a parameter
setting for a given mathematical function (the likelihood
criterion of our model), which produces a minimal/max-
imal function value. The algorithm determines this par-
ameter setting by executing a number of calculation
steps, which build on each other (i.e., an iterative algo-
rithm). Due to the complexity of the likelihood criterion,
this method is needed because the maximum likelihood
value cannot be determined through a simple one-step
calculation (as in linear regression, where the parameters
(slope and intercept) can be found in one simple calcula-
tion without iterations). It is important to note that
these iterative algorithms require a starting point (initial
parameter values). In our model fitting, fminsearch was
applied to find the maximum likelihood value for the
model’s parameter values (scale parameters η1 and η2,
shape parameters β1 and β2, and weight w). We deter-
mined the starting point by finding a parameter setting
for the model, which roughly followed the histogram of
the AQ scores using trial and error. Hence, fminsearch
can be seen as refining search of our initial guess.
To estimate the 95% confidence interval of the param-

eters, we employed the bootstrap method [33], since it is
an appropriate method to apply to non-normally distrib-
uted data as well as for the estimation of parameters that
cannot be analytically computed directly from the data.
We resampled the data 1000 times with replacement
and fitted the model to each sample. Note, each sampled
dataset has the same size as the original dataset, but due
to replacement, it is possible that data points are
repeated within the sample. For each parameter, we cal-
culated the mean of the 1000 resamples and determined
the 95% confidence interval from the resulting distribu-
tion of the 1000 resamples. This procedure was applied
to the overall sample, as well as to the male-only and
female-only subsamples.
The significance of the difference between the cutoff

points (θ) generated for the male-only and female-only
samples was evaluated with a t test based on 1000 boot-
strap samples from each sex. Since the significance of the
t test depends on the number of participants (i.e., boot-
strap samples)—a value that can be chosen arbitrarily—we
estimated the effect size in terms of Cohen’s d, which is
independent of the number of participants. To illustrate
the implications of this predicted effect size for empirical
studies, we determined the number of participants re-
quired to find a significant difference with a good prob-
ability. In other words, we conducted a power analysis
using the bootstrapped thresholds [34]. Additional file 1:
Figure S2 shows how the number of participants is related

to different levels of power. For a statistical power of 0.9,
the results indicate the need for around 15 participants
per group. We note that the small N is due to the very
small variance of the cutoff points (θ).
Next, we compared our dual Weibull distribution model

to alternative single and multiple mixture distribution
models, with the log-likelihood chi-square difference test,
which accounts for the difference in the model’s fits (i.e.,
the log-likelihood values) and the model’s complexity (i.e.,
number of parameters). Specifically, we compared our
dual Weibull distribution model to single Gaussian and
single Weibull distribution models, to the results of the
unsupervised finite Gaussian mixture model-based ap-
proach of Figueiredo and Jain [10], and to the following
dual mixture models: Gauss-Gauss, Gauss-Weibull, and
Weibull-Gauss model.
Finally, since our sample does not reflect the epidemio-

logical prevalence of autism in the general population, we
applied our dual Weibull distribution model to a
resampled population that reflected the 1 in 59 (1.69%)
prevalence of autism within the general population [1]. To
do so, the data were separated into the neurotypical and
the autistic groups. Each group was then bootstrapped
separately whereby the autistic group was subsampled to
reflect the prevalence of 1 in 59 of the combined boot-
strapped samples. Note that because the bootstrap uses
sampling with replacement, the same neurotypical/autistic
individual can appear more than once in their respective
resampled datasets. The dual distribution model was then
fitted to each bootstrapped dataset, and the resulting par-
ameter values were averaged. Importantly, it turned out
that the initial parameters for the fitting process of these
data did not lead to sensible solutions. Therefore, we used
the parameter values from a previous analysis of the over-
all data, apart from the value of the weight (w) parameter,
to initialize fminsearch. Since the previous analyses
showed that the weight reflected approximately the preva-
lence of autism in the sample, we chose the prevalence of
1 in 59 as the initial weight value for the model fitting of
the prevalence-true sample (see [27, 35] for a similar
approach in which disease prevalence was used to assign
the mixing probability value).

Results
The results are presented in two parts. First, we report
the results for the overall, autism-enriched sample, in
which the autistic individuals reflected 17.19% of the
overall sample, or about 10 times the estimated preva-
lence within the general population [1]. We then report
the results for the prevalence-true sample of 1 in 59.

Results of the autism-enriched sample
Table 1 shows the mean AQ scores for the overall,
autism-enriched sample, as well as the male- and
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female-only subsamples in the autistic and neuroty-
pical groups.

The dual Weibull distribution model
We applied the dual Weibull distribution model to the
overall sample (model 1), to the male-only subsample
(model 2), and to the female-only subsample (model 3).
The results of the models 1–3 are presented in Table 2
and depicted in Fig. 1. The model revealed that the two
distributions in all samples intersected, on average, be-
tween 30 and 32 on the AQ scale. We interpret the
threshold (θ) as the cutoff score distinguishing between
autistic and neurotypical individuals. In addition, the
mean threshold separating the neurotypical group from
the autistic group in the females-only sample (θfemales =
31.96) was higher than the threshold in the males-only
sample (θmales = 30.16). A t test based on 1000 bootstrap
samples from each sex revealed that the thresholds were
significantly different from each other (t(df = 1998) = 27.64,
p < 0.001; Cohen’s d = 1.24). Note that Cohen’s d reflects
the effect size of the difference in the test statistics t.

Model comparisons
We indicated in the introduction that the application of
standard finite mixture models with a weighted sum of
Gaussian distributions could produce spurious sub-
grouping. Indeed, application of the popular method by
Figueiredo and Jain [10] to our data detected four to six
components (or subgroups) (see Fig. 2). This variation
reflects the instability of the model and the (well-known)
fact that the outcome of this method can depend on the
order in which the data are presented. This problem
results from the fact that Figueiredo and Jain method
changes the model’s parameters each time a data point is
presented to the model and that this change is based on
the current parameter values. We note that none of the
orders we tested produced fewer than four components.
This method revealed that the 5-component model was

the most optimal for the data, based on the minimum
description length (MDL = 17,383), a formalization of
Occam’s razor principle, which balances the model’s
complexity with the model’s quality of fit (see Fig. 2).
The log-likelihood chi-square difference test, comparing
the likelihood values of the 5-component finite normal
mixture model and our dual Weibull mixture model,
was non-significant (χ2 = 12.56, df = 7, p = .084). This
result suggests that the dual Weibull model is preferred,
at least based on the principle of parsimony.
In addition, we fitted three additional dual mixture

models, using the same method as we fitted our
Weibull-Weibull mixture model. These were a Gauss-
Gauss model, a Gauss-Weibull model, and a Weibull-
Gauss model (see Fig. 3; Table 3). The log-likelihood
values, where smaller values indicate a better fit, sug-
gested that our Weibull-Weibull model outperformed all
models (all ps < .001) in the following order: Weibull-
Weibull (−log-likelihood = 17,219.28) <Weibull-Gauss
(−log-likelihood = 17,229.37) < Gauss-Weibull

Table 1 Mean Autism Spectrum Quotient (AQ) scores and
standard deviations (SDs) by group and sex within the enriched
sample

Enriched sample Number Mean AQ SD

Autistic group 811 33.73 10.57

Autistic males 357 34.81 9.10

Autistic females 454 32.88 11.54

Neurotypical group 3906 18.16 7.84

Neurotypical males 1344 20.27 7.85

Neurotypical females 2562 17.06 7.61

Overall 4717 20.84 10.23

Overall males 1701 23.32 10.06

Overall females 3016 19.44 10.06

Table 2 Parameters of the dual Weibull distribution models of
the overall, male-only, and female-only samples

Parameter Result* Bootstrap: 95% confidence interval

Mean* Lower bound Upper bound

Model 1: Overall sample (N = 4717)
-Log-likelihood = 17,219.28

Scale (η1) 40.90 40.89 39.29 42.17

Shape (β1) 7.08 7.14 5.96 8.36

Weight (w) 0.82 0.82 0.78 0.85

Threshold (θ) 31.50 31.53 29.60 33.20

Scale (η2) 20.50 20.49 19.81 21.07

Shape (β2) 2.89 2.89 2.79 3.01

Model 2: Male sample (N = 1701)
-Log-likelihood = 6228.31

Scale (η1) 39.59 39.52 36.62 41.66

Shape (β1) 6.41 6.48 5.01 7.99

Weight (w) 0.73 0.72 0.61 0.80

Threshold (θ) 30.20 30.16 26.35 33.10

Scale (η2) 21.91 21.86 20.15 23.05

Shape (β2) 3.35 3.36 3.16 3.62

Model 3: Female sample (N = 3016)
-Log-likelihood = 10,887.69

Scale (η1) 41.75 41.62 39.31 43.35

Shape (β1) 7.62 7.66 5.69 9.72

Weight (w) 0.86 0.86 0.82 0.89

Threshold (θ) 32.10 31.96 29.30 34.20

Scale (η2) 19.63 19.60 18.83 20.26

Shape (β2) 2.77 2.78 2.66 2.92

*The result column shows the parameter values from the sample with the
highest likelihood in the original data. The mean column shows the average
parameter value from the 1000 resamples
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(−log-likelihood = 17,261.31) < Gauss-Gauss (−log-likeli-
hood = 17,272.30). In addition, all the dual mixture
models outperformed (all ps < .001) the single Gauss
(−log-likelihood = 22,901.54) and the single Weibull
(−log-likelihood = 17,393.10) distribution models (figures
not shown).

Prevalence-true sample
In this section, we report the results of the dual Wei-
bull model for the resampled population (N = 3973),
reflecting the 1.69% prevalence of autism within the
general population. Table 4 shows the mean AQ
scores of the prevalence-true sample, as well as of its
male- and female-only subsamples in the autistic and
neurotypical groups.
The results of the dual Weibull distribution model are

presented in Table 5 and depicted in Fig. 4. As before,
we interpret the intersection of the two distributions
(θprevalence-true = 34.18) as the cutoff score distinguishing
between autistic and neurotypical individuals. We note
that this threshold is significantly higher than the mean
threshold we observed for the enriched sample
(θenriched = 31.53; t(df = 1998) = 75.10; p < 0.001; Cohen’s
d = 3.36). In addition, we note that the fit of this dual
Weibull distribution was significantly a better fit than a

model with a single Weibull distribution (−log-likeli-
hood = 13,847.04; χ2 = 51.86, df = 3, p < .001).

Discussion
Finite normal mixture models have been increasingly
applied to mixed populations of autistic and non-autistic
individuals to ascertain the underlying structure of the
autism spectrum. However, such mixed populations
often consist of subpopulations with skewed distribu-
tions, which violate normal mixture models assump-
tions, which are based on the weighted sum of Gaussian
distributions. Second, these analyses have, to our know-
ledge, been solely applied to enriched samples, where
the prevalence of the clinical condition within the study
sample far exceeds epidemiological estimates. We ad-
dressed these limitations in a mixed sample of autistic
and non-autistic individuals. With respect to the first
shortcoming, we proposed a dual Weibull distribution
model, owing to its flexibility in accounting for a variety
of distributions including both negatively and positively
skewed distributions. We demonstrated that our dual
Weibull distribution model outperformed alternative
single (Gauss, Weibull) and dual (Table 3: Gauss-Gauss,
Gauss-Weibull, and Weibull-Gauss) distribution models.
In addition, it was more parsimonious and thus pre-
ferred over the 5-component structure recommended by

a b c

Fig. 2 Subgrouping using the method by Figueiredo and Jain of finite mixture models with a weighted sum of Gaussian distributions.
Depending on initialization, the models produced 4, 5, and 6 classes (k = 4, k = 5, k = 6) (number of Gaussian distributions; see black lines in
panels a-c), which is likely due to compensation for deviations in the distribution of the data from the standard Gaussian distribution assumed by
the model. Note that the model progressively improves the fit, as indicated by the decreasing likelihood values, with increasing number of
components. However, the minimum description length (MDL), utilized by the Figueiredo and Jain method, indicated that the 5-component
model is the most optimal model for the data
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the Figueiredo and Jain finite mixture model (see Fig. 2).
With respect to the second shortcoming, we showed
that our dual Weibull distribution model performed well
when applied to the prevalence-true sample (which we
generated from the enriched sample) and was superior
to a model with a single Weibull distribution.
The results showed that the distribution of autistic

traits reflects a dimensional structure, comprised of two
components that reasonably reflected the nature of our
mixed sample of autistic and non-autistic individuals,
and thus may inform the debate pertaining to whether
autism is best characterized as a category [3] or as a di-
mension [36]. We suggest that our results support the
idea that both dimensional and categorical classification
of autism need not be mutually exclusive [8, 37]. More

specifically, the quantitative increases in AQ scores,
within both and the autistic and non-autistic groups,
may reflect a single dimension of, for example, genetic
liability that underlies the autism spectrum condition
[23, 24]. Yet, the two-component structure suggests that
differences in the extent to which autistic traits are
present can also be explained in terms of the absence/
presence of the condition. This interpretation is consist-
ent with recent conclusions advocating that both dimen-
sional and categorical classifications of autism can be
complementary [7, 8, 38, 39], as they may explain differ-
ent aspects of the condition [38]. Taken together, these
results reflect the spectrum nature of autistic traits
within both the subclinical and clinical domains, and the
substantial heterogeneity within the autistic spectrum

a b

c d

Fig. 3 Comparison of the dual Weibull with the dual Gauss, Gaus-Weibull, and Weibull-Gauss distribution models. a The results of the dual
Weibull distribution model (same as Fig. 1b). b The results of the dual Gauss distribution model. c The results of the Gauss-Weibull distribution
model. d The results of the Weibull-Gauss distribution model. Each of the depicted plots (a–d) is of the bootstrapped sample whose threshold is
closest to the mean threshold of all bootstrapped samples
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[40]. Future research would be important to delineate
further the contribution of dimensional and categorical
classifications to the understanding of autism. However,
we recommend that this need to be examined in repre-
sentative populations that reflect the prevalence rate of
the condition.
While the evaluation of the diagnostic properties of

the AQ was not the point of this study, cutoff points
seem to vary depending on the prevalence rate of autism
within the population and sex. With respect to the
prevalence rate, we observe that the cutoff point of the
prevalence-true sample was significantly higher than the
cutoff point of the enriched sample (θprevalence-true ~ 34
vs. θenriched ~ 32). While we emphasize that our findings
should not be used to support one cutoff point over an-
other, this difference suggests that prevalence can be a
source of variation in the estimation of cutoff points.
This is particularly important if the goal of the modeler
is to establish a cutoff point that is subsequently used in
clinical settings. Thus, minding the prevalence rate can
thus boost the practical significance of findings in this
line of research [19, 41].
Moreover, in considering the results of our model for

both the male- and female-only samples, the cutoff point
was significantly higher in the female- compared to the
male-only sample. This is intriguing given that the mean
AQ scores in both the autistic and non-autistic females
are lower than the mean AQ scores of the autistic and
non-autistic males. However, an inspection of the histo-
gram (Additional file 1: Figure S3) suggests that
non-autistic and autistic females occupy more the
extreme ends of the AQ scale than their male counter-
parts. Thus, to the extent that these scores are expressions
of the genetic liability to autistic traits [24], this difference
in cutoff points is consistent with accounts suggesting that
females require greater genetic liability, or etiological load,
for the condition to be manifest [42, 43] and with reports

Table 3 Parameters of the dual Gauss, Gauss-Weibull, and
Weibull-Gauss distribution models for the overall sample

Parameter Result* Mean* Bootstrap: 95% confidence interval

Lower bound Upper bound

Model 4: Gauss + Gauss** (N = 4717)
-Log-likelihood = 17,272.30

Mean (μ1) 16.14 16.12 15.18 17.07

Std. dev. (σ1) 6.06 6.06 5.57 6.60

Weight (w) 0.74 0.74 0.65 0.81

Threshold (θ) 27.30 27.30 24.40 30.35

Mean (μ2) 34.19 34.17 30.87 37.20

Std. dev. (σ2) 7.50 7.48 6.11 8.74

Model 5: Gauss + Weibull (N = 4717)
-Log-likelihood = 17,261.31

Scale (μ) 16.24 16.18 15.10 16.91

Shape (σ) 6.15 6.13 5.56 6.57

Weight (w) 0.26 0.27 0.20 0.37

Threshold (θ) 27.70 27.56 24.10 30.05

Scale (η) 38.08 37.93 34.48 40.15

Shape (β) 5.18 5.19 3.88 6.41

Model 6: Weibull + Gauss
-Log-likelihood = 17,229.37

Scale (η) 20.92 20.88 20.05 21.57

Shape (β) 2.85 2.86 2.74 3.00

Weight (w) 0.85 0.85 0.80 0.88

Threshold (θ) 32.70 32.60 30.00 34.70

Mean (μ) 38.83 38.73 36.58 40.27

Std. dev. (σ) 5.25 5.28 4.44 6.32

*The result column shows the parameter values from the sample with the
highest likelihood in the original data. The mean column shows the average
parameter value from the 1000 resamples
**μ1 and σ1, and μ2 and σ2 correspond to the parameters of Guass1 and
Gauss2 distributions depicted in Fig. 3b

Table 4 Mean Autism Spectrum Quotient (AQ) score and
standard deviations (SDs) by group and sex within the
prevalence-true sample

Prevalence-true Sample Mean N Mean AQ SD

Autism group 67 33.76 1.30

Autistic males 29.36 35.15 1.30

Autistic females 37.64 35.16 1.01

Neurotypical group 3906 18.17 0.12

Neurotypical males 1344.44 18.17 0.17

Neurotypical females 2561.56 18.16 0.09

Overall 3973 18.43 0.12

Overall males 1373.80 20.59 0.21

Overall females 2599.20 17.29 0.15

Table 5 Parameters of the dual Weibull-Weibull distribution
model of the prevalence-true sample

Parameter Result* Bootstrap: 95% confidence interval

Mean* Lower bound Upper bound

Model 7: Prevalence-true sample (N = 3973)
-Log-likelihood = 13,821.11

Scale (η1) 39.00 39.08 39.00 40.65

Shape (β1) 7.30 6.85 6.16 8.21

Weight (w) 0.94 0.94 0.93 0.96

Threshold (θ) 34.20 34.18 33.20 35.75

Scale (η2) 20.71 20.58 20.27 20.94

Shape (β2) 2.84 2.86 2.77 2.94

*The result column shows the parameter values from the sample with the
highest likelihood. The mean column shows the average parameter value from
the 1000 resamples
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showing that females need to show more severe problems
to obtain a diagnosis [44–47]. It has recently been argued
that sex differences in the etiology of autistic traits are
minor and only detectable in large sample sizes [48]. How-
ever, the large effect size we observed for the difference in
the cutoff points within the male and female samples sug-
gests that this difference may prove important when com-
paring males and females in terms of ascertainment of
diagnosis [49] and treatment response [47], for example.
Taken together, we infer from the observed threshold

differences, between the enriched and prevalence-true
samples, and between the male- and female-only sam-
ples, that subgroupings based on quantitative autistic
traits of mixed autistic and non-autistic populations are
susceptible to both sex and the prevalence of autism
within the population. Therefore, our method to gener-
ate a sample reflecting the epidemiological prevalence of
autism might be an important step forward in that it has
the potential to increase the practical significance of this
line of research which, to our knowledge, is solely
conducted in enriched samples. This approach can be
particularly useful knowing that sometimes it is neces-
sary to have an enriched sample to perform various stat-
istical analyses and that the relative rarity of clinical
disorders within population samples would need to be
very large to facilitate specific investigations within clin-
ical populations. Nonetheless, future research with larger

samples in which the overall prevalence also reflects the
relative prevalence of autism in males and females is
needed to fully assess the effect of prevalence on the re-
sults of finite mixture models in both normally and
non-normally distributed data.
Methodologically, our statistical approach improves

upon finite normal mixture models for the identification
of subgroups of skewed distribution within a population.
Specifically, we have demonstrated that our model has
advantages compared to finite normal mixture models
assuming weighted sum of Gaussian distributions, which
are prone to yield spurious subgroupings when applied
to such populations (see Fig. 2). This is consistent with
previous simulation research showing that these models
find it necessary to select more classes to better approxi-
mate the non-normal distribution of the latent structure
to improve the fit [15, 16]. Therefore, we highlight that
distribution misspecifications of the latent structure may
lead to invalid results about the true structure of autistic
traits within the population. As pointed out in the intro-
duction, skewed distributions of the latent structures
might result from biases in ascertainment [3] or in psy-
chometric properties of assessment scales [13]. In con-
sidering our online sample, biases in ascertainment
might explain the deviation from normality. The psycho-
metric implications of ignoring latent distributional
assumptions have recently been discussed [13] in the

Fig. 4 Histogram of the prevalence-true sample and the results of the dual Weibull distribution model. Black dotted line represents the total
model; yellow and blue lines represent the Weibull1 and Weibull2 distributions, respectively. The red line indicates the intersection point between
the two distributions. The depicted plot is of the bootstrapped sample whose threshold was closest to the mean threshold of all bootstrapped
samples. We interpret the intersection point as the threshold score between autistic and neurotypical individuals, estimated at about 34 on the
AQ scale
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context of examining quantitative autistic traits of a
mixed population measured with the Social Responsive-
ness Scale-Short Form [50]. Specifically, it has been
argued that since this scale violates the assumption of an
underlying latent normal distribution for the population,
its psychometric properties, which are derived with tech-
niques that assume normality, may therefore be invalid
[13]. We propose that the application of Weibull distri-
butions in the development of psychometric scales may
help mitigate such shortfalls due to its flexibility in
representing both symmetrical and asymmetrical distri-
butions within the population [20]. However, since the
results of finite mixture models depend on selecting the
appropriate distribution for the latent structure [51],
future studies should examine the applicability of other
distributions that can handle skewed data, such as the
lognormal [52] and skew-normal distributions [53].
It is noteworthy that the results of the dual Weibull

mixture model raise the possibility that traditional ana-
lytic methods such as general linear models may not be
adequate to perform statistical analyses on mixed, autistic,
and non-autistic populations, as they are built on assump-
tions that do not reflect the asymmetric distribution of
their autistic traits (see Martinez et al. [54] for an example
of how to perform regression when the data consist of a
mixture of components or distributions).

Limitations
Our findings should be viewed with some limitations in
mind. First, our results may be limited by the use of a
single trait measure. Therefore, it is important for future
research to replicate our findings with different instru-
ments, such as the Social Responsiveness Scale [50, 55].
Second, our sample was collected online and therefore
may have a sampling bias. Moreover, the diagnostic data
are based on self report and were not clinically verified.
However, clinical diagnoses of autism that are reported
by online volunteers tend to be generally reliable [56].
Equally likely, there may be clinical but undiagnosed
cases in the neurotypical sample. Third, while our ana-
lysis of the prevalence-true sample provides insight into
the ecological validity of the distribution structure of
autistic traits within the general population, larger sam-
ples are needed in order to also reflect the true male to
female ratio of autism. However, we do not suspect that
the overrepresentation of females in our sample to have
affected our results, since the distributional structure
was similar across the male- and female-only samples
(see Fig. 1c, d). Finally, our dual Weibull distribution
model was restricted to two distributions. This was
based on our knowledge of the sample composition
(autistic and non-autistic individuals) and the bimodality
of the distribution. Of course, this does not preclude the
presence of more components underlying the structure

of autistic traits, and therefore, a more flexible model of
Weibull distributions would be needed to determine if
the sample comprises of more than two components. To
the best of our knowledge, such a flexible model is not
available for the fminsearch method we used to fit the
models. However, we note that the fit of our dual Wei-
bull distribution model was statistically indistinguishable
from the 5-component model recommended by the fi-
nite normal mixture model (Fig. 2), and thus, it was pre-
ferred since it yielded a similar fit but with fewer
components.

Conclusion
Efforts aimed at integrating the categorical and dimen-
sional perspectives of autism and other conditions are
underway [38–40, 57]. However, with the increase in the
popularity of finite mixture modeling to inform this
debate, it is important for the modeler to ensure
concordance between the model’s assumptions and the
distribution of the latent structure within the population.
Since a misspecification of the distribution of the latent
structure could lead to spurious subgrouping (see Fig. 2),
we caution that finding the best fitting mixture, particu-
larly with the use of flexible finite mixture modeling
[10], is not necessarily equivalent to finding the optimal
partition for a given dataset [58]. Owing to its flexibility
to represent a wide variety of distributions, the Weibull
distribution might be better suited for latent structure
studies, within enriched and prevalence-true popula-
tions. In addition, investigations concerned with the
structure of the autism spectrum must also heed the in-
fluence of prevalence and sex on the model’s results to
buttress its practical significance. With these consider-
ations in mind, a multidimensional space that maps core
features of autism would ultimately be needed to more
precisely reflect the heterogenic nature of autism and
the underlying structure of its spectrum.
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