

University of Birmingham

Validating Brouwer's continuity principle for
numbers using named exceptions
Rahli, Vincent; Bickford, Mark

DOI:
10.1017/S0960129517000172

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Rahli, V & Bickford, M 2018, 'Validating Brouwer's continuity principle for numbers using named exceptions',
Mathematical Structures in Computer Science, vol. 28, no. 6, pp. 942-990.
https://doi.org/10.1017/S0960129517000172

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 26/07/2019
RAHLI, V., & BICKFORD, M. (2018). Validating Brouwer's continuity principle for numbers using named exceptions. Mathematical Structures
in Computer Science, 28(6), 942-990. doi:10.1017/S0960129517000172
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/validating-brouwers-continuity-principle-for-
numbers-using-named-exceptions/9B3A32A37B8B410F04A365A3193F8A25

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1017/S0960129517000172
https://doi.org/10.1017/S0960129517000172
https://birmingham.elsevierpure.com/en/publications/e3b00d58-a4cd-4979-b917-c38bde021f1e

Under consideration for publication in Math. Struct. in Comp. Science

Validating Brouwer’s Continuity Principle
for Numbers Using Named Exceptions
Vincent Rahli†

SnT, University of Luxembourg, Luxembourg

vincent.rahli@gmail.com

Mark Bickford

Cornell University, USA

markb@cs.cornell.edu

Received 2 January 2018

This paper extends the Nuprl proof assistant (a system representative of the class of
extensional type theories with dependent types) with named exceptions and handlers, as
well as a nominal fresh operator. Using these new features, we prove a version of Brouwer’s
Continuity Principle for numbers. We also provide a simpler proof of a weaker version of
this principle that only uses diverging terms. We prove these two principles in Nuprl’s
metatheory using our formalization of Nuprl in Coq and reflect these metatheoretical
results in the Nuprl theory as derivation rules. We also show that these additions preserve
Nuprl’s key metatheoretical properties, in particular consistency and the congruence of
Howe’s computational equivalence relation. Using continuity and the fan theorem we
prove important results of Intuitionistic Mathematics: Brouwer’s continuity theorem; bar
induction on monotone bars; and the negation of the law of excluded middle.

1. Introduction

Continuity. There are two principles that distinguish Brouwer’s mathematics from other
constructive mathematics, namely bar induction and a continuity principle [67; 60; 113;
42; 13; 22; 116; 120; 9; 103; 102; 119; 118]. In this document we consider the following weak
and strong continuity principles on the Baire space B = NN = N→ N, i.e., the type of
infinite sequences of natural numbers (Π,Σ are the logical ∀,∃ of constructive type theory;
as explained below, Σ is an existential quantifier—we shall consider several forms below;
+ in the context of types is the disjoint union type; inl is the left injection constructor;
isl checks whether a term is a left injection; Nn is the type of natural numbers strictly

† This work was partially supported by the SnT and the National Research Fund Luxembourg (FNR),
through PEARL grant FNR/P14/8149128.

V. Rahli and M. Bickford 2

less than n; Bn is NNn ; and t =T u expresses that t and u are equal terms in the type T):

WCP = ΠF :B → N.Πf :B.Σn:N. Πg:B.f =Bn
g → F (f) =N F (g)

SCP = ΠF :B → N.
ΣM :(Πn:N.Bn → (N+Unit)).

Πf :B.
Σn:N. M n f =N+Unit inl(F (f))

∧Πm:N.isl(M m f)→ m =N n

WCP is the pointwise continuity principle on natural numbers, sometimes called weak
continuity principle. It says that given a function F of type B → N and a function f of
type B, F (f) can only depend on an initial segment of f†. The length of the smallest
such segment is called the modulus of continuity of F at f . Kleene used some version
of the strong continuity principle SCP‡ to prove bar induction on monotone bars from
bar induction on decidable bars [67, p.78]. SCP says that there is a uniform way, called
M in the formula (such a function is often called a neighborhood function [116, p.212]),
to decide whether n is the modulus of continuity of F at f , and if so returns the value
F (f) [67, p.70–71].

Traditionally, Brouwer’s continuity principle is stated using relations instead of functions
as in WCP and SCP. We show in Sec. 6.4 that we can derive a more traditional continuity
principle that uses relations.
Truncation/Squashing. As first shown by Kreisel in [71, p.154], continuity is not an
extensional property in the sense that it does not map equal arguments to equal values.
Therefore the existence of M in SCP’s type has to be “weakened” in some way. Troelstra
later showed in [112, Thm.IIA] that N-HAω (which is a “neutral” version of HAω that
“permits extensional as well as intensional interpretations of equality at higher types” [115])
extended with (1) Brouwer’s continuity principle, (2) a function extensionality axiom,
and (3) a version of the unsquashed axiom of choice AC2,0, is inconsistent. Both Kreisel’s
and Troelstra’s proofs rely on function extensionality. Escardó and Xu [46; 124] proved,
without using function extensionality but using a rule that allows one to reduce under λs,
that WCP is false in (both intensional and extensional) MLTT [77], i.e., when Σ is the sum
type Σ of MLTT. They also formally proved this result using Agda [20; 1]. As pointed out
by Escardó and Xu, what these results show is that “although every function is continuous,

† In both WCP and SCP, f is declared to have type B and is used with type Bn. This is possible in Nuprl
without any coercion because B is a subtype of Bn, i.e., the members of B are members of Bn too.
This follows from the fact that Nn is a subtype of N, which is made possible thanks to use of set types:
Nn = {x : N | x < n}, and a member of a set type of the form {x : A | B} is a member of A, and not a
pair of an a in A and a b in B[x\a]—see for example [30] for more details regarding set types.
‡ Rathjen calls it “Strong Continuity for Numbers” [103] and names it C-N (as in [116]). Dummett
refers to it as “a stronger version of the Continuity Principle”, names it CP∃n, and later calls it “the
Continuity Principle” [42, pp.59–60]. Troelstra [113, p.1006] calls it CONT0. This is Kleene’s ∗27.2
principle [67, p.73], which he calls “Brouwer’s principle (for numbers)”. Bridges and Richman [22,
p.119] mention that SCP is equivalent to a “principle of continuous choice”, which they divide into a
continuous part, namely WCP, and a choice part, namely the axiom of choice AC1,0 (see Sec 5.3). Note
that AC1,0 is also sometimes used to refer to SCP [52; 121].

Validating Brouwer’s Continuity Principle in Nuprl 3

there is no continuous way of finding a modulus of continuity of a give function f at a
point α” [46]. However, as they mention in their paper, Brouwer’s continuity principle
is consistent when Σ is truncated at the propositional level [117, p.117]. In Nuprl’s type
theory [30; 5], propositional truncation corresponds to squashing a type down to a single
equivalence class (i.e., all inhabitants are equal) using quotient types [29]: �T = T//True.
Because the members of a quotient type of the form T//E are the same as the members
of T , the members of �T are the members of T . Also, �T is a proof-irrelevant type, i.e.,
its members are all equal to each other because if x, y ∈ T then (x =�T y ⇐⇒ True). In
Nuprl we often squash types in a much stronger sense by throwing away the evidence that
a type is inhabited and squashing it down to a single inhabitant using, e.g., set types:
↓T = {Unit | T} (this is the same definition as in [30, p.60]). The only member of this
type is the constant ?, which can be thought of as () in, e.g., OCaml, Haskell or SML.
It is the single inhabitant of Unit, and ? inhabits ↓T if T is true/inhabited, but we do
not keep the proof that it is true. Note that �T → ↓T is true because it is inhabited
by λx.?, but we cannot prove the converse because to prove �T we have to exhibit an
inhabitant of T , which ↓T does not give us because we have thrown away the evidence
that T is inhabited (only ? inhabits ↓T). It turns out that the following ↓-version of the
law of excluded middle ΠP :Type.↓(P+¬P) is consistent with Nuprl [8], while both the
non-squashed version ΠP :Type.P+¬P and the �-squashed version ΠP :Type.�(P+¬P)
are false, where as usual ¬P is defined as P → False. This means, that if ↓T → �T was
consistent with Nuprl, then ΠP :Type.↓(P+¬P) would not be anymore. Sec. 2.6 presents
derivable inference rules that one can use to reason about these two squashing operators.

In this paper we prove that squashed versions of WCP and SCP are true facts about Nuprl’s
functions. We carry out these proofs in Nuprl’s metatheory [4; 3] using our formalization
of Nuprl in Coq [16; 37], which contains among other things: (1) an implementation of
Nuprl’s computation system; (2) an implementation of Howe’s computational equivalence
relation [61] and a proof that it is a congruence; (3) a definition of Nuprl’s Constructive
Type Theory (CTT), where types are interpreted as Partial Equivalence Relations (PERs)
on closed terms following Allen’s PER semantics [4; 3]; (4) definitions of Nuprl’s derivation
rules and proofs that these rules are valid w.r.t. Allen’s PER semantics; (5) and a proof
of Nuprl’s consistency [8; 7].

In Sec. 3 we prove WCP where Σx:T. P is defined as ↓Σx:T.P , and refer to this principle
as WCP↓. We call WCP� the version of WCP where Σ is �Σ. In Sec. 4 we prove SCP where
the first (outer) Σ is �Σ and the second (inner) is ↓Σ, and refer to this principle as SCP�.
These proofs are carried out using our Coq formalization of Nuprl. We make these results
available in Nuprl as inference rules, and show how we can derive directly in Nuprl a
proof of SCP� without the second (inner) squashing operator. Sec. 5 shows that SCP� and
WCP� are equivalent. Even though the implication WCP� → WCP↓ is trivial, we believe our
proof of WCP↓ in Sec. 3 is valuable because of its simplicity and because ↓ is often enough.

An important point is that we add computations to the Nuprl proof assistant that are
sufficient to prove these principles without breaking any property of its type theory such
as its consistency or the congruence of Howe’s computational equivalence relation.

Effectful computations. Following Longley’s method [75], we use computational ef-

V. Rahli and M. Bickford 4

fects [12], namely named exceptions, to derive SCP�. The basic method to find the n such
that F (f) depends only on the first n elements of f is a program P (F, f) that works
as follows: P tests whether F applies its argument f to a number n by running the
sub-routine (written in an ML-like language):

l e t excep t i on e i n
(F (fun x => i f x < n then f x e l s e r a i s e e) ; t r u e)
hand le e => f a l s e

Then by testing F on increasingly larger n’s, if the continuity principle is true, P eventually
finds an n such that the test returns true§.

However, for extensionally equal F and G, P (F, f) and P (G, f) could return different
numbers. For example, if P (F, f) = m and G is constructed from F by replacing an
expression t occurring in F with (let := f(m+ 1) in t), that first evaluates f(m+ 1)
and then evaluates t, then P (G, f) is not guaranteed to be m. This is why we can only
realize squashed versions of the above mentioned continuity principles.

As Longley mentions, if F can catch the exception e then P (F, f) will not necessarily
compute F ’s modulus of continuity at f . Therefore, we have extended Nuprl with exception
handlers that can only catch exceptions with a specific name, and we have added the
ability to generate fresh names (Sec. 7 discusses related nominal systems).
Related proofs of continuity. This is not the first (formal) proof that a type theory
satisfies Brouwer’s continuity principle. For example, Troelstra [114, p.158] proved that
every closed term t ∈ NB of N-HAω possesses a provable modulus of continuity in N-HAω
(the method used in Sec. 3 bears some resemblance with his)—see also [13] for similar
proofs of the consistency of continuity with various constructive theories. Coquand and
Jaber [35; 34] proved the uniform continuity of a Martin-Löf-like intensional type theory
using forcing [27; 28; 13; 81; 10]. Their method consists in adding a generic element f
as a constant to the language that stands for a Cohen real of type 2N, and defining the
forcing conditions as approximations of f, i.e., finite sub-graphs of f. They then define
a suitable computability predicate that expresses when a term is a computable term of
some type up to approximations given by the forcing conditions. The key steps are to (1)
first prove that f is computable and then (2) prove that well-typed terms are computable,
from which they derive uniform continuity: the uniform modulus of continuity is given by
the approximations. The uniform continuity principle is, where F is now a function on
the Cantor space C = 2N instead of the Baire space (Cn is 2Nn):

UCP = ΠF :C → N.Σn:N. Πf, g:C.f =Cn g → F (f) =N F (g)

Escardó and Xu [46; 124] showed that in the case of uniform continuity Σ can equivalently
be Σ or �Σ. In [34], Coquand and Jaber provide a Haskell realizer that computes the
uniform modulus of continuity of a functional on the Cantor space¶.

§ See for example [11, Sec.5.1] or Bauer’s blog for more details: http://math.andrej.com/2006/03/
27/sometimes-all-functions-are-continuous/.

¶ See also Escardó’s tutorial http://www.cs.bham.ac.uk/~mhe/.talks/popl2012/ for examples on
how to search the Cantor space, as well as [86; 45; 44], which point to citations and constructions by,
among others, Gandy and Berger.

http://math.andrej.com/2006/03/27/sometimes-all-functions-are-continuous/
http://math.andrej.com/2006/03/27/sometimes-all-functions-are-continuous/
http://www.cs.bham.ac.uk/~mhe/.talks/popl2012/

Validating Brouwer’s Continuity Principle in Nuprl 5

Similarly, Escardó and Xu [125] proved that the definable functionals of Gödel’s
system T [53] are uniformly continuous on the Cantor space (without assuming classical
logic or the Fan Theorem). For that, they developed a constructive continuous model, the
C-Space category, of Gödel’s system T, and proved that C-Space has a Fan functional
that given a function F in C → N can compute the modulus of uniform continuity of F .
Relating C-Space and the standard set-theoretical model of system T, they show that all
T-definable functions on the Cantor space are uniformly continuous. Finally, using this
model, they show how to extract computational content from proofs in HAω extended
with a uniform continuity axiom UC, which is realized by the Fan functional.

In [43], Escardó provides a simple and elegant proof that all T-definable functions are
continuous on the Baire space and uniformly continuous on the Cantor space using a
generic element as in [35] but without using forcing. His method consists in providing an
alternative interpretation of system T, where a number is interpreted by a dialogue tree
that “describes the computation of a natural number relative to an unspecified oracle
α : NN” [43]. Such a computation is called a dialogue, which is a function that given
a dialogue tree and an oracle of type B, returns a number. Escardó first proves that
dialogues are continuous. This means that a function is continuous if it is extensionally
equal to a dialogue. The key steps are to (1) define a suitable logical relation between
the standard interpretation and the alternative one that relates numbers and dialogues
w.r.t. a given oracle; and (2) prove that all system T terms are related under the two
interpretations. It then follows that for all system T term t of type (ι⇒ ι)⇒ ι (where ι
is the type of numbers), there is a dialogue tree d such that the standard interpretation of
t and the dialogue on d are extensionally equal functions, from which he derives uniform
continuity. The dialogue d is built using a generic sequence that allows dialogue trees to
call the oracle.

Results. Our proof method differs from the ones discussed above in the sense that it is
“mostly” computational. In Sec. 3 we use diverging terms to prove WCP↓, and in Sec. 4 we
use computational effects (named exceptions) to probe terms and derive SCP� using (non-
strict) lock-step simulations of these effectful computations. Sec. 5 shows that SCP� and
WCP� are equivalent. To prove SCP�, we added named exceptions as well as a fresh operator
to Nuprl’s computation system, and showed that these additions preserve Nuprl’s key
metatheoretical properties, such as consistency (see Sec. 2.3 and 4.3) and the congruence
of Howe’s computational equivalence relation (see Sec. 2.2 and 4.2). As mentioned in
Sec. 4.9, SCP� justifies a corresponding inference rule that we added to Nuprl. Sec. 5
discusses the relation between WCP and SCP and the connection with the axiom of choice,
as well as the status of the (squashed) axiom of choice in Nuprl. Using those continuity
rules, as explained in Sec. 6, we have proved in Nuprl: (1) a fully unsquashed version
of UCP using Escardó and Xu’s method [46]; (2) that all real functions defined on the
unit interval are uniformly continuous [42, p.87]; (3) that bar induction on monotone
bars follows from bar induction on decidable bars following Kleene’s proof [67, pp.69–73];
(4) the negation of the law of excluded middle (this is also provable in Nuprl without
using continuity and using instead Nuprl’s “computation types”—see Sec. 6.3); and (5) a
version of Brouwer’s continuity principle stated using relations instead of functions.

V. Rahli and M. Bickford 6

The results presented in this paper have either been formalized in Coq and are
available at https://github.com/vrahli/NuprlInCoq; or they have been formalized in
Nuprl and are available at http://www.nuprl.org/LibrarySnapshots/Published/Version2/
Standard/continuity/index.html for results related to continuity, at http://www.nuprl.
org/LibrarySnapshots/Published/Version2/Standard/int_2/index.html for results related
to the fan theorem, and at http://www.nuprl.org/LibrarySnapshots/Published/Version2/
Mathematics/reals/index.html for results related to real analysis.

Most of the results presented here were presented in the following conference paper: [97].
In addition, we present here many more details regarding Nuprl and its semantics in
Sec. 2. Some of these details were also presented in the following conference paper: [8]. We
also cover more related work regarding exception-based type/logical-systems in Sec. 4.1.2.
We present many more details regarding the effects of adding nominal features to Nuprl
in Sec. 4.2 and Sec. 4.3. Finally, Sec. 6 discusses additional consequences of continuity,
such as the law of excluded middle in Sec. 6.3, and alternative versions of the continuity
principle in Sec. 6.4 and Sec. 6.5.

2. Nuprl

Nuprl is an interactive theorem prover that implements a type theory called Constructive
Type Theory (CTT) [30; 5]. CTT “mostly” differs from other similar constructive type
theories such as the ones implemented by Agda [20; 1], Coq [16; 37], or Idris [21; 63],
in the sense that CTT is an extensional type theory (i.e., propositional and definitional
equality are identified [59]) with types of partial functions [109; 32; 38]. This section
presents some key aspects of Nuprl that will be used in the rest of this paper.

2.1. Nuprl’s Computation System

Fig. 1 presents a subset of Nuprl’s syntax and Fig. 2 presents a subset of Nuprl’s small-step
operational semantics [5; 7]. We only show the part that is either used or mentioned in this
paper. Nuprl’s programming language is an untyped (à la Curry), lazy and applied (with
pairs, injections, a fixpoint operator,. . .) λ-calculus. For efficiency, integers are primitive
and Nuprl provides operations on integers such as addition, subtraction,. . . , a test for
equality and a “less than” operator. Nuprl also has what we call canonical form tests [99]
such as ifint, which are used to distinguish between our different kinds of values. These
canonical form tests are especially useful when working with (non-disjoint) union types,
which are sometimes easier to work with than disjoint unions because one does not need
injections.
A term is either a variable, a value (or canonical term), or a non-canonical term. A

value is a weak-head normal form, i.e., the term is not a redex itself, but can contain
subterms that could reduce further. For example inl(fix(λx.x)) is a value even though
fix(λx.x) can reduce further. Note that types and terms belong to the same syntactic
category: all types are values and all values are terms. Non-canonical terms have one
or two principal arguments (marked using boxes in Fig. 1). A principal argument of a
term t is a term that has to be evaluated to a canonical form before checking whether t

https://github.com/vrahli/NuprlInCoq
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/int_2/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/int_2/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/reals/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/reals/index.html

Validating Brouwer’s Continuity Principle in Nuprl 7

v ∈ Value ::= ty (type) | ? (axiom) | inl(t) (left injection)
| λx.t (lambda) | i (integer) | inr(t) (right injection)
| 〈t1, t2〉 (pair)

ty ∈ Type ::= Z (integer) | Πx:t1.t2 (product)
| Σx:t1.t2 (sum) | Base (base)
| t1 = t2 ∈ t (equality) | ∪x:t1.t2 (union)
| ∩x:t1.t2 (intersection) | t1� t2 (simulation)
| t1//t2 (quotient) | t1+t2 (disjoint union)
| {x : t1 | t2} (set) | t1' t2 (bisimulation)
| Ui (universe) | t (partial)
| W(x:t1.t2) (W)

t ∈ Term ::= x (variable) | let x := t1 in t2 (call-by-value)
| v (value) | let x, y = t1 in t2 (spread)
| t1 t2 (application) | ifint(t1 , t2, t3) (integer test)
| fix(t) (fixpoint) | ifaxiom(t1 , t2, t3) (axiom test)
| if t1 < t2 then t3 else t4 (less than)
| if t1 = t2 then t3 else t4 (integer equality)
| case t1 of inl(x) ⇒ t2 | inr(y) ⇒ t3 (decide)

Fig. 1 Syntax of a subset of Nuprl

(λx.F) a 7→ F [x\a]
let x, y = 〈t1, t2〉 in F 7→ F [x\t1; y\t2]
if i=i then t1 else t2 7→ t1

if i1=i2 then t1 else t2 7→ t2, if i1 6= i2
if i1<i2 then t1 else t2 7→ t1, if i1 < i2
if i1<i2 then t1 else t2 7→ t2, if i1 6< i2
fix(v) 7→ v fix(v)
let x := v in t 7→ t[x\v]
ifint(i, t1, t2) 7→ t1

ifint(v, t1, t2) 7→ t2, if v is not an integer
ifaxiom(?, t1, t2) 7→ t1

ifaxiom(v, t1, t2) 7→ t2, if v is not ?
case inl(t) of inl(x) ⇒ F | inr(y) ⇒ G 7→ F [x\t]
case inr(t) of inl(x) ⇒ F | inr(y) ⇒ G 7→ G[y\t]

Fig. 2 Operational semantics of a subset of Nuprl

can be reduced further. For example the application f(a) diverges if f diverges, and the
canonical form test ifaxiom(t, a, b) diverges if t diverges.
Nuprl uses a uniform syntax for terms [61; 8; 7], and the terms in Fig. 1 are “display

forms” for some specific Nuprl terms. In Nuprl, all terms are of the form θ(b), where θ is
called the operator of the term, and b is a list of bound terms. A bound term b is of the
form l.t, where l is a list of variables. For example, the underlying representation of a
λ-abstraction, displayed to users as λx.t, is {lambda}(x.t), i.e., its operator θ is {lambda}
and it has a single bound term, namely x.t. Note that {lambda}(t) is also a term of the

V. Rahli and M. Bickford 8

language, which we qualify as ill-formed because its subterm has no bound variables. In
our Coq formalization, terms are defined follows:
Inductive NTerm : Set :=
| vterm (v : NVar)
| oterm (op : Opid) (bs : list BTerm)
with BTerm : Set :=
| bterm (l : list NVar) (t : NTerm).

where NVar is the type of variables (which are natural numbers in our implementation);
Opid is type type of Nuprl operators; NTerm is the type of Nuprl terms; and BTerm is
the type of Nuprl bound terms. Note that we distinguish variables from the other terms
because several operations, such as substitution, operate differently on variables from the
other terms: vterm is the variable constructor, while oterm builds a term from an operator
and a list of bound terms.

An advantage of using a uniform syntax is that operations that work uniformly on terms
are easier to define—they do not have repetitive cases as when using one constructor per
operator. For convenience, we use the uniform syntax to, e.g., define Howe’s computational
equivalence relation below.
Fig. 2 shows part of Nuprl’s small-step operational semantics. We omit the rules that

reduce principal arguments such as: if t1 7→ t2 then t1 u 7→ t2 u. As usual, 7→∗ is the
reflexive and transitive closure of 7→, and t1 7→k t2 is defined inductively on k: t 7→0 t and
t1 7→k+1 t2 if there exists a t such that t1 7→ t and t 7→k t2.
We now define a few useful abbreviations:

⊥ = fix(λx.x)
tt = inl(?)
ff = inr(?)

N? = N ∪ Unit
NU = N+Unit

isint(t) = ifint(t, tt, ff)
isl(t) = if t then tt else ff

if t1 then t2 else t3 = case t1 of inl(x) ⇒ t1 | inr(x) ⇒ t2

We sometimes write a =T b for the type a = b ∈ T . Also, we sometimes write b for
(if b then Unit else Void), where Unit and Void can, e.g., be defined as 0 =Z 0 and
0 =Z 1 respectively. (Alternatively, Unit and Void could be defined as ?� ? and ?�⊥,
respectively.) We define True as Unit and False as Void.

2.2. Howe’s Computational Equivalence

It turns out that CTT is not only closed under computation but more generally under
Howe’s computational equivalence ∼, which he proved to be a congruence [61]. In Nuprl,
in any context C, when t ∼ t′ we can rewrite t into t′ without having to prove anything
about types. We rely on this relation to prove equalities between programs (bisimulations)
without concern for typing [99].

Before we formally define Howe’s computational equivalence relation, let us point
out that a binary relation on closed terms can always be extended to a relation on
open terms as follows: t1 R t2 if for all closed substitutions s such that t1[s] and t1[s]
are closed, t1[s] R t2[s]. A relation on terms can always be extended to a relation on

Validating Brouwer’s Continuity Principle in Nuprl 9

bound terms as follows: l1.t1 R l2.t2 if t1[l1\l] R t2[l2\l]. A relation on terms or bound
terms can always be extended to a relation on lists of terms or bound terms as follows:
(t1, . . . , tn) R (u1, . . . , un) if ti R ui for all i ∈ {1, . . . , n}.

Howe’s computational equivalence is defined on closed terms as follows: t ∼ u if
t 4 u ∧ u 4 t. Howe coinductively defines the approximation (or simulation) relation
4 as the largest relation R on closed terms such that R ⊂ [R], where [·] is the following
closure operator (also defined on closed terms): t [R] u if whenever t computes to a value
θ(b), then u also computes to a value θ(b′) such that b R b′. In Coq, this translates as:
CoInductive approx (t u : NTerm) : Type :=
| approx fold : close compute approx t u → approx t u.

where NTerm is the type of Nuprl terms; and where close compute is defined as follows:
Definition close compute (R : NTerm → NTerm → Type) (t u : NTerm) : Type :=

program t
∧ program u
∧ ∀ (op : Opid) (bs : list BTerm),

(t ⇓ oterm op bs)
→ exists bs’, (u ⇓ oterm op bs’) ∧ lblift (olift R) bs bs’ .

where (program t) states that the term t is closed; (t ⇓ u) states that t computes to the
value u; lblift lifts a binary relation on bound terms to a binary relation on lists of bound
terms; and olift lifts a binary relation on closed terms to a binary relation on open terms.

By definition, one can derive, e.g., that ⊥ 4 t for all closed term t. This is because t 4 u
is trivially true if t diverges, because (t ⇓ oterm op bs) is false in the above definition of
close compute. Moreover, it follows that one can prove that t ∼ u if both t and u diverge.
We show below in Sec. 2.3 and Sec. 2.5 that Nuprl provides a way to reason about

Howe’s approximation and computational equivalence relations by providing types that
are true/inhabited whenever the corresponding metatheoretical relations are true.

2.3. Nuprl’s Type System

In CTT, a type is a value of the computation system. Among other things, Allen’s PER
semantics associates Partial Equivalence Relations (PERs) to these values, i.e., types
are interpreted as PERs on closed terms [4; 3]. Allen’s PER semantics can be seen as
an inductive-recursive definition of: (1) an inductive relation T1≡T2 that expresses type
equality; and (2) a recursive function a≡b∈T that expresses equality in a type. We write
type(T) for T≡T , and t∈T for t≡t∈T . Among other things, it follows that the equality
type a = b ∈ T is a true theoretical proposition (inhabited by ?) iff a≡b∈T holds in
the metatheory. Also, if the equality type T = U ∈ Ui is true, then T≡U holds in the
metatheory. The converse is not necessarily true, because, for example, type(Πn:N.U(n))
and type(∪n:N.U(n)) hold in the metatheory, while they are not in any universe (if
universe levels range over natural numbers). See [8; 7] for more details.
Let us now explain how the two relations T1≡T2 and a≡b∈T are defined in our Coq

formalization. See [4; 38; 8; 7] for more details. Let CTerm be the type of closed terms.
Let per, the type of PERs, be defined as CTerm→CTerm→Prop. Let TS, the type of
type systems, be defined as CTerm→CTerm→per→Prop. First, we define the semantics

V. Rahli and M. Bickford 10

of CTT’s type constructors as follows. The interpretation of a CTT type constructor is a
function of type TS→CTerm→CTerm→per→Prop. We only define here the semantics of
product types:
Definition per pi (ts : TS) (T1 T2 : CTerm) (eq : per) : Prop :=

exists eqa eqb,
type family Pi ts T1 T2 eqa eqb
∧ (∀ t t’ , eq t t’ ⇔(∀ a a’ (e : eqa a a’), eqb a a’ e (Apply t a) (Apply t’ a’))).

where (1) Pi and Apply are functions that build product and application Nuprl terms,
respectively; (2) the first conjunct defines when two product types are equal and the
second one defines the PER of such a product type; and where (3) type family is defined
as follows:
Definition type family TyCon ts T1 T2 eqa eqb : Prop :=

exists A A’ v v’ B B’,
T1 ⇓ (TyCon A v B)
∧ T2 ⇓ (TyCon A’ v’ B’)
∧ ts A A’ eqa
∧ (∀ a a’ (e : eqa a a’), ts (B[v\a]) (B’ [v’\a’]) (eqb a a’ e)).

Next, we inductively define a close operator on type systems. Given a type system
ts, this operator builds another candidate type system, which is closed w.r.t. the type
constructors mentioned above:
Inductive close (ts : TS) (T T’ : CTerm) (eq : per) : Prop :=

| CL init : ts T T’ eq → close ts T T’ eq
| CL pi : per pi (close ts) T T’ eq → close ts T T’ eq
. . .
Then, we interpret the Nuprl term U(i), which is the universe type at level i, by

recursion on i ∈ N as follows:
Fixpoint univi (i : nat) (T T’ : CTerm) (eq : per) : Prop :=

match i with
| 0 ⇒ False
| S n ⇒ (T ⇓ U(n)

∧ T’ ⇓ U(n)
∧ ∀ A A’ , eq A A’ ⇔ exists eqa, close (univi n) A A’ eqa)

∨ univi n T T’ eq
end.
Note that cumulativity follows from the use of ∨ in the above definition, i.e., if two

types are equal in U(n) then they will also be equal in U(m) if n ≤ m. Next, we define
univ, the collection of all universes, and the Nuprl type system as follows:
Definition univ (T T’ : CTerm) (eq : per) := exists i, univi i T T’ eq.
Definition nuprl := close univ.

Finally, we define t1≡t2∈T and T≡T ′ respectively as:
exists eq, nuprl T T eq ∧ eq t1 t2

exists eq, nuprl T T ′ eq
CTT includes dependent product and sum types, equality types, a hierarchy of universes,

W types, union and (dependent) intersection types [68], quotient types [29], set types,

Validating Brouwer’s Continuity Principle in Nuprl 11

image types [85], PER types [6], approximation and computational equivalence types [99],
and partial types [109; 32; 38]. Fig. 1 lists some of Nuprl’s types. Among these, Base is
the type of all closed terms of the computation system with ∼ as its equality. The type
t1� t2 is true, more precisely inhabited by ?, if and only if the metatheoretical statement
t1 4 t2 is true; and t1� t2 and t3� t4 are equal types if and only if (t1 4 t2 ⇐⇒ t3 4 t4).
Similarly the type t1' t2 is true if the metatheoretical statement t1 ∼ t2 is true in the
metatheory, and t1' t2 and t3' t4 are equal types if (t1 ∼ t2 ⇐⇒ t3 ∼ t4) (for more
details, see Sec. 2.4, Sec. 2.5, and [99]). For example, it is enough to prove that t1 and
t2 are members of Base to prove that t1' t2 is a type. Also, it turns out that t' t is a
true type in any context. These types allow us, to some extent, to reason about Nuprl’s
computation system directly in the theory. Nuprl has a rich type theory that makes type
checking undecidable. In practice this is mitigated by type inference and type checking
heuristics implemented as tactics.

We have implemented Nuprl’s term language, its computation system, Howe’s ∼ relation,
and Allen’s PER semantics in Coq [8; 7]. We have also showed that Nuprl is consistent
by (1) proving that Nuprl’s inference rules are valid w.r.t. Allen’s PER semantics, and (2)
proving that False is not inhabited. Using these two facts, we derive that there cannot be
a proof derivation of False, i.e., Nuprl is consistent. (For more details regarding Nuprl’s
consistency, see Sec. 2.4, as well as [8; 7].) We are using our Coq formalization to prove
all the inference rules of Nuprl, and have already verified a large number of them.

This paper presents extensions we made to both Nuprl’s computation and type systems
in order to prove SCP�. It includes adding some nominal features such as a fresh operator,
named exceptions, exception handlers, and an exception type. Using our Coq formalization,
we provide in Sec. 3 a simple proof that WCP↓ is true w.r.t. Nuprl’s PER semantics using
the fact that ⊥ diverges, and in Sec. 4 we prove SCP� using the nominal features mentioned
above.

2.4. Sequents and Rules

In Nuprl, one reasons about types using a sequent calculus, which is a collection of
derivation rules that captures many properties of Nuprl’s computation and type systems.
For example, for each type we have introduction and elimination rules. This calculus
can be extended as required by adding more types and/or derivation rules. This section
presents the syntax and semantics of Nuprl’s sequents and rules. See [8; 7] for more details.
We have already verified a large number of Nuprl’s inference rules. Our formalization of
Nuprl in Coq provides a safe way to add new inference rules to Nuprl by mechanizing
their semantics, and allowing one to formally prove their validity, which is a difficult task
without the help of a proof assistant. Howe [62] writes: “Because of this complexity, many
of the Nuprl rules have not been completely verified, and there is a strong barrier to
extending and modifying the theory”.
Syntax of Sequents and Rules. Sequents are of the form h1, . . . , hn ` T bext tc. The
term t is called the extract or evidence of the type T , An hypothesis h is either of the
form x : A (non-hidden) or of the form [x : A] (hidden)—hidden hypotheses are discussed
below—where x is referred to as the name of the hypothesis and A its type. A name

V. Rahli and M. Bickford 12

cannot occur twice in a list of hypotheses. Such a sequent states, among other things,
that T is a type and t is a member of T . We write H ` T for H ` T bext ?c or whenever
the extract is irrelevant. A rule is a pair of a sequent and a list of sequents, which we
write either as (where name is the name of the rule):

(S1 ∧ · · · ∧ Sn) ⇒ S

or
S1 · · · Sn

S
name

or

S

BY name
S1
...
Sn

Hidden Hypotheses. To understand the necessity of hidden hypotheses, let us consider
the following intersection introduction rule:

H ` ∩a:A.B[a] bext ec
BY [isectMemberFormation]
H , [x : A] ` B[x] bext ec
H ` A = A ∈ Ui

This rule says that to prove that ∩a:A.B[a] is true with extract e, one has to prove that
B[x] is true with extract e, assuming that x is of type A. The meaning of intersection
types requires that the extract e be the same for all values of A, and is therefore called
the uniform evidence of ∩a:A.B[a]. The fact that x is hidden means that it cannot occur
free in e (but can occur free in B). The same mechanism is required to state the rules for,
e.g., subset types or quotient types.
Hidden hypotheses can be unhidden when proving conclusions that do not have any

computational content such as equalities. Therefore, the following rule is valid according
to Allen’s PER semantics explained below:

H, [x : T], J ` a = b ∈ C
BY [Unhide]
H,x : T, J ` a = b ∈ C

Digression on Intersection Types. As a side note, non-dependent intersections of type
families and dependent intersection types were studied by Kopylov [68] and added to
the MetaPRL [58] (a cousin of Nuprl mostly developed by Hickey) and Nuprl systems
(intersections of type families were added to Nuprl around 2000 [31]). Intersection types
have recently been used by Constable and Bickford to prove a completeness result of
intuitionistic first-order logic [33]. Around the same time, Miquel [79; 78; 80] was also
studying the addition of intersections of type families to a Curry-style version of the
Calculus of Constructions. In Nuprl, we mostly use intersection types to avoid “noise” in
our extracts, e.g., to avoid having type parameters in extracts that have no role in the

Validating Brouwer’s Continuity Principle in Nuprl 13

computational content of the extracts, and are only used for typing purposes. We believe
that intersection types are central in our theory and we proposed in [6] an alternative
definition of Nuprl that relies on partial equivalence relation types and intersection types
as the main logical universal quantifier.
Semantics of Sequents and Rules. Several definitions for the truth of sequents occur in
the Nuprl literature [30; 38; 68]. Among these, Kopylov’s definition was the simplest [68]
in the sense that it is more compactly defined than the others and also easier to work
with. Our definition in [8; 7] is a simplified version of Kopylov’s definition, and we have
proved that all these definitions are equivalent [7, Sec. 5.1]. The semantics we present uses
a notion of pointwise functionality [38, Sec. 4.2.1], which says that each type occurring
in a true sequent must respect the equalities of the types on which it depends. This is
captured by formula 1 below for the hypotheses of a sequent, and by formula 2 for its
conclusion. For the purpose of this discussion, let us ignore the possibility that some
hypotheses can be hidden.
Let H be a list of hypotheses of the form x1 : T1, . . . , xn : Tn, let s1 be a substitution

of the form (x1 7→ t1, . . . , xn 7→ tn), and let s2 be a substitution of the form (x1 7→
u1, . . . , xn 7→ un).
Similarity. The similarity relation lifts the notion of equality in a type (i.e., the relation

≡ ∈) to lists of hypotheses. We say that s1 and s2 are similar in H, and write s1≡s2∈H,
if for all i ∈ {1, . . . , n}, ti≡ui∈Ti[x1\t1; · · · ;xi−1\ti−1]. Let s∈H be s≡s∈H.
Equal Hypotheses. The following notion of equality lifts the notion of equality be-
tween types (i.e., the relation ≡) to lists of hypotheses. We say that the hypothe-
ses H are equal w.r.t. s1 and s2, and write s1(H)≡s2(H), if for all i ∈ {1, . . . , n},
Ti[x1\t1; · · · ;xi−1\ti−1]≡Ti[x1\u1; · · · ;xi−1\ui−1].
Hypotheses Functionality. We say that the hypotheses H are pointwise functional w.r.t.
the substitution s, and write H@s if

∀s′. s≡s′∈H ⇒ s(H)≡s′(H) (1)

Truth of Sequents. We say that a sequent of the form H ` T bext tc is true if

∀s1, s2. s1≡s2∈H ∧H@s1
⇒ T [s1]≡T [s2] ∧ t[s1]≡t[s2]∈T [s1]

(2)

In addition the free variables of t have to be non-hidden in H.
Validity of Rules. A rule of the form (S1 ∧ · · · ∧ Sn) ⇒ S is valid if assuming that the
sequents S1, . . . , Sn are true then the sequent S is also true.
Consistency. Using our formalization of Nuprl in Coq, we have already verified a large
number of Nuprl’s inference rules, including the usual introduction and elimination rules
to reason about the core type system presented in [8].

A Nuprl proof is a tree of sequents where each node corresponds to the application of a
rule. Using the definition of the validity of a rule, and by induction on the size of the tree,
this means that the sequent at the root of the tree is true w.r.t. Nuprl’s PER semantics
if the tree has no leaves. Hence, a proof of False, for any meaningful definition of False,

V. Rahli and M. Bickford 14

i.e., a type with an empty PER such as 0 = 1 ∈ Z, 0� 1, or ?�⊥ (this one says that ⊥
converges), would mean that its PER is in fact non-empty, which leads to a contradiction.
Extensionality. Nuprl is extensional in the sense that propositional and definitional
equality are identified [59], and functional extensionality holds from the PER semantics
of Π types. It is also intensional in the sense that not all types with equivalent PERs
are equal. This is also illustrated in Nogin’s PhD thesis [84, p.39]. For example, equality
types have trivial content. Both 0 =Z 0 and 1 =Z 1 are inhabited by ?. These two types
have equivalent PERs but they are not equal as types. As it was recently reminded to us
by our colleague Evan Moran, this intensionality is necessary to validate sequents such as
h : x ∈ Z ` Z bext xc, where h : x ∈ Z is an hypothesis named h of type x ∈ Z, and x is
the extract of the sequent (i.e., the evidence that shows that Z is true, i.e., an inhabitant
of that type). According to Nuprl’s PER semantics (See [8; 7] for the definition of equality
types) and under an extensional definition of equality types, because 0 =Z 0 and 1 =Z 1
would be equal types, then we would have to prove that 0≡1∈Z.

2.5. Computational Types

This section discusses the types Top, Base, �, and '. Some of the results mentioned in
this section were presented in [99].

Note that t1 4 t2 is Howe’s approximation (or simulation) metarelation while t1� t2 is
a CTT type. This type is interpreted as follows:

per approx(τ, T, T ′, φ) =
∃a, b, c, d.

T ⇓ a� b
∧ T ′ ⇓ c� d
∧ (a 4 b ⇐⇒ c 4 d)
∧ (∀t, t′. t φ t′ ⇐⇒ a 4 b ∧ t ⇓ ? ∧ t′ ⇓ ?)

The relation per approx expresses when two types T and T ′ are equal approximation
types and defines the equality φ of T . Note that the type system τ is not used in this
definition because approximation types do not have types as subterms. However it is used
in, e.g., the interpretation of dependent products types (see Sec. 2.3) to state, e.g., that for
two dependent product types to be equal, their domains have to be equal w.r.t. the type
system. Approximation types are extensional in the sense that all true approximation
types are equal to each other and all false approximation types are equal to each other
(third clause in per approx’s definition).

Similarly, t1 ∼ t2 is Howe’s computational equivalence (or bisimulation) metarelation,
while t1' t2 is a type. This type is interpreted as follows:

per cequiv(τ, T, T ′, φ) =
∃a, b, c, d.

T ⇓ a' b
∧ T ′ ⇓ c' d
∧ (a ∼ b ⇐⇒ c ∼ d)
∧ (∀t, t′. t φ t′ ⇐⇒ a ∼ b ∧ t ⇓ ? ∧ t′ ⇓ ?)

Validating Brouwer’s Continuity Principle in Nuprl 15

Base is the type of all closed terms with ∼ as its equality. It is a primitive type. Top is
the type of all closed terms with True as its equality. It is currently defined as follows:
Top = ∩x:Void.Void. A more intuitive (equivalent) definition might be Base//True.

Here are a few rules that we can prove about ' and �:
H ` a� a

BY [approx-refl]
H ` a' a

BY [cequiv-refl]

H ` a' b
BY [cequiv-base]
H ` a = b ∈ Base

H ` a b' c d
BY [cequiv-app-D]
H ` a' c
H ` b' d

H ` λx.a'λx.b
BY [cequiv-lam-D]
H , x : Base ` a' b

H ` a' b
BY [cequiv-approx]
H ` a� b
H ` b� a

It turns out we can prove that [approx-refl] is a valid rule because � is an extensional
type. If it was not, we would not be able to prove the “functionality” of a� a in any
context. We will freely use these rules below without mentioning them.

It turns out that when proving a proposition of the form a' b or of the form a� b in
the context of an hypothesis x : Top, then we can always change this instance of Top into
Base, which is extremely useful because derivation rules that mention either of our two
computation types ' and � are often stated using Base. This “trick” was discovered by
our colleague David Guaspari. Let us assume that we are proving a sequent of the form

H,x : Top, J ` a' b

Because a' (λx.a) x and b' (λx.b) x are true in any context (using computation and
[cequiv-refl]), it is enough to prove

H,x : Top, J ` (λx.a) x' (λx.b) x

Using [cequiv-app-D], [cequiv-refl], and [cequiv-lam-D], it is enough to prove

H,x : Top, J, x′ : Base ` a[x\x′]' b[x\x′]

which can easily be turned into

H,x : Base, J ` a' b

2.6. Squashing Inference Rules

Let us now present a few derivable inference rules to reason about our two main squashing
operators ↓ and �. Because most of them are trivial, we have proved them to be valid
w.r.t. Allen’s PER semantics (see Sec. 2.4) directly in Coq: https://github.com/vrahli/
NuprlInCoq/blob/master/rules/rules_squash.v.
First, let us present the rules about our ↓ operator as they are simpler:

https://github.com/vrahli/NuprlInCoq/blob/master/rules/rules_squash.v
https://github.com/vrahli/NuprlInCoq/blob/master/rules/rules_squash.v

V. Rahli and M. Bickford 16

H ` x = y ∈ ↓T
BY [SquashEqual]
H ` T
H ` x' ?
H ` y' ?

H ` ↓T
BY [Squash]
H ` T

H, x : ↓T, J ` C
BY [SquashElim]
H,x : ↓T, J, [y : T] ` C

H ` x' ?
BY [SquashMember]
H ` x ∈ ↓T

[SquashEqual] says that to prove that x and y are equal members in ↓T , it’s enough to
prove that T is true and that x and y both compute to ?. [Squash] says that to prove
↓T it is enough to prove T . [SquashMember] says that ? is the only inhabitant of ↓T . The
only non-trivial rule is [SquashElim] which introduces a hidden hypothesis. (Note that
because y does not occur in H,x : ↓T, J then it cannot occur in C either.) Therefore,
we get to assume that T is true, but we do not get to know what term it is inhabited
by. As mentioned above in Sec. 2.4, hidden hypotheses can be unhidden when proving
conclusions that do not have any computational content such as equalities. Using these
rules we can derive the following elimination rule:

H,x : ↓T, J ` a = b ∈ C
BY [SquashElim]′

H,x : T, J [x\?] ` a[x\?] = b[x\?] ∈ C[x\?]
We now present the rules about our � operator:

H ` x = y ∈ �T
BY [TruncationEqual]
H ` x ∈ T
H ` y ∈ T

H ` �T
BY [Truncation]
H ` T

H, x : �T, J ` a = b ∈ C
BY [TruncationElim]
H,x : T, J, y : T ` a = b[x\y] ∈ C
H, x : �T, J ` C ∈ Type
H ` T ∈ Type

Rule [TruncationEqual] is similar to rule [SquashEqual], and rule [Truncation] is similar
to rule [Squash]. Again, the only non-trivial rule is [TruncationElim]. The third subgoal

H ` T ∈ Type

is necessary because �-types are extensional, i.e., �T is equal to �U iff T and U are types
that have equivalent PERs. The second subgoal

H,x : �T, J ` C ∈ Type

is necessary to prove that C is functional w.r.t. the list of hypotheses H,x : �T, J . With the
first subgoal we only get that C is functional w.r.t. the list of hypotheses H,x : T, J, y : T .
Intuitively, the first subgoal tells us that C[x\u] and C[x\v] are equal whenever u and v
are equal in T , when what we want to prove is that C[x\u] and C[x\v] are equal whenever

Validating Brouwer’s Continuity Principle in Nuprl 17

u and v are both (not necessarily equal) members of T , which is what the second subgoal
tells us. Finally, the first subgoal

H,x : T, J, y : T ` a = b[x\y] ∈ C

says that we get to unsquash x’s type because we are proving an equality and because
equality types do not have computational content. In addition, we also have to prove that
our equality is functional w.r.t. the hypothesis x : �T , i.e., given another element y in T
not necessarily equal to x, we have to prove that a is equal to b[x\y] in C.
We now have presented enough background on Nuprl to start proving new metatheo-

retical and theoretical results. We now turn to the validity of Brouwer’s weak continuity
principle for numbers.

3. Weak Continuity Principle

Our proof of WCP↓ uses ⊥ and the fact that it diverges. For further details regarding this
proof conducted in our implementation of Nuprl in Coq, the interested reader is invited
to look at https://github.com/vrahli/NuprlInCoq/blob/master/continuity/continuity_
roadmap.v. The same proof would not work for �, because using ↓ we can compute the
modulus of continuity of a function in the metatheory, i.e., this computation does not
have to be expressible in the theory because only ? inhabits ↓-squashed types, while using
� we would have to come up with a Nuprl term t that does the computation, i.e., such
that t∈WCP�. Sec. 4 shows how to do that.
Let F ∈ ZZ → Z and f ∈ ZZ (we use Z here instead of N, but we proved a slightly

more general result for functions of type TZ → Z where T is a non-empty subtype of Z,
such as N or N2).
Step 1. By typing, this means that F (f) ∈ Z, i.e., F (f) computes to an integer i.
Step 2. It might seem that in that computation f only gets applied to integers, however,
this is not necessarily true in an untyped language such as Nuprl. For example, f could
be λx.x which is a member of ZZ, and just knowing that F (f) computes to the integer
i, it could still happen that f gets applied to, say, ?. To remedy this issue, we use the
function force(f) = λx.let x := x+ 0 in f(x). Because f = force(f) ∈ ZZ, by typing
again we get F (force(f)) 7→∗ i. Let us call that computation C1. If force(f) was to be
applied to a term that is not an integer then the computation would either get stuck or
diverge. We know that this cannot happen because F (force(f)) 7→∗ i. Therefore, our use
of force ensures that f ’s arguments are integers.
Step 3. Let bound(t, b) = let x := t in if |x|<b then x else ⊥. By computation we
prove that there exists a number b such that F (λx.let x := bound(x, b) in f(x)) 7→∗ i.
We can get such a b in the metatheory by computing the largest number occurring in the
computation C1, i.e., if t0 = F (force(f)) 7→ t1 7→ · · · 7→ i = tn, then let b be the largest
number occurring in one of the ti. We have to squash WCP’s existential quantifier using ↓
because this metatheoretical computation of b is not a Nuprl term. We prove this step
using a simulation technique that we will reuse over and over again in this paper. We
prove that given a context G, if G[x+ 0] computes to a value v then G[bound(x, b)] also

https://github.com/vrahli/NuprlInCoq/blob/master/continuity/continuity_roadmap.v
https://github.com/vrahli/NuprlInCoq/blob/master/continuity/continuity_roadmap.v

V. Rahli and M. Bickford 18

computes to v, assuming that b is greater that any number occurring in the computation
G[x+ 0] 7→∗ v. Note that we have not yet used the fact that ⊥ diverges. This will be used
in step 5. Let us call C2 the computation F (λx.let x := bound(x, b) in f(x)) 7→∗ i.
Step 4. We now instantiate our conclusion using b. It remains to prove that Πg:ZZ.f =ZZb

g → F (f) =Z F (g), where Zb is the type of integers strictly less than b. Because f and g
agree up to b, and because the computation C2 converges, by computation we know that
F (λx.let x := bound(x, b) in g(x)) 7→∗ i. We prove this by showing that given a contextG,
if G[let x := bound(x, b) in f x] computes to a value, then G[let x := bound(x, b) in g x]
computes to the same value. We still have not used the fact that ⊥ diverges, because we
could use any number in bound’s definition instead of ⊥, such as 0, and make sure that
0 < b.
Step 5. Again by computation: F (force(g)) 7→∗ i. We prove this by showing that given
a context G, if G[bound(x, b)] computes to a value then G[x+ 0] computes to the same
value because the “less than” operator in bound’s definition ensures that x is an integer,
and because we know that G[bound(x, b)] does not diverge.
Step 6. Finally, by typing, F (g) 7→∗ i, i.e., F (f) =Z F (g).

4. Strong Continuity Principle

We now prove SCP� [67, pp.69–73] (Sec. 5 shows that SCP� and WCP� are equivalent). We
need to come up with a Nuprl term of type Πn:N.Bn → NU that checks whether we have
reached the modulus of continuity of a function. For that, we now use named exceptions
as a probing mechanism to compute the modulus of continuity of a function. Instead
of SCP�, we prove the following equivalent but slightly simpler statement [67, pp.71-72]
(where the T in SCPT is for Test—see below):

SCPF(F) = � ΣM :(Πn:N.Bn → N?).
Πf :B. ↓Σn:N.M n f =N F (f)

∧Πn:N.isint(M n f)→M n f =N F (f)
SCPT = ΠF :B → N. SCPF(F)

Using our Coq formalization and making use of computations on terms that are only
possible in the metatheory, we proved that SCPT is true w.r.t. the PER semantics of Nuprl
extended with the nominal features mentioned above. We then proved directly in Nuprl
that SCPT and SCP� are equivalent. We prove SCPT rather than SCP� mainly because its
realizer is simpler. Intuitively, the M part of SCPT’s realizer is a simple test function of
the form (we use here some ML-like pseudo-code and Sec. 4.4 presents the corresponding
Nuprl expression):

fun t e s t n f =
l e t excep t i on e i n
(l e t v = F (fun x => i f x < n then f x

e l s e r a i s e e)
i n Some v) hand le e => None

while the one for SCP� is a recursive search function of the form (we use here some ML-like
pseudo-code and Sec. 4.9 presents the corresponding Nuprl expression):

Validating Brouwer’s Continuity Principle in Nuprl 19

l e t fun s e a r c h n m f =
i f m <= 0 then t e s t n f
e l s e case t e s t m f of

| Some k => None
| None => s e a r c h n (m − 1) f
end

i n s e a r c h n (n − 1) f

In both functions, None means that n is less than the modulus of continuity of F at f. In
the test function, Some v means that v is F(f) and n is greater than or equal to the modulus
of continuity of F at f, while the search function returns F(f) only when n is the modulus
of continuity of F at f (and not when n is past the modulus as in the test function).

4.1. Extension of Nuprl’s Computation System

4.1.1. Syntax We extend Nuprl with names (or unguessable atoms [17]), named exceptions,
exception handlers, and a fresh operator as follows:

v ::= · · · | a (name value)
ty ::= . . .

| Name (name type)
| Exc(t1, t2) (exception type)

e ::= exc(t1, t2) (exception)
t ::= . . .

| e (exception)
| νx. t (fresh)
| tryn t with x.c (try/catch)

Name is a type of names and a stands for a name (names are constants). Names were
introduced in Nuprl under the name of “unguessable atoms” to reason about logical
foundations for security [17]. To account for names, Allen generalized his PER semantics [4]
to a so-called supervaluation semantics that quantifies over all possible implementations
of the Name type [2]. Names come with two metatheoretical operations: a fresh operator
to generate a fresh name w.r.t. a list of names, and a test for equality. As in Pitts and
Stark’s ν-calculus [94; 91, Sec.9.6] or Odersky’s λν-calculus [87; 91, Sec.9.4], we add two
corresponding operators to Nuprl. Because we already have a test for equality operator
for integers, we simply modify the operational semantics of (if t1=t2 then t3 else t4) as
follows:

if a=a then t1 else t2 7→ t1
if a=b then t1 else t2 7→ t2, if a 6= b

Our exceptions and handlers are similar to Lebresne’s [74]. In Nuprl, an exception e has
two subterms: the first one is e’s name and the second one is some piece of data that can
be used if e is caught. The type Exc(t1, t2) is the type of exceptions with names of type
t1 and data of type t2. In general exceptions can be named with terms other than names.
For example, if a and b are names, both exc(a, 0) and exc(b, 0) have type Exc(Name,Z)
(among others); and exc(1, 0) has type Exc(Z,Z). We also add exception handlers of the
form tryn t with x.c, where t is the term we try to evaluate, and c[x\d] is the code we

V. Rahli and M. Bickford 20

run if we catch an exception with name n and data d. Therefore, a handler cannot catch
all exceptions. A canonical operator is now either a value or an exception.
Let us define a few useful abstractions/abbreviations:

Namen = {x : Name | x'n}
Excn(T) = Exc(Namen, T)
Excn = Excn(Unit)
T?n = T ∪ Excn
excn = exc(n, ?)
tryn t = tryn t with x.?

If T is not an exception type, T?n is the type of terms that either compute to elements of
type T or that compute to exceptions with name n and data ?.

4.1.2. Related Exception-Based Systems Exceptions are a standard programming language
feature. In the interactive theorem proving realm they are “well-adapted to programming
strategies which may be (in fact usually are) inapplicable to certain goals” [55, p.11].
However, exceptions are often not accounted for in types.
The type T?n is similar to Lebresne’s type A ?∪ {ε}, where A is a type and ε is an

exception [73; 74]. Lebresne’s Fx system [74] provides type constructors to express two
different levels of corruption. In addition to the ones mentioned above Lebresne also
introduces corruption types of the form A{ε}. A term in A{ε} is a term in A where some
part has been replaced by the exception ε. As he mentions, an expression of that type
does not necessarily evaluates to an exception. For example, if Nuprl had such a type,
inl(exca) could be of type (N+Unit){a}. Sacchini [104] shows that corruption in the
presence of dependent types has interesting consequences. We leave adding corruption
types to Nuprl for future work. Lebresne [74] mentions that to get exceptions one could
either directly encode them in the language (e.g., using monads) or add them as primitive.
We decided to add them as primitives for the same reasons (e.g., compositionality) stated
in his paper. David and Mounier [41] introduced EX2 as an extension of Krivine’s FA2
system [72] with exceptions. As in Nuprl, both Fx and in EX2 implement call-by-name
exceptions. Also, in all three systems exceptions and handlers are named, and handlers
can only catch exceptions with the correct name.
Exceptions bear some resemblance with control operators such as call/cc (see for

example [111; 110] for a comparisons between exceptions and continuations, that show
among other things that there are contextual equivalences that hold in the presence of
exceptions but not in the presence of continuations, and vice versa). Griffin [56] and
Murthy [82] extended the formula-as-type/proof-as-program correspondence to classical
systems by relating classical proofs to typed programs that make use of control operators
such as the C operator [50], which is similar to call/cc. In these systems, control operators
are used to provide algorithmic content for the classical double-negation elimination
rule. Other prominent examples of such systems are Parigot’s λµ-calculus [88] and de
Groote’s λ→exn-calculus [57], which also uses control operators (ML-like exceptions in
the case of λ→exn) to give algorithmic content to classical proofs. Nakano [83] studied a
constructive type theory with catch and throw operations, such that one can extract

Validating Brouwer’s Continuity Principle in Nuprl 21

programs that make use of these operations. Kameyama designed a simple calculus for
dynamic catch/throw exception mechanism in a type-theoretic setting [65]. As opposed to
Nakano’s static exception mechanism, in his system the catch corresponding to a throw
is determined dynamically. Function types are annotated by sets of types to keep track of
the types of possible raised exceptions as in [74]. Kameyama and Yonezawa [66] studied
Felleisen’s dynamic control operators control and prompt [49]. They introduced a typed
calculus for these operators and showed that these dynamic typed control operators can
simulate the typed static ones (shift and reset [40]), while the converse direction is not
possible.

4.1.3. Operational Semantics of ν Let us now present the operational semantics of fresh
and exception handlers. A fresh expression of the form νx.t computes differently depending
on whether t is a variable, a canonical term, or a non-canonical term. Let us consider
each of these cases.
Variable. If t is the variable x then νx.t reduces to itself and therefore diverges. Therefore,
one can prove that νx.x ∼ ⊥. This differs both from Odersky’s [87] approach where νx.x
is stuck and from Pitts’ approach [92] where νx.x is a normal form. If t reduces to another
variable than x then the computation gets stuck because the term is open.
Non-canonical. If t is non-canonical then

νx.t 7→ νx.u[a\x] if t[x\a] 7→ u

where a is a fresh name w.r.t. t (written a#t), and t[a\u] is a capture avoiding substitution
function on names (similar to the usual substitution operation on variables). This ensures
that fresh names do not escape the scope of ν expressions. As expected (if x 6= y):

νx.νy.if x=y then tt else ff 7→∗ ff

We cannot simply reduce ν as follows: νx.t 7→ t[x\a], because Howe’s computational
equivalence would not be a congruence. With such a reduction rule, we would have
νx.inl(x) 7→ inl(a) and (let y := a in x) ∼ x, whereas νx.inl(let y := a in x) 67→∗
inl(a).
Canonical. If t is a canonical form (a value or an exception), then we “push” ν “down”
the expression as in Odersky’s λν-calculus [87; 76; 91] (as opposed to using, e.g., stateful
dynamic allocation [76] or the notion of prevalues [64], which are values prefixed with a
list of “fresh name” binders):

νx.t 7→ ⇓x t
where ⇓ computes as follows on terms:

⇓x θ(b1; · · · ; bn) = θ(⇓x b1; · · · ;⇓x b1)

and as follows on bound terms:

⇓x (l.t) = l.νx′.t

where, in order to avoid variable capture, x′ is x if x 6∈ l, and a fresh variable w.r.t. t
otherwise. For example νx.〈1, x〉 7→ 〈νx.1,νx.x〉 and νx.λy.t 7→ λy.νx.t if x 6= y. We

V. Rahli and M. Bickford 22

cannot simply reduce νx.〈1, x〉 to 〈1, x〉 because x would become free. Note that when
x ∈ l, we could have defined ⇓x (l.t) to be l.t. However, this would make the definition
less uniform and therefore harder to reason about. To this effect, we proved νx.t ∼ t if t
is closed.

4.1.4. Operational Semantics of try Handlers of the form (tryn e with x.c) catch excep-
tions of the form exc(n, d), i.e., names have to match. For example,

trya (1 + exc(a, λx.x+ 1)) with f.f(2) 7→∗ 3

When its principal argument is non-canonical or a variable, a handler computes exactly like
the other non-canonical operators (except ν), i.e., (tryn e1 with x.c) 7→ (tryn e2 with x.c)
if e1 7→ e2. Let us consider the exception and value cases.

Exception. If t is an exception of the form exc(n, d) then we have to check whether the
handler has the right name as follows:

trym exc(n, d) with x.c 7→ if m=n then c[x\d] else exc(n, d)

This computational rule also has the following effect that if m computes to an exception
e, then trym exc(n, d) with x.c 7→∗ e. Also, if m computes to a name and n computes
to an exception e then trym exc(n, d) with x.c 7→∗ e.

Value. A naive way or reducing a handler when its principal argument is a value would
be to simply return the value as follows:

tryn v with x.c 7→ v

However, note that in the case where the principal argument of a handler is an exception,
we have to evaluate the “name” part of the handler to check whether the exception has the
correct name. This means that if we were to simply return the value here and if the “name”
part was ⊥ for example, raising an exception in an expression that is “well-behaved” could
cause the expression to diverge. For example, using the above rule: try⊥ 1 7→ 1, and if
we replace 1 by exca, then try⊥ exca diverges. This is undesirable, especially in the
context of using exceptions to probe a function, e.g., to compute its modulus of continuity.
Therefore, instead of simply returning the value, we first check that n is something that
we can compare as follows:

tryn v with x.c 7→ if n=n then v else ⊥

4.1.5. Regarding the Operational Semantics of ν In Sec. 4.1.3 we saw that we cannot
reduce νx.〈1, x〉 to 〈1, x〉 because x would become free. Could we replace x with some
default value such as, say, ? or ⊥? The problem with that is that any of these choices
would break the properties of Howe’s computational equivalence [61]. Say we pick ? to
replace v. Then we can prove:

if a=b then inl(0) else inl(1)
4 inl(if a=b then 0 else 1)

Validating Brouwer’s Continuity Principle in Nuprl 23

where a and b are two different names. Therefore, we expect to be able to prove using
congruence that

νx.(if x=b then inl(0) else inl(1))
4 νx.(inl(if x=b then 0 else 1))

However, because

νx.(if x=b then inl(0) else inl(1)) 7→∗ inl(0)
νx.(inl(if x=b then 0 else 1)) 7→∗ inl(if ?=b then 0 else 1)

inl(0) 64 inl(if ?=b then 0 else 1)

then we would also get that

νx.(if x=b then inl(0) else inl(1))
64 νx.(inl(if x=b then 0 else 1))

Similar examples can be constructed for different default values. For example, for ⊥, we
can use let z := x in inl(0) and inl(let z := x in 0).

4.2. Howe’s Computational Equivalence in the Presence of ν

To prove that ∼ is a congruence, Howe first proves that 4 is a congruence [61]. Unfortu-
nately, this is not easy to prove directly. Howe’s “trick” was to define another inductive
relation 4∗, which is a congruence and contains 4 by definition.

Howe defines t 4∗ u by induction on t: if t is a variable then t 4∗ u if t 4 u; and if t is
of the form τ(b) then t 4∗ u if there exists b′ such that b 4∗ b′ and τ(b′) 4 u. To prove
that 4∗ and 4 are equivalent and therefore that 4 and ∼ are congruences, it suffices to
prove that 4∗ respects computation, i.e., given that t 4∗ u, if t computes to a value of
the form θ(b) then u also computes to a value θ(b′) such that b 4∗ b′. Howe’s Lemma 2
in [61] shows that this is true when t is a value.

Howe then defines a condition called extensionality that non-canonical operators of lazy
computation systems have to satisfy for 4∗ to imply 4, and therefore for 4 and ∼ to be
congruences. An operator θ is extensional if for all k ∈ N, and closed v (a value), b and b′,
if θ(b) 7→k+1 v and b 4∗ b′ then v 4∗ θ(b′). We also get to use the following induction
hypothesis IH: if for all closed t1, t2, t3, if t1 7→k t2 and t1 4∗ t3 then t2 4∗ t3.

We extended all these definitions to deal with the fact that canonical forms can either
be values or exception, and then, as mentioned below, using our new definition of 4∗ we
were able to prove that ν is extensional.

First, we modified Howe’s definition of 4∗ to account for the fact that the binders of
ν expressions are only meant to be names: as shown in Sec. 4.1.3, when computing an
expression of the form νx.t, we only ever replace x by a name. Before we introduced ν,
any bound variable of the computation system could potentially be substituted by any
term. For example, the bound variable of a λ-abstraction can be substituted by any term
when β-reducing an expression, i.e., (λx.t) u reduces to t[x\u] regardless of what u is (of
what type it can have). One solution to distinguish between terms that stand for names
and terms that do not, is it to use types. Next paragraph explains why it was useful to
be able to make this distinction. Intuitively, to prove that νx1.t1 4∗ νx2.t2, it should be

V. Rahli and M. Bickford 24

enough to prove that t1[x1\a] 4∗ t2[x2\a] for some fresh enough a. However, the former
definition of 4∗ would require one to prove that t1[x1\u] 4∗ t2[x2\u] for any closed term
u. Therefore, rather than turning Nuprl into a typed language, we added “simple” type
information to the definition of 4∗. Let BindersTypes be a function that, for a given
operator, returns the types of the bound variables of its bound terms. The type of a
bound variable can either be NAME or ANY. Let BindersTypes(ν) = [[NAME]] because ν
has one subterm (the outer brackets) that has one bound variable (the inner brackets)
where the variable stands for a name. The type of all the other bound variables is ANY.
For example, BindersTypes(λ) = [[ANY]] because a λ-abstraction has one subterm which
has one bound variable; given the spread operator (to destruct pairs), BindersTypes
returns [[], [ANY, ANY]] because the first subterm of a term of the form (let x, y = t1 in t2)
has no bound variables, while the second one has two; and given the decide operator
(to destruct injections), BindersTypes returns [[], [ANY], [ANY]] because the first subterm
of a term of the form (case t1 of inl(x) ⇒ t2 | inr(y) ⇒ t3) has no bound variables,
while the other two have one bound variable each. When extending the definition of
4∗ from terms to bound terms, we use BindersTypes to restrict what terms can be
substituted for free variables. More precisely, with the new definition of 4∗, if t is a
term of the form τ(b1, . . . , bn) then t 4∗ u is true if there exists b′1, . . . , b′n such that
(b1, . . . , bn) 4∗ (b′1, . . . , b′n) and τ(b′1, . . . , b′n) 4 u, where bi 4∗ b′i is now defined as
follows: bi is a bound term of the form l1.t1, b′i is a bound term of the form l2.t2, and
t1[l1\l] 4∗ t2[l2\l] where l is now a list of terms such that the nth element of the list is
either (1) a variable as before if the nth element of the ith element of BindersTypes(τ) is
ANY or (2) a name which is fresh w.r.t. both t and u otherwise (also, all the variables and
names in l have to be distinct to each other). This modification of 4∗’s definition was
inspired by Gordon’s [54] and Jeffrey and Rathke’s [64] adaptations of Howe’s method to
typed λ-calculi. As mentioned above, it is interesting to note that until we added the ν
operator to Nuprl, there was no need to use type information in the proof that ∼ is a
congruence.

Let us motivate the changes we made to 4∗ by sketching the proof that ν is extensional:
we have to prove that if νx.t 7→k+1 u (where u is canonical, i.e., either a value or an
exception), and x.t 4∗ x′.t′ then u 4∗ νx′.t′ (we also get to use IH mentioned above).
Because νx.t reduces to a canonical form, this means that t[x\a] reduces to either
a value or an exception, for some “fresh enough” a. If it reduces to a value z then
u = (⇓x (z[a\x])). Using IH, we get that z 4∗ t′[x′\a]. Using Howe’s Lemma 2 we get
that t′[x′\a] computes to a value w with same operator as z. We get that z 4∗ w, where z
is α-equal to some z′[x\a] where a does not occur in z′ and w is α-equal to some w′[x\a]
where a does not occur in w′. Therefore z′[x\a] 4∗ w′[x\a]. It then remains to prove
that ⇓x z′ 4∗⇓x w′. For example if z′ = 〈t1, t2〉 and w′ = 〈u1, u2〉, we have to prove that
〈νx.t1,νx.t2〉 4∗ 〈νx.u1,νx.u2〉 which means that we have to prove that νx.t1 4∗ νx.u1
just knowing that t1[x\a] 4∗ u1[x\a]. However, with Howe’s definition of 4∗, we would
have had to prove that t1[x\r] 4∗ u1[x\r] for all closed term r.

Validating Brouwer’s Continuity Principle in Nuprl 25

4.3. Consistency in the Presence of ν

As mentioned above, Nuprl’s consistency follows from the fact that all its inference rules
are valid w.r.t. Allen’s PER semantics and from the fact that False is not inhabited. In
addition to extending Nuprl’s computation system, and fixing its properties including
Howe’s computational equivalence relation, we had to re-run all the proofs that Nuprl’s
inference rules are valid. Most of these rules and proofs did not have to change. The only
one that had to change is discussed in details below (see Sec. 2.4 and Sec. 2.5 for details
regarding the validity of Nuprl’s inference rules).
First, note that because exceptions are canonical forms as mentioned in Sec. 4.1.1

above, if a 7→∗ exc(t1, t2) then a 4 b if there exists u1 and u2 such that b 7→∗ exc(u1, u2),
t1 4 u1, and t2 4 u2. Therefore, even though we cannot have a canonical form test
(such as ifint or ifaxiom) for exceptions that would check whether a term computes
to an exception because we cannot catch an exception without knowing its name (i.e.,
we have no way of catching all exceptions), we can define a proposition isexc(t) that
asserts that a term t computes to an exception as follows: isexc(t) = exc⊥� t, where
exc⊥ = exc(⊥,⊥). Similarly, the following proposition halts(t) asserts that t computes
to a value: halts(t) = ?� (let x := t in ?). By definition of Howe’s approximation
relation, before adding exceptions, when proving a proposition of the form t1� t2 we could
assume halts(t1). This was captured by our old [convergence] inference rule described
below. This is no longer true because we also have to consider the case where t2 is an
exception. To that effect our new [convergence] inference rule generates (among others)
two subgoals: one that assumes halts(t1) and one that assumes isexc(t1). Alternatively,
we could capture that a term t computes to either a value or an exception using the type:
exc⊥� (let x := t in exc⊥). We have not yet investigated the usefulness of such a type.

Before adding exceptions to Nuprl’s computation system, the following [convergence]
rule was key to reason about the approximation types of the form t1� t2 (where P is Ui
for some level i):

H ` t1� t2
BY [convergence]
H , y : halts(t1) ` t1� t2
H ` halts(t1) ∈ P

Given our new definition of 4, this rule is not valid anymore. Now, in addition to proving
that t1� t2 is true assuming that t1 computes to a value, we also have to prove that
t1� t2 is true assuming that t1 computes to an exception. Therefore, the [convergence]
rule can now be stated as follows:

H ` t1� t2
BY [convergence]
H , y : halts(t1) ` t1� t2
H , y : isexc(t1) ` t1� t2
H ` halts(t1) ∈ P
H ` isexc(t1) ∈ P

Let us now discuss some implications of [convergence] having changed. Using this rule
we used to be able to prove that for all a, b ∈ Top, a+ b' b+ a. This is not true anymore

V. Rahli and M. Bickford 26

because, e.g., if a raises an exception and b diverges then a+ b raises the exception, while
b + a diverges. Also if a raises an exception e1 and b raises an exception e2 then a + b

raises e1, while b+ a raises e2. However, we can still prove that for all a ∈ Z and b ∈ Top,
a+ b' b+ a, and for all a ∈ Top and b ∈ Z, a+ b' b+ a.

Let us sketch these proofs. For now, let a and b be unconstrained, i.e., let a and b be in
Top (as mentioned in Sec. 2.5, it is enough to assume that a and b are in Base). To prove
a+ b' b+ a, we have to prove a+ b� b+ a and b+ a� a+ b. Our new [convergence]
rule says that to prove a+ b� b+ a, we can assume that a+ b either has a value or raises
an exception. If a+ b has a value, we conclude as before, i.e., we use one of our rules that
says that if a+ b has a value then a and b are integers. Now let’s assume that a+ b raises
an exception e. Given our computation system, we can derive that either (1) a raises e,
or (2) a computes to an integer and b raises e. We now need a rule to that effect:

H ` ↓C
BY [AddExceptionCases]
H ` isexc(a+ b)
H , x : isexc(a) ` C bext u1c
H , x : a ∈ Z, y : isexc(b) ` C bext u2c
H ` a ∈ Base
H ` b ∈ Base

Note that this rule does not say exactly what we wrote above. Using this rule, if isexc(a+b)
we only get to assume that isexc(a) in our second subgoal, and not that a + b and a
compute to the same exception. This can be recovered using the following rule:

H ` C bext cc
BY [ExceptionBisimulation]
H ` exc(n, d)� t
H , [u : Base], [v : Base], [x : t' exc(u, v)] ` C bext cc
H , u : Base, v : Base ` t ∈ Base

Using this rule we can derive that if isexc(a) then there exists some u and v such
that a' exc(u, v). We are trying to prove that a+ b� b+ a. Therefore, it is enough to
prove exc(u, v) + b� b + exc(u, v). By computation we get that it is enough to prove
exc(u, v)� b+ exc(u, v). Now if b was to diverge, or raise an exception e different from
(not computationally equivalent to) exc(u, v), or compute to a value that is not an integer
then b+ exc(u, v) would diverge, raise e, and get stuck, respectively. In all these three
cases, we would not be able to prove exc(u, v)� b + exc(u, v). However, we can prove
this result assuming that b ∈ Z. Similarly, if a ∈ Z and isexc(b) (third subgoal of
[AddExceptionCases]) then we can conclude that a+ b� b+ a.
Let us now discuss two peculiarities of [AddExceptionCases], namely: (1) we have

to prove that a and b are in Base, and (2) our conclusion C is squashed. Regard-
ing (1), a ∈ Base and b ∈ Base are used to prove that the hypotheses introduced in
[AddExceptionCases]’s second and third subgoals are well-formed propositions over the
hypotheses H. Regarding (2), because we have squashed our conclusion C, it means
that the extract of the sequent is ?. If the conclusion was not squashed, what could
be the extract? We prove this rule in Nuprl’s metatheory by analyzing the expression

Validating Brouwer’s Continuity Principle in Nuprl 27

isexc(a+ b). As mentioned above, we can derive that a+ b raises an exception e, and
therefore that either a raises e, or a computes to an integer and b raises e. In the first case,
we use [AddExceptionCases]’s second subgoal to prove that our conclusion is true, and in
the second case we use [AddExceptionCases]’s third subgoal to prove that our conclusion
is true. Therefore, if we could provide an extract for our sequent, it would be a term of
the form if a is an exception then e1 else e2. However, to do that we would have to be
able to catch all exceptions, which our computation system does not allow.
We have similar “exception cases” rules for the other non-canonical operators of our

computation system.
As for [AddExceptionCases], to use [ExceptionBisimulation] we have to prove that

t ∈ Base, which is enough to prove that the hypothesis t' exc(u, v) is a well-formed
proposition. In [ExceptionBisimulation]’s second subgoal, the hypothesis u, and v are
hidden to ensure that u and v do not occur in the extract c. If they were not hidden,
and because u and v do not occur in our [ExceptionBisimulation]’s main subgoal H `
C bext cc, instead of c, we would have to come up with a term that given t, computes
t to an exception exc(a, b) and extract the name a and the data b from that exception,
and finally replace u by a and v by b in c. However, to do that we would need to be
able to take apart any exception, which would mean that we would be able to catch any
exception, which is not allowed by our computation system.
Here are a few additional rules that we have proved regarding exceptions:

H ` C
BY [ExceptionConverges]
H ` exc(n, d)�⊥

H ` C
BY [ExceptionNotValue]
H ` ?� exc(n, d)

H ` a+ exc(n, d)' exc(n, d)
BY [AddException]
H ` a ∈ Z

4.4. Computing the Modulus of Continuity

We now have the tools in hand to compute the modulus of continuity of a functional
using exceptions as described above:

force(k, t) = if k<0 then ⊥ else t
force(f) = λx.force(x, f(x))
bound(n, f, e, k) = force(k, if k<n then f(k) else exce)
bound(n, f, e) = λx.bound(n, f, e, x)
test(F, n, f) = νx.tryx F (bound(n, f, x))
M(F) = λn.λf.test(F, n, f)

V. Rahli and M. Bickford 28

i.e., unfolding the definitions, M(F) is

λn.λf.νx.tryx F

λy. if y<0 then ⊥

else
(

if y<n then f(y)
else excx

)
As in our proof of WCP↓, we will partly use typing, partly use computation to prove that
M(F) is indeed our witness for SCPT. This is why bound starts off by checking whether
its argument x is an integer less than 0. If a computation that uses bound converges and
along the way applies f to some term k, we will be guaranteed that k is a natural number.

4.5. Well-Typedness

To prove SCPT, we first prove that M(F) has type Πn:N.Bn → N?. As mentioned above,
this term does not respect computation, i.e., it is not extensional over F∈B → N, i.e.,
for two equal functions F and G in B → N, M(F) is not necessarily equal to M(G) in N?.
However, given a term F , we can still prove that M(F) has the right type. For that, we
have to prove that for all closed terms n and m such that n≡m∈N, and for all closed
terms f and g such that f≡g∈Bn, we have test(F, n, f)≡test(F,m, g)∈N?. By definition,
n≡m∈N means that there exists a natural number k such that both n and m compute
to k. Therefore, let us assume f≡g∈Bk and let us prove test(F, k, f)≡test(F, k, g)∈N?.
Unfolding test’s definition, we have to prove

νx.tryx F (bound(k, f, x))≡νx.tryx F (bound(k, g, x))∈N?

As we show below in Sec. 4.6, to prove that it is enough to prove

trya F (bound(k, f,a))≡trya F (bound(k, g,a))∈N?

where a is such that a#F , a#f , and a#g. Again, it is enough to prove

F (bound(k, f,a))≡F (bound(k, g,a))∈N?a (3)

By typing again, from f≡g∈NNk , we deduce that

bound(k, f,a)≡bound(k, g,a)∈(N?a)N (4)

A general fact about exceptions is: if F∈B → N and a#F then

Force(F)∈(N?a)N → N?a (5)

where Force(F) is defined as λf.F (force(f)). Is Force necessary? Can’t we simply prove
F∈(N?a)N → N?a? In other words, can we find a F in B → N, such that a#F , and an f
in (N?a)N such that F (f) is not in N?a? Yes we can: take

F = λf.f(f(0))
f = λx.let z := (trya x with z.⊥) in exca

(Note that in f ’s definition ⊥ could be any term not in N.) These expressions are of the
right type, but F (f) computes to f(f(0)), which computes to f(exca), which computes
to let z := ⊥ in exca, which diverges and is therefore not of type N?a. Proving 5 is the

Validating Brouwer’s Continuity Principle in Nuprl 29

crux of proving that M(F) is well-typed. To prove that we use the same technique as in
WCP↓’s proof. Given 5, it is trivial to deduce that the equality 3 is true using equality 4.

Let us now prove 5. We have to prove that for all F in B → N, and f and g such that
f≡g∈(N?a)N,

F (force(f))≡F (force(g))∈N?a

Let f0 = force(f) and g0 = force(g). Note that f0≡g0∈(N?a)N. We have to prove
F (f0)≡F (g0)∈N?a. First, we define a function force0 so that the function f ′ defined as
λx.force0(x, f) computes as f0, except that on natural numbers, when f0 returns exca,
f ′ returns 0 (this 0 could be any natural number):

force0(x, f) = if x<0 then ⊥ else trya f(x) with z.0

Because f ′ is in B, we get that F (f ′) computes to a natural number. Let us now use
again the same simulation technique as before. Let us prove that in any context C with
no occurrence of a, if C[f ′] computes to a natural number j, then either both C[f0] and
C[g0] also compute to j or both C[f0] and C[g0] compute to exca. We prove that by
induction on the length of the reduction C[f ′] 7→∗ j. For that we prove that if C[f ′] 7→ u

and u computes to a canonical expression, then there exists a context C ′ such that
u 7→∗ C ′[f ′] and either both C[f0] 7→∗ C ′[f0] and C[g0] 7→∗ C ′[g0] or both C[f0] 7→∗ exca

and C[g0] 7→∗ exca. This gives us that F (f0)≡F (go)∈N?a

4.6. Interlude: Reasoning About ν

In Sec. 4.1.3 we saw how ν computes. We show here how to reason about ν. One can
prove that νx.t1≡νx.t2∈T by proving that t1[x\a]≡t2[x\a]∈T , assuming a#t1 and a#t2,
and that T is flat, meaning that its inhabitants compute to terms that have no subterms
and that are not names, such as integers or ?. This follows from the way ν computes. If
t[x\a] 7→∗ u such that a#t then νv.t 7→∗ νx.u[a\x]. In the integer case, if t1[x\a] 7→∗ i
then νx.t1 7→∗ νx.i and νx.i 7→ i. We get that νx.t1 ∼ t1[x\a]. Because the union of
flat types is flat, N? is flat. (See lemma cequivc fresh subst2 in https://github.com/
vrahli/NuprlInCoq/blob/master/continuity/stronger_continuity_defs0.v.)

We can prove similar rules for the other types. For example, one can prove that
νx.f1≡νx.f2∈Πa:A.B by proving that Πa:A.B is a type, and that for all a1 and a2 such
that a1≡a2∈A, νx.f1(a1)≡νx.f2(a2)∈B[a\a1] (see lemma fresh in function in https:
//github.com/vrahli/NuprlInCoq/blob/master/continuity/stronger_continuity_props1.v).

4.7. 1st Condition: ↓-Existence of a Modulus of Continuity

The first property we prove about the function M defined above in Sec. 4.4 is that for all
f in B, ↓Σn:N.M(F) n f =N F (f). This condition says that for all f there exists a n such
that M only requires an “initial sequence” of length n of f to compute the same result as
F (f). This n is therefore at least the modulus of continuity of F at f .

As before, by typing we get that F (f)≡F (force(f))∈N. Hence, there exists a natural
number k such that F (force(f)) 7→∗ k. As in the proof of WCP↓, we first compute the

https://github.com/vrahli/NuprlInCoq/blob/master/continuity/stronger_continuity_defs0.v
https://github.com/vrahli/NuprlInCoq/blob/master/continuity/stronger_continuity_defs0.v
https://github.com/vrahli/NuprlInCoq/blob/master/continuity/stronger_continuity_props1.v
https://github.com/vrahli/NuprlInCoq/blob/master/continuity/stronger_continuity_props1.v

V. Rahli and M. Bickford 30

maximum of all the numbers occurring in that computation, and we instantiate our
conclusion with b a number which is strictly greater than this maximum. We now have
to prove: M(F) b f≡F (f)∈N, or equivalently test(F, b, f)≡F (force(f))∈N. Unfolding
test’s definition, we have to prove:

νx.tryx F (bound(b, f, x))≡F (force(f))∈N

As in Sec. 4.5, because we’re trying to prove that this ν is in N and because N is flat, it
is enough to prove for some name a such that a#F and a#f :

trya F (bound(b, f,a))≡F (force(f))∈N

Again, let us use the same simulation technique as before to prove that in any context C
with no occurrence of a, if C[force(f)] 7→∗ k then C[bound(b, f,a)] 7→∗ k. We prove that
by induction on the length of the reduction C[force(f)] 7→∗ k. For that we prove that if
C[force(f)] 7→ u such that u computes to a canonical expression, and all the numbers
occurring in C[force(f)] are strictly less than b, then there exists a context C ′ such that
u 7→∗ C ′[force(f)] and C[bound(b, f,a)] 7→∗ C ′[bound(b, f,a)].

Using this result, and because as mentioned above F (force(f)) computes to k, we get
that F (bound(b, f,a)) 7→∗ k, from which we deduce that trya F (bound(b, f,a)) 7→∗ k,
and finally trya F (bound(b, f,a)) =N F (force(f)).

4.8. 2nd Condition: Uniformity of the Testing Function

The second property we prove about the function M defined above in Sec. 4.4 is that for
all f in B and n in N, if M(F) n f computes to a number then M(F) n f =N F (f). In
order to implement our search function to realize SCP�, we need to return the smallest n,
say m, such that M(F) n f computes to a number. However, if M(F) could return different
answers for different n’s, we would not know whether M(F) m f returns F (f) or some
other value.
Let us prove that if M(F) n f ∼ k for some k ∈ N then F (f) ∼ k. As before, we can

assume that trya F (bound(n, f,a)) ∼ k, for some a such that a#F and a#f . By typing
we get that F (f) computes to a natural number k′. Because trya F (bound(n, f,a))
computes to a canonical form (the natural number k), we deduce that F (bound(n, f,a))
also computes to a canonical form. This canonical form is either (1) an exception or (2) a
value.

(1) If F (bound(n, f,a)) computes to an exception then we get a contradiction: either
the term computes to exca and then we obtain that trya F (bound(n, f,a)) 7→∗ ?
and ? 6= k; or it computes to an exception e with some other name than a and then
trya F (bound(n, f,a)) 7→∗ e and e 6= k. In both cases we get a contradiction.

(2) We now assume that F (bound(n, f,a)) computes to a value. If so, it has to compute
to k. We now prove that k = k′. As before, because F (f)≡F (force(f))∈N, we get
that F (force(f)) 7→∗ k′. The rest of this proof closely follows the one in Sec. 4.7. We
prove that in any context C with no occurrence of a, if C[force(f)] computes to the
natural number k′ then C[bound(n, f,a)] computes to either k′ or exca. We prove that
by induction on the length of the reduction C[force(f)] 7→∗ k′. For that we prove that

Validating Brouwer’s Continuity Principle in Nuprl 31

if C[force(f)] 7→ u such that u computes to a canonical expression then there exists a
context C ′ such that u 7→∗ C ′[force(f)] and C[bound(b, f,a)] 7→∗ C ′[bound(b, f,a)] or
C[bound(b, f,a)] 7→∗ exca. We get that either: (1) F (bound(b, f,a)) 7→∗ k′ and therefore
k = k′ because our computation system is deterministic; or (2) F (bound(b, f,a)) 7→∗ exca

and we get a contradiction because k 6= exca.

4.9. Nuprl’s Strong Continuity Inference Rule

Using the fact that SCPT (defined at the beginning of Sec. 4) is true in Nuprl’s metatheory,
we proved that the following inference rule, called [StrongContinuity], is true w.r.t. Allen’s
PER semantics (for further details regarding this proof conducted in our implementation
of Nuprl in Coq, the interested reader is invited to look at https://github.com/vrahli/
NuprlInCoq/blob/master/continuity/continuity_roadmap.v):

H ` F ∈ (N→ T)→ N H ` ↓T H ` T v N
H ` M(F) ∈ SCPF(F)

Using this inference rule, we proved a version of SCPT in Nuprl, where the first (outer)
existential quantifier is �-squashed and the second (inner) one is not squashed. This lemma
can be accessed by clicking the following hyperlink: strong-continuity2-no-inner-squash. Al-
ternatively, the reader can search for the lemma with that name available here: http://www.
nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/index.html, and sim-
ilarly for the other Nuprl lemmas mentioned below and highlighted in green. We get rid
of the second squash operator using the usual unbounded search µ operator. As expected
the extract of that lemma is (we use colored parentheses for visual convenience):

λF.〈M’(F),λf.〈µ(λn.isl(test’(F, n, f))),〈?,λm.λi.?〉〉〉

where
test’(F, n, f) = let x := test(F, n, f) in

ifint(x, inl(x), inr(?))

M’(F) = λn.λf.test’(F, n, f)

µ(f) = fix
(
λF.λn. if f(n) then n

else let m := n+ 1 in F (m)

)
0

Finally, we trivially derive a version of SCP where, as mentioned in the introduction,
the first (outer) Σ is �Σ, and the second (inner) one is Σ, as proved by the Nuprl
lemma strong-continuity2-no-inner-squash-unique. Therefore, because these versions of SCP
are equivalent to SCP�, we also refer to them as SCP�.

5. Relations Between WCP and SCP

As mentioned in Sec. 1, Bridges and Richman [22, p.119] state that SCP is equivalent to
WCP plus some form of the axiom of choice—some version of AC1,0. As we saw above the
existential quantifiers in these statements have to be truncated using � (see also Escardó
and Xu [46]). Therefore, for that equivalence to be true, we probably need the �-truncated

https://github.com/vrahli/NuprlInCoq/blob/master/continuity/continuity_roadmap.v
https://github.com/vrahli/NuprlInCoq/blob/master/continuity/continuity_roadmap.v
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/strong-continuity2-no-inner-squash.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/strong-continuity2-no-inner-squash-unique.html

V. Rahli and M. Bickford 32

version of AC1,0, which is true in Nuprl as discussed below in Sec. 5.3. Therefore, we only
need to prove that SCP� and WCP� are equivalent. We prove below that WCP� is a trivial
consequence of SCP�, and that SCP� is a consequence of WCP� using the same “trick” as
the one used by Bridges and Richman to prove that UCP follows from the Fan Theorem
and WCP [22, p.113] (see Sec. 6.1 below on uniform continuity).

5.1. SCP� Implies WCP�

Let us sketch the proof that SCP� → WCP�. Let F ∈ B → N and f ∈ B. We prove the
formula C = �Σn:N. Πg:B.f =Bn g → F (f) =N F (g). Because our conclusion C is
squashed we can unsquash SCP�’s outer Σ, and we get a M ∈ Πn:N.Bn → NU and a
function

A ∈ Πf :B.Σn:N. M n f =NU inl(F (f))
∧ Πm:N.isl(M m f)→ m =N n

By applying A to f we get a n ∈ N such that:
— M n f =NU inl(F (f))
— and B ∈ Πm:N.isl(M m f)→ m =N n.
We unsquash and instantiate with n our conclusion C, and we now get to assume that
there is a g ∈ B such that f =Bn

g. It remains to prove that F (f) =N F (g). By applying
A to g we get a n′ ∈ N such that:
— M n′ g =NU inl(F (g))
— and B′ ∈ Πm:N.isl(M m g)→ m =N n

′.
Because f =Bn

g, we get that M n f =NU M n g. Because M n f =NU inl(F (f)), we get
isl(M n f) and therefore also isl(M n g). Then, by applying B′ to n we get n =N n

′.
Therefore, inl(F (f)) =NU inl(F (g)), and finally we get that F (f) =N F (g).

5.2. WCP� Implies SCP�

This section proves that the following “skolemized” version of WCP� implies SCP� (see
Nuprl lemma weak-continuity-implies-strong1):

skWCP = ΠF :B → N.
�ΣM :B → N.

Πf, g:B.(f =NM(f)→N g)→ (F (f) =N F (g))

It is easy to prove that skWCP and WCP� are equivalent using the fact that the �-truncated
axiom of choice AC1,X discussed in Sec. 5.3 is true (see Nuprl lemma axiom-choice-1X-quot).
Let us assume skWCP and let F ∈ B → N. We have to prove the following formula C:

� ΣM :Πn:N.Bn → NU.

Πf :B. Σn:N.M n f =NU inl(F (f))
∧ Πn:N.isl(M m f)→M n f =NU inl(F (f))

Instantiating skWCP with F we get (because our conclusion C is �-truncated, we can
unsquash our hypothesis):

http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/weak-continuity-implies-strong1.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/axiom-choice-1X-quot.html

Validating Brouwer’s Continuity Principle in Nuprl 33

— a M ∈ B → N (F ’s modulus of continuity)
— and a G ∈ Πf, g:B.(f =NM(f)→N g)→ (F (f) =N F (g))
Bridges and Richman’s trick is to also use the modulus of continuity of M . Therefore,
instantiating skWCP with M we get:
— a X ∈ B → N (M ’s modulus of continuity)
— and a K ∈ Πf, g:B.(f =NX(f)→N g)→ (M(f) =N M(g))
Let us now unsquash our conclusion C and instantiate it with

B = λn.λa.if M(an,0) ≤ n then inl(F (an,0)) else inr(?)

where an,k = λx.if x<n then a(x) else k (this is the infinite sequence consisting of the
first n values of a followed by k’s—an,0 is sometimes denoted a, n, e.g., in [15; 47]). If
a ∈ Bn and k ∈ N then an,k ∈ B. We now have to prove that assuming that f ∈ B then:

Σn:N.B n f =NU inl(F (f)) (6)

Πn:N.isl(B n f)→ (B n f =NU inl(F (f))) (7)
Equality 7 follows fromG. We now prove 6 by instantiating it withm = max(M(f), X(f)).

We have to prove B m f =NU inl(F (f)), i.e.,

if M(am,0) ≤ m then inl(F (am,0)) else inr(?) =NU inl(F (f)) (8)

Because f =NM(f)→N am,0, then using G we obtain: F (f) =N F (am,0). Therefore, to
prove equality 8, it remains to prove that its conditional is true, i.e., M(am,0) ≤ m =
max(M(f), X(f)). If we instantiate K with f and am,0, we have to prove f =NX(f)→N am,0,
which is true by definition of m, and we get to assume M(f) =N M(am,0), which gives us
that M(am,0) ≤ m.

5.3. Axiom of Choice

The following axiom of choice is usually trivial in constructive type theories such as Nuprl
when Σ is Σ (where A and B are types):

AC = Πa:A.Σb:B. P a b ⇒ Σf :BA. Πa:A.P a f(a)

It follows from the usual rules of the universal (product type) and existential (sum type)
quantifiers. We can prove that these rules are true in our predicative Coq model [8; 7]
without assuming any axiom. In that predicative model we can model n Nuprl universes
using n+ 1 Coq universes. However, in our impredicative model we have to assume some
axiom of choice to prove some of these rules, namely FunctionalChoice on as defined
in http://coq.inria.fr/cocorico/CoqAndAxioms.

However, the non-squashed version of AC is not always enough because as we saw above
existential quantifiers cannot always be interpreted as Σ but sometimes as truncated Σ’s.
Therefore, we sometimes need instances of AC where Σ is either �Σ or ↓Σ. In that case
it is not obvious anymore which instances of AC are consistent with or provable in Nuprl.

Some versions of AC for particular choices of types A and B are of particular interest.
One can often find in the literature the name ACn,m, where n,m ∈ {0, 1} [116, p.238]:

http://coq.inria.fr/cocorico/CoqAndAxioms

V. Rahli and M. Bickford 34

n = 0 means that A = N and n = 1 means that A = B; similarity m = 0 means that
B = N and m = 1 means that B = B.

Using a technique similar to the one discussed in [98], we proved the ↓-squashed version
of AC0,0, where Σ is ↓Σ, once again conducting the proof first in the metatheory, and
then reflecting the metatheoretical result in the Nuprl theory as an inference rule: see
lemma rule AC00 true in https://github.com/vrahli/NuprlInCoq/blob/master/axiom_
choice/axiom_choice.v. Our proof is similar to the one presented in [14], where the
authors added infinite sequences to their term syntax (denoted λλx.Mx, where M1, M2,
. . . , is an infinite sequence of terms) in order to prove that some bar recursion operator
denoted Φ realizes the negative translation of the axiom of choice. In [98], we added all
Coq functions from numbers to numbers to Nuprl’s term syntax in order to prove the
↓-squashed version of AC0,0. We also proved directly in Nuprl the �-squashed versions of
AC, where Σ is �Σ, namely AC0,X (see Nuprl lemma axiom-choice-0X-quot) and AC1,X
(see Nuprl lemma axiom-choice-1X-quot)—X here indicates that the type B above could
be anything. These two lemmas are instances of the more general Nuprl lemma: axiom-
choice-quot, which says:

ΠA:Type.�canonicalizable(A)→ ΠB:Type.AC(A,B) (9)

where
canonicalizable(A) = (Σf :BaseA.Πx:A.f(x) =A x)

and
AC(A,B) = ΠP :A→ B → P.

Πa:A.�Σb:B. P a b

⇒ �Σf :BA. Πa:A.P a f(a)
We get AC0,X and AC1,X, from the fact that both N and B are canonicalizable. To prove
that N is canonicalizable, we instantiate canonicalizable(N) with λx.x, which has the
right type, i.e., BaseN because N is a subtype of Base. To prove that B is canonicalizable,
we instantiate canonicalizable(B) with (λf.λx.if 0 ≤ x then f(x) else ⊥), which has
the right type, i.e., BaseB because (with some difficulty) we can prove that if f ∈ B then
(λx.if 0 ≤ x then f(x) else ⊥) is in Base: see Nuprl lemma canonicalizable-baire-direct.

To prove 9, we first show:

ΠA:Type.choice(A)→ ΠB:Type.AC(A,B) (10)

where
choice(A) = ΠP :A→ P.(Πa:A.�P (a)) ⇐⇒ (�Πa:A.P (a))

and then we show that if a type A is canonicalizable then it has a choice principle, i.e.,
choice(A):

ΠA:Type.�canonicalizable(A) ⇒ choice(A) (11)
This is enough to prove 9, but we now have to prove 10 and 11. First, we prove the axiom

of choice 10 as follows: Using choice(A), we rewrite our hypothesis Πa:A.�Σb:B. P a b,
into the formula �Πa:A.Σb:B.P a b, which we can now unsquash because our conclu-
sion is squashed. Finally, we use the non-squashed axiom of choice on our hypothesis

https://github.com/vrahli/NuprlInCoq/blob/master/axiom_choice/axiom_choice.v
https://github.com/vrahli/NuprlInCoq/blob/master/axiom_choice/axiom_choice.v
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/axiom-choice-0X-quot.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/axiom-choice-1X-quot.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/axiom-choice-quot.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/axiom-choice-quot.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard2/call!by!value_2/canonicalizable-baire-direct.html

Validating Brouwer’s Continuity Principle in Nuprl 35

Πa:A.Σb:B.P a b to get Σf :BA.Πa:A.P a f(a), and unsquash our conclusion, which is
now the same as our hypothesis.
Let us now focus on 11. To prove it, we first prove the following implication:

ΠA:Type.A v Base ⇒ choice(A) (12)

where Nuprl’s subtype relation A v B is defined as λx.x ∈ A→ B. Given 12, it is easy
to derive 11. Note that A v Base implies �canonicalizable(A), but the other direction
is not true. For example, as mentioned above, B is canonicalizable but it is not a subtype
of Base because λx.x and λx.x+ 0 are equal in B but are not computationally equal, i.e.,
they are not equal in Base. Therefore, 12 follows from 11, but the other direction, which
we need, is easy but slightly more complicated. To prove 11 from 12, we instantiate 12
with T ∩ Base and the rest follows easily.

Let us sketch the proof of 12 here. Let us assume A v Base and Πa:A.�P (a) for some
type A and some predicate P on A, and let us prove �Πa:A.P (a) (the other direction is
trivial). We assume that F inhabits our hypothesis Πa:A.�P (a), and we prove that the
same F inhabits our conclusion �Πa:A.P (a). The proof now gets a bit technical because
it relies heavily on the semantics of Nuprl’s sequents and on the Base type. We now use
our pointwise functionality rule which, in the case of equalities, says:

H,x : A, J ` t1 = t2 ∈ T
BY [functionality]
H,x : A, J ` A ∈ Ui
H,x : Base, y : Base, z : x = y ∈ A, J ` t1 = t2[x\y] ∈ T

Using this rule, we now get to assume F ∈ Base, F ′ ∈ Base, and F = F ′ ∈ Πa:A.�P (a),
and we have to prove F = F ′ ∈ �Πa:A.P (a). To prove this, it is enough to prove
that F ∈ Πa:A.P (a) and F ′ ∈ Πa:A.P (a). Without loss of generality we only prove
F ∈ Πa:A.P (a) here. Using function extensionality, it is enough to prove that given a ∈ A,
F (a) ∈ P (a). It turns out that for all type T , �T ∩ Base and T ∩ Base are extensionally
equal types, i.e., they have the same PERs, where A∩B is the binary intersection of A and
B, defined as ∩b:B.if b then A else B, where B is the Boolean type. This extensional
equality is only true because we intersect the types with Base, and this is why we used
[functionality] above to get F ∈ Base. Because a ∈ A and A v Base, and because
F ∈ Base, then we get that F (a) ∈ Base. Therefore, to prove that F (a) ∈ P (a), and
using the fact that P (a) ∩ Base and �P (a) ∩ Base are extensionally equal types, it is
enough to prove F (a) ∈ �P (a), which we get from our hypothesis F = F ′ ∈ Πa:A.�P (a).
This concludes the proof of 12 and therefore also of 9.

6. Applications

Using SCP� we proved in Nuprl a �-truncated version of the uniform continuity principle
UCP (see Sec. 1) from the fan theorem, and then a fully unsquashed version of this principle
using Escardó and Xu’s method [46] (see Sec. 6.1). We write UCP� for the version of
UCP where Σ is �Σ. Using UCP� we then proved Brouwer’s theorem, which says that real
functions defined on the unit interval are uniformly continuous (see Sec. 6.2).

We have recently proved the validity of a non computational version of Bar Induction

V. Rahli and M. Bickford 36

w.r.t. Nuprl’s semantics using our Coq model [101]. From this version we derived in
Nuprl a version of Bar Induction on Decidable bars (BID), which has computation
content. Following Kleene, given that SCP� is true we also derived Bar Induction on
Monotone bars (BIM) [67, p.78] (see also Dummett’s Thm. 3.8 [42, p.64]): see Nuprl
lemma monotone-bar-induction1.
As discussed in Sec. 6.3, we could already prove the negation of the law of excluded

middle without using continuity, and instead using Nuprl’s “computation types”. We can
now also derive the negation of the law of excluded middle using continuity.
As mentioned in Sec. 1, Brouwer’s continuity principle is traditionally stated using

relations instead of functions as in WCP and SCP defined above. We show in Sec. 6.4 that
we can derive a more traditional version of Brouwer’s continuity principle stated using
relations instead of functions, from SCP and a �-squashed version of AC1,0, which is true
in Nuprl as mentioned above in Sec. 5.3.
We have also recently used exceptions to implement the constructive content of the

completeness result of intuitionistic first-order logic proved in [33]. As in the present paper,
exceptions are used to probe how a computation uses its arguments. Given a uniform
evidence for a proposition, we construct a proof of that proposition by using this probing
mechanism to determine the next step of the proof.

6.1. Uniform Continuity

6.1.1. UCP� Follows From FT and SCP�. Using BID we proved that the Fan Theorem (FT)
is true: see Nuprl lemma fan theorem. We then derived UCP� from FT and SCP�: see Nuprl
lemma strong-continuity2-implies-uniform-continuity. Let us sketch that proof here. The
version of FT that we have proved in Nuprl is:

FT = ΠX:(Πn:N.Cn → P).
Πf :C.↓Σn:N.X n f

→ Πn:N.Πf :Cn.Dec(X n f)
→ Σk:N.Πf :C.Σn:Nk.X n f

where Dec(T) is defined as T+¬T . The fan theorem says that if X is a decidable bar
then it is uniform. We also use the following corollary of SCP� for functions on the Cantor
space instead of the Baire space:

SCPB
= ΠF :C → N.

� ΣM :(Πn:N.Cn → NU).
Πf :C.

Σn:N.M n f =NU inl(F (f))
∧ Πn:N.isl(M n f)→M n f =NU inl(F (f))

Let us start proving UCP�. Let F be in C → N. We have to prove

�Σn:N. Πf, g:C.f =Cn g → F (f) =N F (g) (13)

We start by instantiating SCPB with F and we unsquash the resulting formula (which we
can do because our conclusion is squashed), i.e., we get to assume:

http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/monotone-bar-induction1.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/int_2/fan_theorem.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/strong-continuity2-implies-uniform-continuity.html

Validating Brouwer’s Continuity Principle in Nuprl 37

— M ∈ Πn:N.Cn → NU and
— G ∈ Πf :C. Σn:N.M n f =NU inl(F (f))

∧ Πn:N.isl(M n f)→M n f =NU inl(F (f))
We now instantiate FT using X = λn.λf.isl(M n f). We now have to prove FT’s first
hypothesis (1) Πf :C.↓Σn:N.isl(M n f), which follows from G; as well as its second
hypothesis (2) Πn:N.Πf :Cn.Dec(isl(M n f)), which is trivial; and we get a k ∈ N and
A ∈ Πf :C.Σn:Nk.isl(M n f). We unsquash and instantiate our conclusion 13 using k.
We have to prove that F (f) =N F (g) assuming that f =Ck

g for f and g in C. From G

we get:
— π1(G(f)) ∈ Πn:N.isl(M n f)→M n f =NU inl(F (f))
— π1(G(g)) ∈ Πn:N.isl(M n g)→M n g =NU inl(F (g))
and from A (applying A to f) we get a i ∈ Nk and that isl(M i f). Therefore, because
f =Ck

g, we get M i f =NU M i g and isl(M i g). Which means that (from π1(G(f))
and π1(G(g))):
— M i f =NU inl(F (f))
— M i g =NU inl(F (g))
Therefore, inl(F (f)) =NU inl(F (g)), and we conclude that F (f) =N F (g).

6.1.2. UCP� Follows From FT and skWCP. Following Bridges and Richman’s proof of their
Thm. 3.2 [22, p.113], which says that weak continuity and the fan theorem imply uniform
continuity, we have proved the Nuprl lemma fan+weak-continuity-implies-uniform-continuity,
which says that FT and skWCP imply UCP� (as mentioned in Sec. 5, skWCP and WCP�

are equivalent). Their proof is slightly more involved than the one presented above in
Sec. 6.1.1 and uses the “trick” mentioned in Sec. 5.2 of building a bar that uses both
the skolemized modulus of continuity M of type C → N of a functional F of type C → N
and the (skolemized) modulus of continuity of M . As mentioned above skWCP is a trivial
consequence of SCP�: see Nuprl lemma strong-continuity2-implies-weak-skolem-cantor-nat.

6.1.3. Unsquashed UCP Follows From UCP�. Finally, we can get rid of the truncation
operator � in UCP� following exactly Escardó and Xu’s proof [46, Sec.4]: see Nuprl
lemma strong-continuity2-implies-uniform-continuity2. Their proof consists in proving that
(1) the existence of a uniform modulus of continuity is equivalent to (2) the existence
of the smallest uniform modulus of continuity. Because (2) is a proposition in HoTT’s
sense [117], we can untruncate it. Escardó and Xu’s proof goes in three main steps:
our Nuprl lemma uniform-continuity-pi-dec corresponds to their Lemma 4; our Nuprl
lemma prop-truncation-implies corresponds to their Lemma 5; and finally our Nuprl lemma
uniform-continuity-pi-pi-prop2 corresponds to their Lemma 6.

6.2. Brouwer’s Theorem on Uniform Continuity

In Nuprl, a real number α ∈ R is a regular sequence of integers. This means that
α ∈ N+ → Z and Πn,m:N+.|n ∗ α(m)−m ∗ α(n)| ≤ 2(n+m). This differs from, but is
equivalent to, Bishop’s definition of real numbers as regular sequences of rationals [18]. Two

http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/fan!weak-continuity-implies-uniform-continuity.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/strong-continuity2-implies-weak-skolem-cantor-nat.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/strong-continuity2-implies-uniform-continuity2.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/uniform-continuity-pi-dec.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/prop-truncation-implies.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/uniform-continuity-pi-pi-prop2.html

V. Rahli and M. Bickford 38

regular sequences α and β represent the same real number if Πn:N+.|α(n)−β(n)| ≤ 4, and
this is an equivalence relation, α =r β, on regular sequences. If α(n) + 4 < β(n) for some
n, then α < β, and α#β (α is apart from β) if α < β ∨β < α. If Πn:N+.α(n) ≤ β(n) + 4,
then α ≤ β.

The closed interval [α, β] is the set type {x : R | α ≤ x ≤ β}. Bishop calls a member f
of the type [α, β]→ R an operation on the interval [α, β], and reserves the word function
for those operations that satisfy

FUN(f, α, β) = Πx, y:[α, β].x =r y ⇒ f(x) =r f(y)

A stronger condition—called strong extensionality in Coq’s CoRN library [70]—is

SFUN(f, α, β) = Πx, y:[α, β].f(x)#f(y) ⇒ x#y

An operation is uniformly continuous on [α, β] if

CONT(f, α, β)
= Πε > 0.

Σδ > 0.
Πx, y:[α, β].|x− y| ≤ δ → |f(x)− f(y)| ≤ ε

(The Nuprl lemmas mentioned below are available at the following addess: http://www.
nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/reals/index.html.) Using
the fact from Sec. 6.1 that functionals of type C → Z are uniformly continuous, we proved
in Nuprl that for intervals [α, β], we have both (see Nuprl lemmas real-fun-iff-continuous
and real-sfun-iff-continuous):

CONT(f, α, β)⇔ FUN(f, α, β)
CONT(f, α, β)⇔ SFUN(f, α, β)

Thus, for Bishop’s definition of real function, it is correct to say that all functions on
closed intervals [α, β] are uniformly continuous (Brouwer’s theorem).

6.3. Status of the Law of Excluded Middle

↓-Squashed LEM. As explained in [8], following Crary [38] as well as Kopylov and
Nogin [69], we have proved [7, Sec. 5.2] that the following weak version of the law of
excluded middle (LEM) is consistent with Nuprl:

ΠP :Ui.↓(P+¬P)

Because the computational content of the disjoint union is erased (using the squashing
operator ↓), one cannot use this to construct a “magical” decider for all propositions.
Anand’s proof of ¬LEM. We can also prove directly in Nuprl the negation of LEM:

¬ΠP :Ui.P+¬P

The simplest proof we know of is due to Abhishek Anand. Let us repeat it here. First, let
us prove that we cannot decide the halting problem:

¬Πt:Base.halts(t)+¬halts(t) (14)

http://www.nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/reals/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/reals/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/reals/real-fun-iff-continuous.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Mathematics/reals/real-sfun-iff-continuous.html

Validating Brouwer’s Continuity Principle in Nuprl 39

From 14, it follows trivially that the non-squashed LEM is false. Let us prove 14. Assume
Πt:Base.halts(t)+¬halts(t). Let us call that function magic. Using congruence, and
because ⊥ 4 ?, we can prove:

(λx.if (magic x) then ⊥ else ?) ⊥
�(λx.if (magic x) then ⊥ else ?) ?

Therefore, by computation, we get

if (magic ⊥) then ⊥ else ?� if (magic ?) then ⊥ else ? (15)

The term (magic ⊥) has type halts(⊥)+¬halts(⊥). Because ⊥ diverges, we get that
(magic ⊥) is a right injection. Similarly, the term (magic ?) has type halts(?)+¬halts(?).
Because ? converges, we get that (magic ?) is a left injection. Therefore, from the
approximation 15, we get ?�⊥, which we can prove to be false. This concludes our proof
of 14.
�-Squashed LEM. Similarly we can prove the negation of the �-squashed LEM:

¬Πt:Base.�(halts(t)+¬halts(t))

¬LEM from continuity. Using the weak continuity principle, following, e.g., Veldman’s
proof [120], we can proof that we cannot decide whether a sequence of natural number is
equal to λx.0 or not:

¬Πs:B.(s =B λx.0)+¬(s =B λx.0) (16)
Again, from 16 it then follows trivially that the non-squashed LEM is false. Let us repeat
the proof of 16 here. Assume

Πs:B.(s =B λx.0)+¬(s =B λx.0)

Let us call that function magic. We instantiate WCP� using the following function F in
B → N: λs.if (magic s) then 0 else 1 and the following function f in B: λx.0. We get
�Σn:N. Πg:B.f =Bn

g → F (f) =N F (g). Because we are now proving False, we can
unsquash this hypothesis and we get a n, which is the modulus of continuity of F at f ,
as well as a function of type Πg:B.f =Bn

g → F (f) =N F (g). Let us now instantiate this
formula using the following function g of type B: λx.if x<n then 0 else 1. Because f
and g agree upto n, we get: F (f) =N F (g), i.e.:

if (magic f) then 0 else 1
=N if (magic g) then 0 else 1

(17)

Because f =B λx.0, we get that (magic f) is a left injection, and because g =B λx.0
is not true (starting from n the two sequences differ), we get that (magic g) is a right
injection. Therefore, from equality 17, we obtain 0 =N 1, which is false and this concludes
the proof of 16.

6.4. Relational Continuity Principle

Brouwer’s continuity principle is often stated using a relational form such as in [67; 42;
116]. In that form one does not assume the existence of a function of type B → N but one

V. Rahli and M. Bickford 40

assume that there exits a predicate P of type B → N→ P such that for all f in B, there
exists a n in N such that P f n. If the existential is interpreted as being Σ then we can
trivially obtain a function F of type B → N such that for all f in B, P f (F f). If the
existential is interpreted as being �Σ, then using the �-squashed version of AC1,0, which is
true in Nuprl as explained in Sec. 5.3, we can deduce �ΣF :B → N. Πf :B.P f (F f) from
Πf :B.�Σn:N. P f n. Therefore, because the Σ in the conclusion of SCP� is �-squashed,
we can deduce the following variant of SCP�:

ΠP :B → N→ P.
(Πf :B.�Σn:N. P f n)
⇒ �ΣM :(Πn:N.Bn → NU).

Πf :B.
Σn, k:N.

M n f =NU inl(k)
∧ P f k

∧ Πm:N.isl(M m f)→ m =N n

6.5. Bounded Continuity Principle

Let us now present another variant of Brouwer’s continuity principle that is derivable
from the one presented above in Sec. 6.4:

ΠP :(B → N → P).
(Πf :B.�Σn:N. P f n)
⇒ �ΣM :(Πn:N.Bn → (Nn+Unit)).

Πf :B.
Σn:N.

Σk:Nn.

P f k

∧ M n f =Nn+Unit inl(k)
∧ Πm:N.isl(M m f) → m =N n

This version differs from the one presented in Sec. 6.4 as follows: here M is of type
(Πn:N.Bn → (Nn+Unit)) instead of (Πn:N.Bn → (N+Unit)) in Sec. 6.4, i.e., we are
guaranteed that the modulus of continuity n of P at f that M returns will be larger
than the value k such that (P f k) is true (or taking P as a function as in Sec. 6.4, that
P f < n)—this is especially useful to define bar recursion operators as done in [100].

7. Related Work on Nominal Systems

Nominal systems. There has been a tremendous amount of work on nominal approaches
to logic and programming starting from Gabbay and Pitts’ work on using Fraenkel-
Mostowski’s permutation model of set theory to formally reason about abstract syntax in
the presence of α-equivalence and variable binding [51]. This work then led to the design
of the so-called Nominal Logic [90], which provides primitives and axioms to reason about
names, name-swapping, freshness, and name-binding. These ideas were then later used

Validating Brouwer’s Continuity Principle in Nuprl 41

and implemented in programming languages and type theories [93; 108; 107; 95; 96; 92;
25; 26; 89; 24; 23; 19; 106; 123; 39; 48] (to cite only a few). We now describe some of
these systems.

FreshML. For example, FreshML [93; 108] is an extension of ML with constructs for
declaring and manipulating data with binding structure that provide support for object-
level α-equivalence, such as constructs for binding names, declaring new types of bindable
names, and generating fresh names. Nuprl does not yet have such a name-abstraction
construct. Also, our paper does not try to tackle the issue of reasoning about α-equivalence
classes of terms using names. This provides an alternative approach to, e.g., using de
Bruijn indices or HOAS in order to deal with names and binders. These ideas were then
also ported to OCaml [107]. Following this line of work, Pure FreshML [95] is a pure (in
the sense that name generation is not an observable side effect) version of FreshML [108]
that ensures fresh atoms do not escape their scopes.

Nominal type theories. Schopp and Stark [106; 105] developed a bunched dependent type
theory for programming and reasoning with names, based on a categorical axiomatization
of names, and taking freshness as the central primitive instead of swapping. Bunches are
typing contexts that have a tree-like shape instead of a list-like shape, where branching is
used to model the disjointness of names spaces. In their theory, α-equivalence classes can
either be modeled as “fresh functions” or as pairs, which are members of “non-standard
fresh” Π∗ and Σ∗ types. It turns out that these types are isomorphic when indexed by
names, giving rise to a hidden-name type constructor H which can either be interpreted
as a sum or a product, and which corresponds to Gabbay and Pitts freshness quantifier

N[51]. In our paper, we only focus on computational aspects of freshness.
Cheney designed SNTT [24], which is a nominal simply-typed λ-calculus with names

as well as name-abstraction and name-concretion operators (but no name-generation
operator such as ν). SNTT contexts are expressive enough so that one can state the
freshness constraint on name-concretions. It is also designed with decidable typechecking
in mind. Cheney extended SNTT to a dependent type theory, called λΠ N[23], with
dependent products (Π) and dependent name-abstraction types (N). As for SNTT, one of
his main focus was to provide a strongly normalizing theory with decidable type checking.
Westbrook’s CNIC calculus (the Calculus of Nominal Inductive Constructions) [123;

122] can also be seen as an extension of SNTT with inductive constructions, or similarly as
an extension of CIC [36] with nominal features such as name abstraction and concretion
operators, and pattern matching operators for names and name abstractions.

Pitts’ Nominal System T [92] extends System T with nominal features such as a fresh
operator ν à la Odersky and a name-swapping operator. As opposed to the systems
mentioned above, this system has ordinary non-bunched contexts. FreshMLTT [89] is a
dependent type theory that has name-abstraction and name-concretion operators, as well
as a name-swapping operator and a fresh operator ν à la Odersky, which allow them to
derive expressive name-concretion rules.

V. Rahli and M. Bickford 42

8. Conclusion and Future Work

This paper provides “mostly” computational proofs of two Brouwerian continuity principles
that use (1) diverging terms to prove that the modulus of continuity of a function on the
Baire space exists in the metatheory (Sec. 3), and (2) named exceptions to exhibit it in
the theory (Sec. 4). We proved that all functions of type TN → N are continuous, where
T is a subtype of N. It is not clear how to adapt our proof for other types than subtypes
of N. This is left for future work.
In Sec. 4.8 we used the fact that the exception exca cannot be caught by F if a#F .

This would not longer be true if our computation system was non-deterministic or if we
allowed parallel computations. For example, let t1 || t2 be an operator that dovetails the
computations of t1 and t2. If t1 computes to exca then this exception might get “caught”
if t2 computes to a canonical expression “before” t1. Once we add non-determinism to
Nuprl, we might be able to use non-deterministic computations to compute the modulus of
continuity of functions in a similar fashion as done by Coquand and Jaber [34]. This is left
for future work. Also, it is not clear whether we can add non-deterministic computations
without breaking our continuity proof, because we have used the fact that Nuprl’s
computation system is currently deterministic, for example in Sec. 4.8.
Finally, many more inference rules can be derived (and verified in our Coq model)

from the definitions of our new computations and types than the ones discussed in Sec. 4.
Investigating these rules is left for future work.

Acknowledgements

We would like to thank our colleagues Abhishek Anand, Robert L. Constable, Rich Eaton,
Evan Moran, and Ross Tate for their helpful criticism.

References

[1] Agda Wiki. http://wiki.portal.chalmers.se/agda/pmwiki.php (cit. on pp. 2, 6).
[2] Stuart Allen. An Abstract Semantics for Atoms in Nuprl. Tech. rep. Cornell University,

2006 (cit. on p. 19).
[3] Stuart F. Allen. “A Non-Type-Theoretic Definition of Martin-Löf’s Types”. In: LICS. IEEE

Computer Society, 1987, pp. 215–221 (cit. on pp. 3, 9).
[4] Stuart F. Allen. “A Non-Type-Theoretic Semantics for Type-Theoretic Language”. PhD

thesis. Cornell University, 1987 (cit. on pp. 3, 9, 19).
[5] Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz,

Lori Lorigo, and Evan Moran. “Innovations in computational type theory using Nuprl”. In:
J. Applied Logic 4.4 (2006). http://www.nuprl.org/, pp. 428–469 (cit. on pp. 3, 6).

[6] Abhishek Anand, Mark Bickford, Robert L. Constable, and Vincent Rahli. “A Type Theory
with Partial Equivalence Relations as Types”. Presented at TYPES 2014. 2014 (cit. on
pp. 11, 13).

[7] Abhishek Anand and Vincent Rahli. Towards a Formally Verified Proof Assistant. Tech. rep.
http://www.nuprl.org/html/Nuprl2Coq/. Cornell University, 2014 (cit. on pp. 3, 6, 7, 9,
11, 13, 14, 33, 38).

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://www.nuprl.org/
http://www.nuprl.org/html/Nuprl2Coq/

Validating Brouwer’s Continuity Principle in Nuprl 43

[8] Abhishek Anand and Vincent Rahli. “Towards a Formally Verified Proof Assistant”. In:
ITP 2014. Vol. 8558. LNCS. Springer, 2014, pp. 27–44 (cit. on pp. 3, 6, 7, 9, 11, 13, 14, 33,
38).

[9] Mark van Atten and Dirk van Dalen. “Arguments for the continuity principle”. In: Bulletin
of Symbolic Logic 8.3 (2002), pp. 329–347 (cit. on p. 1).

[10] Jeremy Avigad. “Forcing in proof theory”. In: Bulletin of Symbolic Logic 10.3 (2004),
pp. 305–333 (cit. on p. 4).

[11] Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop. “From Theory to
Practice of Algebraic Effects and Handlers (Dagstuhl Seminar 16112)”. In: Dagstuhl Reports
6.3 (2016), pp. 44–58 (cit. on p. 4).

[12] Andrej Bauer and Matija Pretnar. “Programming with algebraic effects and handlers”. In:
J. Log. Algebr. Meth. Program. 84.1 (2015), pp. 108–123 (cit. on p. 4).

[13] Michael J. Beeson. Foundations of Constructive Mathematics. Springer, 1985 (cit. on pp. 1,
4).

[14] Stefano Berardi, Marc Bezem, and Thierry Coquand. “On the Computational Content of
the Axiom of Choice”. In: J. Symb. Log. 63.2 (1998), pp. 600–622 (cit. on p. 34).

[15] Ulrich Berger and Paulo Oliva. “Modified bar recursion”. In: Mathematical Structures in
Computer Science 16.2 (2006), pp. 163–183 (cit. on p. 33).

[16] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development.
http://www.labri.fr/perso/casteran/CoqArt. SpringerVerlag, 2004 (cit. on pp. 3, 6).

[17] Mark Bickford. “Unguessable Atoms: A Logical Foundation for Security”. In: Verified
Software: Theories, Tools, Experiments, Second Int’l Conf. Vol. 5295. LNCS. Springer,
2008, pp. 30–53 (cit. on p. 19).

[18] E. Bishop and D. Bridges. Constructive Analysis. Springer, 1985 (cit. on p. 37).
[19] Mikolaj Bojanczyk, Laurent Braud, Bartek Klin, and Slawomir Lasota. “Towards nominal

computation”. In: POPL’12. ACM, 2012, pp. 401–412 (cit. on p. 41).
[20] Ana Bove, Peter Dybjer, and Ulf Norell. “A Brief Overview of Agda - A Functional

Language with Dependent Types”. In: TPHOLs 2009. Vol. 5674. LNCS. http://wiki.
portal.chalmers.se/agda/pmwiki.php. Springer, 2009, pp. 73–78 (cit. on pp. 2, 6).

[21] Edwin Brady. “IDRIS —: systems programming meets full dependent types”. In: PLPV
2011. ACM, 2011, pp. 43–54 (cit. on p. 6).

[22] Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics. London
Mathematical Society Lecture Notes Series. Cambridge University Press, 1987 (cit. on
pp. 1, 2, 31, 32, 37).

[23] James Cheney. “A dependent nominal type theory”. In: Logical Methods in Computer
Science 8.1 (2012) (cit. on p. 41).

[24] James Cheney. “A Simple Nominal Type Theory”. In: Electr. Notes Theor. Comput. Sci.
228 (2009), pp. 37–52 (cit. on p. 41).

[25] James Cheney and Christian Urban. “alpha-Prolog: A Logic Programming Language with
Names, Binding and a-Equivalence”. In: ICLP 2004. Vol. 3132. LNCS. Springer, 2004,
pp. 269–283 (cit. on p. 41).

[26] James Cheney and Christian Urban. “Nominal logic programming”. In: ACM Trans.
Program. Lang. Syst. 30.5 (2008) (cit. on p. 41).

[27] Paul J. Cohen. “The independence of the continuum hypothesis”. In: the National Academy
of Sciences of the United States of America 50.6 (Dec. 1963), pp. 1143–1148 (cit. on p. 4).

[28] Paul J. Cohen. “The independence of the continuum hypothesis II”. In: the National
Academy of Sciences of the United States of America 51.1 (Jan. 1964), pp. 105–110 (cit. on
p. 4).

http://www.labri.fr/perso/casteran/CoqArt
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php

V. Rahli and M. Bickford 44

[29] Robert L. Constable. “Constructive Mathematics as a Programming Logic I: Some Prin-
ciples of Theory”. In: Fundamentals of Computation Theory. Vol. 158. LNCS. Springer,
1983, pp. 64–77 (cit. on pp. 3, 10).

[30] Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer,
Robert W. Harper, Douglas J. Howe, Todd B. Knoblock, Nax P. Mendler, Prakash
Panangaden, James T. Sasaki, and Scott F. Smith. Implementing mathematics with the
Nuprl proof development system. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1986
(cit. on pp. 2, 3, 6, 13).

[31] Robert L. Constable and Jason Hickey. “Nuprl’s class theory and its applications”. In:
Foundations of Secure Computation. NATO ASI Series, Series F: Computer & System
Sciences. IOS Press, 2000, pp. 91–116 (cit. on p. 12).

[32] Robert L. Constable and Scott F. Smith. “Computational Foundations of Basic Recursive
Function Theory”. In: Theoretical Computer Science 121.1&2 (1993), pp. 89–112 (cit. on
pp. 6, 11).

[33] Robert Constable and Mark Bickford. “Intuitionistic Completeness of First-Order Logic”.
In: Annals of Pure and Applied Logic 165.1 (Jan. 2014), pp. 164–198 (cit. on pp. 12, 36).

[34] Thierry Coquand and Guilhem Jaber. “A Computational Interpretation of Forcing in Type
Theory”. In: Epistemology versus Ontology. Vol. 27. Logic, Epistemology, and the Unity of
Science. Springer, 2012, pp. 203–213 (cit. on pp. 4, 42).

[35] Thierry Coquand and Guilhem Jaber. “A Note on Forcing and Type Theory”. In: Fundam.
Inform. 100.1-4 (2010), pp. 43–52 (cit. on pp. 4, 5).

[36] Thierry Coquand and Christine Paulin. “Inductively defined types”. In: COLOG-88, Int’l
Conf. on Computer Logic. Vol. 417. LNCS. Springer, 1988, pp. 50–66 (cit. on p. 41).

[37] The Coq Proof Assistant. http://coq.inria.fr/ (cit. on pp. 3, 6).
[38] Karl Crary. “Type-Theoretic Methodology for Practical Programming Languages”. PhD

thesis. Ithaca, NY: Cornell University, Aug. 1998 (cit. on pp. 6, 9, 11, 13, 38).
[39] Roy L. Crole and Frank Nebel. “Nominal Lambda Calculus: An Internal Language for FM-

Cartesian Closed Categories”. In: Electr. Notes Theor. Comput. Sci. 298 (2013), pp. 93–117
(cit. on p. 41).

[40] Olivier Danvy and Andrzej Filinski. “Abstracting Control”. In: LISP and Functional
Programming. 1990, pp. 151–160 (cit. on p. 21).

[41] R. David and G. Mounier. “An Intuitionistic λ-calculus with Exceptions”. In: J. Funct.
Program. 15.1 (Jan. 2005), pp. 33–52 (cit. on p. 20).

[42] Michael A. E. Dummett. Elements of Intuitionism. Second. Clarendon Press, 2000 (cit. on
pp. 1, 2, 5, 36, 39).

[43] Martín Hötzel Escardó. “Continuity of Gödel’s System T Definable Functionals via Effectful
Forcing”. In: Electr. Notes Theor. Comput. Sci. 298 (2013), pp. 119–141 (cit. on p. 5).

[44] Martín Hötzel Escardó. “Exhaustible Sets in Higher-type Computation”. In: Logical Methods
in Computer Science 4.3 (2008) (cit. on p. 4).

[45] Martín Hötzel Escardó. “Infinite sets that admit fast exhaustive search”. In: LICS 2007.
IEEE Computer Society, 2007, pp. 443–452 (cit. on p. 4).

[46] Martín Hötzel Escardó and Chuangjie Xu. “The Inconsistency of a Brouwerian Continuity
Principle with the Curry-Howard Interpretation”. In: TLCA 2015. Vol. 38. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 153–164 (cit. on pp. 2–5, 31, 35,
37).

[47] Martín Escardó and Paulo Oliva. “Bar Recursion and Products of Selection Functions”. In:
J. Symb. Log. 80.1 (2015), pp. 1–28 (cit. on p. 33).

http://coq.inria.fr/

Validating Brouwer’s Continuity Principle in Nuprl 45

[48] Elliot Fairweather, Maribel Fernández, Nora Szasz, and Alvaro Tasistro. “Dependent Types
for Nominal Terms with Atom Substitutions”. In: TLCA 2015. Vol. 38. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 180–195 (cit. on p. 41).

[49] Matthias Felleisen. “The Theory and Practice of First-Class Prompts”. In: POPL 1988.
ACM Press, 1988, pp. 180–190 (cit. on p. 21).

[50] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F. Duba.
“Reasoning with Continuations”. In: LICS ’86. IEEE Computer Society, 1986, pp. 131–141
(cit. on p. 20).

[51] Murdoch Gabbay and Andrew M. Pitts. “A New Approach to Abstract Syntax Involving
Binders”. In: LICS 1999. IEEE Computer Society, 1999, pp. 214–224 (cit. on pp. 40, 41).

[52] W. Gielen, Harrie C. M. de Swart, and Wim Veldman. “The Continuum Hypothesis in
Intuitionism”. In: J. Symb. Log. 46.1 (1981), pp. 121–136 (cit. on p. 2).

[53] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge University
Press, 1989 (cit. on p. 5).

[54] Andrew D. Gordon. “Bisimilarity as a theory of functional programming”. In: Electr. Notes
Theor. Comput. Sci. 1 (1995), pp. 232–252 (cit. on p. 24).

[55] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF: A
Mechanised Logic of Computation. Vol. 78. LNCS. Springer-Verlag, 1979 (cit. on p. 20).

[56] Timothy Griffin. “A Formulae-as-Types Notion of Control”. In: POPL 1990. ACM Press,
1990, pp. 47–58 (cit. on p. 20).

[57] Philippe de Groote. “A Simple Calculus of Exception Handling”. In: TLCA ’95. Vol. 902.
LNCS. Springer, 1995, pp. 201–215 (cit. on p. 20).

[58] Jason J. Hickey. “The MetaPRL Logical Programming Environment”. PhD thesis. Ithaca,
NY: Cornell University, Jan. 2001 (cit. on p. 12).

[59] Martin Hofmann. “Extensional concepts in intensional type theory”. PhD thesis. University
of Edinburgh, 1995 (cit. on pp. 6, 14).

[60] William A. Howard and Georg Kreisel. “Transfinite Induction and Bar Induction of Types
Zero and One, and the Role of Continuity in Intuitionistic Analysis”. In: J. Symb. Log.
31.3 (1966), pp. 325–358 (cit. on p. 1).

[61] Douglas J. Howe. “Equality in Lazy Computation Systems”. In: LICS 1989. IEEE Computer
Society, 1989, pp. 198–203 (cit. on pp. 3, 7, 8, 22, 23).

[62] Douglas J. Howe. “Semantic Foundations for Embedding HOL in Nuprl”. In: Algebraic
Methodology and Software Technology. Vol. 1101. LNCS. Berlin: Springer-Verlag, 1996,
pp. 85–101 (cit. on p. 11).

[63] Idris. http://www.idris-lang.org/ (cit. on p. 6).
[64] Alan Jeffrey and Julian Rathke. “Towards a Theory of Bisimulation for Local Names”. In:

LICS 1999. IEEE Computer Society, 1999, pp. 56–66 (cit. on pp. 21, 24).
[65] Yukiyoshi Kameyama. “Dynamic Control Operators in Type Theory”. In: APLAS’01. 2001,

pp. 1–11 (cit. on p. 21).
[66] Yukiyoshi Kameyama and Takuo Yonezawa. “Typed Dynamic Control Operators for

Delimited Continuations”. In: FLOPS 2008. Vol. 4989. LNCS. Springer, 2008, pp. 239–254
(cit. on p. 21).

[67] S.C. Kleene and R.E. Vesley. The Foundations of Intuitionistic Mathematics, especially in
relation to recursive functions. North-Holland Publishing Company, 1965 (cit. on pp. 1, 2,
5, 18, 36, 39).

[68] Alexei Kopylov. “Type Theoretical Foundations for Data Structures, Classes, and Objects”.
PhD thesis. Ithaca, NY: Cornell University, 2004 (cit. on pp. 10, 12, 13).

http://www.idris-lang.org/

V. Rahli and M. Bickford 46

[69] Alexei Kopylov and Aleksey Nogin. “Markov’s Principle for Propositional Type Theory”.
In: CSL 2001. Vol. 2142. LNCS. Springer, 2001, pp. 570–584 (cit. on p. 38).

[70] Robbert Krebbers and Bas Spitters. “Type classes for efficient exact real arithmetic in
Coq”. In: Logical Methods in Computer Science 9.1 (2011) (cit. on p. 38).

[71] Georg Kreisel. “On weak completeness of intuitionistic predicate logic”. In: J. Symb. Log.
27.2 (1962), pp. 139–158 (cit. on p. 2).

[72] Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood series in computers
and their applications. Masson, 1993 (cit. on p. 20).

[73] Sylvain Lebresne. “A System F with Call-by-Name Exceptions”. In: ICALP 2008. Vol. 5126.
LNCS. Springer, 2008, pp. 323–335 (cit. on p. 20).

[74] Sylvain Lebresne. “A Type System For Call-By-Name Exceptions”. In: Logical Methods in
Computer Science 5.4 (2009) (cit. on pp. 19–21).

[75] John Longley. “When is a Functional Program Not a Functional Program?” In: ICFP’99.
ACM, 1999, pp. 1–7 (cit. on p. 3).

[76] Steffen Lösch and Andrew M. Pitts. “Relating Two Semantics of Locally Scoped Names”.
In: CSL 2011. Vol. 12. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011,
pp. 396–411 (cit. on p. 21).

[77] Per Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory, Lecture Notes 1.
Napoli: Bibliopolis, 1984 (cit. on p. 2).

[78] Alexandre Miquel. “A Model for Impredicative Type Systems, Universes, Intersection
Types and Subtyping”. In: LICS 2000. IEEE Computer Society, 2000, pp. 18–29 (cit. on
p. 12).

[79] Alexandre Miquel. “Le Calcul des Constructions Implicites: Syntaxe et Sémantique”. PhD
thesis. Université Paris 7, 2001 (cit. on p. 12).

[80] Alexandre Miquel. “The Implicit Calculus of Constructions”. In: TLCA. 2001, pp. 344–359
(cit. on p. 12).

[81] Gregory H. Moore. “The Origins of Forcing”. In: Logic Colloquium ’86. Elsevier Science
Publishers B.V. (North-Holland), 1988, pp. 143–173 (cit. on p. 4).

[82] Chetan R. Murthy. “An Evaluation Semantics for Classical Proofs”. In: LICS ’91. IEEE
Computer Society, 1991, pp. 96–107 (cit. on p. 20).

[83] Hiroshi Nakano. “A Constructive Logic Behind the Catch and Throw Mechanism”. In:
Ann. Pure Appl. Logic 69.2-3 (1994), pp. 269–301 (cit. on p. 20).

[84] Aleksey Nogin. “Theory and Implementings of an Efficient Tactic-Based Logical Frame-
work”. PhD thesis. Cornell University, 2002 (cit. on p. 14).

[85] Aleksey Nogin and Alexei Kopylov. “Formalizing Type Operations Using the "Image" Type
Constructor”. In: Electr. Notes Theor. Comput. Sci. 165 (2006), pp. 121–132 (cit. on p. 11).

[86] Dag Normann. “Computing with functionals - computability theory or computer science?”
In: Bulletin of Symbolic Logic 12.1 (2006), pp. 43–59 (cit. on p. 4).

[87] Martin Odersky. “A Functional Theory of Local Names”. In: POPL’94. ACM Press, 1994,
pp. 48–59 (cit. on pp. 19, 21).

[88] Michel Parigot. “λµ-Calculus: An Algorithmic Interpretation of Classical Natural Deduc-
tion”. In: LPAR’92. Vol. 624. LNCS. Springer, 1992, pp. 190–201 (cit. on p. 20).

[89] A. M. Pitts, J. Matthiesen, and J. Derikx. “A Dependent Type Theory with Abstractable
Names”. In: Proceedings of the LSFA 2014 Workshop. Vol. 312. Electronic Notes in
Theoretical Computer Science. Elsevier, 2015, pp. 19–50 (cit. on p. 41).

[90] Andrew M. Pitts. “Nominal Logic: A First Order Theory of Names and Binding”. In:
TACS 2001. Vol. 2215. LNCS. Springer, 2001, pp. 219–242 (cit. on p. 40).

Validating Brouwer’s Continuity Principle in Nuprl 47

[91] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. New York,
NY, USA: Cambridge University Press, 2013 (cit. on pp. 19, 21).

[92] Andrew M. Pitts. “Nominal system T”. In: POPL’10. ACM, 2010, pp. 159–170 (cit. on
pp. 21, 41).

[93] Andrew M. Pitts and Murdoch Gabbay. “A Metalanguage for Programming with Bound
Names Modulo Renaming”. In: MPC 2000. Vol. 1837. LNCS. Springer, 2000, pp. 230–255
(cit. on p. 41).

[94] Andrew M. Pitts and Ian D. B. Stark. “Observable Properties of Higher Order Functions
that Dynamically Create Local Names, or What’s new?” In: MFCS’93. Vol. 711. LNCS.
Springer, 1993, pp. 122–141 (cit. on p. 19).

[95] François Pottier. “Static Name Control for FreshML”. In: LICS 2007. IEEE Computer
Society, 2007, pp. 356–365 (cit. on p. 41).

[96] Nicolas Pouillard and François Pottier. “A fresh look at programming with names and
binders”. In: ICFP 2010. ACM, 2010, pp. 217–228 (cit. on p. 41).

[97] Vincent Rahli and Mark Bickford. “A nominal exploration of intuitionism”. In: CPP 2016.
Extended version of the paper: http://www.nuprl.org/html/Nuprl2Coq/continuity-
long.pdf. ACM, 2016, pp. 130–141 (cit. on p. 6).

[98] Vincent Rahli and Mark Bickford. “Coq as a Metatheory for Nuprl with Bar Induction”.
Presented at CCC 2015, available at http://www.nuprl.org/html/Nuprl2Coq/barind.pdf.
2015 (cit. on p. 34).

[99] Vincent Rahli, Mark Bickford, and Abhishek Anand. “Formal Program Optimization in
Nuprl Using Computational Equivalence and Partial Types”. In: ITP’13. Vol. 7998. LNCS.
Springer, 2013, pp. 261–278 (cit. on pp. 6, 8, 11, 14).

[100] Vincent Rahli, Mark Bickford, and Robert L. Constable. “A story of Bar Induction In
Nuprl”. Extended version avaible at http://www.nuprl.org/html/Nuprl2Coq/bar-
induction-long.pdf. 2015 (cit. on p. 40).

[101] Vincent Rahli, Mark Bickford, and Robert L. Constable. “Bar Induction: The Good, the
Bad, and the Ugly”. In: LICS 2017. 2017 (cit. on p. 36).

[102] Michael Rathjen. “A note on Bar Induction in Constructive Set Theory”. In: Math. Log.
Q. 52.3 (2006), pp. 253–258 (cit. on p. 1).

[103] Michael Rathjen. “Constructive Set Theory and Brouwerian Principles”. In: J. UCS 11.12
(2005), pp. 2008–2033 (cit. on pp. 1, 2).

[104] Jorge Luis Sacchini. “Exceptions in Dependent Type Theory”. Presented at TYPES’14
(http://www.pps.univ-paris-diderot.fr/types2014/abstract-18.pdf). 2014 (cit. on
p. 20).

[105] Ulrich Schöpp. “Names and Binding in Type Theory”. PhD thesis. University of Edinburgh,
2006 (cit. on p. 41).

[106] Ulrich Schöpp and Ian Stark. “A Dependent Type Theory with Names and Binding”. In:
CSL 2004. Vol. 3210. LNCS. Springer, 2004, pp. 235–249 (cit. on p. 41).

[107] Mark R. Shinwell. “Fresh O’Caml: Nominal Abstract Syntax for the Masses”. In: Electr.
Notes Theor. Comput. Sci. 148.2 (2006), pp. 53–77 (cit. on p. 41).

[108] Mark R. Shinwell, Andrew M. Pitts, and Murdoch James Gabbay. “FreshML: programming
with binders made simple”. In: SIGPLAN Notices 38.9 (2003), pp. 263–274 (cit. on p. 41).

[109] Scott F. Smith. “Partial Objects in Type Theory”. PhD thesis. Ithaca, NY: Cornell
University, 1989 (cit. on pp. 6, 11).

[110] Hayo Thielecke. “Constrasting Exceptions and Continuations”. http://www.cs.bu.edu/
fac/kfoury/CVS-Working-Files/CS520-Fall06/Handouts/contrasting-exceptions-
and-continuations.pdf. 2001 (cit. on p. 20).

http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
http://www.nuprl.org/html/Nuprl2Coq/barind.pdf
http://www.nuprl.org/html/Nuprl2Coq/bar-induction-long.pdf
http://www.nuprl.org/html/Nuprl2Coq/bar-induction-long.pdf
http://www.pps.univ-paris-diderot.fr/types2014/abstract-18.pdf
http://www.cs.bu.edu/fac/kfoury/CVS-Working-Files/CS520-Fall06/Handouts/contrasting-exceptions-and-continuations.pdf
http://www.cs.bu.edu/fac/kfoury/CVS-Working-Files/CS520-Fall06/Handouts/contrasting-exceptions-and-continuations.pdf
http://www.cs.bu.edu/fac/kfoury/CVS-Working-Files/CS520-Fall06/Handouts/contrasting-exceptions-and-continuations.pdf

V. Rahli and M. Bickford 48

[111] Hayo Thielecke. “On Exceptions Versus Continuations in the Presence of State”. In: ESOP
2000. Vol. 1782. LNCS. Springer, 2000, pp. 397–411 (cit. on p. 20).

[112] A.S. Troelstra. “A Note on Non-Extensional Operations in Connection With Continuity
and Recursiveness”. In: Indagationes Mathematicae 39.5 (1977), pp. 455–462 (cit. on p. 2).

[113] A.S. Troelstra. “Aspects of Constructive Mathematics”. In: Handbook of Mathematical
Logic. North-Holland Publishing Company, 1977, pp. 973–1052 (cit. on pp. 1, 2).

[114] A.S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis.
New York, Springer, 1973 (cit. on p. 4).

[115] A.S. Troelstra. “Non-extensional equality”. In: Fundamenta Mathematicae 82.4 (1975),
pp. 307–322 (cit. on p. 2).

[116] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics An Introduction. Vol. 121.
Studies in Logic and the Foundations of Mathematics. Elsevier, 1988 (cit. on pp. 1, 2, 33,
39).

[117] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study: http://homotopytypetheory.org/book, 2013
(cit. on pp. 3, 37).

[118] Wim Veldman. “Brouwer’s Fan Theorem as an axiom and as a contrast to Kleene’s
alternative”. In: Arch. Math. Log. 53.5-6 (2014), pp. 621–693 (cit. on p. 1).

[119] Wim Veldman. “Brouwer’s real thesis on bars”. In: Philosophia Scientiæ CS6 (2006),
pp. 21–42 (cit. on p. 1).

[120] Wim Veldman. “Understanding and Using Brouwer’s Continuity Principle”. English. In:
Reuniting the Antipodes — Constructive and Nonstandard Views of the Continuum. Vol. 306.
Synthese Library. Springer Netherlands, 2001, pp. 285–302 (cit. on pp. 1, 39).

[121] Frank Waaldijk. “On the Foundations of Constructive Mathematics – Especially in Relation
to the Theory of Continuous Functions”. In: Foundations of Science 10.3 (2005), pp. 249–
324 (cit. on p. 2).

[122] Edwin M. Westbrook. “Higher-Order Encodings with Constructors”. PhD thesis. Washing-
ton University, Saint Louis, Missouri, 2008 (cit. on p. 41).

[123] Edwin M. Westbrook, Aaron Stump, and Evan Austin. “The calculus of nominal inductive
constructions: an intensional approach to encoding name-bindings”. In: LFMTP ’09. ACM,
2009, pp. 74–83 (cit. on p. 41).

[124] Chuangjie Xu. “A continuous computational interpretation of type theories”. PhD thesis.
University of Birmingham, UK, 2015 (cit. on pp. 2, 4).

[125] Chuangjie Xu and Martín Hötzel Escardó. “A Constructive Model of Uniform Continuity”.
In: TLCA 2013. Vol. 7941. LNCS. Springer, 2013, pp. 236–249 (cit. on p. 5).

http://homotopytypetheory.org/book

	Introduction
	Nuprl
	Nuprl's Computation System
	Howe's Computational Equivalence
	Nuprl's Type System
	Sequents and Rules
	Computational Types
	Squashing Inference Rules

	Weak Continuity Principle
	Strong Continuity Principle
	Extension of Nuprl's Computation System
	Howe's Computational Equivalence in the Presence of bold0mu mumu
	Consistency in the Presence of bold0mu mumu
	Computing the Modulus of Continuity
	Well-Typedness
	Interlude: Reasoning About bold0mu mumu
	1st Condition: "3223379 -Existence of a Modulus of Continuity
	2nd Condition: Uniformity of the Testing Function
	Nuprl's Strong Continuity Inference Rule

	Relations Between WCP and SCP
	SCP Implies WCP
	WCP Implies SCP
	Axiom of Choice

	Applications
	Uniform Continuity
	Brouwer's Theorem on Uniform Continuity
	Status of the Law of Excluded Middle
	Relational Continuity Principle
	Bounded Continuity Principle

	Related Work on Nominal Systems
	Conclusion and Future Work

