
 
 

University of Birmingham

Velisarios
Rahli, Vincent; Vukotic, Ivana; Völp, Marcus; Veríssimo, Paulo Jorge Esteves

DOI:
10.1007/978-3-319-89884-1_22

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Rahli, V, Vukotic, I, Völp, M & Veríssimo, PJE 2018, Velisarios: Byzantine fault-tolerant protocols powered by
Coq. in A Ahmed (ed.), Programming Languages and Systems : 27th European Symposium on Programming,
ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10801, Springer,
pp. 619-650, 27th European Symposium on Programming, ESOP 2018, Thessaloniki, Greece, 14/04/18.
https://doi.org/10.1007/978-3-319-89884-1_22

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 22/07/2019

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 02. May. 2024

https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1007/978-3-319-89884-1_22
https://birmingham.elsevierpure.com/en/publications/6e0bbb69-4393-487c-802e-add26184673c


Velisarios: Byzantine Fault-Tolerant
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SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
{vincent.rahli,ivana.vukotic,marcus.voelp,paulo.verissimo}@uni.lu

Abstract. Our increasing dependence on complex and critical informa-
tion infrastructures and the emerging threat of sophisticated attacks,
ask for extended efforts to ensure the correctness and security of these
systems. Byzantine fault-tolerant state-machine replication (BFT-SMR)
provides a way to harden such systems. It ensures that they maintain
correctness and availability in an application-agnostic way, provided that
the replication protocol is correct and at least n − f out of n replicas
survive arbitrary faults. This paper presents Velisarios, a logic-of-events
based framework implemented in Coq, which we developed to implement
and reason about BFT-SMR protocols. As a case study, we present the
first machine-checked proof of a crucial safety property of an implemen-
tation of the area’s reference protocol: PBFT.

Keywords: Byzantine faults · State machine replication
Formal verification · Coq

1 Introduction

Critical information infrastructures such as the power grid or water supply sys-
tems assume an unprecedented role in our society. On one hand, our lives depend
on the correctness of these systems. On the other hand, their complexity has
grown beyond manageability. One state of the art technique to harden such crit-
ical systems is Byzantine fault-tolerant state-machine replication (BFT-SMR).
It is a generic technique that is used to turn any service into one that can toler-
ate arbitrary faults, by extensively replicating the service to mask the behavior
of a minority of possibly faulty replicas behind a majority of healthy replicas,
operating in consensus.1 The total number of replicas n is a parameter over the
maximum number of faulty replicas f , which the system is configured to tolerate

This work is partially supported by the Fonds National de la Recherche Luxembourg
(FNR) through PEARL grant FNR/P14/8149128.

1 For such techniques to be useful and in order to avoid persistent and shared vul-
nerabilities, replicas need to be rejuvenated periodically [17,76], they need to be
diverse enough [43], and ideally they need to be physically far apart. Diversity and
rejuvenation are not covered here.

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 619–650, 2018.
https://doi.org/10.1007/978-3-319-89884-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_22&domain=pdf


620 V. Rahli et al.

at any point in time. Typically, n = 3f +1 for classical protocols such as in [16],
and n = 2f + 1 for protocols that rely on tamper-proof components such as
in [82]. Because such protocols tolerate arbitrary faults, a faulty replica is one
that does not behave according to its specification. For example it can be one
that is controlled by an attacker, or simply one that contains a bug.

Ideally, we should guarantee the correctness and security of such replicated
and distributed, hardened systems to the highest standards known to mankind
today. That is, the proof of their correctness should be checked by a machine and
their model refined down to machine code. Unfortunately, as pointed out in [29],
most distributed algorithms, including BFT protocols, are published in pseudo-
code or, in the best case, a formal but not executable specification, leaving their
safety and liveness questionable. Moreover, Lamport, Shostak, and Pease wrote
about such programs: “We know of no area in computer science or mathematics
in which informal reasoning is more likely to lead to errors than in the study of
this type of algorithm.” [54]. Therefore, we focus here on developing a generic
and extensible formal verification framework for systematically supporting the
mechanical verification of BFT protocols and their implementations.2

Our framework provides, among other things, a model that captures the
idea of arbitrary/Byzantine faults; a collection of standard assumptions to rea-
son about systems with faulty components; proof tactics that capture common
reasoning patterns; as well as a general library of distributed knowledge. All
these parts can be reused to reason about any BFT protocol. For example, most
BFT protocols share the same high-level structure (they essentially disseminate
knowledge and vote on the knowledge they gathered), which we capture in our
knowledge theory. We have successfully used this framework to prove a crucial
safety property of an implementation of a complex BFT-SMR protocol called
PBFT [14–16]. We handle all the functionalities of the base protocol, including
garbage collection and view change, which are essential in practical protocols.
Garbage collection is used to bound message logs and buffers. The view change
procedure enables BFT protocols to make progress in case the primary—a dis-
tinguished replica used in some fault-tolerant protocols to coordinate votes—
becomes faulty.

Contributions. Our contributions are as follows: (1) Section 3 presents Velisar-
ios, our continuing effort towards a generic and extensible logic-of-events based
framework for verifying implementations of BFT-SMR protocols using Coq [25].
(2) As discussed in Sect. 4, our framework relies on a library to reason about
distributed epistemic knowledge. (3) We implemented Castro’s landmark PBFT
protocol, and proved its agreement safety property (see Sect. 5). (4) We imple-
mented a runtime environment to run the OCaml code we extract from Coq (see
Sect. 6). (5) We released Velisarios and our PBFT safety proof under an open
source licence.3

2 Ideally, both (1) the replication mechanism and (2) the instances of the replicated
service should be verified. However, we focus here on (1), which has to be done only
once, while (2) needs to be done for every service and for every replica instance.

3 Available at: https://github.com/vrahli/Velisarios.

https://github.com/vrahli/Velisarios
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Why PBFT? We have chosen PBFT because several BFT-SMR protocols
designed since then either use (part of) PBFT as one of their main building
blocks, or are inspired by it, such as [6,8,26,45,46,82], to cite only a few. There-
fore, a bug in PBFT could imply bugs in those protocols too. Castro provided
a thorough study of PBFT: he described the protocol in [16], studied how to
proactively rejuvenate replicas in [14], and provided a pen-and-paper proof of
PBFT’s safety in [15,17]. Even though we use a different model—Castro used I/O
automata (see Sect. 7.1), while we use a logic-of-events model (see Sect. 3)—our
mechanical proof builts on top of his pen-and-paper proof. One major difference
is that here we verify actual running code, which we obtain thanks to Coq’s
extraction mechanism.

2 PBFT Recap

This section provides a rundown of PBFT [14–16], which we use as running
example to illustrate our model of BFT-SMR protocols presented in Sect. 3.

2.1 Overview of the Protocol

We describe here the public-key based version of PBFT, for which Castro pro-
vides a formal pen-and-paper proof of its safety. PBFT is considered the first
practical BFT-SMR protocol. Compared to its predecessors, it is more efficient
and it does not rely on unrealistic assumptions. It works with asynchronous,
unreliable networks (i.e., messages can be dropped, altered, delayed, duplicated,
or delivered out of order), and it tolerates independent network failures. To
achieve this, PBFT assumes strong cryptography in the form of collision-resistant
digests, and an existentially unforgeable signature scheme. It supports any deter-
ministic state machine. Each state machine replica maintains the service state
and implements the service operations. Clients send requests to all replicas and
await f + 1 matching replies from different replicas. PBFT ensures that healthy
replicas execute the same operations in the same order.

To tolerate up to f faults, PBFT requires |R| = 3f+1 replicas. Replicas move
trough a succession of configurations called views. In each view v, one replica
(p = v mod |R|) assumes the role of primary and the others become backups.
The primary coordinates the votes, i.e., it picks the order in which client requests
are executed. When a backup suspects the primary to be faulty, it requests a
view-change to select another replica as new primary.

Normal-Case. During normal-case operation, i.e., when the primary is not sus-
pected to be faulty by a majority of replicas, clients send requests to be executed,
which trigger agreement among the replicas. Various kinds of messages have to be
sent among clients and replicas before a client knows its request has been exe-
cuted. Figure 1 shows the resulting message patterns for PBFT’s normal-case
operation and view-change protocol. Let us discuss here normal-case operation:
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Replica 0 = primary v

Client

Replica 1 = primary v+1

Replica 2

Replica 3

request pre-prepare prepare commit reply view-change new-view

view v view v+1

Fig. 1. PBFT normal-case (left) and view-change (right) operations

1. Request: To initiate agreement, a client c sends a request of the form
〈REQUEST, o, t, c〉σc

to the primary, but is also prepared to broadcast it to
all replicas if replies are late or primaries change. 〈REQUEST, o, t, c〉σc

specifies
the operation to execute o and a timestamp t that orders requests of the same
client. Replicas will not re-execute requests with a lower timestamp than the
last one processed for this client, but are prepared to resend recent replies.

2. Pre-prepare: The primary of view v puts the pending requests in a total order
and initiates agreement by sending 〈PRE-PREPARE, v, n,m〉σp

to all the back-
ups, where m should be the nth executed request. The strictly monotonically
increasing and contiguous sequence number n ensures preservation of this
order despite message reordering.

3. Prepare: Backup i acknowledges the receipt of a pre-prepare message by send-
ing the digest d of the client’s request in 〈PREPARE, v, n, d, i〉σi

to all replicas.
4. Commit: Replica i acknowledges the reception of 2f prepares matching a

valid pre-prepare by broadcasting 〈COMMIT, v, n, d, i〉σi
. In this case, we say

that the message is prepared at i.
5. Execution & Reply: Replicas execute client operations after receiving 2f + 1

matching commits, and follow the order of sequence numbers for this exe-
cution. Once replica i has executed the operation o requested by client c, it
sends 〈REPLY, v, t, c, i, r〉σi

to c, where r is the result of applying o to the ser-
vice state. Client c accepts r if it receives f +1 matching replies from different
replicas.

Client and replica authenticity, and message integrity are ensured through
signatures of the form 〈m〉σi

. A replica accepts a message m only if: (1) m’s
signature is correct, (2) m’s view number matches the current view, and (3) the
sequence number of m is in the water mark interval (see below).

PBFT buffers pending client requests, processing them later in batches.
Moreover, it makes use of checkpoints and water marks (which delimit sequence
number intervals) to limit the size of all message logs and to prevent replicas
from exhausting the sequence number space.

Garbage Collection. Replicas store all correct messages that were created or
received in a log. Checkpoints are used to limit the number of logged messages
by removing the ones that the protocol no longer needs. A replica starts check-
pointing after executing a request with a sequence number divisible by some
predefined constant, by multicasting the message 〈CHECKPOINT, v, n, d, i〉σi

to all
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other replicas. Here n is the sequence number of the last executed request and
d is the digest of the state. Once a replica received f + 1 different checkpoint
messages4 (possibly including its own) for the same n and d, it holds a proof of
correctness of the log corresponding to d, which includes messages up to sequence
number n. The checkpoint is then called stable and all messages lower than n
(except view-change messages) are pruned from the log.

View Change. The view change procedure ensures progress by allowing replicas
to change the leader so as to not wait indefinitely for a faulty primary. Each
backup starts a timer when it receives a request and stops it after the request has
been executed. Expired timers cause the backup to suspect the leader and request
a view change. It then stops receiving normal-case messages, and multicasts
〈VIEW-CHANGE, v + 1, n, s, C, P, i〉σi

, reporting the sequence number n of the last
stable checkpoint s, its proof of correctness C, and the set of messages P with
sequence numbers greater than n that backup i prepared since then. When the
new primary p receives 2f+1 view-change messages, it multicasts 〈NEW-VIEW, v+
1, V,O,N〉σp

, where V is the set of 2f + 1 valid view-change messages that p
received; O is the set of messages prepared since the latest checkpoint reported
in V ; and N contains only the special null request for which the execution is a
no-op. N is added to the O set to ensure that there are no gaps between the
sequence numbers of prepared messages sent by the new primary. Upon receiving
this new-view message, replicas enter view v + 1 and re-execute the normal-case
protocol for all messages in O ∪ N .

We have proved a critical safety property of PBFT, including its garbage
collection and view change procedures, which are essential in practical protocols.
However, we have not yet developed generic abstractions to specifically reason
about garbage collection and view changes, that can be reused in other protocols,
which we leave as future work.

2.2 Properties

PBFT with |R| = 3f +1 replicas is safe and live. Its safety boils down to lineariz-
ability [42], i.e., the replicated service behaves like a centralized implementation
that executes operations atomically one at a time. Castro used a modified ver-
sion of linearizability in [14] to deal with faulty clients. As presented in Sect. 5,
we proved the crux of this property, namely the agreement property (we leave
linearizability for future work).

As informally explained by Castro [14], assuming weak synchrony (which
constrains message transmission delays), PBFT is live, i.e., clients will eventually
receive replies to their requests. In the future, we plan to extend Velisarios to
support liveness and mechanize PBFT’s liveness proof.

4 Castro first required 2f + 1 checkpoint messages [16] but relaxed this requirement
in [14].
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2.3 Differences with Castro’s Implementation

As mentioned above, besides the normal-case operation, our Coq implementa-
tion of PBFT handles garbage collection, view changes and request batching.
However, we slightly deviated from Castro’s implementation [14], primarily in
the way checkpoints are handled: we always work around sending messages that
are not between the water marks, and a replica always requires its own check-
point before clearing its log. Assuming the reader is familiar with PBFT, we now
detail these deviations and refer the reader to [14] for comparison.

(1) To the best of our knowledge, to ensure liveness, Castro’s implementation
requires replicas to resend prepare messages below the low water mark when
adopting a new-view message and processing the pre-prepares in O ∪ N . In
contrast, our implementation never sends messages with sequence numbers
lower than the low water mark. This liveness issue can be resolved by bring-
ing late replicas up to date through a state transfer.

(2) We require a new leader to send its own view-change message updated with
its latest checkpoint as part of its new-view message. If not, it may happen
that a checkpoint stabilizes after the view-change message is sent and before
the new-view message is prepared. This might result in a new leader sending
messages in O∪N with a sequence number below its low water mark, which
it avoids by updating its own view-change message to contain its latest
checkpoint.

(3) We require replicas to wait for their own checkpoint message before sta-
bilizing a checkpoint and garbage collecting logs. This avoids stabilizing a
checkpoint that has not been computed locally. Otherwise, a replica could
lose track of the last executed request if its sequence number is superseded
by the one in the checkpoint. Once proven, a state transfer of the latest
checkpoint state and an update of the last executed request would also
resolve this point.

We slightly deviated from Castro’s protocol to make our proofs go through.
We leave it for future work to formally study whether we could do without these
changes, or whether they are due to shortcomings of the original specification.

3 Velisarios Model

Using PBFT as a running example, we now present our Coq model for Byzan-
tine fault-tolerant distributed systems, which relies on a logic of events—Fig. 2
outlines our formalization.

3.1 The Logic of Events

We adapt the Logic of Events (LoE) we used in EventML [9,11,71] to not
only deal with crash faults, but arbitrary faults in general (including malicious
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Fig. 2. Outline of formalization

faults). LoE, related to Lamport’s notion of causal order [53] and to event struc-
tures [60,65], was developed to reason about events occurring in the execution
of a distributed system. LoE has recently been used to verify consensus pro-
tocols [71,73] and cyber-physical systems [3]. Another standard model of dis-
tributed computing is Chandy and Lamport’s global state semantics [19], where
a distributed system is modeled as a single state machine: a state is the collection
of all processes at a given time, and a transition takes a message in flight and
delivers it to its recipient (a process in the collection). Each of these two models
has advantages and disadvantages over the other. We chose LoE because in our
experience it corresponds more closely to the way distributed system researchers
and developers reason about protocols. As such, it provides a convenient com-
munication medium between distributed systems and verification experts.

In LoE, an event is an abstract entity that corresponds either (1) to the
handling of a received message, or (2) to some arbitrary activity about which
no information is provided (see the discussion about trigger in Sect. 3.4). We use
those arbitrary events to model arbitrary/Byzantine faults. An event happens at
a specific point in space/time: the space coordinate of an event is called its loca-
tion, and the time coordinate is given by a well-founded ordering on events that
totally orders all events at the same location. Processes react to the messages that
triggered the events happening at their locations one at a time, by transitioning
through their states and creating messages to send out, which in turn might trig-
ger other events. In order to reason about distributed systems, we use the notion
of event orderings (see Sect. 3.4), which essentially are collections of ordered
events and represent runs of a system. They are abstract entities that are never
instantiated. Rather, when proving a property about a distributed system, one
has to prove that the property holds for all event orderings corresponding to all
possible runs of the system (see Sects. 3.5 and 5 for examples). Some runs/event
orderings are not possible and therefore excluded through assumptions, such as
the ones described in Sect. 3.6. For example, exists at most f faulty excludes
event orderings where more than f out of n nodes could be faulty.

In the next few sections, we explain the different components (messages,
authentication, event orderings, state machines, and correct traces) of Velisarios,
and their use in our PBFT case study. Those components are parameterized
by abstract types (parameters include the type of messages and the kind of
authentication schemes), which we later have to instantiate in order to reason
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about a given protocol, e.g. PBFT, and to obtain running code. The choices we
made when designing Velisarios were driven by our goal to generate running code.
For example, we model cryptographic primitives to reason about authentication.

3.2 Messages

Model. Some events are caused by messages of type msg, which is a parameter
of our model. Processes react to messages to produce message/destinations pairs
(of type DirectedMsg), called directed messages. A directed message is typically
handled by a message outbox, which sends the message to the listed destina-
tions.5 A destination is the name (of type name, which is a parameter of our
model) of a node participating in the protocol.

PBFT. In our PBFT implementation, we instantiate the msg type using the
following datatype (we only show some of the normal-case operation messages,
leaving out for example the more involved pre-prepare messages—see Sect. 2.1):
Inductive PBFTmsg :=
| REQUEST (r : Request)
| PREPARE (p : Prepare)
| REPLY (r : Reply) . . .

Inductive Bare Prepare :=
| bare prepare (v : View) (n : SeqNum) (d : digest) (i : Rep).
Inductive Prepare :=
| prepare (b : Bare Prepare) (a : list Token).

As for prepares, all messages are defined as follows: we first define bare messages
that do not contain authentication tokens (see Sect. 3.3), and then authenticated
messages as pairs of a bare message and an authentication token. Views and
sequence numbers are nats, while digests are parameters of the specification.
PBFT involves two types of nodes: replicas of the form PBFTreplica(r), where r
is of type Rep; and clients of the form PBFTclient(c), where c is of type Client.
Both Rep and Client are parameters of our formalization, such that Rep is of
arity 3f+1, where f is a parameter that stands for the number of tolerated faults.

3.3 Authentication

Model. Our model relies on an abstract concept of keys, which we use to imple-
ment and reason about authenticated communication. Capturing authenticity at
the level of keys allows us to talk about impersonation through key leakage. Keys
are divided into sending keys (of type sending key) to authenticate a message
for a target node, and receiving keys (of type receiving key) to check the valid-
ity of a received message. Both sending key and receiving key are parameters
of our model.6 Each node maintains local keys (of type local keys), which con-
sists of two lists of directed keys: one for sending keys and one for receiving keys.
Directed keys are pairs of a key and a list of node names identifying the processes
that the holder of the key can communicate with.
5 Message inboxes/outboxes are part of the runtime environment but not part of the

model.
6 Sending and receiving keys must be different when using asymmetric cryptography,

and can be the same when using symmetric cryptography.
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Sending keys are used to create authentication tokens of type Token, which we
use to authenticate messages. Tokens are parameters of our model and abstract
away from concrete concepts such as digital signatures or MACs. Typically,
a message consists of some data plus some tokens that authenticates the data.
Therefore, we introduce the following parameters: (1) the type data, for the kind
of data that can be authenticated; (2) a create function to authenticate some
data by generating authentication tokens using the sending keys; and (3) a verify
function to verify the authenticity of some data by checking that it corresponds
to some token using the receiving keys.

Once some data has been authenticated, it is typically sent over the net-
work to other nodes, which in turn need to check the authenticity of the data.
Typically, when a process sends an authenticated message to another process it
includes its identity somewhere in the message. This identity is used to select the
corresponding receiving key to check the authenticity of the data using verify. To
extract this claimed identity we require users to provide a data sender function.

It often happens in practice that a message contains more than one
piece of authenticated data (e.g., in PBFT, pre-prepare messages contain
authenticated client requests). Therefore, we require users to provide a
get contained auth data function that extracts all authenticated pieces of data
contained in a message. Because we sometimes want to use different tokens to
authenticate some data (e.g., when using MACs), an authenticated piece of data
of type auth data is defined as a pair of: (1) a piece of data, and (2) a list of
tokens.

PBFT. Our PBFT implementation leaves keys and authentication tokens
abstract because our safety proof is agnostic to the kinds of these elements.
However, we turn them into actual asymmetric keys when extracting OCaml
code (see Sect. 6 for more details). The create and verify functions are also left
abstract until we extract the code to OCaml. Finally, we instantiate the data
(the objects that can be authenticated, i.e., bare messages here), data sender,
and get contained auth data parameters using:

Inductive PBFTdata := | PBFTdata request (r : Bare Request)
| PBFTdata prepare (p : Bare Prepare) | PBFTdata reply (r : Bare Reply) . . .

Definition PBFTdata sender (m : data) : option name := match m with

| PBFTdata request (bare request o t c) ⇒ Some (PBFTclient c)
| PBFTdata prepare (bare prepare v n d i) ⇒ Some (PBFTreplica i)
| PBFTdata reply (bare reply v t c i r) ⇒ Some (PBFTreplica i) . . .

Definition PBFTget contained auth data (m : msg) : list auth data := match m with

| REQUEST (request b a) ⇒ [(PBFTdata request b,a)]
| PREPARE (prepare b a) ⇒ [(PBFTdata prepare b,a)]
| REPLY (reply b a) ⇒ [(PBFTdata reply b,a)] . . .
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3.4 Event Orderings

A typical way to reason about a distributed system is to reason about its pos-
sible runs, which are sometimes modeled as execution traces [72], and which
are captured in LoE using event orderings. An event ordering is an abstract
representation of a run of a distributed system; it provides a formal definition
of a message sequence diagram as used by system designers (see for example
Fig. 1). As opposed to [72], a trace here is not just one sequence of events but
instead can be seen as a collection of local traces (one local trace per sequen-
tial process), where a local trace is a collection of events all happening at the
same location and ordered in time, and such that some events of different local
traces are causally ordered. Event orderings are never instantiated. Instead, we
express system properties as predicates on event orderings. A system satisfies
such a property if every possible execution of the system satisfies the predicate.
We first formally define the components of an event ordering, and then present
the axioms that these components have to satisfy.

Components. An event ordering is formally defined as the tuple:7

Class EventOrdering :=
{ Event : Type; happenedBefore : Event → Event → Prop;

loc : Event → name; direct pred : Event → option Event;
trigger : Event → option msg; keys : Event → local keys; }

where (1) Event is an abstract type of events; (2) happenedBefore is an order-
ing relation on events; (3) loc returns the location at which events happen;
(4) direct pred returns the direct local predecessor of an event when one exists,
i.e., for all events except initial events; (5) given an event e, trigger either returns
the message that triggered e, or it returns None to indicate that no information
is available regarding the action that triggered the event (see below); (6) keys
returns the keys a node can use at a given event to communicate with other
nodes. The event orderings presented here are similar to the ones used in [3,71],
which we adapted to handle Byzantine faults by modifying the type of trigger
so that events can be triggered by arbitrary actions and not necessarily by the
receipt of a message, and by adding support for authentication through keys.

The trigger function returns None to capture the fact that nodes can some-
times behave arbitrarily. This includes processes behaving correctly, i.e., accord-
ing to their specifications; as well as (possibly malicious) processes deviating from
their specifications. Note that this does not preclude from capturing the behavior
of correct processes because for all event orderings where trigger returns None
for an event where the node behaved correctly, there is a similar event ordering,
where trigger returns the triggering message at that event. To model that at most
f nodes out of n can be faulty we use the exists at most f faulty assumption,
which enforces that trigger returns None at most f nodes.

Moreover, even though non-syntactically valid messages do not trigger events
because they are discarded by message boxes, a triggering message could be
7 A Coq type class is essentially a dependent record.
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syntactically valid, but have an invalid signature. Therefore, it is up to the pro-
grammer to ensure that processes only react to messages with valid signatures
using the verify function. Our authenticated messages were sent non byz and
exists at most f faulty assumptions presented in Sect. 3.6 are there to constrain
trigger to ensure that at most f nodes out of n can diverge from their specifica-
tions, for example, by producing valid signatures even though they are not the
nodes they claim to be (using leaked keys of other nodes).

Axioms. The following axioms characterize the behavior of these components:

1. Equality between events is decidable. Events are abstract entities that corre-
spond to points in space/time that can be seen as pairs of numbers (one for
the space coordinate and one for the time coordinate), for which equality is
decidable.

2. The happened before relation is transitive and well-founded. This allows us
to prove properties by induction on causal time. We assume here that it is
not possible to infinitely go back in time, i.e., that there is a beginning of
(causal) time, typically corresponding to the time a system started.

3. The direct predecessor e2 of e1 happens at the same location and before e1.
This makes local orderings sub-orderings of the happenedBefore ordering.

4. If an event e does not have a direct predecessor (i.e., e is an initial event)
then there is no event happening locally before e.

5. The direct predecessor function is injective, i.e., two different events cannot
have the same direct predecessor.

6. If an event e1 happens locally before e2 and e is the direct predecessor of e2,
then either e = e1 or e1 happens before e. From this, it follows that the direct
predecessor function can give us the complete local history of an event.

Notation. We use a ≺ b to stand for (happenedBefore a b); a � b to stand
for (a ≺ b or a=b); and a � b to stand for (a � b and loc a=loc b). We also
sometimes write EO instead of EventOrdering.

Some functions take an event ordering as a parameter. For readability, we
sometimes omit those when they can be inferred from the context. Similarly, we
will often omit type declarations of the form (T : Type).

Correct Behavior. To prove properties about distributed systems, one only
reasons about processes that have a correct behavior. To do so we only reason
about events in event orderings that are correct in the sense that they were
triggered by some message:

Definition isCorrect (e : Event) := match trigger e with Some m ⇒ True | None ⇒ False end.

Definition arbitrary (e : Event) := ∼ isCorrect e.

Next, we characterize correct replica histories as follows: (1) First we say that
an event e has a correct trace if all local events prior to e are correct. (2) Then,
we say that a node i has a correct trace before some event e, not necessarily
happening at i , if all events happening before e at i have a correct trace:
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Definition has correct bounded trace (e : Event) := forall e’ , e’ � e → isCorrect e’ .
Definition has correct trace before (e : Event) (i : name) :=

forall e’ , e’ � e → loc e’ = i → has correct bounded trace e’ .

3.5 Computational Model

Model. We now present our computational model, which we use when extract-
ing OCaml programs. Unlike in EventML [71] where systems are first specified as
event observers (abstract processes), and then later refined to executable code,
we skip here event observers, and directly specify systems using executable state
machines, which essentially consist of an update function and a current state.
We define a system of distributed state machines as a function that maps names
to state machines. Systems are parametrized by a function that associates state
types with names in order to allow for different nodes to run different machines.

Definition Update S I O := S → I → (option S * O).
Record StateMachine S I O := MkSM { halted : bool; update : Update S I O ; state : S }.
Definition System (F : name → Type) I O := forall (i : name), StateMachine (F i) I O .

where S is the type of the machine’s state, I /O are the input/output types, and
halted indicates whether the state machine is still running or not.

Let us now discuss how we relate state machines and events. We define
state sm before event and state sm after event that compute a machine’s state
before and after a given event e. These states are computed by extracting the
local history of events up to e using direct pred, and then updating the state
machine by running it on the triggering messages of those events. These func-
tions return None if some arbitrary event occurs or the machine halts some-
time along the way. Otherwise they return Some s, where s is the state of the
machine updated according to the events. Therefore, assuming they return Some
amounts to assuming that all events prior to e are correct, i.e., we can prove that
if state sm after event sm e = Some s then has correct trace before e (loc e).
As illustrated below, we use these functions to adopt a Hoare-like reasoning
style by stating pre/post-conditions on the state of a process prior and after
some event.

PBFT. We implement PBFT replicas as state machines, which we derive from
an update function that dispatches input messages to the corresponding han-
dlers. Finally, we define PBFTsys as the function that associates PBFTsm with
replicas and a halted machine with clients (because we do not reason here about
clients).

Definition PBFTupdate (i : Rep) := fun state msg ⇒ match msg with

| REQUEST r ⇒ PBFThandle request i state r
| PREPARE p ⇒ PBFThandle prepare i state p . . .

Definition PBFTsm (i : Rep) := MkSM false (PBFTupdate i) (initial state i).
Definition PBFTsys := fun name ⇒ match name with

| PBFTreplica i ⇒ PBFTsm i | PBFTclient c ⇒ haltedSM end.
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Let us illustrate how we reason about state machines through a simple exam-
ple that shows that they maintain a view that only increases over time. It shows
a local property, while Sect. 5 presents the distributed agreement property that
makes use of the assumptions presented in Sect. 3.6. As mentioned above we
prove such properties for all possible event orderings, which means that they are
true for all possible runs of the system. In this lemma, s1 is the state prior to
the event e, and s2 is the state after handling e. It does not have pre-conditions,
and its post-condition states that the view in s1 is smaller than the view in s2 .

Lemma current view increases : forall (eo : EO) (e : Event) i s1 s2 ,
state sm before event (PBFTsm i) e = Some s1
→ state sm after event (PPBFTsm i) e = Some s2
→ current view s1 ≤ current view s2 .

3.6 Assumptions

Model. Let us now turn to the assumptions we make regarding the network
and the behavior of correct and faulty nodes.

Assumption 1. Proving safety properties of crash fault-tolerant protocols that
only require reasoning about past events, such as agreement, does not require
reasoning about faults and faulty replicas. To prove such properties, one merely
has to follow the causal chains of events back in time, and if a message is received
by a node then it must have been sent by some node that had not crashed at
that time. The state of affairs is different when dealing with Byzantine faults.

One issue it that Byzantine nodes can deviate from their specifications or
impersonate other nodes. However, BFT protocols are designed in such a way
that nodes only react to collections of messages, called certificates, that are larger
than the number of faults. This means that there is always at least one correct
node that can be used to track down causal chains of events.

A second issue is that, in general, we cannot assume that some received
message was sent as such by the designated (correct) sender of the mes-
sage because messages can be manipulated while in flight. As captured by
the authenticated messages were sent or byz predicate defined below,8 we can
only assume that the authenticated parts of the received message were actu-
ally sent by the designated senders, possibly inside larger messages, provided
the senders did not leak their keys. As usual, we assume that attackers cannot
break the cryptographic primitives, i.e., that they cannot authenticate messages
without the proper keys [14].

1.Definition authenticated messages were sent or byz (P : AbsProcess) :=
2. forall e (a : auth data),
3. In a (bind op list get contained auth data (trigger e))
4. → verify auth data (loc e) a (keys e) = true

8 For readability, we show a slightly simplified version of this axiom. The full
axiom can be found in https://github.com/vrahli/Velisarios/blob/master/model/
EventOrdering.v.

https://github.com/vrahli/Velisarios/blob/master/model/EventOrdering.v
https://github.com/vrahli/Velisarios/blob/master/model/EventOrdering.v
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5. → exists e’ , e’ ≺ e ∧ am auth a = authenticate (am data a) (keys e’)
6. ∧ ( (exists dst m,
7. In a (get contained auth data m) ∧ In (m,dst) (P eo e’)
8. ∧ data sender (loc e) (am data a) = Some (loc e’))
9. ∨
10. (exists e”,
11. e” � e’ ∧ arbitrary e’ ∧ arbitrary e” ∧ got key for (loc e) (keys e”) (keys e’)
12. ∧ data sender (loc e) (am data a) = Some (loc e”)) ).

This assumption says that if the authenticated piece of data a is part of the
message that triggered some event e (L.3), and a is verified (L.4), then there
exists a prior event e’ such that the data was authenticated while handling e’
using the keys available at that time (L.5). Moreover, (1) either the sender of
the data was correct while handling e’ and sent the data as part of a message
following the process described by P (L.6–8); or (2) the node at which e’ occurred
was Byzantine at that time, and either it generated the data itself (e.g. when
e”=e’ ), or it impersonated some other replica (by obtaining the keys that some
node leaked at event e”) (L.10–12).

We used a few undefined abstractions in this predicate: An AbsProcess
is an abstraction of a process, i.e., a function that returns the collection
of messages generated while handling a given event: (forall (eo : EO)
(e : Event), list DirectedMsg). The bind op list function is wrapped around
get contained auth data to handle the fact that trigger might return None,
in which case bind op list returns nil. The verify auth data function takes an
authenticated message a and some keys and: (1) invokes data sender (defined
in Sect. 3.3) to extract the expected sender s of a; (2) searches among its keys
for a receiving key that it can use to verify that s indeed authenticated a; and
(3) finally verifies the authenticity of a using that key and the verify function.
The authenticate function simply calls create and uses the sending keys to create
tokens. The got key for function takes a name i and two local keys lk1 and lk2 ,
and states that the sending keys for i in lk1 are all included in lk2 .

However, it turns out that because we never reason about faulty nodes, we
never have to deal with the right disjunct of the above formula. Therefore, this
assumption about received messages can be greatly simplified when we know
that the sender is a correct replica, which is always the case when we use this
assumption because BFT protocols as designed so that there is always a correct
node that can be used to track down causal chains of events. We now define
the following simpler assumption, which we have proved to be a consequence of
authenticated messages were sent or byz:

Definition authenticated messages were sent non byz (P : AbsProcess) :=
forall (e : Event) (a : auth data) (c : name),

In a (bind op list get contained auth data (trigger e))
→ has correct trace before e c
→ verify auth data (loc e) a (keys e) = true
→ data sender (loc e) (am data a) = Some c
→ exists e’ dst m, e’ ≺ e ∧ loc e’ = c.

∧ am auth a = authenticate (am data a) (keys e’)
∧ In a (get contained auth data m)
∧ In (m,dst) (P eo e’)
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As opposed to the previous formula, this one assumes that the authenticated data
was sent by a correct replica, which has a correct trace prior to the event e—the
event when the message containing a was handled.

Assumption 2. Because processes need to store their keys to sign and verify mes-
sages, we must connect those keys to the ones in the model. We do this through
the correct keys assumption, which states that for each event e, if a process has
a correct trace up to e, then the keys (keys e) from the model are the same as
the ones stored in its state (which are computed using state sm before event).

Assumption 3. Finally, we present our assumption regarding the number of
faulty nodes. There are several ways to state that there can be at most f faulty
nodes. One simple definition is (where node is a subset of name as discussed in
Sect. 4.2):

Definition exists at most f faulty (E : list Event) (f : nat) :=
exists (faulty : list node), length faulty ≤ f

∧ forall e1 e2 , In e2 E → e1 � e2 → ∼ In (loc e1 ) faulty
→ has correct bounded trace e1 .

This assumption says that at most f nodes can be faulty by stating that the
events happening at nodes that are not in the list of faulty nodes faulty , of
length f , are correct up to some point characterized by the partial cut E of a
given event ordering (i.e., the collection of events happening before those in E ).

PBFT Assumption 4. In addition to the ones above, we made further assump-
tions about PBFT. Replicas sometimes send message hashes instead of sending
the entire messages. For example, pre-prepare messages contain client requests,
but prepare and commit messages simply contain digests of client requests. Con-
sequently, our PBFT formalization is parametrized by the following create and
verify functions, and we assume that the create function is collision resistant:9

Class PBFThash := MkPBFThash {
create hash : list PBFTmsg → digest; verify hash : list PBFTmsg → digest → bool; }.

Class PBFThash axioms := MkPBFThash axioms {
create hash collision resistant :

forall msgs1 msgs2 , create hash msgs1 = create hash msgs2 → msgs1 = msgs2 ; }.

The version of PBFT, called PBFT-PK in [14], that we implemented relies
on digital signatures. However, we did not have to make any more assumptions
regarding the cryptographic primitives than the ones presented above, and in
particular we did not assume anything that is true about digital signatures and
false about MACs. Therefore, our safety proof works when using either digital
signatures or MAC vectors. As discussed below, this is true because we adapted
the way messages are verified (we have not verified the MAC version of PBFT
but a slight variant of PBFT-PK) and because we do not deal with liveness.
9 Note that our current collision resistant assumption is too strong because it is always

possible to find two distinct messages that are hashed to the same hash. We leave it
to future work to turn it into a more realistic probabilistic assumption.
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As Castro showed [14, Chap. 3], PBFT-PK has to be adapted when digital
signatures are replaced by MAC vectors. Among other things, it requires “sig-
nificant and subtle changes to the view change protocol” [14, Sect. 3.2]. Also, to
the best of our knowledge, in PBFT-PK backups do not check the authenticity
of requests upon receipt of pre-prepares. They only check the authenticity of
requests before executing them [14, p. 42]. This works when using digital sig-
natures but not when using MACs: one backup might not execute the request
because its part of the MAC vector does not check out, while another backup
executes the request because its part of the MAC vector checks out, which would
lead to inconsistent states and break safety. Castro lists other problems related
to liveness.

Instead, as in the MAC version of PBFT [14, p. 42], in our implementation
we always check requests’ validity when checking the validity of a pre-prepare. If
we were to check the validity of requests only before executing them, we would
have to assume that two correct replicas would either both be able to verify
the data, or both would not be able to do so. This assumption holds for digital
signatures but not for MAC vectors.

4 Methodology

Because distributed systems are all about exchanging information among nodes,
we have developed a theory that captures abstractions and reasoning patterns to
deal with knowledge dissemination (see Sect. 4.4). In the presence of faulty nodes,
one has to ensure that this knowledge is reliable. Fault-tolerant state-machine
replication protocols provide such guarantees by relying on certificates, which
ensure that we can always get hold of a correct node to trace back information
through the system. This requires reasoning about the past, i.e., reasoning by
induction on causal time using the happenedBefore relation.

4.1 Automated Inductive Reasoning

We use induction on causal time to prove both distributed and local proper-
ties. As discussed here, we automated the typical reasoning pattern we use to
prove local properties. As an example, in our PBFT formalization, we proved
the following local property: if a replica has a prepare message in its log, then
it either received or generated it. Moreover, as for any kinds of programs, using
Velisarios we prove local properties about processes by reasoning about all pos-
sible paths they can take when reacting upon messages. Thus, a typical proof of
such a lemma using Velisarios goes as follows: (1) we go by induction on events;
(2) we split the code of a process into all possible execution paths; (3) we prune
the paths that could not happen because they invalidate some hypotheses of the
lemma being proved; and (4) we automatically prove some other cases by induc-
tion hypothesis. We packaged this reasoning as a Coq tactic, which in practice
can significantly reduce the number of cases to prove, and used this automation
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technique to prove local properties of PBFT, such as Castro’s A.1.2 local invari-
ants [14]. Because of PBFT’s complexity, our Coq tactic typically reduces the
number of cases to prove from between 50 to 60 cases down to around 7 cases,
sometimes less, as we show in this histogram of goals left to interactively prove
after automation:

# of goals left to prove 0 1 2 3 4 5 6 7 8

# of lemmas 8 1 5 4 4 2 9 17 3

4.2 Quorums

As usual, we use quorum theory to trace back correct information between nodes.
A (Byzantine) quorum w.r.t. a given set of nodes N , is a subset Q of N , such
that f + 1 ≤ (2 ∗ |Q|) − |N | (where |X| is the size of X), i.e. every two quorums
intersect [59,83] in sufficiently many replicas.10 Typically, a quorum corresponds
to a majority of nodes that agree on some property. In case of state machine
replication, quorums are used to ensure that a majority of nodes agree to update
the state using the same operation. If we know that two quorums intersect, then
we know that both quorums agree, and therefore that the states cannot diverge.
In order to reason about quorums, we have proved the following general lemma:11

Lemma overlapping quorums :
forall (l1 l2 : NRlist node), exists Correct ,

(length l1 + length l2 ) - num nodes ≤ length Correct
∧ subset Correct l1 ∧ subset Correct l2 ∧ no repeats Correct .

This lemma implies that if we have two sets of nodes l1 and l2 (NRlist ensures
that the sets have no repeats), such that the sum of their length is greater than
the total number of nodes (num nodes), there must exist an overlapping subset
of nodes (Correct). We use this result below in Sect. 4.4.

The node type parameter is the collection of nodes that can participate in
quorums. For example, PBFT replicas can participate in quorums but clients
cannot. This type comes with a node2name function to convert nodes into names.

4.3 Certificates

Lemmas that require reasoning about several replicas are much more complex
than local properties. They typically require reasoning about some information
computed by a collection of replicas (such as quorums) that vouch for the infor-
mation. In PBFT, a collection of 2f +1 messages from different replicas is called

10 We use here Castro’s notation where quorums are majority quorums [79] (also called
write quorums) that require intersections to be non-empty, as opposed to read quo-
rums that are only required to intersect with write quorums [36].

11 We present here a simplified version for readability.
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a strong (or quorum) certificate, and a collection of f +1 messages from different
replicas is called a weak certificate.

When working with strong certificates, one typically reasons as follows:
(1) Because PBFT requires 3f +1 replicas, two certificates of size 2f +1 always
intersect in f +1 replicas. (2) One message among those f +1 messages must be
from a correct replica because at most f replicas can be faulty. (3) This correct
replica can vouch for the information of both quorums—we use that replica to
trace back the corresponding information to the point in space/time where/when
it was generated. We will get back to this in Sect. 4.4.

When working with weak certificates, one typically reasons as follows:
Because, the certificate has size f + 1 and there are at most f faulty nodes,
there must be one correct replica that can vouch for the information of the
certificate.

4.4 Knowledge Theory

Model. Let us now present an excerpt of our distributed epistemic knowledge
library. Knowledge is a widely studied concept [10,30,31,37–39,70]. It is often
captured using possible-worlds models, which rely on Kripke structures: an agent
knows a fact if that fact is true in all possible worlds. For distributed systems,
agents are nodes and a possible world at a given node is essentially one that has
the same local history as the one of the current world, i.e., it captures the current
state of the node. As Halpern stresses, e.g. in [37], such a definition of knowl-
edge is external in the sense that it cannot necessarily be computed, though some
work has been done towards deriving programs from knowledge-based specifica-
tions [10]. We follow a different, more pragmatic and computational approach,
and say that a node knows some piece of data if it is stored locally, as opposed to
the external and logical notion of knowing facts mentioned above. This computa-
tional notion of knowledge relies on exchanging messages to propagate it, which
is what is required to derive programs from knowledge-based specifications (i.e.,
to compute that some knowledge is gained [20,37]).

We now extend the model presented in Sect. 3 with two epistemic modal
operators know and learn that express what it means for a process to know
and learn some information, and which bear some resemblance with the fact
discovery and fact publication notions discussed in [38]. Formally, we extend our
model with the following parameters, which can be instantiated as many times
as needed for all the pieces of known/learned data that one wants to reason
about—see below for examples:

Class LearnAndKnow := MkLearnAndKnow {
lak data : Type; lak data2info : lak data → lak info;
lak info : Type; lak know : lak data → lak memory → Prop;
lak memory : Type; lak data2owner : lak data → node;

lak data2auth : lak data → auth data; }.

The lak data type is the type of “raw” data that we have knowledge of; while
lak info is some distinct information that might be shared by different pieces
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of data. For example, PBFT replicas collect batches of 2f + 1 (pre-)prepare
messages from different replicas, that share the same view, sequence number, and
digest. In that case, the (pre-)prepare messages are the raw data that contain the
common information consisting of a view, a sequence number, and a digest. The
lak memory type is the type of objects used to store one’s knowledge, such as a
state machine state. One has to provide a lak data2info function to extract the
information embedded in some piece of data. The lak know predicate explains
what it means to know some piece of data. The lak data2owner function extracts
the “owner” of some piece of data, typically the node that generated the data. In
order to authenticate pieces of data, the lak data2auth function extracts some
piece of authenticated data from some piece of raw data. For convenience, we
define the following wrapper around lak data2owner:

Definition lak data2node (d : lak data) : name := node2name (lak data2owner d).

Let us now turn to the two main components of our theory, namely the
know and learn epistemic modal operators. These operators provide an abstrac-
tion barrier: they allow us to abstract away from how knowledge is stored and
computed, in order to focus on the mere fact that we have that knowledge.

Definition know (sm : node → StateMachine lak memory) (e : Event) (d : lak data) :=
exists mem i , loc e = node2name i

∧ state sm after event (sm i) e = Some mem
∧ lak know d mem.

where we simply write (StateMachine S ) for a state machine with a state of
type S , that takes messages as inputs, and outputs lists of directed messages.
This states that the state machine (sm i) knows the data d at event e if its state
is mem at e and (lak know d mem) is true. We define learn as follows:

Definition learn (e : Event) (d : lak data) :=
exists i , loc e = node2name i

∧ In (lak data2auth d) (bind op list get contained auth data (trigger e))
∧ verify auth data (loc e) (lak data2auth d) (keys e) = true.

This states that a node learns d at some event e, if e was triggered by a message
that contains the data d . Moreover, because we deal with Byzantine faults, we
require that to learn some data one has to be able to verify its authenticity.

Next, we define a few predicates that are useful to track down knowledge.
The first one is a local predicate that says that for a state machine to know
about a piece of information it has to either have learned it or generated it.

Definition learn or know (sm : node → StateMachine lak memory) :=
forall (d : lak data) (e : Event),

know sm e d → (exists e’ , e’ � e ∧ learn e’ d) ∨ lak data2node d = loc e.

The next one is a distributed predicate that states that if one learns some piece
of information that is owned by a correct node, then that correct node must
have known that piece of information:
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Definition learn if know (sm : node → StateMachine lak memory) :=
forall (d : lak data) (e : Event),

(learn e d ∧ has correct trace before e (lak data2node d))
→ exists e’ , e’ ≺ e ∧ loc e’ = lak data2node d ∧ know sm e’ d .

Using these two predicates, we have proved this general lemma about knowl-
edge propagating through nodes:

Lemma know propagates :
forall (e : Event) (sm : node → StateMachine lak memory) (d : lak data),

(learn or know sm ∧ learn if know sm)
→ (know sm e d ∧ has correct trace before e (lak data2node d))
→ exists e’ , e’ � e ∧ loc e’ = lak data2node d ∧ know sm e’ d .

This lemma says that, assuming learn or know and learn if know, if one knows
at some event e some data d that is owned by a correct node, then that correct
node must have known that data at a prior event e’ . We use this lemma to track
down information through correct nodes.

As mentioned in Sect. 4.3, when reasoning about distributed systems, one
often needs to reason about certificates, i.e., about collections of messages
from different sources. In order to capture this, we introduce the following
know certificate predicate, which says that the state machine sm knows the
information i at event e if there exists a list l of pieces of data of length at
least k (the certificate size) that come from different sources, and such that sm
knows each of these pieces of data, and each piece of data carries the common
information nfo:

Definition know certificate (sm : node → StateMachine lak memory)
(e : Event) (k : nat) (nfo : lak info) (P : list lak data → Prop) :=

exists (l : list lak data),
k ≤ length l ∧ no repeats (map lak data2owner l) ∧ P l
∧ forall d , In d l → (know sm e d ∧ nfo = lak data2info d).

Using this predicate, we can then combine the quorum and knowledge the-
ories to prove the following lemma, which captures the fact that if there are
two quorums for information nfo1 (known at e1 ) and nfo2 (known at e2 ), and
the intersection of the two quorums is guaranteed to contain a correct node,
then there must be a correct node (at which e1’ and e2’ happen) that owns
and knows both nfo1 and nfo2—this lemma follows from know propagates and
overlapping quorums:

Lemma know in intersection :
forall (sm : node → StateMachine lak memory) (e1 e2 : Event) (nfo1 nfo2 : lak info)

(k f : nat) (P : list lak data → Prop) (E : list Event),
(learn or know sm ∧ learn if know sm)
→ (k ≤ num nodes ∧ num nodes + f < 2 * k)
→ (exists at most f faulty E f ∧ In e1 E ∧ In e2 E)
→ (know certificate sm e1 k nfo1 P ∧ know certificate sm e2 k nfo2 P)
→ exists e1’ e2’ d1 d2 , loc e1’ = loc e2’ ∧ e1’ � e1 ∧ e2’ � e2

∧ loc e1’ = lak data2node d1 ∧ loc e2’ = lak data2node d2
∧ know sm e1’ d1 ∧ know sm e2’ d2
∧ i1 = lak data2info d1 ∧ i2 = lak data2info d2 .
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Similarly, we proved the following lemma, which captures the fact that there
is always a correct replica that can vouch for the information of a weak certificate:

Lemma know weak certificate :

forall (e : Event) (k f : nat) (nfo : lak info) (P : list lak data → Prop) (E : list Event),

(f < k ∧ exists at most f faulty E f ∧ In e E ∧ know certificate e k nfo P)

→ exists d, has correct trace before e (node2node d) ∧ know e d ∧ nfo = lak data2info d.

PBFT. One of the key lemmas to prove PBFT’s safety says that if two cor-
rect replicas have prepared some requests with the same sequence and view
numbers, then the requests must be the same [14, Inv.A.1.4]. As mentioned in
Sect. 2.1, a replica has prepared a request if it received pre-prepare and pre-
pare messages from a quorum of replicas. To prove this lemma, we instantiated
LearnAndKnow as follows: lak data can either be a pre-prepare or a prepare mes-
sage; lak info is the type of triples view/sequence number/digest; lak memory
is the type of states maintained by replicas; lak data2info extracts the view,
sequence number and digest contained in pre-prepare and prepare messages;
lak know states that the pre-prepare or prepare message is stored in the state;
lak data2owner extracts the sender of the message; and lak data2auth is similar
to the PBFTget contained auth data function presented in Sect. 3.6. The two
predicates learn or know and learn if know, which we proved using the tactic
discussed in Sect. 4.1, are true about this instance of LearnAndKnow. Inv.A.1.4 is
then a straightforward consequence of know in intersection applied to the two
quorums.

5 Verification of PBFT

Agreement. Velisarios is designed as a general, reusable, and extensible frame-
work that can be instantiated to prove the correctness of any BFT protocol. We
demonstrated its usability by proving that our PBFT implementation satisfies
the standard agreement property, which is the crux of linearizability (we leave
linearizability for future work—see Sect. 2.2 for a high-level definition). Agree-
ment states that, regardless of the view, any two replies sent by correct replicas
i1 and i2 at events e1 and e2 for the same timestamp ts to the same client c
contain the same replies. We proved that this is true in any event ordering that
satisfies the assumptions from Sect. 3.6:12

Lemma agreement :

forall (eo : EventOrdering) (e1 e2 : Event) (v1 v2 : View) (ts : Timestamp)

(c : Client) (i1 i2 : Rep) (r1 r2 : Request) (a1 a2 : list Token),

authenticated messages were sent or byz sys eo PBFTsys ∧ correct keys eo
→ (exists at most f faulty [e1 ,e2 ] f ∧ loc e1 = PBFTreplica i1 ∧ loc e2 = PBFTreplica i2)
→ In (send reply v1 ts c i1 r1 a1) (output system on event PBFTsys e1)
→ In (send reply v2 ts c i2 r2 a2) (output system on event PBFTsys e2)
→ r1 = r2 .

12 See agreement in https://github.com/vrahli/Velisarios/blob/master/PBFT/
PBFTagreement.v.

https://github.com/vrahli/Velisarios/blob/master/PBFT/PBFTagreement.v
https://github.com/vrahli/Velisarios/blob/master/PBFT/PBFTagreement.v
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where Timestamps are nats; authenticated messages were sent or byz sys is
defined on systems using authenticated messages were sent or byz; the func-
tion output system on event is similar to state sm after event (see Sect. 3.5)
but returns the outputs of a given state machine at a given event instead of
returning its state; and send reply builds a reply message. To prove this lemma,
we proved most of the invariants stated by Castro in [14, Appendix A]. In addi-
tion, we proved that if the last executed sequence number of two correct replicas
is the same, then these two replicas have, among other things, the same service
state.13

As mentioned above, because our model is based on LoE, we only ever prove
such properties by induction on causal time. Similarly, Castro proved most of his
invariants by induction on the length of the executions. However, he used other
induction principles to prove some lemmas, such as Inv.A.1.9, which he proved by
induction on views [14, p. 151]. This invariant says that prepared requests have
to be consistent with the requests sent in pre-prepare messages by the primary.
A straightforward induction on causal time was more natural in our setting.

Castro used a simulation method to prove PBFT’s safety: he first proved
the safety of a version without garbage collection and then proved that the ver-
sion with garbage collection implements the one without. This requires defining
two versions of the protocol. Instead, we directly prove the safety of the one
with garbage collection. This involved proving further invariants about stored,
received and sent messages, essentially that they are always within the water
marks.

Proof Effort. In terms of proof effort, developing Velisarios and verifying PBFT’s
agreement property took us around 1 person year. Our generic Velisarios frame-
work consists of around 4000 lines of specifications and around 4000 lines of
proofs. Our verified implementation of PBFT consists of around 20000 lines of
specifications and around 22000 lines of proofs.

6 Extraction and Evaluation

Extraction. To evaluate our PBFT implementation (i.e., PBFTsys defined
in Sect. 3.5—a collection of state machines), we generate OCaml code using
Coq’s extraction mechanism. Most parameters, such as the number of toler-
ated faults, are instantiated before extraction. Note that not all parameters
need to be instantiated. For example, as mentioned in Sect. 3.1, neither do we
instantiate event orderings, nor do we instantiate our assumptions (such as
exists at most f faulty), because they are not used in the code but are only
used to prove that properties are true about all possible runs. Also, keys, signa-
tures, and digests are only instantiated by stubs in Coq. We replace those stubs
when extracting OCaml code by implementations provided by the nocrypto [66]
library, which is the cryptographic library we use to hash, sign, and verify mes-
sages (we use RSA).
13 See same states if same next to execute in https://github.com/vrahli/Velisarios/

blob/master/PBFT/PBFTsame states.v.

https://github.com/vrahli/Velisarios/blob/master/PBFT/PBFTsame_states.v
https://github.com/vrahli/Velisarios/blob/master/PBFT/PBFTsame_states.v
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Evaluation. To run the extracted code in a real distributed environment, we
implemented a small trusted runtime environment in OCaml that uses the Async
library [5] to handle sender/receiver threads. We show among other things here
that the average latency of our implementation is acceptable compared to the
state of the art BFT-SMaRt [8] library. Note that because we do not offer a
new protocol, but essentially a re-implementation of PBFT, we expect that on
average the scale will be similar in other execution scenarios such as the ones
studied by Castro in [14]. We ran our experiments using desktops with 16 GB
of memory, and 8 i7-6700 cores running at 3.40 GHz. We report some of our
experiments where we used a single client, and a simple state machine where the
state is a number, and an operation is either adding or subtracting some value.

We ran a local simulation to measure the performance of our PBFT imple-
mentation without network and signatures: when 1 client sends 1 million
requests, it takes on average 27.6µs for the client to receive f + 1 (f = 1)
replies.

0

2

4

6

8

10

12

14

16

0 200000 400000 600000 800000 1e+06

av
er

ag
e 

re
sp

on
se

 ti
m

e 
in

 m
s

timestamp/instance

verif. PBFT f=1

verif. PBFT f=2

verif. PBFT f=3

BFT-SMaRt f=1

BFT-SMaRt f=2

BFT-SMaRt f=3

0

2

4

6

8

10

12

14

16

0 200000 400000 600000 800000 1e+06
timestamp/instance

verif. PBFT f=1

BFT-SMaRt f=1

0

0.5

1

1.5

2

2.5

3

0 20000 40000 60000 80000 100000

av
g.

 re
sp

. t
im

e 
in

 m
s

timestamp/instance

verif. PBFT (MAC) f=1

BFT-SMaRt f=1

0
20
40
60
80

100
120
140
160

0 10000 20000 30000 40000 50000 60000 70000

tra
ns

. p
er

 s
ec

.

time elapsed in sec.

verif. PBFT f=1

Fig. 3. (1) Single machine (top/left); (2) several machines (top/right); (3) single
machine using MACs (bottom/left); (4) view change response time (bottom/right)

Top/left of Fig. 3 shows the experiment where we varied f from 1 to 3,
and replicas sent messages, signed using RSA, through sockets, but on a sin-
gle machine. As mentioned above, we implemented the digital signature-based
version of PBFT, while BFT-SMaRt uses a more efficient MAC-based authen-
tication scheme, which in part explains why BFT-SMaRt is around one order
of magnitude faster than our implementation. As in [14, Table 8.9], we expect a
similar improvement when using the more involved, and as of yet not formally
verified, MAC-based version of PBFT (bottom/left of Fig. 3 shows the average
response time when replacing digital signatures by MACs, without adapting
the rest of the protocol). Top/right of Fig. 3 presents results when running our
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version of PBFT and BFT-SMaRt on several machines, for f = 1. Finally, bot-
tom/right of Fig. 3 shows the response time of our view-change protocol. In this
experiment, we killed the primary after 16 s of execution, and it took around 7 s
for the system to recover.

Trusted Computing Base. The TCB of our system includes: (1) the fact that our
LoE model faithfully reflects the behavior of distributed systems (see Sect. 3.4);
(2) the validity of our assumptions: authenticated messages were sent or byz;
exists at most f faulty; correct keys; and create hash collision resistant
(Sect. 3.6); (3) Coq’s logic and implementation; (4) OCaml and the nocrypto
and Async libraries we use in our runtime environment, and the runtime envi-
ronment itself (Sect. 6); (5) the hardware and software on which our framework
is running.

7 Related Work

Our framework is not the first one for implementing and reasoning about the
correctness of distributed systems (see Fig. 4). However, to the best of our knowl-
edge, (1) it is the first theorem prover based tool for verifying the correctness of
asynchronous Byzantine fault-tolerant protocols and their implementations; and
(2) we provide the first mechanical proof of the safety of a PBFT implementa-
tion. Velisarios has evolved from our earlier EventML framework [71], primarily
to reason about Byzantine faults and distributed epistemic knowledge.

Fig. 4. Comparison with related work

7.1 Logics and Models

IOA [33–35,78] is the model used by Castro [14] to prove PBFT’s safety. It is
a programming/specification language for describing asynchronous distributed
systems as I/O automata [58] (labeled state transition systems) and stating
their properties. While IOA is state-based, the logic we use in this paper is
event-based. IOA can interact with a large range of tools such as type checkers,
simulators, model checkers, theorem provers, and there is support for synthesis
of Java code [78]. In contrast, our methodology allows us to both implement and
verify protocols within the same tool, namely Coq.
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TLA+ [24,51] is a language for specifying and reasoning about systems. It com-
bines: (1) TLA [52], which is a temporal logic for describing systems [51], and
(2) set theory, to specify data structures. TLAPS [24] uses a collection of theo-
rem provers, proof assistants, SMT solvers, and decision procedures to mechan-
ically check TLA proofs. Model checker integration helps catch errors before
verification attempts. TLA+ has been used in a large number of projects (e.g.,
[12,18,44,56,63,64]) including proofs of safety and liveness of Multi-Paxos [18],
and safety of a variant of an abstract model of PBFT [13]. To the best of our
knowledge, TLA+ does not perform program synthesis.

The Heard-Of (HO) Model [23] requires processes to execute in lock-step
through rounds into which the distributed algorithms are divided. Asynchronous
fault-tolerant systems are treated as synchronous systems with adversarial envi-
ronments that cause messages to be dropped. The HO-model was implemented
in Isabelle/HOL [22] and used, for example, to verify the EIGByz [7] Byzantine
agreement algorithm for synchronous systems with reliable links. This formaliza-
tion uses the notion of global state of the system [19], while our approach relies on
Lamport’s happened before relation [53], which does not require reasoning about
a distributed system as a single entity (a global state). Model checking and the
HO-model were also used in [21,80,81] for verifying the crash fault-tolerant con-
sensus algorithms presented in [23]. To the best of our knowledge, there is no
tool that allows generating code from algorithms specified using the HO-model.

Event-B [1] is a set-theory-based language for modeling reactive systems and
for refining high-level abstract specifications into low-level concrete ones. It sup-
ports code generation [32,61], with some limitations (not all features are cov-
ered). The Rodin [2] platform for Event-B provides support for refinement, and
automated and interactive theorem proving. Both have been used in a number of
projects, such as: to prove the safety and liveness of self-� systems [4]; to prove
the agreement and validity properties of the synchronous crash-tolerant Floodset
consensus algorithm [57]; and to prove the agreement and validity of synchronous
Byzantine agreement algorithms [50]. In [50], the authors assume that messages
cannot be forged (using PBFT, at most f nodes can forge messages), and do not
verify implementations of these algorithms.

7.2 Tools

Verdi [85,86] is a framework to develop and reason about distributed systems
using Coq. As in our framework, Verdi leaves no gaps between verified and
running code. Instead, OCaml code is extracted directly from the verified Coq
implementation. Verdi provides a compositional way of specifying distributed
systems. This is done by applying verified system transformers. For example,
Raft [67]—an alternative to Paxos—transforms a distributed system into a crash-
tolerant one. One difference between our respective methods is that they verify
a system by reasoning about the evolution of its global state, while we use
Lamport’s happened before relation. Moreover, they do not deal with the full
spectrum of arbitrary faults (e.g., malicious faults).
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Disel [75,84] is a verification framework that implements a separation-style pro-
gram logic, and that enables compositional verification of distributed systems.

IronFleet [40,41] is a framework for building and reasoning about distributed
systems using Dafny [55] and the Z3 theorem prover [62]. Because systems are
both implemented in and verified using Dafny, IronFleet also prevents gaps
between running and verified code. It uses a combination of TLA-style state-
machine refinements [51] to reason about the distributed aspects of protocols,
and Floyd-Hoare-style imperative verification techniques to reason about local
behavior. The authors have implemented, among other things, the Paxos-based
state machine replication library IronRSL, and verified its safety and liveness.

PSync [28] is a domain specific language embedded in Scala, that enables exe-
cuting and verifying fault-tolerant distributed algorithms in synchronous and
partially asynchronous networks. PSync is based on the HO-model, and has been
used to implement several crash fault-tolerant algorithms. Similar to the Verdi
framework, PSync makes use of a notion of global state and supports reason-
ing based on the multi-sorted first-order Consensus verification logic (CL) [27].
To prove safety, users have to provide invariants, which CL checks for validity.
Unlike Verdi, IronFleet and PSync, we focus on Byzantine faults.

ByMC is a model checker for verifying safety and liveness of fault-tolerant dis-
tributed algorithms [47–49]. It applies an automated method for model checking
parametrized threshold-guarded distributed algorithms (e.g., processes waiting
for messages from a majority of distinct senders). ByMC is based on a short
counter-example property, which says that if a distributed algorithm violates a
temporal specification then there is a counterexample whose length is bounded
and independent of the parameters (e.g. the number of tolerated faults).

Ivy [69] allows debugging infinite-state systems using bounded verification, and
formally verifying their safety by gradually building universally quantified induc-
tive invariants. To the best of our knowledge, Ivy does not support faults.

Actor Services [77] allows verifying the distributed and functional properties
of programs communicating via asynchronous message passing at the level of
the source code (they use a simple Java-like language). It supports modular
reasoning and proving liveness. To the best of our knowledge, it does not deal
with faults.

PVS has been extensively used for verification of synchronous systems that tol-
erate malicious faults such as in [74], to the extent that its design was influenced
by these verification efforts [68].

8 Conclusions and Future Work

We introduced Velisarios, a framework to implement and reason about BFT-
SMR protocols using the Coq theorem prover, and described a methodology
based on learn/know epistemic modal operators. We used this framework to
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prove the safety of a complex system, namely Castro’s PBFT protocol. In the
future, we plan to also tackle liveness/timeliness. Indeed, proving the safety of
a distributed system is far from being enough: a protocol that does not run
(which is not live) is useless. Following the same line of reasoning, we want to
tackle timeliness because, for real world systems, it is not enough to prove that
a system will eventually reply. One often desires that the system replies in a
timely fashion.
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Schröder-Preikschat, W., Stengel, K.: CheapBFT: resource-efficient Byzantine
fault tolerance. In: EuroSys 2012, pp. 295–308. ACM (2012)

46. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.:
Enhancing Bitcoin security and performance with strong consistency via collec-
tive signing. In: USENIX Security Symposium, pp. 279–296. USENIX Association
(2016)

47. Konnov, I.V., Lazic, M., Veith, H., Widder, J.: A short counterexample property for
safety and liveness verification of fault-tolerant distributed algorithms. In: POPL
2017, pp. 719–734. ACM (2017)

48. Konnov, I.V., Veith, H., Widder, J.: On the completeness of bounded model check-
ing for threshold-based distributed algorithms: reachability. Inf. Comput. 252, 95–
109 (2017)

49. Konnov, I., Veith, H., Widder, J.: SMT and POR beat counter abstraction: param-
eterized model checking of threshold-based distributed algorithms. In: Kroening,
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Byzantine fault-tolerance. IEEE Trans. Comput. 62(1), 16–30 (2013)

83. Vukolic, M.: The origin of quorum systems. Bull. EATCS 101, 125–147 (2010)
84. Wilcox, J.R., Sergey, I., Tatlock, Z.: Programming language abstractions for modu-

larly verified distributed systems. In: SNAPL 2017. LIPIcs, vol. 71, pp. 19:1–19:12.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

85. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Ander-
son, T.E.: Verdi: a framework for implementing and formally verifying distributed
systems. In: PLDI 2015, pp. 357–368. ACM (2015)

86. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.E.: Plan-
ning for change in a formal verification of the raft consensus protocol. In: CPP 2016,
pp. 154–165. ACM (2016)

https://doi.org/10.1007/978-3-662-49498-1_27
https://doi.org/10.1007/978-3-662-49498-1_27
https://doi.org/10.1007/978-3-540-87779-0_32


650 V. Rahli et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/



