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ABSTRACT
The convective and absolute instability of a viscoelastic liquid jet falling under gravity is examined for axisymmetrical disturbances. We use the
upper-convected Maxwell model to provide a mathematical description of the dynamics of a viscoelastic liquid jet. An asymptotic approach,
based on the slenderness of the jet, is used to obtain the steady state solutions. By considering traveling wave modes, we derive a dispersion
relation relating the frequency to the wavenumber of disturbances which is then solved numerically using the Newton-Raphson method. We
show the effect of changing a number of dimensionless parameters, including the Froude number, on convective and absolute instability. In
this work, we use a mapping technique developed by Kupfer, Bers, and Ram [“The cusp map in the complex-frequency plane for absolute
instabilities,” Phys. Fluids 30, 3075–3082 (1987)] to find the cusp point in the complex frequency plane and its corresponding saddle point
(the pinch point) in the complex wavenumber plane for absolute instability. The convective/absolute instability boundary is identified for
various parameter regimes.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5089242

I. INTRODUCTION

The instability, and subsequent disintegration, of a column of
fluid is of interest in a wide variety of growing applications (such
as ink jet printing,2 nanofiber,3 needle-free injection,4 coating, and
even diesel engine technology5). Despite over 200 years of scientific
scrutiny, the instability of a liquid jet remains an active area of study
for many researchers from a wide range of scientific disciplines. A
jet can be defined as a stream that is propelled into a medium via
an opening such as a nozzle. In general, liquid jets are unstable in
nature and ultimately break up into droplets.6 The primary mech-
anism of this breakup is the Rayleigh-Plateau instability which is
identified by the growth of disturbances that are either absolutely or
convectively unstable. Convective instability grows in amplitude as it
is swept along by the flow, whereas absolute instability occurs at fixed
spatial locations.7 Furthermore, droplet formation can occur either
directly at the jet exit or further downstream, at the end of the liquid
jet. These two types of instabilities are referred to as dripping and
jetting, respectively.8 Rayleigh9 was the first to use linear stability
analysis to investigate liquid jet instability. He derived the dispersion
relation between the growth rate and the wavenumber for an invis-
cid liquid jet. Weber10 performed a similar analysis to Rayleigh, but

for an incompressible viscous liquid jet with dynamic viscosity. He
showed that the breakup length of the liquid jet depends linearly on
its velocity. He found that the jet viscosity increases the wavelength
of unstable modes, consequently leading to an increase in breakup
times. Middleman11 examined the instability of a viscoelastic liquid
jet and compared the growth rate of surface disturbances along vis-
coelastic and viscous liquid jets. He found that viscous jets are more
stable than viscoelastic jets. Goldin et al.12 performed a similar anal-
ysis and found that the growth rate of disturbances along viscoelastic
jets is smaller than the equivalent for inviscid jets but is higher than
that of viscous jets for the same liquid jet of zero shear viscosity.
Papageorgiou13 developed an asymptotic approach to investigate the
breakup of a viscous thread under different initial conditions. The
effect of gravity on the instability of Newtonian liquid jets has been
investigated by Cheong and Howes,14 who used a finite difference
solution to simulate drop formation. They also performed some
experiments to compare with their numerical results. They noted
that disturbance frequencies will decrease when the relative impor-
tance of gravity increases. Sauter and Buggisch15 used linear insta-
bility analysis for viscous liquid jets falling vertically under gravity.
They found a new global instability mode for viscous jets. Alsharif16

investigated the linear temporal instability analysis of a viscoelastic
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liquid jet falling under the influence of gravity. He used an asymp-
totic approach to obtain a simplified form of the governing equations
and used the upper-convected Maxwell (UCM) model (which is a
special case of the Oldroyd-B model) to describe the dynamics of the
jet. He found that the temporal growth rate of a viscoelastic jet is
increased by the influence of gravity. In addition, Ye, Yang, and Fu17

investigated the temporal instability of viscoelastic compound liquid
jets. They observed that the temporal growth rate is higher than the
equivalent growth rate of a Newtonian compound jet.

The first work to demonstrate the existence of absolute instabil-
ity in liquid jets was that of Leib and Goldstein.18 They demonstrated
that capillary instabilities for a slow moving inviscid jet eventually
lead to absolute instability at small Weber numbers due to surface
tension. They determined a critical value for the ratio of inertia to
surface tension forces [denoted by the Weber number (We)] which
marks the transition between convective and absolute instabilities.
They showed that for We > 3.15, the jet is convectively unstable;
while for We < 3.15, it is absolutely unstable. Leib and Goldstein19

included the effect of viscosity and found that this leads to a decrease
in the critical value of the Weber number when the Weber number
is a function of the Reynolds number (Re). They plotted the rela-
tionship between the Reynolds number and the Weber number in
the Re–We plane and found a critical curve that separates the region
between convective and absolute instabilities. Briggs20 developed a
criterion for absolute instability analysis by looking at Fourier trans-
formations of the dispersion relation and finding its solution in the
complex wavenumber and frequency plane. This method was used
by Lin and Lian21 to find the boundary in a parameter map between
convective and absolute instabilities for a viscous liquid jet when tak-
ing into account the influence of the surrounding gas. O’Donnell,
Chen, and Lin22 determined the critical value of the Weber num-
ber experimentally, indicating the beginning of absolute instability
by taking into account the influence of gas viscosity. They demon-
strated the existence of regions of absolute instability for viscous
liquid jets under large Reynolds numbers when immersed in a vis-
cous gas. Lin and Ibrahim23 analyzed the convective and absolute
instability of a viscous liquid jet surrounded by a viscous gas in a ver-
tical pipe. They found that the critical curve in parameter space does
not rely strongly on the ratio between gravity and inertia, jet diame-
ter, and viscosity ratios. The influence of gravity on the growth rate
of convective and absolute instabilities of an axisymmetric viscous
jet has been studied by Amini and Ihme.24 They performed a spa-
tial instability analysis of the governing equations using a multiscale
expansion technique to derive the dispersion relation, which they
used for evaluating the growth rate of disturbances. They showed
that the growth rate of instabilities is increased by gravity. Yang,
Tong, and Fu25 investigated the instability of axisymmetrical and
nonaxisymmetrical disturbances for a column of a viscoelastic liq-
uid jet moving in a swirling air stream. They showed that a three-
dimensional viscoelastic liquid jet is more unstable than the Newto-
nian case when the air swirl is taken into account. They found that
a decrease in the ratio of the time constant or an increase in the liq-
uid elasticity leads to an increase in the maximum temporal growth
rate.

In this paper, we examine the convective and absolute insta-
bility of an axisymmetrical viscoelastic liquid jet falling under grav-
ity. This work extends the analysis of Alsharif16 by including spa-
tial and absolute instability analysis. We use a mapping technique,

often referred to as the “Cusp Map Method” developed by Kupfer,
Bers, and Ram1 to find the cusp point, which corresponds to the
pinch point for absolute instability.

II. FORMULATION OF PROBLEM
Consider an axisymmetric column of an incompressible vis-

coelastic liquid jet, which has radius a, density ρ, and surface tension
σ, emerging from a nozzle and falling under gravity. In order to con-
sider the axisymmetric problem, we assume that the cross section of
the jet remains circular ( ∂

∂θ = 0) and swirl will not be considered
(vθ = 0). Thus, the velocity vector takes the form v = (vr , 0, vz). The
governing equations and the boundary conditions can be written in
cylindrical coordinates, where the z-axis can be chosen as a parallel
axis to the flow direction and the r-axis is perpendicular to the axis
of symmetry for the liquid jet column, as shown in Fig. 1. We assume
for simplicity that the surrounding medium is quiescent and that its
effects are negligible in the present problem.

A. The governing equations
According to Bird, Armstrong, and Hassager,26 the relationship

between the stress and strain in a viscoelastic liquid can be described
by the Oldroyd-B constitutive equation

T + λT◇ = µ0(Ḋ + λrḊ
◇
), (1)

where T is the extra stress tensor (this brings the elastic effect to the
stresses), λ is the relaxation time, λr is the retardation time, µ0 is the
zero-shear viscosity (the total viscosity) composed of polymer and
solvent components (µ0 = µp + µs), Ḋ is the symmetric part of the
strain rate tensor defined as Ḋ = ∇v + (∇v)T , and the T♢ and Ḋ♢

denote the upper convected time derivative of T and Ḋ, respectively,
defined by

T◇ =
∂T
∂t

+ (v ⋅∇)T − T ⋅∇v − (∇v)T ⋅ T,

where t is the time. Two special cases exist: the first case is when
λ = 0, λr = 0, and µp = 0, the Oldroyd-B model reduces to the linear
constitutive equation for Newtonian fluids; the second case is when
λ ≠ 0, λr = 0, and µs = 0, this model reduces to the upper-convected
Maxwell (UCM) model for pure polymers27 (this model has several

FIG. 1. A sketch of the viscoelastic liquid jet column of radius a in cylindrical
coordinates with axisymmetrical surface disturbance.
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properties of polymer solutions that can be captured to a good first
approximation). Therefore, from the second case, the constitutive
equation, (1), can be written as

T = µpḊ − λT◇, (2)

where µp is the polymer viscosity. Therefore, the governing equa-
tions are the continuity equation for an incompressible fluid, which
is

∇ ⋅ v = 0, (3)

and the momentum equation, which is

ρ(
∂

∂t
+ v ⋅∇)v = −∇p +∇ ⋅ τ + ρg, (4)

where
τ = µsḊ + T = (µs + µp)Ḋ − λT◇, (5)

p is the pressure, g = (0, 0, g), and µs is the solvent viscosity. The
position of the jet interface can be expressed as r − ζ(z, t) = 0. Fur-
thermore, this position has to be determined as a part of the solution
to the flow equations, which is different from other flow situations
that have known prior boundaries.

B. The boundary conditions
The boundary conditions at the free surface can be evaluated

by expressing the pressure difference across the jet interface with the
normal stress, which is related to the mean curvature, as follows:

n ⋅Π ⋅ n = σκ, (6)

where n is the outward unit normal vector to the jet interface, Π is
the total stress tensor, which is given by Π = −pI + τ, and κ is the
mean curvature of the liquid jet defined by

κ =
1
Eζ

−
1
E3

∂2ζ
∂z2 , where E = (1 + (

∂ζ
∂z
)

2
)

1
2

.

The tangential stresses are equated to zero along the jet interface

t ⋅Π ⋅ n = 0, (7)

where t is the tangential unit vector. Finally, the kinematic boundary
condition, which requires a liquid particle on the interface to remain
on the interface, can be expressed as

D
Dt
(r − ζ(z, t)) = 0, (8)

where
D
Dt

=
∂

∂t
+ v ⋅∇ is the material derivative.

III. DIMENSIONLESS ANALYSIS
Following Anno,28 the governing equations and the bound-

ary conditions can be written in nondimensional form by using the
following nondimensional scales:

z∗ =
z
L

, r∗ =
r
a

, t∗ =
U
L
t, p∗ =

p
U2ρ

, ε =
a
L

,

v∗r =
vr
U

, v∗z =
vz
U

, ζ∗ =
ζ
a

, T∗ =
L

Uµ0
T,

(9)

where U is the jet exit velocity, L is the scale of the axial length, 0 < ε
≪ 1, µ0 is the total viscosity, and T is the additional stress tensor.
After dropping the superscript (∗), the dimensionless parameters
that enable us to analyze the flow dynamics of a viscoelastic liquid
jet falling under gravity are

Re =
Uρa
µ0

, α =
µs
µ0

, We =
ρU2a
σ

, F =
U
√ag

, De =
λU
L

, (10)

where Re is the Reynolds number (which is a measure showing the
relative importance between viscous forces and inertia), α is the ratio
of solvent viscosity to the total viscosity, We is the Weber number
(which is a measure of the relative importance of inertia to surface
tension), F is the Froude number, and De is the Deborah number
(which is a measure of the amount of time it takes to reach a spe-
cific reference strain). Using typical values obtained in industrial
applications of viscoelastic fluids (see Verhoef, Van den Brule, and
Hulsen29 and Bird et al.30), where λ ∼ 10−3–10 and µ0 ∼ 10−2–10,
we can see that for a liquid jet of diameter a = 10−3 m and hav-
ing initial speed U ∼ 0.3–10 ms−1, we have De ∼ 10−2–103 and
Re ∼ 10−2–102. In the subsequent analysis, we use parameter val-
ues which fall within these regimes. The dimensionless forms of the
governing equations and the boundary conditions can be found in
Appendix A.

IV. ASYMPTOTIC ANALYSIS
Following Eggers,31 we assume that the jet is slender (i.e., we

define a small aspect ratio ε = a/L ≪ 1). Therefore, we examine
our dimensionless expressions (in Appendix A) in more detail by
expanding vr , vz , and p in a Taylor series in �r; and ζ, Trr , and Tzz in
an asymptotic series in ε. Furthermore, we assume that the center-
line of the liquid jet column is not affected by small perturbations.
In the long wave limit when ζ(z) varies slowly with respect to z, the
axial velocity, pressure, and the stress components Tzz and Trr are
almost uniform with respect to r, while the off-diagonal stress com-
ponent Trz is nearly zero. Hence, the proper ansatz for slender jets is
a Taylor expansion in r. Therefore, we have

{vr , vz , p} = {vr0(z, t), vz0(z, t), p0(z, t)}

+ εr{vr1(z, t), vz1(z, t), p1(z, t)} + O(ε2r2
), (11)

{ζ,Trr ,Tzz} = {ζ0(z, t),T0
rr(z, t),T0

zz(z, t)}

+ ε{ζ1(z, t),T1
rr(z, t),T1

zz(z, t)} + O(ε2
). (12)

Considering our governing equations and in order to retain
viscoelastic terms and gravitational terms, we need to rescale the
Reynolds number Re/ε = R̃e = O(1) and the Froude number
εF2

= F̃2 = O(1) (for more details, see Uddin32). Therefore, after
substituting the expressions, (11) and (12), into our dimensionless
forms (in Appendix A) and dropping the tildes for convenience,
from the axial momentum equation, we have

O(ε) :
∂vz0

∂t
+ vz0

∂vz0

∂z
=
−1
We

∂

∂z
(

1
ζ0
) +

3α
ζ2

0Re
∂

∂z
(ζ2

0
∂vz0

∂z
)

+
1

ζ2
0Re

∂

∂z
(ζ2

0(T
0
zz − T0

rr)) +
1
F2 . (13)
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For more details of the derivation of the equation, (13), see
Appendix B. The components of the extra stress tensor, (A4) and
(A5), to leading order become, respectively,

∂T0
zz

∂t
+ vz0

∂T0
zz

∂z
− 2T0

zz
∂vz0

∂z
=

1
De
(2(1 − α)

∂vz0

∂z
− T0

zz), (14)

∂T0
rr

∂t
+ vz0

∂T0
rr

∂z
+ T0

rr
∂vz0

∂z
=
−1
De
((1 − α)

∂vz0

∂z
+ T0

rr). (15)

If F→∞, the last set of Eqs. (13)–(15) are the same as those obtained
by Clasen et al.33 The kinematic condition to leading order becomes

∂ζ0

∂t
+
ζ0

2
∂vz0

∂z
+ vz0

∂ζ0

∂z
= 0. (16)

V. THE STEADY STATE SOLUTIONS
In order to obtain the steady state solutions of (13)–(16), we

set all time derivatives to zero and consider this nonlinear system
of equations involving the four variables vz0, ζ0, T0

zz , and T0
rr as

functions of z. From (16), we find that ζ2
0vz0 is constant, and from

the boundary condition at the nozzle, where vz0(0) = 1 and ζ0(0)
= 1, we find that ζ2

0vz0 = 1. Therefore, Eqs. (13)–(15) become,
respectively,

vz0
∂vz0

∂z
=

−1
2
√
vz0We

∂vz0

∂z
+

3α
Re
(
∂2vz0

∂z2 −
1
vz0
(
∂vz0

∂z
)

2
)

+
1
Re
(
∂

∂z
(T0

zz − T0
rr) −

1
vz0

∂vz0

∂z
(T0

zz − T0
rr)) +

1
F2 ,

(17)

De(vz0
∂T0

zz

∂z
− 2T0

zz
∂vz0

∂z
) = 2(1 − α)

∂vz0

∂z
− T0

zz , (18)

De(vz0
∂T0

rr

∂z
+ T0

rr
∂vz0

∂z
) = −(1 − α)

∂vz0

∂z
− T0

rr . (19)

We have three nonlinear ordinary differential Eqs. (17)–(19), in
three unknowns vz0, T0

rr , and T0
zz . To solve these equations as an ini-

tial boundary value problem, we need the boundary conditions at
z = 0. Besides the boundary condition for vz0, the other condi-
tions are not immediately obvious. To determine a consistent set of
boundary conditions at the nozzle, z = 0, we expand our variables
for z→ 0 as follows:

{vz0,T0
rr ,T

0
zz} = {1, γ0, s0} + {c1, γ1, s1}z + {c2, γ2, s2}z2 + . . . .

We then substitute these expressions into the last set of equations
and equate coefficients of O(1) to zero to obtain a system of non-
linear equations. These can be solved to establish a consistent set of
boundary conditions as z → 0. We assume, in line with other stud-
ies which consider a similar problem Deshawar and Chokshi34 and
Riahi et al.,35 that the boundary condition for the extra stress terms
can be approximated by their Newtonian equivalent [that is, set-
ting De = 0 in (18) and (19)]. This leads to s0 = 2(1 − α)c1 and γ0
= (α − 1)c1. Using this assumption and then substituting our small
z expansion into (17), we obtain a quadratic equation for c1 (simi-
lar to that found in Nonnenmacher and Piesche36) which depends
on the coefficient of the axial velocity term at O(z2)—that is, c2.

FIG. 2. Graph showing values of ζ0, vz0, T0
rr , and T0

zz against z for different values
of F, where De = 10, Re = 800, We = 2, and α = 0.03.

This is similar to the situation in Riahi et al.35 where a viscoelastic
liquid jet emerging from a rotating spinneret was considered. Sim-
ilar to that work, we too find that the value of c2 has little impact
on the solution for c1 and we likewise set c2 = 0. In doing so,
we incorporate the fact that as the jet is accelerating due to grav-
ity, we expect ∂vz0/∂z > 0. Given that as the liquid emerges from
the nozzle, it loses traction and undergoes local flow changes which
can be important for viscoelastic jets (die swell), which we do not
consider here, the above choice of boundary conditions (which is
consistent with our set of equations) provides a viable framework
with which to examine this problem. We solve the nonlinear ordi-
nary differential Eqs. (17)–(19), by using MATLAB (ode45), which
is based on the Runge-Kutta method. The effect of gravity (through
the Froude number) on steady state solutions is shown in Fig. 2. It
can be seen that a reduction in the Froude number leads to the jet
thinning more quickly and also the axial velocity increasing more
quickly along the jet.

VI. LINEAR INSTABILITY ANALYSIS
The jet develops over the length scale z = O(1). How-

ever, waves along the jet are much smaller and typically have
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wavelengths of O(a)—which are comparable to ε in the case of
z = O(1). This multiscale approach has been used by Uddin.32 Using
exp(ikz̄ + ωt̄) as a traveling wave mode model, where z = εz̄, t = εt̄,
k = k(z) = O(1) and ω = ω(z) = O(1). We apply a small pertur-
bation around the steady state solutions. Therefore, we have the
substitutions

{vr , vz , ζ,Trr ,Tzz , p} = {0, vz0(z), ζ0(z),T0
rr(z),T

0
zz(z), p0(z)}

+ ξ{v̄r(r), v̄z(r), p̄(r), ζ̄, T̄rr(r), T̄zz(r)}

× e(ik(z)z̄+ω(z)t̄), (20)

where 0 < ξ ≪ 1 is a small dimensionless number. By substituting
these expressions into our dimensionless forms (in Appendix A),
replacing α/ε = α̃ = O(1) (this corresponds to examining large
values of µp), keeping terms of O(ξ) only, and after dropping the
tildes for convenience, we obtain a set of ordinary differential equa-
tions (see Appendix C). Therefore, it can be shown after solving
these differential equations and applying the tangential and kine-
matic boundary conditions that the final forms of the pressure
and velocity profiles (p̄, v̄r and v̄z) can be written, respectively,
as

p̄ = −
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⎨
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ζ̄, (21)

v̄r =
⎧⎪⎪
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v̄z = i
⎧⎪⎪
⎨
⎪⎪⎩

(

√
cα(h2 + k2

)Λ +
√
ck2
(T0

rr − T0
zz)

α(ch2 − k2)
)
I0(kr/

√
c)

I1(kζ0/
√
c)

−(
α(1 + c)khΛ + ckh(T0

rr − T0
zz)

α(ch2 − k2)
)
I0(hr)
I1(hζ0)

⎫⎪⎪
⎬
⎪⎪⎭

ζ̄, (23)

where

c =
αΛ(D0 − h2

)

2k2(T0
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De)
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+
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αΛ
(T0

zz + T0
rr +

2
De
),

Λ = (ω + ikvz0), and I1 and K1 are the first and the second
kind of the modified Bessel function of the first order, respec-
tively. By substituting these solutions, (21)–(23), into the normal
stress boundary condition, (C6), we obtain the following dispersion
relation:
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(24)

VII. CONVECTIVE INSTABILITY ANALYSIS
There are two different types of convective instabilities: tem-

poral instability, where the wavenumber is real and the frequency
is complex, and spatial instability, where the frequency is purely
imaginary and the wavenumber is complex.

A. Temporal instability analysis
Here, we are interested in describing the temporal instability

of viscoelastic liquid jets and so we consider in our dispersion rela-
tion, (24), a complex frequency (ω = ωr + iωi, where ωr symbolizes
the disturbance growth rate and ωi symbolizes 2π times frequency
of the disturbance) and a real wavenumber k. We use the Newton-
Raphson method to solve the dispersion relation. The most unstable
wavenumber is defined as the wavenumber that leads to the largest
value of Re(ω). In general, the steady state values (see Sec. V) will
change with z, and hence, the associated most unstable wavenumber
and the corresponding growth rate will also vary in the downstream
direction of the jet.32

We plot the relationship between the growth rate (ωr) and
the wavenumber of the viscoelastic liquid jet, for different Weber
numbers, in Fig. 3. It can be seen that when we decrease the
Weber number (which corresponds to a greater influence of surface

FIG. 3. Graph showing the growth rate ωr against the wavenumber k for various
values of the Weber number, where F = 4, Re = 800, α = 3, and De = 10 at z = 0.
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FIG. 4. Graph showing the relationship between ωr and k for various values of z
and the Deborah number, where F = 4, Re = 800, α = 3, and We = 2.

tension over inertia), the growth rate increases leading to shorter
jets. In Fig. 4, we plot the temporal growth rate for various values of
the Deborah number and the axial locations of the jet (z). We can see
that the maximum value of the temporal growth rate and the most
unstable wavenumber are increased along the jet (for different values
of z) or by increasing the Deborah number. In addition, we note that
the range of instability is increased along the jet by increasing the
Deborah number. The most unstable wavenumber can be seen as an
inverse measure (through the wavelength) of the predicted droplet
sizes. In this respect, Fig. 4 would suggest that increasing the Debo-
rah number will lead to reduced droplet sizes and shorter jets. This
result is in line with observations by Brenn, Liu, and Durst37 and
Ruo et al.38 where the disturbance growth rate of viscoelastic liquid
jets approaches the corresponding growth rates of Newtonian liquid
jets when De→ 0 and T→ 0.

FIG. 5. Graph showing the relationship between Im(k) and Re(k) for different
values of the Weber number, where De = 10, F = 4, α = 3, and Re = 800 at
z = 0.

FIG. 6. Graph showing the spatial growth rate against the wavenumber for various
values of the axial length of the viscoelastic jet, where We = 4, De = 10, α = 3,
F = 4, and Re = 800.

B. Spatial instability analysis
A more physically realistic scenario for stability has been pro-

posed by Keller, Rubinow, and Tu39 which is known as spatial sta-
bility. They observed that disturbances on the jet surface can grow
in space rather than with time, where k is assumed to be com-
plex, while ω is purely imaginary. According to Busker, Lamers,
and Nieuwenhuizen,40 the spatial instability can better describe the
physical process of the liquid jet breakup. Spatial instability can
also be used to simulate satellite formation before or after the main
droplet formation based on the disturbance amplitude. A compari-
son between the theoretical prediction and the experimental results
observed by Si et al.41 indicates that the results of spatial instability
are better aligned with experiments than the analysis of the temporal
instability, especially for moderate to high Weber numbers.42

In this section, following Keller, Rubinow, and Tu,39 we con-
sider a wave mode of the form exp(ikz̄ − iωt̄), but in this case, k is
assumed to be complex andω is the real frequency of the wave mode.
For unstable disturbances, we require Im(k) < 0 where the most
negative number gives the maximum value of the spatial growth
rate. The dispersion relation, (24), is solved numerically using the
Newton-Raphson method for k with given values of ω. We show
the relationship between Im(k) and Re(k) for different values of the
Weber number in Fig. 5. It is clear, from Fig. 5, that the maximum
value of the spatial growth rate will be increasing when the Weber
number is increased. While, we note from Fig. 6, that the range of
instability and the maximum value of the spatial growth rate are
increased along the viscoelastic jet.

VIII. ABSOLUTE INSTABILITY ANALYSIS
In liquid jets, different types of instabilities can be categorized

depending on the movement and shape of wave packets growing
along the jet. The flow is said to be absolutely unstable when whole
wave packets drift upstream or downstream, and where disturbances
can grow with time at all fixed spatial positions. Otherwise, we say
that the flow is convectively unstable.43 Convective instability grows
and propagates away from its point of origin. This causes a rupture
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in the jet elsewhere away from the point of origin as well as leav-
ing the jet unaffected at the point of origin. In contrast, absolute
instability propagates far from its point of origin, but at the same
time destabilizes the jet everywhere, including at the origin of the
disturbance. Based on the work of Briggs,20 the criterion for abso-
lute instability of a wave mode of the form e(ωt+ikz), where k and ω
are taken as complex numbers, is if the solution of the dispersion
relation is a first-order saddle point in the complex k-plane, which
corresponds to a pinch point (a cusp point) in the complex ω-plane.
A “cusp point” appears when an intersection occurs between k(ω)
curves in the complex-frequency plane. Absolute instability requires
that the dispersion relation solution has Re(ω) > 0.44 To confirm that
the absolute instability will occur when the group velocity (which is
defined by ∂ω/∂k) is zero at the saddle point k0 (which is a neces-
sary condition, but it is not a sufficient condition). This is because
the group velocity is zero not only at saddle points but also when
two k-branches meet independently of whether the branches origi-
nated from the same half-k-plane or not. To overcome this, Kupfer,
Bers, and Ram1 developed a mapping procedure in which pinch
points can be found by using mappings of chosen contour lines from
the complex k-plane into the complex ω-plane. When the contour
lines are deformed, a branch point arises up in the ω-plane which
is called a cusp point. At the same time, a pinch point appears in
the k-plane. Further deformations of contour lines after forming the
pinch point lead to a violation of causality, and these deformations
are stopped. To determine if the cusp point has been formed by the
continuous analysis of k-branches creating from two different halves
of k-plane or not, the following procedure can be followed. Accord-
ing to Kupfer, Bers, and Ram,1 one can check that the cusp point is a
pinch point by drawing a straight ray parallel to the ωr-axis from the
cusp point to the image of the first contour line (for ki = 0) and then
counting the number of points that this ray intersects with the image
of the first contour line. If the number of intersections between this
ray and the image of the first contour line is odd, then this cusp
point has been formed by two k-branches creating from two differ-
ent halves of the k-plane and the cusp point is named as a pinch
point.1

A. Finding the cusp point
Kupfer, Bers, and Ram1 have shown that mappings from the

complex-frequency plane to the wavenumber plane, through the
dispersion relation D(ω, k) = 0, can identify absolute instability.
However, for many physical systems, the dispersion relation is a
polynomial in ω while transcendental in k. It is easier to solve for
ω given a k than it is to solve for k given an ω. Kupfer, Bers, and Ram
have also shown that mappings of successive deformations of the
Fourier integral path along the real k-axis in the ω-plane, points sat-
isfying ∂D

∂k = 0 are easily discovered by the characteristic property of
their local maps. They found that there is a topological relationship
between these points and that the image of the real k-axis determines
the characteristics of stability.

Since it is easier to map from the complex wavenumber plane
to the frequency plane this allows us to determine stability charac-
teristics without solving transcendental equations. The image of this
area in the k-plane will be bounded by the first contour produced by
mapping the real line from the complex wavenumber plane on one
side. There are many contour lines along the scope of the unstable

wavenumbers. When the contour lines are mapped into the ω-plane,
every contour line finishes and leaves its image in this specific area.
The parallel lines of constant Im(k) < 0 mapped onto the complex
frequency plane may produce a cusp point. If a cusp point can be
identified, it will correspond to a value ω0 in the complex frequency
plane. This point will have been produced by an associated value of
k = k0 in the complex wavenumber plane. By definition,D(ω0, k0) = 0
and ∂D(ω0, k0)/∂k = 0. If k0 and ω0 are such that ∂2D(ω0, k0)/∂k2

≠ 0, then we have identified a pinch point. Therefore, ω = ω0 is the
position of the cusp point in the complex ω-plane and k(ω0) is the
position of the saddle point in the k-plane corresponding to the cusp
point ω0. It is easy to infer that the relationship, ω − ω0 ∼ (k − k0)

2,
is a fundamental characteristic to form the branch point (the cusp
point) in the complex ω-plane, on condition that the pinch point in
the complex k-plane is a first-order saddle point, which is defined as
the corresponding point to the cusp point in the ω-plane. Finding
the cusp point requires searching the k plane by using kr-contour
lines for different values of ki < 0 and plotting the images of the con-
tour lines in the complex ω-plane. These images of the contour lines
form a cusp when they are close to the singularity. On one of these
contour lines, the exact cusp point (ω0) will appear. After identify-
ing the cusp point, we can determine stability by identifying the sign
of ω0. If ω0r > 0, the flow is absolutely unstable; either if this point
is formed in the left half of the ω-plane, i.e., if ω0r < 0, the system
is convectively unstable, provided that is in the situation where the
system is already temporal unstable flow; otherwise, the system is
stable.45

According to the Kupfer, Bers, and Ram method, the cusp line
is a set of points in the ω-plane that can be found by considering the
mappings of lines of Im(k) = k∗i (constant) in the complex k-plane
onto the ω plane. This is done for successive values of k∗i from zero
to down to a constant negative value. By using this method when
ki = 0 and varying kr (kr-contour line), the image of the first contour
line (for ki = 0) of the dispersion relation corresponds to the tempo-
ral growth rate result as shown in Fig. 3 when We = 2. By reducing
k∗i to negative values gives the corresponding images of the disper-
sion relation, (24), in the ω-plane as shown in Fig. 7. For kr-contour
lines when ki = −0.244, we notice the emergence of a cusp point at
ω0 = 0.0728 − 0.831i as shown in Fig. 7, which corresponds to the
saddle point (the pinch point), k0, in the complex k-plane. This cusp
point is a pinch point because when we draw a straight ray parallel to
the ωr-axis from the cusp point to the image of the first kr-contour
line (for ki = 0) in the complex ω-plane, we find one intersection
point only (odd number).46,47 For a reference state in this section,
De = 10, α = 3, F = 4, Re = 800, and We = 2 at z = 0, the flow is
absolutely unstable because of ω0r > 0 as shown in Fig. 7.

B. Finding the saddle point
Following Bassi7 and Balestra, Gloor, and Kleiser,48 we use the

saddle point method to find solutions of the dispersion relation,
i.e., D(ω, k) = 0, for the complex pair (ω0, k0), where D(ω0, k0)
= ∂D(ω0, k0)/∂k = 0 and ∂2D(ω0, k0)/∂k2

≠ 0. In order to investigate
the behavior of changing dimensionless parameters, we consider a
reference state, where We = 2, F = 4, Re = 800, α = 3 and De = 10 at
z = 0. The dispersion relation, (24), is then solved for spatial curves
to find the saddle point in the complex k-plane. In general, there
are two distinguished branches of spatial solutions for D(ω, k) = 0,
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FIG. 7. Graph showing kr -contour lines for different values of k i in the complex ω
plane. The thin green solid line is the cusp line for k i = −0.244, which contains
the cusp point at ω0 = 0.0728 − 0.831i, while the thick blue solid line is the first
kr -contour line for k i = 0, where De = 10, F = 4, α = 3, Re = 800, and We = 2
at z = 0.

where each branch contains a set of points located on both sides of
the saddle point. These points are found by examining ωi-contour
lines and reducing ωr from positive small values to zero, and then
solving the dispersion relation for k numerically using the Newton-
Raphson method. When the two branches of the ωi-contour lines
approach each other by reducing ωr from positive small values to
zero, a saddle point will occur at k = k0.

Before finding the saddle point, it is important to note that
the cusp point in the ω-plane corresponds to the pinch point (i.e.,
the first-order saddle point only) in the k-plane. This is because the
group velocity (i.e., the velocity at which the wave packets are prop-
agated) is zero not only at the saddle point but also when the two k-
branches are met independently of whether the branches originated
from the same half-k-plane or not. To ensure correct positions of the
first-order saddle point, we need to use ωi-contour lines for several
positive small values of ωr near the real part of the cusp point (ω0r)
in the complex k-plane. We then solve, using the Newton-Raphson
method, the dispersion relation numerically for k. Using the above
method, one finds that the first-order saddle point is located at
k0 = 1.0789 − 0.2844i, between two spatial curves (two ωi-contour
lines of ωr = 0.043 and ωr = 0.044) as shown in Fig. 8. We have
checked that the cusp point (ω0) and the saddle point (k0) satisfy the
saddle point conditions, which are D(ω0, k0) = ∂D(ω0, k0)/∂k = 0
and ∂2D(ω0, k0)/∂k2

≠ 0.20,49

C. Finding the convective/absolute instability
boundary (CAIB)

To find the convective/absolute instability boundary (CAIB),
we need to monitor the movement of the cusp point in the complex
ω-plane as the Weber number increases when all other dimension-
less parameters are fixed. We then use the Newton-Raphson method
to find ω values at the cusp point. We repeat this process by gradu-
ally increasing the Weber number until we reach the value at which
the ωr changes sign from positive to negative (i.e., the critical value
of We = Wec at which the transition occurs from absolute instability

FIG. 8. Graph showing the saddle point, which is located at k0 = 1.0789 − 0.2844i,
between two spatial branches of the ωi -contour line for ωr = 0.043 and ωr = 0.044,
respectively, in the complex k-plane, where α = 3, F = 4, De = 10, We = 2, and
Re = 800 at z = 0.

to convective instability, ω0r = 0), as shown in Fig. 9. This critical
value of We (i.e., Wec) will mark the convective/absolute instability
boundary (CAIB) between the convective and absolute regions.50,51

We do the same thing for different values of the Reynolds number in
the We–Re plane as shown in Fig. 10 and in the We–De plane to find
the critical values of the Weber number corresponding to various
values of the Deborah number, where Wec marks the CAIB in this
plane as shown in Fig. 11. Moreover, CAIB is marked in the We–α
plane by the critical values of the Weber number against various val-
ues of the viscosity ratio as shown in Fig. 12 using the same process
above.

FIG. 9. Graph showing the movement of the cusp point in the complex ω-plane.
The thin and thick red solid lines are the cusp line (for k i = −0.244) and the first
contour line (for k i = 0), respectively, when We = 2; while the thin and thick blue
dotted lines are the cusp line (for k i =−0.11), whereω0 r = 0 indicating the transition
from absolute instability to convective instability, and the first contour (for k i = 0),
respectively, when We = Wec = 3.7, where De = 10, F = 4, α = 3, and Re = 800 at
z = 0.
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FIG. 10. Graph showing the convective/absolute instability boundary (CAIB),
where Wec appears at ωr = 0, on the Re–We plane, where De = 10, F = 4, and
α = 3.

In Fig. 10, we find that the CAIB increases as the viscosity
decreases (the critical Weber number is increased by increasing the
Reynolds number), but this boundary increases sharply in the range
(0 < Re < 500) and then increases gradually when Re > 500; this
means that the transition from absolute instability to convective
instability will be delayed when Wec < 3.8 at z = 0, while the tran-
sition is delayed when Wec < 3.4 at z = 2. In addition, we have seen,
from Fig. 10, that the behavior in the CAIB is similar to that found by
Lin and Lian21,52 and López-Herrera, Gañán-Calvo, and Herrada.53

From Fig. 11, we observe that the CAIB increases sharply in the
range (0 < De < 1) and then asymptotes, which indicates that the
largest value of the critical Weber number is about We = 3.7 when
z = 0, and does not go beyond We = 3.8, while the largest value of
Wec is about We = 3.4 when z = 1. From Fig. 12, we note that the
CAIB decreases with α (the critical Weber number decreases as the

FIG. 11. Graph showing the convective/absolute instability boundary (CAIB),
where Wec appears at ωr = 0, on the De–We plane, where Re = 800, F = 4,
and α = 3.

FIG. 12. Graph showing the convective/absolute instability boundary (CAIB),
where Wec appears at ωr = 0, on the α–We plane, where De = 10, F = 4, and
Re = 800.

viscosity ratio increases), which implies that the absolute instabil-
ity will take place when the Weber number and the viscosity ratio
are decreased together. In addition, from Fig. 12, we note that the
largest value of Wec is decreased along the viscoelastic jet.

IX. CONCLUSION
We have examined the convective and absolute instability of

a viscoelastic liquid jet falling under gravity. The upper-convected
Maxwell (UCM) model is used along with an asymptotic approach
to obtain steady state solutions. Perturbations to these solutions lead
to a dispersion relation which is then solved numerically. We used
a mapping technique developed by Kupfer, Bers, and Ram1 to find
the cusp point in the complex frequency plane and its correspond-
ing saddle point (the pinch point) in the complex wavenumber plane
for absolute instability. The convective/absolute instability boundary
(CAIB) is identified for various parameter regimes. In particular, we
have investigated the influence of the nonuniform nature (caused by
the effects of gravity) of the steady state on instability. Our results
demonstrate that the jet may become absolutely unstable at param-
eter values different from those found when using a constant radius
steady state (which corresponds to z = 0 in our studies). Moreover,
for fixed values of the Reynolds number, Deborah number, and α,
we see that the jet will be absolutely unstable for lower values of the
Weber number. In applications where absolute instability is sought
(e.g., spray formation), there will be reduced scope for changing the
Weber number.

The results within this work will have applications to industrial
processes where viscoelastic liquid jets are used. These include recent
advances in needle-free injections where a recent study demon-
strates the importance of identifying jet coherence (or instabil-
ity) on successful needle-free injections.4 Moreover, this work is
of relevance to recent advances in nanofiber production where the
use of polymer solutions (which are often modeled as viscoelastic)
in liquid jet stability is critical.3 For very small diameter jets (in
nanofiber productions, liquid jets have typical diameters of about
10 µm) and under high velocities, the effects of the surrounding
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medium will become important on the resulting jet dynamics and
instability. Exploring these effects will be the subject of a future
paper.
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APPENDIX A: DIMENSIONLESS FORMS OF THE
GOVERNING EQUATIONS AND THE BOUNDARY
CONDITIONS

By using the nondimensional scalings, (9), the continuity
equation, (3), becomes

∂vr
∂r

+
vr
r

+ ε
∂vz
∂z

= 0. (A1)

The radial and axial momentum equations of the Navier-Stokes
equation, (4), become, respectively,
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The components of the extra stress tensor, (2), become
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The normal stress boundary condition, (6), becomes
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.

The tangential stress boundary condition, (7), becomes

2εα(
∂ζ
∂z
)(

∂vr
∂r

− ε
∂vz
∂z
) + α(1 − ε2

(
∂ζ
∂z
)

2

)

×(ε
∂vr
∂z

+
∂vz
∂r

+ ε
Trz

α
) + ε2

(
∂ζ
∂z
)(Trr − Tzz) = 0 at r = ζ0.

(A7)
The kinematic boundary condition, (8), becomes

vr = ε(
∂ζ
∂t

+ vz
∂ζ
∂z
) at r = ζ0. (A8)

APPENDIX B: THE DERIVATIVE OF EQ. (13)
To illustrate the derivation of Eq. (13), we substitute the expres-

sions (11) and (12) into our dimensionless Eqs. (A1)–(A8). After
dropping the tildes for convenience, from continuity Eq. (A1), we
have

O(1) : vr0 = 0 and O(ε) : vr1 = −
1
2
(
∂vz0

∂z
). (B1)

From the axial momentum equation, (A3), and using (B1), we have

O(1) : vz1 = 0, (B2)

O(ε) :
∂vz0

∂t
+ vz0

∂vz0

∂z
= −

∂p0

∂z
+
α
Re
(4vz2 +

∂2vz0

∂z2 )

+
1
Re

∂T0
zz

∂z
+

1
F2 . (B3)

From the tangential boundary condition, (A7), and using (B1) and
(B2), we have

O(ε) : vz2 =
3

2ζ0
(
∂ζ0

∂z
)
∂vz0

∂z
+

1
4
∂2vz0

∂z2

−
1

2αζ0
(
∂ζ0

∂z
)(T0

rr − T0
zz). (B4)

From the normal condition, (A6), to leading order and using (B1)
and (B2), we have

p0 =
1
Re
(T0

rr − α
∂vz0

∂z
) +

1
Weζ0

. (B5)

Substituting (B4) and (B5) into (B3) gives (13).

APPENDIX C: THE EQUATIONS RESULTING FROM
THE LINEAR STABILITY ANALYSIS

Substituting (20) into our dimensionless equations (in
Appendix A) leads to a system of ordinary differential equations
which can be written as

v̄z =
−1
ik
(
∂v̄r
∂r

+
v̄r
r
), (C1)

(ω + ikvz0)v̄r =
α
Re
(
∂2v̄r
∂r2 +

1
r
∂v̄r
∂r

−
v̄r
r2 − k2v̄r)

−
∂p̄
∂r

+
1
Re
(
∂T̄rr

∂r
+
T̄rr

r
), (C2)
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(ω + ikvz0)v̄z = −ikp̄ +
α
Re
(
∂2v̄z
∂r2 +

1
r
∂v̄z
∂r

− k2v̄z)

+
1
Re
(ikT̄zz), (C3)

T̄zz =
2ik

(ω + ikvz0)
(

1
De

+ T0
zz)v̄z , (C4)

T̄rr =
2

(ω + ikvz0)
(

1
De

+ T0
rr)

∂v̄r
∂r

, (C5)

p̄ =
1
Re
(T̄rr + 2α

∂v̄r
∂r
) +

1
We
(k2

−
1
ζ2

0
)ζ̄ at r = ζ0, (C6)

α(ikv̄r +
∂v̄z
∂r
) + ikζ̄(T0

rr − T0
zz) = 0 at r = ζ0, (C7)

ζ̄ =
v̄r

(ω + ikvz0)
at r = ζ0. (C8)
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