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Abstract

We formalize the soundness theorem for differential
dynamic logic, a logic for verifying hybrid systems. To
increase confidence in the formalization, we present
two versions: one in Isabelle/HOL and one in Coq.
We extend the metatheory to include features used in
practice, such as systems of differential equations and
functions of multiple arguments. We demonstrate the
viability of constructing a verified kernel for the hybrid
systems theorem prover KeYmaera X by embedding
proof checkers for differential dynamic logic in Coq and
Isabelle. We discuss how different provers and libraries
influence the design of the formalization.

Categories and Subject Descriptors F.3.1 [Speci-
fying and Verifying and Reasoning about Programs]: Me-
chanical verification

Keywords differential dynamic logic, hybrid systems
verification, KeYmaera X, formalization

1. Introduction

Cyber-physical systems such as autonomous cars or wa-
ter supply systems operate in close proximity of humans
or control life-critical resources, and therefore require
strong safety guarantees. The highest level of assurance
currently known to mankind is obtained through for-
mal verification of such safety properties using proof
assistants. Because many cyber-physical systems can

∗ This material is based upon work supported by the National Sci-
ence Foundation under NSF CAREER Award CNS-1054246, by
DARPA under agreement number FA8750-12-2-0291, by the SnT
and the National Research Fund Luxembourg (FNR), through
PEARL grant FNR/P14/8149128.

[Copyright notice will appear here once ’preprint’ option is removed.]

be modeled as hybrid systems, formally verifying hy-
brid systems is an important task. Differential dynamic
logic (dL) [36, 37, 39] offers an effective approach for
formal verification of hybrid systems: Compared with
model-checking-based approaches [15] it offers a high
level of expressiveness and precision, and in contrast to
other logics [43] it provides general, compositional rules
for hybrid systems reasoning. The theorem prover KeY-
maera X [17] implements the proof rules of dL and ex-
tensive tactic-based automation. Because verifying hy-
brid systems is important, it is equally important to
ensure the verification tool is correct. KeYmaera X sim-
plifies correctness significantly by maintaining a small
soundness-critical core of approximately 1700 lines of
code, using a proof calculus based on uniform substitu-
tion and supported by mathematical proof [39].

But, even if small and straightforward, uniform sub-
stitutions still need to be implemented correctly. More-
over, the soundness proofs themselves are involved and
rely on nontrivial theorems about differential equations.
The purpose of this paper, thus, is

1. to provide independent justification of the correct-
ness of differential dynamic logic by formalizing1

its syntax, semantics, axiomatization, and soundness
proofs in Isabelle [33, 34] and Coq [1, 9], and

2. to obtain verified prover kernels for dL from these
mechanizations of the uniform substitution calculus,
first embedded in Isabelle and Coq, but in the future
also extracted as stand-alone programs.

Ironically, this increases the trusted computing base of
the individual kernels. They now depend on the correct-
ness of their proof assistant as well as the definitions
in our formalizations. However, the guarantees we gain
are of a fundamentally different nature: formalization
gives us confidence in the soundness proof for dL, which
cannot be addressed by reducing the size of the core.
Multiple cores with independent justification are always

1 Our Isabelle and Coq implementations are available
at https://github.com/LS-Lab/Isabelle-dL and https://
github.com/LS-Lab/Coq-dL, respectively.
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more trustworthy than an individual core: mistakes now
would have to go unnoticed in all of them. Moreover, the
chosen provers are under substantial scrutiny.

A verified prover kernel is only ultimately useful if
the verification addresses the reasoning principles used
in practice. This is important since prover implemen-
tations often contain features that are used in practice
but not addressed by the theory. In the case of KeY-
maera X this includes generalizing single ODEs [39] to
systems of ODEs vectorially [36], as well as bound and
uniform variable renaming. Indeed, our verification ef-
fort exposed a subtle soundness bug in the implementa-
tion of bound variable renaming in KeYmaera X, which
has since been fixed.

2. Background

2.1 Differential Dynamic Logic

Differential dynamic logic (dL) [36, 37, 39] is a logic for
proving properties of hybrid systems expressed as hybrid
programs, a programming language with constructs for
continuous dynamics. Theorem proving in dL consists
of determining whether a formula is valid, i.e., true in
all states ν and interpretations I. States assign meaning
to flexible/assignable symbols: program variables x and
differential symbols x′. Interpretations assign meaning
to rigid symbols: function symbols f , predicate symbols
p, q, program symbols a, b, predicational (a.k.a. quanti-
fier) symbols C and differential program symbols c.

Expressions (e) of dL are terms (θ), differential pro-
grams (ODE), hybrid programs (α) and formulas (φ).
In the following, V denotes the set of all variables. For
any U ⊆ V we write U ′ def

= {x′ : x ∈ U} for the set of
differential symbols x′ of variables x in U . Our Isabelle
formalization considers variables V and differential sym-
bols V ′ disjoint as in [38]. Our Coq formalization con-
siders differential symbols as variables, i.e. V ′ ⊆ V, as
in [39], allowing higher differential symbols, such as x′′.

Definition 1. Terms are defined by the grammar:

θ, η ::= x | x′ | r | f(θ1, . . . , θk) | θ + η | θ · η | (θ)′

where θ, η, θi are terms and r ∈ R real-valued literals.
The semantics Iν[[θ]] assigns a value r ∈ R to every
term θ in interpretation I and state ν. Like variables,
differential symbols x′ receive their values from the state
ν and are assignable. Differentials (θ)′ express how the
values of arbitrary terms change, but are not assignable.

All terms are locally Lipschitz continuous, which
implies that all ordinary differential equations (ODEs)
have solutions. This requires interpretations of function
symbols f to be locally Lipschitz continuous as well.

Definition 2. Systems of ODEs, expressed as Differ-
ential Programs (ODEs), are defined by the following

grammar, where ODEi are differential programs and c
is a differential program constant symbol:

ODE ::= c | x′ = θ | ODE1,ODE2

The semantics of a differential program in a given in-
terpretation is a state-dependent vector field of type
R

V → R
V′

that defines the derivative of every variable
in every state. Differential program symbols c stand
for arbitrary differential programs. Singleton systems
x′ = θ define the continuous evolution of a single vari-
able x. Systems of equations are constructed as prod-
ucts ODE1,ODE2, which perform the parallel composi-
tion of two differential programs.

Definition 3. Hybrid programs (HPs) are defined as:

α, β ::= a | x := θ | x′ := θ | ?ψ |ODE &ψ | α∪β | α;β | α∗

where α, β are HPs, and ψ a dL formula. The semantics
of a program in a given interpretation is a reachability
relation R ⊆ (RV∪V′

× R
V∪V′

) on states. Assignments
x := θ and differential assignment x′ := θ update the
value of variable x or differential symbol x′, respectively,
to θ. Tests ?ψ succeed iff the formula ψ is true and
do not affect the state. Differential programs ODE &ψ
follow the evolution of ODE for any duration within the
domain constraint ψ. Nondeterministic choices α ∪ β
behave as either α or β. Sequential compositions α;β
run β on the state produced by α. Nondeterministic
repetition α∗ runs α an arbitrary number of times.
Program constants a stand for arbitrary programs.

Definition 4. Formulas of dL are defined by the gram-
mar (with dL formulas φ, ψ, predicate symbol p, and
predicational symbol C):

φ, ψ ::= θ ≥ η | p(θ1, ..., θk) | C(φ) | ¬φ | φ∧ψ | ∃xφ | 〈α〉φ

The semantics of a formula in a given interpretation
is the set of states S ⊆ R

V∪V′

in which it is true. Oper-
ators >,≤, <,∨,→,↔, [α]φ, true, false, and ∀ are defin-
able, e.g., [α]φ as ¬〈α〉¬φ. The modal formulas [α]φ and
〈α〉φ express that φ holds after all or some runs of α,
respectively. Unary predicational symbols C (with for-
mula φ as argument) are higher-order predicates bind-
ing any variables and correspond to functions from for-
mulas to formulas. Nullary predicational symbols P,Q
are derivable by specifying a φ of constant truth-value,
i.e., C(true). Unary predicational symbols are used for
contextual congruence reasoning, nullary ones used in
axioms. The semantics of dL is defined in [39, §2.2].
Example 1 (Uncontrolled Continuous Car Model). As
a simple example, consider an uncontrolled continuous
car [41, §5.1]. The following dL formula says that if the
acceleration and velocity are initially nonnegative, the
velocity will always be nonnegative when following a
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differential equation where the derivative of position is
velocity and the derivative of velocity is acceleration:

A() ≥ 0 ∧ v ≥ 0→ [v′ = A(), x′ = v& true] v ≥ 0

2.2 Uniform Substitution Calculus

Several proof calculi are available for dL [36, 37, 39]. The
one implemented in KeYmaera X and discussed here is
a minimalistic Hilbert calculus based on uniform sub-
stitution [39], where most reasoning principles are ex-
pressed as concrete axioms instantiated by substitution
and combined using a small number of standard Hilbert
rules. It is from this small number of rules that we gain
simplicity of implementation and verification.2

A main source of complexity in practical proof calculi
is that most axioms and rule schemata are only sound
given certain side conditions. The uniform substitution
rule confronts these side conditions once and for all
through its (computables) notion of admissibility.

Theorem 1 ([39, Thm.26]). The following proof rule
with uniform substitution σ is sound:

(US)
φ

σ(φ)
if admissible(φ, σ)

Thus showing soundness of dL is reduced to: (1) show-
ing soundness of rule US, and (2) showing the validity of
each axiom or axiomatic rule. Because axioms in a uni-
form substitution calculus are but individual concrete
formulas, there is no need for side conditions: any sub-
tleties have been made explicit in the statement of the
axiom. Similarly, we have verified soundness of uniform
substitutions on proofs [39, Thm.27] to instantiate con-
crete representations of proof rules.

2.3 Axiomatization

The axioms and axiomatic proof rules of dL [39, §4–5]
implement reasoning about programs, ODEs, differenti-
ation of terms, contextual equivalence, and modal and
propositional operators. Here, we focus on the differen-
tial axioms: DW, DE, DC, DS, DI, and DG in Fig. 1,
which implement the ODE reasoning at the heart of dL.

Differential Weakening DW states that the evolution
constraint of an ODE holds after the ODE. Differential
Effect DE states that differential symbols agree with the
vector field of an ODE at the end of the ODE. Differ-
ential Cut DC states that a formula can be added to an
evolution constraint if it always holds after the ODE.
(Constant) Differential Solve DS states that constant
ODEs are uniquely solved by linear functions. Differen-
tial Induction DI enables inductive reasoning over the
flow of an ODE. Differential Ghost DG states that one

2 For efficiency reasons, KeYmaera X also implements a propo-
sitional sequent calculus with Skolemization, which we have only
partially formalized.

DW [x′ = f(x) & q(x)]q(x)
DE [x′ = f(x) & q(x)]p(x, x′)↔

[x′ = f(x) & q(x)][x′ := f(x)]p(x, x′)
DC

(

[x′ = f(x) & q(x)]p(x)↔
[x′ = f(x)&q(x) ∧ r(x)]p(x)

)

← [x′ = f(x) & q(x)]r(x)
DS [x′ = f & q(x)]p(x)↔

∀t≥0
(

(∀0≤s≤t q(x+ fs))→ [x := x+ ft]p(x)
)

DI [x′ = f(x) & q(x)]p(x)←
(

q(x)→ p(x) ∧ [x′ = f(x) & q(x)](p(x))′
)

DG [x′ = f(x) & q(x)]p(x)↔
∃y [x′ = f(x), y′ = a(x)y + b(x) & q(x)]p(x)

[:=] [x := f ]p(x)↔ p(f)
K [a](P → Q)→ ([a]P → [a]Q)

Figure 1. Selected dL axioms

can add equations to ODEs as long as they are linear,
implying they have solutions of the same duration.

2.4 Uniform Substitution

Church introduced a Uniform Substitution operation [12,
§35] (denoted Š) and proof rule [12, §40] in order to
replace axiom schemata by a finite number of axioms.
Differential dynamic logic adopted uniform substitution
[39, §3], because of its minimality.

A substitution σ maps rigid symbols to concrete
replacements. The difficulty lies in identifying when it is
sound to perform a substitution. Consider the following
application of axiom [:=] from Fig. 1:

clash 
[x := f ]p(x)↔ p(f)

[x := 1]x = 1↔ x = 1

where the premiss is valid, but the conclusion false in
every state except x = 1. This invalid conclusion would
be provable from [:=] using the substitution σ = {f 7→
1, p(·) 7→ x = 1} if we ignored admissibility. Admissibil-
ity defines which uses of substitutions are sound, as veri-
fied by the soundness theorems for US [39, Thm. 26–27].
Admissibility is defined in terms of dL’s static semantics:
signatures, free, bound and must-bound variables [39,
§2.4]. The signature Σ(e) of an expression is the set of
rigid symbols which can influence its dynamics. The free
variables FV(e) of an expression are all assignables (i.e.,
x and x′) which can influence its dynamic semantics.
Bound variables BV(α)/must-bound variables MBV(α)
of a program are the assignables that are modified by
α on some/all paths.

For example, the signature of Example 1 is the sin-
gleton set containing A, its free variables are x and v,
and its bound variables are x, x′, v, and v′.

We illustrate a high-level proof of Example 1 using
generalizations of the axioms presented in Fig. 1 to
systems of ODEs. Using the US rule with σ = {f 7→
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A(), q(·) 7→ true, p(·) 7→ · ≥ 0} on the DI axiom reduces
the proof of Example 1 to a proof of

[v′ = A(), x′ = v& true] (v)′ ≥ 0

We then use US on DE such that it remains to prove

[v′ = A(), x′ = v& true][v′ :=A()] (v)′ ≥ 0

Using US on Gödel’s G [39, Fig.2] it remains to prove

[v′ :=A()] (v)′ ≥ 0

Using US and x′ axiom [39, Fig.3] it remains to prove

[v′ :=A()] v′ ≥ 0

Finally, we conclude with US by σ = {f 7→ A(), p(·) 7→
· ≥ 0} on [:=], after renaming x to v′ and using A() ≥ 0.

3. Formalization: Fundamentals

The following sections describe our formalizations in
detail. An outline of the formalizations is given in Fig. 2
showing the dependencies within the formalization. The
final result of the formalization is a soundness theorem
for an embedded dL proof checker. This depends on the
soundness of axioms and rules, which in turn depends
on the semantics, which depend on the syntax.

This section first explains the formalization of the
syntax and (denotational) dynamic semantics of dL [39,
§2.1–§2.2]. These definitions constitute the trusted spec-
ification for our formalization: our results depend on
the fact that we have defined the semantics of dL cor-
rectly. We then define the static semantics of dL [39,
§2.4], which is proven correct with respect to the dy-
namic semantics through coincidence [39, Lem.10-12]
and bound effect [39, Lem.9] lemmas, which are the key
building blocks for Theorem 1.

3.1 Syntax

Because the substitution theorem (Theorem 1) is fun-
damentally syntactic and because our ultimate goal is
a verified prover core, both implementations use a deep
embedding of dL, i.e., syntactic expressions are repre-
sented explicitly as a datatype in the formalization.

Isabelle To simplify the proofs, we define many con-
nectives as derived forms, then validate their definitions
by showing they have the expected dynamic semantics.
For convenience we define functions to take a fixed, ar-
bitrary number of arguments. Lower-arity functions are
derived by supplying constants for all other arguments.
Expressions are paramaterized by an arbitrary finite
identifier space, so that all vectors are finite-dimensional
as needed by the analysis libraries. As usual, we express
this dependency on the number of identifiers by encod-
ing the natural number n as a type ’a of typeclass fi-
nite containing n values. Substitution will demand that

the number of function symbols (’nFun) and predica-
tional symbols (’nPnl) change independently from the
numbers of all other identifiers (’n). Thus we general-
ize, representing these numbers by the type variables
’nFun::finite, ’nPnl::finite, and ’n::finite respectively. Be-
cause terms and ODEs contain functions and variables,
they have two type arguments: (’nFun, ’n) trm and
(’nFun, ’n) ODE. Because formulas and hybrid pro-
grams also contain predicational symbols and variables,
they have three type arguments: (’nFun, ’nPnl, ’n) hp
and (’nFun, ’nPnl, ’n) formula.

Coq Our Coq formalization has an infinite number
of identifiers. We also make selected use of dependent
types. For example, we encode function arguments using
vectors (in terms of the form f(θ1, . . . , θk)). Coq’s vector
type is a dependent type for a list of a given length. The
advantage of using vectors over plain lists is that when
applying function symbols to arguments there is no need
to syntactically check that the list’s length is equal to
the function symbol’s arity. One drawback is that some
operations become cumbersome as explained in [20].

3.2 Real Analysis

Because dL relies on significant results from real anal-
ysis, our choice of analysis libraries has a significant
impact everywhere throughout the formalization.

Our Isabelle formalization uses the standard libraries
for analysis, wherein the classical reals are implemented
as Cauchy sequences of the rationals. We use the multi-
variate analysis library of Hölzl et al. [19] which uses Is-
abelle’s typeclass mechanism to generalize prior results
and uses a notion of filters to elegantly describe the
domain on which a function is differentiable. Our trea-
ment of differential equations uses a library by Imm-
ler [22] which provides important results about differ-
ential equations, most notably the Picard-Lindelöf the-
orem for existence and uniqueness of solutions.

Our Coq implementation relies on Coquelicot [11], a
user-friendly library, which extends Coq’s standard real
analysis library with several widely used results, such
as the mean value theorem. For usability, Coquelicot
separates the act of defining a function from the act of
showing that desired properties such as differentiability
are satisfied. This is in contrast to the way the standard
library is written where such properties are encoded by
the types of the functions. It is similar to the treat-
ment in Isabelle, where expressing complex properties
as types is difficult. Coq’s standard library provides an
axiomatization of classical real numbers described as a
complete Archimedean field, but no concrete implemen-
tation. This is unlike in other libraries such as the CoRN
library [26], which provides an implementation of con-
structive reals as Cauchy sequences. The two libraries
are compatible with each other to some extent [24].
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Components Results

Syntax 3.1 Dynamics 3.4-3.5
Statics 3.6

Substitution 5

Renaming 6

Axioms 4
Proof Checker
Soundness 7

Figure 2. Outline of Formalization

3.3 States and Differential Symbols

To define dL’s dynamic semantics, we first choose a
representation of states. Because all assignables are real-
valued, the only choice is in the number of assignables.

Isabelle Because all expressions have a finite number
of identifiers ’n, states are finite-dimensional as well. For
each identifier x, the state assigns a value to the variable
x and its associated differential symbol x′. The Isabelle
formalization prohibits higher differentials and symbols
x′′ for the sake of simplicity, because they can be im-
plemented from first-order differentials by introducing
additional variables. We encode states ’n state as pairs
of vectors of reals. When we need just the variables or
just the differential symbols, it is called ’n half state.

Coq Unlike the Isabelle formalization, the Coq formal-
ization supports higher-order differentials x′′, x′′′, etc.,
since differential symbols are variables as in [39]. We
define the Assign type as the type of both non-primed
variables and (higher-)differential symbols. The seman-
tics of terms maps states to reals where states map
assignables to reals, i.e., we define State as the function
type Assign → R, where R is the type of reals.

3.4 Dynamic Semantics of Differential Terms

Differential term (θ)′ could be thought of as derivatives
of the term θ with respect to time. However, time is only
meaningful during a differential equation, not during a
discrete computation. Thus, the semantics of (θ)′ are
defined instead by its spatial derivatives with respect
to all variables. The differential substitution lemma [39,
Lem. 35] then shows that the spatial and temporal
derivatives agree during the evolution of a differential
equation, because the differential symbols x′ then agree
with the time derivatives of each variable x.

That is, a differential term (θ)′ is interpreted [39,
§2.2] as the sum of derivatives of the value of θ w.r.t.
all variables x ∈ V times the respective ν(x′) value:

Iν[[(θ)′]] =
∑

x∈V

ν(x′)
∂Iνr

x[[θ]]
∂r

(ν(x))

where νr
x denotes the state that agrees with state ν

except for the value of variable x, which is changed
to r ∈ R. Unlike the Isabelle formalization, the Coq
formalization supports higher differentials, so that V

includes differential symbols. The Coq definition sums
over FV(θ), but this is equivalent to summing over V
because all other terms are 0.

Coq In order for Iν[[(θ)′]] to be well-defined, we proved
by induction on terms that the partial derivative ∂Iν

r

x
[[θ]]

∂r

exists. To handle the differential case (θ)′, we proved
that terms are C∞ smooth, i.e., that the nth-partial
derivative of Iν[[θ]]

∂ . . .
∂F (ν

r1
x1

···rn

xn

)

∂rn

(ν(xn))

∂r1
(ν(x1)) (1)

exists for all n, where F is the following real-valued
function on states: λν.Iν[[(θ)′]]. In Coq, this nth-partial
derivative translates as the following recursive function,
which differentiates F over the list of assignables l from
left to right (i.e., the list x1, . . . , xn in Equation 1):

Fixpoint partial derive
(F : state → R) (l : list Assign) : state → R :=

match l with

| [] ⇒ F

| x :: l ⇒
fun (st : state) ⇒

Derive
(fun r : R ⇒ partial derive F l (upd state st x r))
(st x)

end.

where [] is the empty list; :: is the cons operator; the
state (upd state st x r) is the modified state str

x; and
Derive is the Coquelicot abstraction that computes the
derivative of a real-valued function at a point. Coqueli-
cot guarantees that (Derive f x) computes the derivative
of f at point x if the derivative exists, i.e. if ex derive f x
is true. If l is n copies of an assignable y, then par-
tial derive is simply an nth-derivative:

partial derive f l s

= Derive n (fun r ⇒ f (upd state s y r)) (length l) (s y)

where (Derive n f n pt) is a Coquelicot abstraction that
computes the nth derivative of f at point pt.

Of course, in order to prove that the derivative in
Equation 1 exists, we assumed that function symbols
are C∞ smooth, i.e., their interpretations satisfy3:

Definition smooth fun {m : nat} (f : Vector R m → R) :=

3 Coq automatically generates the implicit argument {m : nat} to
the definition of smooth fun from the type of f .
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∀ (Is : Vector (state → R) m) (a : Assign) (l : list Assign),
(∀ I w l’,

Vector.In I Is

→ sublist (w :: l’) (a :: l)
→ ex partial derive I w l’)

→ ex partial derive (fun s ⇒ f (map(revApp s)Is)) a l.

where (revApp a f ) is defined as f (a), and where

Definition ex partial derive (f : state → R) a l : Prop :=
∀ pt s,

ex derive (fun r ⇒ partial derive f l (upd state s a r)) pt.

states that f is differentiable over the list of assignables
a :: l. The smooth fun abstraction states that f is par-
tially differentiable over the list of assignables a :: l as-
suming that its arguments, provided by the Is vector of
real-valued functions over states, are partially differen-
tiable over sublists of a :: l.

Isabelle The Isabelle formalization builds on the pre-
exisiting formalization for a closely related notion of
derivative: the Fréchet derivative. Given a function f :
R

n → R
m, the Fréchet derivative, f ′(x) : Rn → R

m, of
f at a point x : Rn is the linear function defined by the
dot product f ′(x)(x′) = x′ · ∇f(x) where ∇f(x) is the
gradient. We give a syntactic characterization:

frechet::"(’nFun, ’nPnl, ’n) interp

=⇒ (’nFun, ’n) trm

=⇒ ’n half state

=⇒ ’n half state

=⇒ real"

of the Fréchet derivative and prove that it matches the
differential of a term (frechet correctness). Validity of
the differential axioms [39, §5] follows easily. 4

The predicates dfree and dsafe identify differential-
free terms (which we call simple terms or sterms) and
terms allowing non-nested differentials (called differen-
tial terms or dterms), respectively. Likewise osafe, fsafe,
and hpsafe characterize ODE systems, formulas and pro-
grams where all subterms are dsafe. The semantics of
a dterm depends on the whole state, while sterms only
depend on the variables. Hence, we define two seman-
tic functions sterm sem (which takes a ’n half state)
and dterm sem (which takes a ’n state). The lemma
dsem to ssem confirms that both agree on sterms:

lemma dsem_to_ssem:
"dfree ϑ =⇒ dterm_sem I ϑ ν = sterm_sem I ϑ (fst ν)"

A side benefit of the distinction between sterm and
dterm is that we can safely add non-differentiable or
even discontinuous terms to the language. For example,
if we so wished, we could add support for conditionals
and interpreted functions such as min, max, and abs
which are desired in practice for complex proofs such as
the airborne collision avoidance system ACAS X [23].

4 The chain rule is currently omitted due to time constraints and
because it is not needed in practice.

Formalizing the derivative as the Fréchet derivative
leads to an equivalent semantics for differential terms:

definition directional_derivative ::
"(’sf , ’sc, ’cz) interp ⇒ (’sf , ’sz) trm ⇒ ’sz state ⇒ real"

where "directional_derivative I t =
(λv. frechet I t (fst v) (snd v))"

That is, the differential symbol state (snd v) provides
coefficients to the gradient. Inside the evolution of an
ODE, these coefficients agree with the time-derivative
of each variable, thus the semantics of all terms agree
with their time-derivatives. During the discrete stages
of a program, time is meaningless, but all axioms over
differentials hold because the equalities captured in
frechet hold in any (differential) state.

Comparison Allowing higher differentials in the Coq
formalization results in more complex arguments about
derivatives and the requirement that all functions are
C∞ smooth. Prohibiting higher differentials in the Is-
abelle implementation simplifies these arguments and
relaxes the smoothness requirement to C1, also open-
ing the possibility of non-smooth terms. However, this
comes at the cost of more complicated data structure in-
variants, which will complicate the substitution proofs
in Sec. 5. The use of Fréchet derivatives in the Isabelle
implementation aids in reuse of existing results, but will
complicate the lemmas required in Sec. 4.3 for DG, and
makes extensions to infinite-dimensional states more dif-
ficult. By contrast, because the Coq implementation ex-
plicitly defines that only free variables contribute to the
differential of a term, it is easier to show that differen-
tials exist in the presence of infinite states.

3.5 Dynamic Semantics of ODEs

We use the semantics5 of KeYmaera X for differential
programs ODE where differential program symbols c
receive meaning from the interpretation I in analogy to
program constant symbols. We use an unconventional
twist for the semantics of differential products, though,
that agrees with the semantics of systems of ODEs [36].

Variables and differential symbols only change when
mentioned explicitly. For example, the dynamic seman-
tics of (x′ = θ, y′ = 0) and (x′ = θ) differ subtly:
the first changes y′ to 0, but the latter leaves it in-
tact. This complicates our formalizations, because the
ODE libraries require our formalization to distinguish
variables that come from the solution of an ODE from
those kept from the initial state. Differential program
constants must reveal their bound variables as part of
the interpretation.

Isabelle The semantics of a differential program is a
vector field assigning values to the differential symbols

5 Note: While KeYmaera X has recently improved its semantics
to support systems DG and DE, we leave this as future work.
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given the state for the variables. In Isabelle’s vector no-
tation, (χi. e) introduces a vector indexed by i where the
k’th element is computed by substitution as [k/i]e. The
constructors OVar, OSing, and OProd represent differen-
tial program symbols that vary over systems, singleton
systems, and products of systems, respectively.

fun ODE_sem:: "(’nFun, ’nPnl, ’n) interp
⇒ (’nFun, ’n) ODE

⇒ ’n half_state
⇒ ’n half_state"

where

"ODE_sem I (OVar x) = ODEs I x"
| "ODE_sem I (OSing x ϑ) =

(λν. (χ i. if i = x then sterm_sem I ϑ ν else 0))"
| "ODE_sem I (OProd ODE1 ODE2 ) =

(λν. ODE_sem I ODE1 ν + ODE_sem I ODE2 ν)"

This additive semantics for products is highly amenable
to verification, but defies intuition. It is brought into
harmony with intuition by the predicate osafe: in well-
formed ODEs, each variable is bound at most once, so
adding the vector fields of two systems componentwise
coincides with parallel composition.

Coq As in Def. 2 and our Isabelle formalization, in
Coq we defined a function dynamic semantics ode fun
that interprets ODEs as functions of type state→ state.
This function is the Coq counterpart of the ODE_sem
Isabelle function. Given this function we define dy-
namic semantics ode, a predicate that states that the
function phi from [0, r] to state is a solution of the ODE
ode, w.r.t. an interpretation I , as follows:

∀ (z : preal upto r), (x : Assign)
In x (ode assigns I ode)
→ (ex derive (fun t ⇒ phi t x) z

∧ phi z x’ = Derive (fun t ⇒ phi t x) z

∧ dynamic semantics term I (phi z) x’
= dynamic semantics ode fun I ode (phi z) x’)

where preal upto r is the type of positive real numbers
between 0 and r ; and where (ode assigns I ode) is the
set of assignables bound in ode, where I provides the
bound assignables of ODE constants. The denotational
semantics of a program of the form ode &ψ is:

fun v w ⇒
∃ (r : preal) (phi : R → state),

equal states except v (phi 0) (ode footprint diff I ode)
∧ w = phi r

∧ dynamic semantics ode I ode r phi

∧ ∀ (z : preal upto r),
dynamic semantics formula I ψ (phi z)

∧ equal states except (phi 0) (phi z) (ode footprint I ode)

where v is the initial state of the program ode &ψ and w
is its final state. This formula states that (1) the initial
state v has to be equal to phi 0 on all assignables except
on the differential symbols bound in ode (extracted
by ode footprint diff); (2) the final state w has to be
equal to phi r ; (3) phi has to be a solution of ode as
stated by dynamic semantics ode; (4) ψ has to satisfy

the ODE at all points in time between 0 and r ; (5)
and finally, assignables not bound in ode (i.e. not in
(ode footprint I ode)) do not evolve over time. Given
an ode ode, ode footprint extracts all the assignables
of the form x such that x′ = θ occurs in ode, while
ode footprint diff extracts all the assignables of the
form x′ such that x′ = θ occurs in ode.

3.6 Static Semantics

In this section, we verify the static semantics of dL
[39, §2.4]. We verify coincidence lemmas [39, Lem. 10-
12] showing that the dynamic semantics of expressions
depend only on their signatures and free variables, as
well as the bound effect lemma [39, Lem. 9] showing that
only bound variables can be affected by a program.

Because we wish to generate verified prover cores
from our formalizations, we must ensure that the free,
bound and must-bound variables of expressions are com-
putable. The nontrivial part is that differential terms
(θ)′ and predicational symbols C(φ) have all variables
as free variables. In the Isabelle formalization, this is
easy because it supports finite numbers of assignables.
However, in Coq we support infinitely many identifiers,
so we must choose a finite representation. As in KeY-
maera X, the only infinite sets that arise in the static
semantics are cofinite, meaning their complement is fi-
nite. Thus we have a finite representation of sets, i.e., all
sets in the static semantics are either finite or cofinite:

Inductive FCset {T : Type} : Type :=
| FCS finite (l : list T) : FCset

| FCS infinite (l : list T) : FCset.

where a set of the form FCS finite l is a finite set that
only contains the elements in l; and FCS infinite l is
an infinite set that does not contain the elements in l,
i.e., it is the complement of the set FCS finite l. If the
type T has decidable equality, then predicates such as
membership, subset or disjoint become decidable. Inter-
estingly, in order to prove one property of the subset
predicate (called ifset subset iff in our formalization),
in addition to having decidable equality, we required the
type T to come with a “fresh” operation that, given a
list l of elements of T , generates a fresh element that
is not in l. These are the only two operations we ever
used to develop our FCset library.

With this set representation, the proofs of coinci-
dence and bound effect mirror the structure of prior
proofs [39], in both the Coq and Isabelle formalizations.

Comparison The finite-dimensional state space of
the Isabelle implementation provided the useful simpli-
fying assumption that all sets are finite, making all nec-
essary operations easily computable. However, because
formulas may have a large number of variables, using
standard finite set data structures may not be desirable
in practice. The infinite state space of the Coq formal-
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ization forces us to confront this issue head-on, devel-
oping and verifying a data structure analogous to the
one used by KeYmaera X in practice, further increasing
confidence in the implementation of the prover core.

4. Formal Verification of Differential

Dynamic Logic Axioms

Since uniform substitutions reduce soundness to validity
of the axioms, we formalize the proofs that dL’s axioms
are valid [39]. Except for DI, DS and DG, most axioms
have simple local proofs. DI uses the mean-value theo-
rem. DS and DG use the Picard-Lindelöf theorem.

4.1 DI: Differential Invariants

We have implemented differential invariants for atomic
formulas θ1 ≥ θ2 and θ1 > θ2 as the following DI
axioms:

(Q → [x′ = h(x) & Q](f(x))′
≥ (g(x))′)

→ (Q → f(x) ≥ g(x)) → [x′ = h(x) & Q]f(x) ≥ g(x)

(Q → [x′ = h(x) & Q](f(x))′
≥ (g(x))′)

→ (Q → f(x) > g(x)) → [x′ = h(x) & Q]f(x) > g(x)

The other cases can be derived in dL [39]. For readability,
we only showed axioms for single ODEs. Generalizations
to ODE systems are straightforward. For example the
DI axiom that we have proved for atomic formulas of
the form θ1 ≥ θ2 uses a differential program constant c
that can be instantiated to any system of ODEs:

(Q → [c & Q](f(x))′
≥ (g(x))′)

→ (Q → f(x) ≥ g(x)) → [c & Q]f(x) ≥ g(x)

4.2 DS: Differential Solution

DS states that constant ODEs x′ = c are solved by the
function f(t) = x0 + t · c on the domain R and that this
solution is unique. Proving DS proceeds in these steps.

Isabelle For the uniqueness direction of DS, we as-
sume the existence of a solution sol on an closed in-
terval [0, t] and show that solution is equal to f(t) =
x0 + t · c. In Isabelle we show uniqueness of solutions
with Picard-Lindelöf, which says any locally Lipschitz
ODE has a unique solution on an open interval. We do
so with an instance of the locale ll_on_open named ll:

interpret l l : ll on open UNIV
"(λ . ODE sem I (OSing vid1 (f0 fid1)))" UNIV 0

This gives us the existence of a unique solution called
flow. We prove that the maximal existence interval for
a constant ODE is R with ll.existence_ivl_eq_domain

and prove that f(t) = x0+t·c equals the unique solution
of the ODE with ll.equals_flowI.

Coq Because Coquelicot does not provide the Picard-
Lindelöf theorem, the Coq implementation proves unique-
ness directly. Since DS is for constant ODEs (other

ODEs combine axioms [39]), it suffices to show for any
function g that has a constant derivative c that:

∀ (c r : R) (g : R → R),
(0 ≤ r)
→ (∀ x : preal upto r , ex derive g x ∧ Derive g x = c)
→ g r = (g 0 + c * r).

This result can easily be proved by first turning the
goal into g r - g 0 = c * r , and then by integrating
both sides over the interval [0, r] and using the following
simplified form of the fundamental theorem of calculus
(for constant derivatives and a ≤ b):

(∀ x, a ≤ x ≤ b → ex derive g x ∧ Derive g x = c)
→ RInt (Derive g) a b = g b - g a.

4.3 DG: Differential Ghost

The axiom DG allows adding or removing an ODE
y′ = θ to another ODE if θ is linear in y (but not
necessarily linear in time). For example, we extend the
ODE x′ = x2 to (x′ = x2, y′ = x3 · y+ 2 · y). We use the
solution φx to construct a time-dependent ODE for y:
y(0) = y0, y

′(t) = φx(t)3 · y + 2 · y. Because this is still
linear in y it has a solution, even though it is not linear
in t. Linearity ensures the solution exists at least as
long as the solution for the rest of the system, which is
needed for soundness. The proof is by Picard-Lindelöf.

Isabelle The existence of unique solutions provides a
unique solution on the open maximal existence interval
of an ODE (see ll_on_open_it.flow_usolves_ode).
We need solutions on the compact interval [0, t]. Thus,
our proof first observes that when a solution exists on
[0, t], then [0, t] is a subset of the maximal existence
interval. We then observe that the ODE for y′ has the
same existence interval as the ODE for x′ and thus
[0, t] is a subset of that existence interval. Thus we can
restrict the solution for y′ to [0, t].

Applying ll_on_open_it.flow_usolves_ode requires
showing that the ODE for y′ is locally Lipschitz, which
we show by first showing it has a continuous derivative.
Because we use Fréchet derivatives, the derivative f ′(x)
at a point x is a (bounded linear) function. Continu-
ity for derivatives is defined using a metric space on
bounded linear functions with operator norm:

‖f‖ = sup
x6=0

‖f(x)‖
‖x‖

This lets us prove a lemma continuous_blinfun_vec’

which allows us to show derivatives are continuous by
showing each component individually.

Coq For lack of a Picard-Lindelöf theorem in Coqueli-
cot, only the easy → direction of DG is proved in our
Coq formalization, i.e. that [x′ = f(x) & q(x)]p(x) im-
plies ∃y [x′ = f(x), y′ = a(x)y + b(x) & q(x)]p(x).
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5. Formally Verified Uniform

Substitution

First- vs. Second-Order As presented in [39, Fig.1]
(for unary functions), to apply a uniform substitution
σ to a term of a form f(θ1, . . . , θn), one substitutes ·i

by σ(θi) in u, if σ maps f to u, i.e., σ(f(θ1, . . . , θn)) =
{·1 7→ σ(θ1), . . . , ·n 7→ σ(θn)}(u). The reserved constant
symbols of the form ·i mark the positions where the ar-
guments will end up in u. For example, σ could map
the ternary symbol f to ·1 + ·2 + ·3. The dot terms
are replaced with the concrete arguments by a recur-
sive call. While dot terms exist only in the substitution
data structure, they still appear in the arguments to
substitution. In order to simplify the termination ar-
gument for substitution, we split the substitution algo-
rithm into two separate phases that we call first-order
uniform substitution and second-order uniform substitu-
tion, borrowing terminology from Nuprl [8, 13]. Second-
order uniform substitution is equivalent to the substitu-
tion operation of [39]. However, when we substitute the
arguments of a function into the body, we call a separate
first-order substitution instead of making a recursive
call to second-order substitution. First-order substitu-
tion is only responsible for substituting nullary symbols
representing arguments. This greatly simplifies the for-
mal termination argument for both operations.

Error Monad vs. Separate Admissiblity Check

Our Isabelle implementation separates the admissibil-
ity check from the application of a uniform substitution
to an expression. Uniform substitution is therefore im-
plemented as a recursive total function. The soundness
theorem assumes that admissibility holds, which is a
decidable, inductively defined predicate.

In Coq we combine both passes and use an option
monad to deal with the fact that uniform substitution
fails if one admissibility check fails.

The advantage of our Isabelle implementation is that
uniform substitution is a total function, while the ad-
vantage of our Coq implementation is that we only do
one pass over expressions. Even though using a monad
slightly complicates our Coq definition of uniform sub-
stitution, because we are only ever interested in the case
when uniform substitution succeeds, using the right tac-
tics, we never have to explicitly deal with the monad.

Adjoint Interpretation The substitution proof pro-
ceedes by defining for each substitution σ, interpreta-
tion I and state ν an adjoint interpretation [39, §3.1]
that equivalently captures the effect of σ semantically.
Since validity means truth in every interpretation and
state, validity of the substituted formula follows from
the validity of the original formula in the adjoint inter-
pretation [39, §3.2].

Coq Because the adjoint interpretation of a uniform
substitution s needs to capture the effect of s on expres-
sions, it associates the following function with function
symbol g of arity n:

fun d : Vector R n ⇒
dynamic semantics term

(upd interpretation dots I d) v (lookup func s g n)

where (dynamic semantics term I v t) implements
Iv[[t]]; (upd interpretation dots I d) agrees with I ex-
cept for the interpretation of the symbol ·i, which is
changed to the ith element of d; (lookup func s g n)
returns u if s maps g to the term u, and g(·0,. . . ,·n−1)
otherwise. In Coq, for the adjoint interpretation to be
well-defined, we have to prove that the above function
satisfies the smooth fun predicate. We prove this by
induction on the term (lookup func s g n). To get a
strong enough induction hypothesis to prove the dif-
ferential term case, we prove instead the following by
induction on the term t:

smooth fun (fun d : Vector R m ⇒
partial derive (fun v ⇒ dynamic semantics term

(upd interpretation dots I m d) v t) l s).

for any natural number m, state s, assignable list l, and
interpretation I . Note that smooth fun differentiates
over the interpretation used to compute the semantics
of t, while the inner partial derive differentiates over the
state. In the case where t is a function symbol g, we only
know that g is smooth, i.e., it satisfies smooth fun. In
order to apply our smooth fun hypothesis we combine
the two partial derivatives mentioned above into one.
We then uncombine the two partial derivatives in order
to apply the induction hypothesis.

In order to combine nested partial derivatives into
a single partial derivative, one has to carefully avoid
variable name clashes through renaming:

partial derive
(fun s1 ⇒ partial derive (fun s2 ⇒ F s1 s2 ) l2 s2 )
l1

s1

= partial derive
(fun s ⇒ F (update state st s s1 l2’)

(update state st rebase s2 s l2’ l2 ))
(l1 ++ l2’)
(update state st rebase s1 s2 l2 l2’).

where l2’ is a fresh renaming of the list l2 that is disjoint
from l1 ; and uncombine them as follows:

partial derive
(fun s ⇒ F (update state st s s1 l2’)

(update state st rebase s2 s l2’ l2 ))
(sl1 ++ sl2’)
s

= partial derive
(fun s1 ⇒ partial derive

(fun s2 ⇒ F s1 s2 )
sl2

(update state st rebase s2 s l2’ l2 ))
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sl1

(update state st s s1 l2’)

where the state (update state st s1 s2 l) is defined as
s2 on assignables in l, and as s1 otherwise; and where
the state (update state st rebase s1 s2 l1 l2 ) returns
(s2 (rename l2 l1 a)) on assignables a in l2 , and is
defined as s1 otherwise, where (rename l2 l1 a) returns
a if it does not occur in l2 , and otherwise returns the
nth element of l1 if a is the nth element of l2 .

Isabelle Because we explicitly represent the number
of (possible) function symbols in the type of a term, we
can express the fact that argument symbols are absent
in the result of first-order substitution through the type
of the first-order substitution functions. Consider the
type for first-order substitution on terms:

primrec TsubstFO::"(’nFun + ’b::finite, ’n) trm

⇒ (’b ⇒ (’nFun, ’n) trm) ⇒ (’nFun, ’n) trm"

That is, in (TsubstFO θ σ) the term θ distinguishes
the ’nFun permanent symbols from the ’b temporary
symbols that stand for arguments. The substitution
σ specifies a replacement for all ’b of the temporary
symbols, and those replacements do not refer to any
of the ’b symbols, after which it returns a term that
also does not refer to ’b symbols. When second-order
substitution calls first-order substitution on a term θ,
then θ always comes from the substitution σ and not
from the original input expression, thus we have the
freedom to distinguish argument symbols from other
function symbols in types.

Substitution requires showing that data structure
invariants are maintained. The result of substitution is
always safe according to the predicates dsafe, etc. These
properties follow by induction.

Substitution is perhaps where the less restrictive in-
variants of the Coq formalization pay off most heavily:
because substitution makes extensive changes to a for-
mula, any structural invariants also require extensive
arguments that they are maintained.

6. Renaming

Uniform renaming and bound renaming are the primary
operations that KeYmaera X implements that were not
addressed in the theory [39]. Whereas uniform substitu-
tion replaces a symbol with an arbitrary term, renaming
renames two variables to each other. This renaming op-
eration is a primitive operation of Nominal Logic [35]
where it is referred to as swapping. We have proved that
renaming preserves the validity of formulas. Renaming
is necessary when applying an axiom that refers to a
concrete variable name, such as the assignment axiom
[:=]. Bound renaming is a small extension to uniform
renaming that only renames bound variables.

Uniform Renaming Uniform renaming swaps two
variables x and y uniformly everywhere in an expression.
The correctness argument is analogous to that for sub-
stitution: to show that substitution preserves validity,
we constructed an adjoint interpretation whose effect
is equivalent to the substitution. Because variables re-
ceive meaning from the state, we instead construct an
adjoint state whose effect is equivalent to swapping x
and y (specifically, the state where x is swapped with y
and x′ is swapped with y′). We show by induction that
the result of renaming is true in a given state iff the
initial formula is true in the adjoint state, so by validity
of the initial formula, the renamed formula is valid.

Bound Renaming Given an assignment inside a
modality [x := θ]φ, bound renaming renames the des-
tination variable x, but differs from uniform renaming
because it does not affect the right-hand side θ, only
the destination x and the formula φ. The correctness
proof of bound renaming consists of applying uniform
renaming to the formula φ and using the coincidence
theorem on formulas to show that the result is true in
the state reached after the assignment y := θ.

Verification Reveals a Bug The proof for bound
renaming exposed an exploitable soundness bug in the
KeYmaera X implementation. The correct admissibility
criterion for bound renaming of x and y in [x := θ]φ is

{y, y′, x′} ∩ FV(φ) = ∅

The need to include x′ in this condition is counter-
intuitive, which led to a prover bug where this variable
was not checked. However, once the bug is discovered,
it is straightforward to construct an example where this
bug leads to a soundness violation, for example:

BRclash 
[x := x′]x = x′

[y := x′]y = y′

The premiss is valid, but the conclusion is not. Thank-
fully, no existing code in KeYmaera X depended on the
presence of this bug, so changing the precondition as
indicated above was sufficient to fix the bug.

7. Applications

The immediate application of this work is the creation
of verified prover kernels for the theorem prover KeY-
maera X. While we leave a verified standalone kernel as
future work, our formalizations include verified proof
checkers for dL embedded in Coq and Isabelle which
interpret dL proof terms inspired by LPdL [16].

We evaluate the completeness of our proof checkers
with a few example proofs. For our first example, we
implement the ∧ case of DI in dL. The idea is to reduce
[c&Q](P1 ∧ P2) equivalently to [c&Q]P1 ∧ [c&Q]P2
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using [α](P ∧Q)↔ [α]P ∧ [α]Q, which is a consequence
of the K axiom, and then using DI separately on both
conjuncts to obtain [c&Q](P1)′ ∧ [c&Q](P2)′ as the
remaining subgoal provided that P1 ∧P2 holds initially.

Our second example is a proof of Example 1 from p. 2.
Despite its simplicity, it demonstrates many reasoning
techniques for concrete systems. For example, the dif-
ferential equation is easily solvable in closed form, but
the same axioms enable checking properties of nonlinear
ODEs that have no closed form solution.

Our embedded proof checkers make initial steps at
bridging the theory with KeYmaera X. KeYmaera X
implements an extension of the Uniform Substitution
calculus [39] with a propositional sequent calculus [36].
Its proofs do not operate on formulas but on locally-
sound derived rules (i.e. the conclusion is valid in any
interpretation in which the premisses are). Thanks to
uniform substitutions [39, Thm.27], derived rules, as
with axioms, can be represented concretely as a con-
clusion C and list of premisses (SG1, . . . , SGn).

We implement and verify enough of the theory of
sequent calculus and derived rules to implement our
examples, but gaps remain. A systematic gap is that
our formalizations do not provide explicit support for
arithmetic reasoning. Currently, support is limited to
leaving arithmetic facts as open goals or adding them
as axioms and proving them in Coq or Isabelle. In
future work, we plan on using a witness-producing real
arithmetic solver and verified witness checker based on
semidefinite programming, which is competitive with
second-tier decision procedures for real arithmetic [40].
Furthermore, our DG axiom does not support systems
and the DE axiom is less flexible than in KeYmaera X.
Implementing them in full generality requires a modest
extension of differential program symbols.

8. Lessons Learned

The process of formalization has largely been one of
discovering nuances in what came before, rather than
discovering outright flaws.

It is perhaps remarkable that we found only one
explicit bug, and at the same time the location of that
bug was telling. Renaming was until now the only part
of the KeYmaera X core that was not justified by a
proof, and it was the only part in which we found a
bug. While having an informal proof as the foundation
of the prover core did not give us the level of assurance
we desired, it clearly went a long way to improve the
robustness of the system in practice.

Our two formalizations confirm that both approaches
to higher differentials [38, 39] are viable options. The
formalizations also confirm design decisions for simpler
soundness arguments. For example, differential invari-
ants used to employ a meta-operator on formulas [37]

that the uniform substitution approach abandoned to
obtain a minimalistic basis [39]. Our formalizations con-
firm that it is far easier for correctness arguments to
decompose DI into separate axioms for each case.

Both formalizations independently chose to separate
first-order and second-order substitution to remove the
need for custom well-founded orders, which are easier
for humans than for proof assistants. There is sometimes
a tradeoff between the complexity of an algorithm and
the complexity of its correctness arguments. In our
case both formalizations chose a longer algorithm, thus
requiring more proofs, each of which was simpler.

9. Related Work

Verification of Theorem Provers Barras and
Werner [7] verified a typechecker for a fragment of Coq
in Coq. Harrison [18] verified (1) a weaker version of
HOL Light’s kernel in HOL Light and (2) HOL Light in
a stronger variant of HOL Light. Myreen et al. have ex-
tended this work, verifying HOL Light in HOL4 [28, 32]
and using their verified compiler CakeML [27] to en-
sure these guarantees apply at the machine-code level.
Myreen and Davis proved the soundness of the ACL2-
like theorem prover Mitawa in HOL4 [31]. Anand, Bick-
ford, and Rahli [5, 42] proved the relative consistency
of Nuprl’s type theory [3, 13] in Coq with the goal of
generating a verified prover core. We share a common
goal: formally verify that theorem provers are correct.
However, the underlying theory of our prover greatly
differs (dL intimately deals with programs with differen-
tial equations), leading to substantially different proofs
(in our case, intricate proofs about real analysis).

Verification of Hybrid Systems Hybrid systems
verification is an actively studied field. For example,
SpaceEx [15] is a model checker that provides an auto-
mated reachability analysis for linear hybrid automata
with a soundness-critical core of about 100 000 LOC.

We focus on approaches that strive for a justifica-
tion of the verification technique itself. Immler [21]
verifies a set-based reachability analysis for ODEs in
Isabelle using his differential equations library [22].
His use of Isabelle makes his analysis more trustwor-
thy than SpaceEx, but it is currently less automated
and, more fundamentally, lacks the expressiveness and
scalability of dL. Völker [44] defines the semantics of
hybrid automata in Isabelle, but no verification tech-
niques. Ábrahám-Mumm et al. formalized in PVS [2] an
automaton-based approach similar to timed automata.
They implement Floyd’s inductive assertion reasoning
method. However, they only check invariants when tran-
sitioning between discrete states, as opposed to our
differential invariants which hold continuously. Further-
more, they only support continuous dynamics given as
explicit solutions. Thus they cannot reason by differen-
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tial invariant, nor can they express systems whose solu-
tions only exist for finite time. StarL [30] is a framework
for programming and simulating Android applications
that control robots. It uses a formalization of timed
automata and has a discrete model of space in order to
verify distributed applications. Anand and Knepper [4]
develop the framework ROSCoq based on the Logic of
Events for reasoning about distributed CPS in Coq with
constructive reals and generating verified controllers.
However, they provide limited support for reasoning
about derivatives, requiring extensive manual proofs by
the user. VeriDrone by Ricketts et al. [43] is a frame-
work for verifying hybrid systems in Coq that relies on
a discrete-time temporal logic called RTLA, inspired by
TLA [29]. They prove an analog of DI, but not the other
ODE axioms. They use a combination of a deep and
shallow embedding, allowing arbitrary Coq propositions
to be embedded directly into RTLA. Their embedding
reuses Coq’s notion of substitution instead of defining
its own. An advantage of uniform substitution is its
generality: we can introduce new variable dependencies
if they do not clash, which is necessary for most proof
steps. For example, the V axiom (p() → [a]p()) can
immediately be instantiated to x = 0 → [y′ = 1]x = 0
because BV(y′ = 1) ∩ FV(x = 0) = ∅, introducing de-
pendencies on x and y and y′. The permitted syntactic
occurrence patterns for uniform substitutions are easily
decidable, thereby enabling automatic clash detection
and sound generalizations of axiom shapes. That needs
the syntactic exposition of a deep embedding, though.

10. Conclusions

We have for the first time mechanized the metatheory
for the soundness of dL (Fig. 3 summarizes what has
been done so far). This mechanization is validated by
some example proofs, demonstrating how to recover con-
venient reasoning over differential invariants, and how
to use common techniques to reason about concrete
systems. This validation shows that our formalizations
put us well on our way to verified prover cores for dL
that can be used in production to increase the trustwor-
thiness of proofs about hybrid systems. Our choice to
perform the formalization twice, largely independently,
also offered a rare opportunity to discuss subtleties that
arose during formalization and how to address them.

We cannot answer whether it is easier to get a prover
core correct by minimizing its size without the sup-
port of formal proof (1 700 LOC of KeYmaera X) or
by implementing it inside another proof assistant with
a larger core (8 913 LOC of Isabelle’s core Isabelle/Pure,
16 538 LOC for Coq’s kernel, and 6 720 for its standalone
checker of compiled files), because both rest on nontriv-
ial stacks and our formalizations (14 614 total lines in
Isabelle, 9 364/16 406 lines of Coq specifications/proofs)
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systems of ODEs [36] ✓ ✓ ✓

multiple argument functions ✗ ✗ ✓ ✓ ✓

infinite number of identifiers ✓ ✓ ✓ ✗ ✓

explicit set representation ✗ ✗ ✓ ✗ ✓

higher-order differentials ✗ ✓ ✗ ✗ ✓

uniform substitution definitions 1 1 1 2 2
uniform variable renaming ✗ ✗ ✓ ✓ ✓

bound variable renaming ✗ ✗ ✓ ✓ ✓

sequent calculus [36] ✓ (✓) (✓)
DG ✓ ✓ ✓ ✓ ✗

DG+DE for systems of ODEs [37] ✓ ✗ ✗

Figure 3. Comparison between various presenta-
tions/implementations of dL

and the libraries they depend on need to be free of speci-
fication errors. Yet, without doubt, the combination of a
well-engineered prover core with multiple formal sound-
ness proofs in well-established, well-tested proof assis-
tants dominates either approach alone. This is especially
true because these formalizations increase confidence in
the correctness of the supporting theory, which cannot
be addressed by better engineering. Furthermore, these
formalizations open up the possibility of synergistic col-
laboration between KeYmaera X, Coq and Isabelle.
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