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Abstract
Stylized facts show there is a clustering of countries in three balanced growth paths
characterized by differing income/growth, human capital and incidence of infectious
diseases. To explain this, we develop a dynamic general equilibrium model incorpo-
rating SI S epidemiology dynamics, where households choose how much to invest
in human and physical capital, as well as in controlling the risk of infection. In the
decentralized economy, households do not internalize the externality of controlling
infection. There are multiple balanced growth paths where the endogenous preva-
lence of the disease determines whether human capital is accumulated or not, i.e.,
whether there is sustained economic growth or a poverty trap. We characterize the
optimal public health policy that internalizes the disease externality and the subsidy
that decentralizes it. Perversely, for countries in a poverty trap and most afflicted with
diseases, the optimal subsidy is lower than for growing economies. We also study the
quantitative effects of better control of diseases, and of increasing life expectancy on
countries in a poverty trap.
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1 Introduction

The stylized facts on infectious diseases and the macroeconomy are that there is a
clustering of countries into three different groups: with high income (and growth), high
human capital accumulation and almost no incidence of infectious diseases (largely
OECD countries); with lower income (and growth), intermediate human capital and
low incidence of infectious diseases (developing countries); and countries in a poverty
trap with no growth, low human capital and the high incidence of infectious diseases
(largely in sub-Saharan Africa). There is a high persistence of countries in each of
these three states. We model the joint determination of the transmission of infectious
diseases, human capital and economic growth in a dynamic general equilibriummodel
to generate three balanced growth paths, one of which is a poverty trap, consistent
with these facts. The modeling of infectious disease based on the SI S epidemiology
model enables us to isolate the effect of the externality associated with infectious
disease transmission on the macroeconomy. We, thus, characterize the optimal public
health policy and how it can be decentralized via a health subsidy. We also study the
quantitative effect of increasing life expectancy and of greater effectiveness of control
of diseases through exogenous medical changes.

Tomodel the interaction of infectious diseases, human capital and economic growth,
we build on the Lucas (1988) model of endogenous growth where individuals allocate
time between working and accumulating human capital. In our environment, individ-
uals are exposed to the risk of being infected by infectious diseases that incapacitate
them fromworkingor accumulating humancapital. The transmission of diseases builds
on insights from the mathematical biology literature on epidemiology of infectious
diseases. However, unlike the biology literature, there is a choice to spend resources,
either private or public, to control the transmission of diseases by affecting their infec-
tivity. As the diseases affect the ability to work and the productivity of human capital,
their incidence affects the accumulation of human capital. This effect on human cap-
ital accumulation in turn affects incentives to accumulate physical and health capital.
In turn, human capital accumulation affects incentives to control the incidence of the
disease through affecting the shadow cost of infection. Thus, we endogenize the main
objects of interest: the disease incidence through expenditures on health where the
cost of the disease is affected by the human and physical capital; human capital where
its returns are affected by the incidence of the disease; and income and welfare which
are directly affected by human capital and incidence of the disease, as well as the
investment rates in the three different types of capital being determined endogenously
in an equilibrium path; and labor participation and productivity being determined by
the evolution of the disease as well as the choice of human capital accumulation.

This paper is part of a larger project to incorporate epidemiology models into
dynamic general equilibriummodels (see Goenka and Liu 2012; Goenka et al. 2014).1

The epidemiologymodels lend themselves to integration into economicmodels as they

1 Goenka and Liu (2012) treat disease dynamics as exogenous. Goenka et al. (2014) endogenize disease
dynamics in a neoclassical growth model and do not study the interaction with human capital accumulation.
See also Bonds et al. (2009) and Delfino and Simmons (2000) who use Solow-type neoclassical models
with disease dynamics. Manuelli (2011) also studies the interaction of diseases with human capital but does
not fully endogenize disease dynamics or study a fully dynamic general equilibrium model.
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capture disease transmission via dynamical systems. In this paper, we concentrate on
recurring diseases, that is, individuals can recover from the disease but recovery does
not confer any subsequent immunity to either the same or other diseases. We adopt
the canonical SI S epidemiological model. An individual is born healthy into a large
household,2 susceptible to the disease, S, may get infected and become infective, that
is ill and capable of transmitting it to others, I , and then recover to become susceptible
again, S. Recurring diseases cover many of the important infectious diseases that are
not controlled through immunizations. They include the different strains of influenza,
STDs, malaria, schistosomiasis, dengue and the so-called neglected diseases. Some
of these are vector-borne diseases but from an economic modeling point of view, the
explicit modeling of the vector evolution (such as population of mosquitoes) should
be considered if it adds additional insight into the economic analysis .3 We abstract
from this.

We study the competitive equilibrium balanced growth paths in a decentralized
economy and show that the model generates multiple balanced growth paths (BGPs)
consistent with these three clusters, where infectious diseases are either eradicated
or are endemic. In the disease-free case, countries grow at a faster rate, while in the
disease-endemic cases, countries either grow at a slower rate or are in a poverty trap,
depending on the investment in human capital, which in turn is influenced by the
severity of the disease prevalence. The intuition is that marginal product of human
capital investment depends on the effective labor force (or the disease prevalence),
which itself is endogenously determined by the effective health capital. When the
effective health capital is low and infectious diseases have high incidence, the return
to human capital is extremely low. Thus, there is no incentive for human capital
accumulation and countries are in a poverty trap. The endogenous incidence of the
disease is crucial in determining whether the economy grows or not. If a country
is in a poverty trap, then we show that a marginal reduction in the disease may not
be sufficient for the economy to grow. If diseases are endemic, then higher disease
incidence decreases savings and growth, as well as the investment rate in health and
physical capital. The share of investment in health capital is increasing in the growth
rate or decreasing with disease incidence. The intuition for this is similar: The higher
disease incidence depresses returns to human capital which reduces savings and also
the returns to controlling the disease. The differential disease incidence generates
heterogeneity in savings and investment rates across and within the different balanced
growth paths, which cautions the use of Solow-type models in studying the interaction
of disease and growth.

In the decentralized economy, households do not take into account how their own
decisions affect the aggregate disease dynamics. Thus, they do not internalize the exter-
nality of infectious disease transmission. While this externality has been recognized

2 The setup of a large representative household is similar to the one used in the labor search literature,
which embeds a labor search structure into a dynamic general equilibrium model. This simplifies analysis
as one does not have to keep track of the cross-sectional distribution of various economic variables. The
model is reduced to a representative agent framework, though with heterogeneity within the household.
3 For example, Bonds et al. (2009) do notmodel the vector when studying the equilibrium affects ofmalaria,
but Gersovitz and Hammer (2004) do as they are interested in evaluating different interventions such as
treatment, bed nets and spraying to control malaria.
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(Geoffard and Philipson 1996; Gersovitz and Hammer 2004), its effects have not been
fully explored in a dynamic general equilibrium environment. To study the effect of
this externality and contrast the competitive situation (based on private health expen-
ditures) from the effect of public health policy, we also study the centralized economy
where a social planner takes the disease externality into account. In this case, the
effective health capital is higher, and thus, typically human capital accumulation and
the growth rate are also higher.4 However, public health policy does not guarantee
sustained economic growth and there can be the situation where the disease incidence
is so high that even in the planning outcome there is no human capital accumulation
and economic growth. As delivery of effective public health programs remains a chal-
lenge in poor countries, we characterize the optimal subsidy that will decentralize the
planning solution. The optimal subsidy is proportional and increasing in the size of the
disease externality. It also depends on whether human capital is being accumulated or
whether a country is growing or not. We show that there can be a perverse situation
where countries that are most afflicted by infectious diseases will have lower subsi-
dies than countries that grow, as the growth dividend from reducing the incidence of
diseases is absent. Thus, for the least developed countries, the poor health conditions
are not only the result of tighter budget constraints, but more importantly the lack
of incentives for investing in health. There may also be a feedback effect from the
human capital to the contact rate through increasing awareness and understanding of
the nature of diseases. If this effect is present, then economies may still growwith high
contact rate of diseases and there may be a channel to enable growth of economies in
a poverty trap through increasing human capital.5.

To see the effect of the disease externality, we calibrate the model to parameters
for the poverty trap economies to compare the competitive with the optimal paths.
First, we see the effect of an epidemiological transition, i.e., for the same expenditure
the contact rate drops as the medical strategies become more effective. While a 42%
drop in the contact rate is needed for the economy to start growing in the optimal
path, a decrease of 58% is needed in the competitive case. Second, we examine the
effect of a demographic transition, where the life expectancy increases exogenously.
In the competitive case, life expectancy has to increase from the current 55 years to
67 years before economy starts growing, but only to 59.5 years in the optimal path.
In both scenarios, when the economy is growing, the growth rate is double in the
optimal as opposed to the competitive path. Thus, instituting public health policies
that internalize the disease externality leads to growth sooner, as well at a faster rate.

The paper is organized as follows. Section 2 provides the stylized facts on the rela-
tionship between disease incidence, income and growth, and educational attainment.
Section 3 presents the economic epidemiology model, and Sect. 4 examines multiple
balanced growth paths in the decentralized economy. Section 5 studies the centralized
economy and optimal public health policy. Section 6 contains the model calibrations
and simulations. Section 7 concludes.

4 The underinvestment in preventive health expenditures predicted by the model is consistent with the
evidence that there is underinvestment in preventive health by those who are most afflicted by the infectious
diseases in LDCs, see Banerjee and Duflo (2011) and Tarozzi et al. (2009).
5 We thank the two referees for suggesting this. See “Appendix 4” for this extension.
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2 The empirical facts

We conduct a cluster analysis to group countries based on various economic, edu-
cational, demographic and health-related indicator variables. 6 These stylized facts
on the cross-country evidence on the relationship among diseases, human capital and
growth motivate this paper. We adopt a cluster analysis rather than reduced-form
regression for two reasons: economic growth, human capital and disease prevalence
are simultaneously determined, causing an endogeneity problem; and there is a non-
linearity problem due to the nonlinearity in disease evolution. The disease incidence
is important in determining the multiple balanced growth paths, and we need to under-
stand changes within and across these balanced growth paths. These issues impose a
challenge for reduced-form regression and can be a reason for the sensitivity of the
estimates for the impact of disease control on the economy.7

The mortality rate is often used as a measure of burden of infectious diseases, for
reasons of both humanity and easy data accessibility. However, morbidity caused by
infectious diseases is at least as important as mortality (see Bleakley 2007, 2010 for
impact of diseases with morbidity but low mortality). Diseases with a low mortality
rate but a high morbidity rate have effects in terms of both the direct cost of treating
and indirect of cost of being disabled from the disease. As a result, World Health
Organization (WHO) provides a summarymeasure—disability-adjusted life year rates
(DALY)—to give a better indication of the burden of diseases from both mortality and
morbidity. It is calculated as the ratio of sum of the years of life lost due to premature
mortality (YLL) and the years lost due to disability (YLD) in the population.8 As this
paper focuses more on disability caused by infectious diseases, ideally we should be
using YLD as the measure for the burden of infectious diseases. However, since YLD
is not available at the country level, we use DALY in the following cluster analysis.
As countries bearing the heavier burden of infectious diseases—higher in DALY—
are higher in both YLL and YLD, our results should be robust to any of the above
measurements for the cluster analysis. Moreover, as DALY at country level is only
available for year 2000 and 2010, we also include mortality rate caused by infectious
diseases. For educational attainment at the country level, we use the updated average
schooling years from Barro and Lee (2013), which is available from 1965 to 2010 at
5-year intervals. The rest of data used for the cluster analysis are from theWorld Bank

6 The classification of countries into developed, developing and least developed is endogenous and imple-
mented via cluster analysis. The objective of cluster analysis is the classification of objects according to
similarities among them, and organizing of data into groups. Researchers have developed many algorithmic
approaches of the clustering techniques, giving rise to different classification methods. We adopt the most
simple and popular classification method, that is, K-means clustering algorithm. It aims to partition all
observations into k clusters, in which each observation belongs to the cluster with the nearest mean.
7 See for example, Acemoglu and Johnson (2007), Ashraf et al. (2008), Azomahou et al. (2016), Bloom
et al. (2014), Gallup and Sachs (2001).
8 YLL basically corresponds to the number of deaths caused by infectious diseases multiplied by the
standard life expectancy at the age at which death occurs. To estimate YLD, the number of incident cases
in a certain period is multiplied by the average duration of the diseases and a weight factor that reflects the
severity of the disease on a scale from 0 (perfect health) to 1 (death). For more details, please refer to WHO
Web site:http://www.who.int.
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database, including GDP per capita in years 1965 and 2012, average growth rate from
year 1965 to 2012, life expectancy in years 1965 and 2012.

The cluster analysis endogenously classifies all the countries into three groups,
whichwe call developed countries, developing countries and least developed countries
(LDCs). The LDCs are largely in the Sub-Saharan African Region.9 Table 1 describes
the mean and confidence intervals of one standard deviation for the selected variables
used in the cluster analysis at each group level. The average growth rate for developed
countries is around 1.86%, and for developing countries it is around 1.79%. In contrast,
the LDCs have the lowest growth rate, and in particular, some countries are in a
poverty trap with a negative average growth rate. In terms of the spread of infectious
diseases, the LDCs bear the heaviest burden of infectious diseases. On average, for
each individual 38%of his time is lost due to either premature death or disability caused
by infectious diseases. As a comparison, an individual in developing countries loses
6.5% of his time due to infectious diseases and this number is 1.52% for developed
countries. The life expectancy at birth in developed countries is significantly higher
than the one in developing countries, which again is significantly higher than the one
in the LDCs. For the educational attainment, developed countries have the highest
educational levels with 7.04 average schooling years in 1965 and 11.20 in 2010, while
the LDCs have the lowest educational levels with 1.22 in 1965 and 4.44 in 2010.
Countries with heaviest burden of infectious diseases are countries with lowest GDP
per capita and associated with lowest average schooling years, though on average
GDP per capita, life expectancy and educational level have risen for the past few
several decades. Thus, there is a negative relationship between disease incidence and
economic development, which motivates the economic epidemiology model in this
paper.

Furthermore, we provide a dynamic view of how income, education and disease
prevalence coevolve through Markov transition matrix (Quah 1993).10 Due to the
data availability, we focus on the transition from 1990 to 2010, during which period
we have data on GDP per capita, schooling and prevalence of Tuberculosis for total
114 countries.11 We construct Markov transition matrix for income, schooling and
disease prevalence separately following Quah (1993). For income, we took each coun-
try’s GDP per capita relative to the world average as the basic data and define three
states—high-income state, medium-income state and low-income state. Similarly, we
define three states for schooling—high educational attainment, medium educational
attainment and low educational attainment, and three states for the prevalence of

9 There are in total only 67 countries for which we have the complete data. Here, we present the list of
countries in each group. The developed countries include Australia, Austria, Belgium, Canada, Denmark,
Finland, France, Germany, Greece, Iceland, Israel, Italy, Japan, theNetherlands, NewZealand, Norway, Sin-
gapore, Spain, Sweden, Switzerland, UK and USA. The developing countries include Algeria, Argentina,
Barbados, Bolivia, Chile, China, Colombia, Costa Rica, Ecuado, El Salvador, Guatemala, Guyana, Hon-
duras, Hungary, India, Indonesia, Iran, Jamaica, Malaysia, Mexico, Pakistan, Panama, Paraguay, Peru,
Philippines, Portugal, Syria, Thailand, Trinidad and Tobago, Tunisia, Turkey, Uruguay and Venezuela. The
least developed countries are Cameroon, Gambia, Ghana, Kenya,Mali, Niger, Senegal, Sierra Leone, Sudan
and Zambia.
10 Thanks to one of the referees who suggested this approach.
11 For transition in disease prevalence, we also looked at the transitionmatrix for DALY (disability-adjusted
life year rates due to infectious diseases) from 2000 to 2010. The qualitative results remain valid.
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Table 2 Markov transition matrix from 1990 to 2010

High income Medium income Low income

Panel A: Transition matrix for GDP per capita

High income 0.96 0.04 0

Medium income 0.03 0.94 0.03

Low income 0 0.08 0.92

No prevalence Low prevalence High prevalence

Panel B: Transition matrix for tuberculosis prevalence

No prevalence 1 0 0

Low prevalence 0.45 0.47 0.08

High prevalence 0 0.24 0.76

High Medium Low

Panel C: Transition matrix for educational attainment

High 0.83 0.17 0

Medium 0.19 0.79 0.12

Low 0 0.32 0.68

tuberculosis—no prevalence, low prevalence and high prevalence. We estimated the
3×3Markov chain transitionmatrix, seen inTable 2,whose ( j, k) entry is the probabil-
ity that an economy in state j transits to state k. The estimated transitionmatrices show
that there is high persistence in the transition over the 20 years from 1990 to 2010—
92% countries which were poor in 1990 have remained poor in 2000, 68% countries
which had low average schooling years have remained low in educational attainment,
and 76% countries which had above average disease prevalence have remained high
in disease prevalence. We also look at the countries which that have been in a poverty
trap (which were poor in 1990 have remained poor in 2010), and examine how dis-
ease prevalence and schooling change among those countries. We found that for those
countries, 72 percent remain in the state with high disease prevalence and 63 percent
have remained in low educational attainment state from 1990 to 2010.

These empirical facts are also consistent with the micro-empirical studies in the
literature. For instance, Bleakley (2007) evaluates the economic consequence of the
successful eradication of hookworm disease from the American South and finds that
areas with higher level of hookworm infection prior to the intervention experienced
greater increase in school enrollment, attendance and literacy. Miguel and Kremer
(2004) evaluate aKenyan project with deworming drugs targeting intestinal helminths,
and find that the program substantially reduced school absenteeism. Fortson (2011)
finds in 15 sub-Saharan countries that areas with higher HIV incidence experienced
relatively larger decline in schooling. The evidence on eradication or control ofmalaria
also indicates positive effects on schooling, health capital and subsequent income
(Bleakley 2010; Lucas 2010). Cutler et al. (2010) find positive but weak effects of
malaria eradication in India. These micro-empirical studies focus on diseases where
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the burden is predominantly in the childhood. There is a concern that if there is child
labor then part of the effect of decline in morbidity increases child labor supply. Our
model is an infinitely lived agent framework (as we want to abstract from mortality
effects of diseases) and agents can accumulate human capital in any period. This is
consistent with the evidence as increase in human capital will subsequently increase
income, but it also takes a more general view of human capital accumulation through
non-schooling acquisition of skills.

3 The economic epidemiologymodel

The model follows the Lucas (1988) endogenous growth model with human capital
accumulation, where we incorporate the dynamics of disease transmission. To avoid
keeping track of the cross-sectional distribution of the healthy and infected individuals,
and to stay close to the canonical endogenous growth model, we adopt the framework
of a large representative household.
Households We assume the economy is populated by a continuum of non-atomic
identical households who are the representative decision-making agents. The size of
the population in each household grows over time at the rate of b− d ≥ 0, where b is
the birth rate and d is the death rate.12 Within each household, an individual is either
healthy or infected by the diseases. We assume that diseases follow the SIS dynamics.
The key epidemiology variables are the contact rate, α, i.e., the average number of
adequate contacts of a person to catch the disease per unit time and γ , the recovery
rate from the disease. The SIS model is discussed in detail in “Appendix 1.” Each
household is assumed to be sufficiently large so that the proportion of the household
in each disease status is identical to the corresponding population proportion. Thus,
within a household, the proportion of healthy individuals is s and the proportion of
infected individuals is 1 − s. Each household understands and anticipates how the
disease evolves and is fully forward-looking with regard to its possible future states
as well as its present situation. However, following Gersovitz and Hammer (2004) the
household considers itself small relative to the population and believes that the disease
status within the household does not affect the proportion of infectives in the entire
population. In particular, the household takes as given the proportion of the population
that is infected, denoted as Π , and thinks the probability for the healthy individuals
to contract disease is αΠ , rather than α(1 − s). As a result, the disease transmission
dynamics perceived by the households is now given as follows:

ṡ = (b + γ )(1 − s) − αΠs. (1)

This captures the idea that the household is small relative to the population and does
not take into account the externality on disease transmission. It is competitive “disease
taking” looking only at private benefits/costs and not social benefits/costs. This distin-

12 We treat the demographic parameters, b and d, as exogenous and abstract from the fertility–mortality
nexus. For papers that focus on this relationship seeAksan andChakraborty (2014), Chakrabory et al. (2010,
2016), Kalemli-Ozcan et al. (2000) and Soares (2005). The microeconomic evidence on this relationship is
mixed, see Bleakley and Lange (2009), Fortson (2009), and Kalemli-Ozcan and Turan (2011).
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guishes the competitivemodel from the social planner’s problemwhere this externality
is taken into account. The two different formulations also help distinguish between
private health (where the externality is ignored) and optimal public health expenditure
(where it is internalized).

There is a two-way interaction between the economy and the disease. On the one
hand, diseases have direct adverse effects on the economy by reducing the labor force
participation. Being infected with a disease affects the productivity of an individual.
We make the simplifying assumption that an infected individual is incapacitated by
the disease or that the productivity falls to zero. That is, the infected are unable to work
or accumulate human capital.13 We assume the labor is supplied inelastically.14 For
each household, labor supply L is given by the proportion of the healthy individuals,
and its dynamics inherits the dynamics of s:

L̇ = (b + γ )(1 − L) − αΠL. (2)

Households take the interest rate R and wage W as given, rent out physical capital
K and choose the fraction of time to spend in work, u ∈ [0, 1], and in accumulating
human capital, (1− u). Thus, they provide effective labor supply eLu, where e is the
average human capital. The income is either consumed C , invested in physical capital
IK or health capital IH . Thus, the budget constraint is:

C + IK + IH = RK + WeuL. (3)

We further assume there is full insurance within each household and all individuals
have the same consumption irrespective of their health status. This is indeed opti-
mal, if the household welfare aggregator is concave. The representative household’s
preferences are given as:

∫ ∞

0
e−ρt u(C)Ntdt =

∫ ∞

0
e−(ρ−b+d)t u(C)dt, (4)

where ρ is the discount factor with ρ > b − d, and the initial size of household is
assumed to be one. For analytical convenience, we assume the felicity function to take
the following form: u(C) = log(C).15

13 How much productivity is affected varies across diseases. The recent comprehensive estimates of dis-
ability weights used to compute DALYs is one possible measure of affect on productivity (see Salomon
2012; Murray 2012). For some specific diseases, there are estimates in the economic literature on loss of
income from which effect on productivity is imputed (e.g., Weisbrod (1974) study effect of five parasitic
diseases on banana plantation workers in St. Lucia; Fox (2004) study loss of income to tea pickers infected
with HIV/AIDS in Kenya). The burden of diseases varies considerably, and the estimates in these studies
are annualized. Our model is, however, an aggregated continuous time model making it difficult to use these
estimates. Assuming that the productivity falls to an intermediate level but not to zero will not affect the
qualitative results.
14 In Goenka and Liu (2012), we endogenize the labor-leisure choice with SI S disease dynamics and show
that the dynamics are invariant under standard assumptions.
15 The adoption of theCES utility function affects the quantitative results of the paper, but not the qualitative
results. For simplicity of exposition, we use log utility.
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Health and physical capital accumulations follow the standard laws of motion with
the deprecation rate δ:16

K̇ = IK − δK − (b − d)K (5)

Ḣ = IH − δH − (b − d)H . (6)

The law of motion for human capital is given as:

ė = ψeL(1 − u), (7)

whereψ is the effectiveness of human capital accumulation. The linearity in the above
equation, i.e., non-diminishing returns on human capital accumulation, implies human
capital is the engine of economic growth. Unlike the standard endogenous growth
model (Lucas 1988), here it depends on the effective time spent in accumulation
human capital L(1−u), and both the components L and u are affected by the severity
of disease prevalence but in different ways, with the former a state variable and the
latter a control variable, which will be important.
Contact rate, α In this paper, we concentrate on preventive expenditures for control-
ling the infectivity of the disease via the contact rate α.17 We assume α is a function
of two state variables: health capital H and physical capital K , that is, α(H , K ).18

An increase in health capital, H , reduces infectivity of the diseases by improving
protection to infections, both physically and by strengthening the immune system.

The effects of physical capital on the infectivity of the diseases are more complex.
On the one hand, an increase in physical capital, K , can reduce the infectivity (i.e., a
negative effect): Countries with high physical capital also have better infrastructure,
especially sanitation which is important in controlling transmission of waterborne
diseases. On the other hand, higher physical capital can also lead to higher infectivity
(i.e., a positive effect) as shown by the epidemiological evidence. Higher physical
capital means more stress from increased economic activity which impairs immunity
and increases susceptibility to infectious diseases19; pollution 20; increased hyper-
hygienic environments which may reduce exposure to viruses in childhood leading to

16 Having a common depreciation rate δ for both health and physical capital is inessential, and the assump-
tion is made for the sake of simplicity.
17 In Goenka et al. (2014), the recuperation rate γ is endogenized in addition to the contact rate, α but as
both enter additively, for ease of exposition, we abstract away from endogenizing γ in this paper.
18 α could also depend on human capital, E , as better education can lead to better awareness of transmission
of diseases and thus, more effective prevention measures. To the extent that the awareness is due to public
health education, one would model this as expenditure on health capital. In “Appendix 4,” we model the
effect of human capital, in general, on the contact rate.
19 See Herbert and Cohen (1993) and Peterson (1991) on the link between stress and reduced immunity,
Cohen and Williamson (1991), Godbout and Glaser (2006) link this to certain infectious diseases, Fuller
(1996) show that urbanization and associated overcrowding in Thailand leads to increased stress, Sobngwi
(2004) examine the differences between urban and rural residents in Cameroon and found that the former
have higher rates of diabetes (which impairs immunity) and hypertension.
20 Pollution can increase the incidence of diseases (Chauhan and Johnston 2003); increased greenhouse
gases change weather patterns leading to outbreaks of new diseases (Epstein 2001) and spread of diseases
where they were not prevalent (McMichael et al. 2006).
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greater illnesses later in life21; increased economic activity that can increase exposure
to diseases22; and urbanization, migration and trade which can lead to new pathways
for spread of diseases23. Bosi andDesmarchelier (2018) in a recent paper 24 alsomodel
physical capital as increasing infectivity.

We disentangle these two effects by explicitly modeling the negative effects as
coming through investments that reduce infectivity—what is accumulated as health
capital, and the positive effects depending on physical capital. We, thus, take health
capital to include all investments that reduce infectivity, such as improved sanitation.25

As motivated by the empirical facts in the previous section, we want to model the
coexistence of multiple balanced growth paths. Given L lies in the interval [0, 1], Eq.
2 implies that in a BGP to have a constant L , the contact rate α is also constant. As
both H and K increase along the BGP, the function α(H , K ) has to be homogeneous

of degree zero. Thus, we rewrite the function α(H , K ) = α( HK , 1). Defining q = H

K
as the effective health capital, we thus assume the contact rate α to be a decreasing
function of q.

Assumption 1 Define the effective health capital q := H
K . The contact rate α(q) is a

C2 function:

1. α′ < 0, α′′ > 0 and limq→0 α′ → −∞, limq→∞ α′ → 0;
2. Let α and α be the upper and lower bound, respectively.

b + γ

α
<

ρ − b + d

ψ
<

b + γ

α
< 1.

The first assumption implies that contact rate is decreasing and concave in the effective
health capital. The Inada condition is not necessary for the analysis, but in its absence
there can be another equilibriumwhere the disease is prevalent but there are no positive
health expenditures, which we want to rule out here.26 Eradication of endemic dis-
eases is difficult, and smallpox is the only infectious disease to have been eradicated.
It was largely due to a long-run coordinated vaccination program involving WHO
and international campaigns. In the absence of sustained public efforts, diseases that
were previously controlled can re-emerge as in the case of leprosy in India (Gokhale
2013) and measles in the western countries. Most SI S diseases are also not amenable

21 See McMichael (2004).
22 Expansion of economic activity may change the natural nidality of diseases (Patz 2000; Patz et al. 2003;
Pavlovsky 1966), in particular increased dams and irrigation lead to spread of schistosomiasis (Steinmann
et al. 2006).
23 Antunes and Waldman (2001) show the effect of urbanization and overcrowding in spread of HIV and
TB in Brazil, Decosas (1995) show the effect of migration on HIV/AIDS in Uganda, Tatem et al. (2006)
show how trade has led to the spread of some infectious diseases.
24 They study a neoclassical model with no human capital or health expenditures.
25 The papers by Delfino and Simmons (2000) and Bosi and Desmarchelier (2018) treat capital as having
an externality on infectivity. In our paper, it is not an externality, i.e., households take into account how
their physical capital choices will affect infectivity.
26 See Goenka et al. (2014) for analysis of the corner solution with no health expenditure in the absence
of this Inada condition.
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to effective vaccination strategies making their eradication problematic. Thus, we
assume b+γ

α
< 1, which implies an endemic disease cannot be eradicated by private

health expenditures alone, and the disease-free steady state is unstable. The assump-
tion b+γ

α
<

ρ−b+d
ψ

<
b+γ

α
ensures that controlling diseases is relevant for the growth

of a country. For countries afflicted by infectious diseases, when ρ−b+d
ψ

≤ b+γ
α

, all

of them have a positive economic growth rate, and when ρ−b+d
ψ

≥ b+γ
α

, all of them
are in the poverty trap, regardless of whether they control the diseases or not. Thus, to
have an interesting economic problem, we assume b+γ

α
<

ρ−b+d
ψ

<
b+γ

α
. This will

become clearer in the following analysis.
Firms There are many perfectly competitive firms that maximize profit by choosing
physical capital and effective labor as inputs.Weassume theCobb–Douglas production
function Y = AK β(eLu)1−β , where A is the total factor productivity and β ∈ (0, 1)
is the capital share. Thus, we have:

R = βAK β−1(eLu)1−β (8)

W = (1 − β)AK β(eLu)−β. (9)

Competitive equilibrium A competitive equilibrium is a feasible allocation {C, K , H ,

IK , IH , L, u, e} and a price system {R,W } such that, given prices:

1. Households maximize Eq. (4) by choosing consumption C , health expenditure
IH , physical capital investment IK and time allocation u, subject to the constraints
Eqs. (2)–(3), (5)–(7), and 0 ≤ u ≤ 1, 0 ≤ L ≤ 1, IH ≥ 0, with e0, K0, H0, L0
given;

2. Firms maximize profits, given by Eqs. (8) and (9);
3. The capital market, labor market and goods market clear;
4. Since each household is representative of the population, in equilibrium

Π = 1 − L. (10)

4 Competitive equilibria

In this section, we analyze the competitive equilibrium balanced growth paths (BGPs).
The current value Hamiltonian for the household’s optimization problem is:

H = log(C) + λ1[RK + WeuL − C − IH − δK − (b − d)K ]
+ λ2[IH − δH − (b − d)H ]
+ λ3ψeL(1 − u) + λ4[(b + γ )(1 − L)

−α

(
H

K

)
ΠL] + θ1(1 − u) + θ2(1 − L) + θ3 IH ,
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where λ1, λ2, λ3 and λ4 are costate variables or shadowvalue of increments to physical
capital, health capital, human capital and labor supply, respectively. θ1, θ2 and θ3 are
the Lagrange multipliers for the inequality constraints.27

On themargin, goodsmust be equally valuable in their use as consumption, physical
capital investment and health expenditure:

1

C
= λ1 = λ2 + θ3

θ3 ≥ 0, IH ≥ 0, θ3 IH = 0; (11)

and labor time must be equally valuable in either production or human capital accu-
mulation:

λ1WeL = λ3ψeL + θ1,

θ1 ≥ 0, 1 − u ≥ 0, θ1(1 − u) = 0. (12)

The changes of shadow values satisfy the following conditions:

λ̇1 = (ρ − b + d)λ1 − λ1(R − (δ + b − d)) − λ4α
′
(
H

K

)
H

K 2ΠL (13)

λ̇2 = (ρ − b + d)λ2 + λ2(δ + b − d) + λ4α
′
(
H

K

)
1

K
ΠL (14)

λ̇3 = (ρ − b + d)λ3 − λ3ψL(1 − u) − λ1WuL (15)

λ̇4 = (ρ − b + d)λ4 − λ3ψe(1 − u)

+λ4

[
b + γ + α

(
H

K

)
Π

]
− λ1Weu + θ2

θ2 ≥ 0, 1 − L ≥ 0, θ2(1 − L) = 0. (16)

Thus, the competitive equilibrium is described by Eqs. (2)–(3), (5)–(7), (8)–(10) and
(11)–(16), along with the TVCs.28

From the epidemiology dynamics, there are two types of BGPs. The first is the
disease-free case with L∗ = 1, where infectious diseases are eradicated, and all
individuals are healthy and working. The second is the disease-endemic case with

L∗ = b + γ

α(q∗)
< 1, where infectious diseases are prevalent, and a fraction of individu-

als are infected and unable to work. These two cases mirror the two steady states in the

27 It has been recognized in the literature that SI S dynamics are not concave which can make the Hamil-
tonian non-concave, and difficult to check whether the maximized Hamiltonian is concave or not. Thus, the
usual Mangasarian and Arrow sufficiency conditions cannot be used. Goenka et al. (2014) investigate this
issue in detail. They show that if the growth rate of capital is bounded from below, K̇/K ≥ −κ, κ > 0,
then there is a solution to the maximization problem. It relies on showing that the feasible set is relatively
compact in L1(e−(ρ−b+d)t ). They further show that the first-order conditions to themaximization problems
are indeed optimal in this framework if the objective function is concave (Proposition 4). This result can be
adapted to this model. Thus, we work with the first-order conditions in this paper.
28 See the proof of Proposition 1 in “Appendix 2” for more details.

123



Infectious diseases, human capital and economic growth

pure SI S epidemiology model. The difference is that here households can influence
disease transmission through choices on health expenditures which are in themselves
determined endogenously.

Since for the disease-endemic case labor is a function of effective health capital,
for easy exposition, in a BGP, we define the continuous function L(q) such that

L(q) = b + γ

α(q)
,

which is increasing in q. We further define the unique critical value q̂ such that

L(q̂) = b + γ

α(q̂)
= ρ − b + d

ψ
.

Proposition 1 There exists both a disease-free BGP and a disease-endemic BGP.

1. There exists a disease-free BGP with L∗ = 1, u∗ = ρ−b+d
ψ

, and growth rate
g = ψ − (ρ − b + d);

2. There exists a disease-endemic case with L∗ = L(q∗).

(a) If L∗ >
ρ−b+d

ψ
or q∗ > q̂ , there exists a disease-endemic BGP, with u∗ =

ρ−b+d
ψL∗ and g = ψL∗ − (ρ − b + d);

(b) If L∗ ≤ ρ−b+d
ψ

or q∗ ≤ q̂ , there exists a disease-endemic poverty trap, with
u∗ = 1 and g = 0.

Moreover, the effective health capital q∗ is determined by the equation

G(q∗) = max{GL(q),GR(q)} = 0,

where

GL(q) = −1 − β

β
α′(q)(1 − L(q))(1 + q) − α(q) − (ρ − b + d), and

GR(q) = −1 − β

β
α′(q)(1 − L(q))(1 + q)

ψL(q)

ρ − b + d
− α(q) − (ρ − b + d).

Proof See “Appendix 2.” 	

GL is the net marginal value of labor when there is no human capital accumulation,

and GR is the net marginal value of labor when there is human capital accumula-
tion. Both are functions of effective health capital, q. As the choice of human capital
accumulation is endogenous, for any q the higher of the two will be chosen. The equi-
librium effective health capital q∗ is determined when the upper contour of the two is
equal to zero (see below).

In the disease-free case, infectious diseases are completely eradicated, and thus
health expenditure for controlling diseases is zero. The maximization problem degen-
erates to the standard Lucas (Lucas 1988) model, where countries undergo positive
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growth path if the effectiveness of human capital accumulation is larger than the effec-
tive discount rate, that is, ψ > ρ − b + d.

The intuition for the determinants of economic growth when diseases are endemic
is similar to the disease-free case. Human capital accumulation is the driving force
for growth, which depends on the relative magnitude of marginal value of time use
in education and production. Assuming all the time is allocated for production and
the growth rate is zero, the marginal value of additional du unit of time in education
is λ3ψeLdu, and the marginal cost is the value associated with loss in production,
λ1(1−β)AK β(eL)1−βdu. Therefore, more time is devoted to education if the former
is larger than the latter. By λ̇3 = 0 as the growth rate is assumed to be zero, we have
λ3(ρ − b+ d) = λ1(1− β)AK β(eL)−βL , and thus there is a positive growth only if

ψL∗ > ρ − b + d.

This implies that when the effectiveness of human capital accumulation, now pro-
portional to the labor supply, is larger than the effective discount rate, the country
undergoes positive growth path. Compared with the disease-free case, here marginal
value of time use in education depends on the proportion of healthy individuals in a
household. As a result, higher disease prevalence reduces the effectiveness of human
capital accumulation, and more time is allocated for production rather than education,
and there is slower growth. In the extreme case, all the time is allocated for production
and there is a poverty trap.

Whether countries undergo growth or are in a poverty trap is directly linked to the
severity of disease prevalence,which itself is endogenously determined by the effective
health capital.We now look at how the effective health capital, q∗, is determined.When
infectious diseases are endemic, health expenditure is strictly positive, and we have
λ1 = λ2 and

λ1βAK β−1(euL)1−β + λ4α
′(q)

H

K 2 (1 − L)L = −λ4α
′(q)

1

K
(1 − L)L, (17)

by combining Eqs. (13) and (14). It implies that the marginal value of physical capital
investment equals themarginal value of health expenditure.We further show that along
the BGPs, consumption, physical, health and human capital all grow at the same rate

g = ψL(1− u), and λ̇1
λ1

= λ̇3
λ3

= −g, λ̇4
λ4

= 0. Through some manipulations, Eq. (15)
is given as:

λ3ψL(1 − u) + λ1(1 − β)AK β(euL)−βuL = λ3(ρ − b + d + g), (18)

that is, the marginal value of human capital, consisting of its contribution to both
human capital accumulation and production, equals the marginal cost. Similarly, Eq.
(16) becomes:

λ1(1 − β)AK β(euL)−βeu − λ4(b + γ + α(q)(1 − L))

+ λ3ψe(1 − u) = λ4(ρ − b + d), (19)
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that is, the marginal value of labor supply, consisting of its contribution to production,
evolution of labor force participation and human capital accumulation, equals the
marginal cost. Divide both sides of the above equation by λ4, substitute into Eqs. (17)
and (18), and we have:

−1 − β

β
α′(q)(1 − L(q))(1 + q) − α(q)

−1 − β

β
α′(q)(1 − L(q))(1 + q)

ψL(q)(1 − u)

ρ − b + d
= ρ − b + d, (20)

which is a function of both the effective health capital q and the fraction of time allo-
cated for production u. Hence, Eq. (20) alongwith Eq. (12) determines the equilibrium
q∗ and u∗.

There are two cases: In the poverty trapwith u∗ = 1, Eq. (20) simplifies toGL(q) =
0, suggesting that q∗ is chosen such that marginal cost of labor is equal to its marginal
value, consisting of the first two terms in the LHS of Eq. (20). Because there is no
economic growth, the third termdisappears. This case exists only ifψL∗ ≤ ρ−b+d or
q∗ ≤ q̂ . The other case is a positive economic growth path with u∗ = ρ−b+d

ψL∗ and g =
ψL∗−(ρ−b+d).q∗ is determined by the equationGR(q) = 0, derived by substituting
u∗ into Eq. (20). This case exists only if ψL∗ > ρ − b + d or q∗ > q̂ . Moreover,
GL(q) > GR(q) if q < q̂ , GL(q) < GR(q) if q > q̂ , and GL(q) = GR(q) if q = q̂ .
Combining the two cases, q∗ is determined by the upper contour of the functions GL

and GR . That is, it is determined by the function G(q) = max{GL(q),GR(q)} = 0.
Since the function G is continuous, limq→0 G = +∞ and limq→∞ G < 0, by the
intermediate value theorem, there exists a q∗ > 0 such that G(q) = 0, that is, there
exists an endemic disease case.

Furthermore, the following lemma guarantees the uniqueness of q∗.

Lemma 1 If α′′(q) is large enough,29 the function G(q) is monotonically decreasing,
and there exists a unique q∗ such that G(q) = 0. If q∗ ≤ q̂ , it is a disease-endemic
poverty trap; if q∗ > q̂, it is a disease-endemic BGP.

Proof See “Appendix 2.” 	

The condition on α′′(q) requires that the contact rate does not decrease too fast

in effective health. If the condition does not hold, then there could be multiple q’s
and hence balance growth paths, for a given economy. This is consistent with the
epidemiology evidence that it is extremely difficult to eradicate diseases; that even

29 We assume α′′(q) is large enough, that is,

α′′(q) > −α′(q) max

{
β

(1 − β)(1 − L(q))(1 + q)
+ L(q)

1 − L(q)
· α′(q)

α(q)
+ 1

1 + q
,

β

(1 − β)(1 − L(q))(1 + q)
· ρ − b + d

ψL(q)
+ L(q)

1 − L(q)
· α′(q)

α(q)
+ 1

1 + q
− α′(q)

α(q)

}
.
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Fig. 1 Determination of equilibrium effective health capital: disease-endemic BGP (left panel) and disease-
endemic poverty trap (right panel).Note The figure describes the two scenarios in the disease-endemic case.
It depicts the function G(q)—the upper contour of the functions GL (q) and GR(q), which determines the
equilibrium effective health capital q∗. If q∗ is greater than the critical value q̂, countries grow at a positive
rate with disease endemic, shown in the left panel; and if q∗ is less than the critical value q̂, countries are
stuck in a poverty trap with disease endemic, shown in the right panel

though there is very high expenditure on controlling a disease, it is very difficult to
prevent re-emergence (see the discussion of the Garki project in Gallup and Sachs
(2001); and that for some diseases which are largely controlled, there may be even
higher expenditure needed to reduce the incidence as individuals do not naturally
develop the antibodies that confer immunity from exposure to the disease.30

Figure 1 describes the two scenarios under the disease-endemic case. In both panels,
the functions GL(q) and GR(q) are monotonically decreasing in q and intersect at
the point q̂ . The function G(q) is given by the upper contour of both functions. The
left panel gives the disease-endemic BGP with q∗ > q̂ , and the right panel gives the
disease-endemic poverty trap with q∗ < q̂ . This suggests that whether there is positive
or zero economic growth depends on the function G(q), which in turn depends on all
the economic, demographic and epidemiological parameters.

Proposition 2 When infectious diseases are endemic, countries are more likely to
undergo a positive economic growth path, if:

1. Capital share, β, is smaller;
2. Households are more patient, i.e., ρ is smaller;
3. Death rate, d, is lower or life expectancy increases;
4. Effectiveness of human capital accumulation, ψ , is higher.

Proof See “Appendix 2.” 	

30 For the case of Diphtheria, “Booster doses are especially recommended for industrialized countries
which need to compensate for the loss of natural boosting from the environment. (Clarke 2018, p. 4),”
which is consistent with the increase in K making the effectiveness of the H decrease at a fast enough rate
to require booster doses in adulthood—something that has not been done so far.
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When labor becomes more important in production, that is, capital share is smaller,
households care more about labor force participation rate and spend more on health
expenditure. When households becomes more patient, they are more willing to post-
pone consumption and invest more in health capital. As result of this, labor force
participation rate increases and hence countries are more likely to be in a growth path.
When effectiveness of human capital accumulation is higher, it is more profitable to
spend time in investing human capital rather than production, and the possibility of
taking off increases. Nevertheless, the effects of changing the birth rate and recovery
rate are ambiguous. On the one hand, due to the assumption that all newborns are
healthy, higher birth rate is beneficial for controlling diseases (as is a higher recovery
rate). On the other hand, when diseases are not severe and the fraction of the infected
is low, there is less chance for the healthy individuals to catch diseases, which lowers
the incentive for diseases control and hence reduces the health expenditure. The dif-
ferent deep parameters in the model reinforce the different capital choices and hence
of growth. For the poorest countries, the constellation of parameters seems to work in
the same direction to reduce the possibility of growth.

The following lemma details the resource allocation for each type of countries.

Proposition 3 The resources are allocated as follows:

1. For countries in a disease-free BGP, the saving rate is β
(
1 − ρ−b+d

ψ+b−d+δ

)
;

2. For countries in a disease-endemic BGP, the saving rate is β
(
1 − ρ−b+d

ψL∗+b−d+δ

)
,

of which q∗
1+q∗ fraction is invested in health expenditure;

3. For countries in a disease-endemic poverty trap, the saving rate isβ
(
1 − ρ−b+d

ρ+δ

)
,

of which q∗
1+q∗ fraction is invested in health expenditure.

Proof See the “Appendix A.2.” 	

Sinceψ +b−d + δ > ψL∗ +b−d + δ > ρ + δ, Proposition 3 implies that countries
in a disease-free BGP in fact have the highest saving rate and countries in a disease-
endemic poverty trap have the lowest saving rate. For the countries with diseases
eradicated, all the savings are invested in physical capital as infectious diseases are
eradicated and there is no need to spend resources in combating infectious diseases.31

For the countries afflicted by infectious diseases, the rate of investment in health capital

is IH
Y = q∗

1+q∗
(
β

(
1 − ρ−b+d

ψL∗+b−d+δ

))
, and the remaining fraction, 1

1+q∗ is invested in

physical capital. Thus, disease-endemic countries that are growing faster (higher q∗,
see Proposition 1) will not only have a higher savings rate but also a larger share of
it will be spent on controlling the diseases. Countries in a poverty trap will have the

31 This does not contradict the fact that the developed countries have a high health expenditure to GDP
ratio. The estimation results from cross-country panel data in theOECD countries suggest that technological
progress and variation in medical practice are major determinants in the level and growth of health expen-
diture. More importantly, these countries are largely affected by non-communicable diseases or chronic
illness, instead of infectious diseases. Health expenditure in our setup are the resources spent on combating
infectious diseases and rich countries in the model do not spend anything on it as the diseases have already
been eradicated.
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lowest savings rate and also the lowest expenditure on disease control. Proposition
3 highlights how the savings rate and investment rates in physical and health capital
changes with disease incidence within and across different balanced growth paths,
and thus, models with fixed rates miss a very important aspect of general equilibrium
dynamics.

To sum up, as the result of the introduction of SI S epidemiological model, there are
multiple competitive equilibria, in which infectious diseases are either be eradicated
or are endemic. In the disease-free case, countries grow at a fast rate,32 while in the
disease-endemic case, countries either grow at a slow rate or are in a poverty trap,
depending on the investment in human capital accumulation—the engine of economic
growth, which is affected by the severity of disease prevalence. Therefore, countries
with lower disease prevalence are more likely to invest in human capital, and hence be
in a economic growth path. The intuition is that as the incidence of disease prevalence
goes down, households expect a larger proportion to be healthy which increases the
rate of return on human capital accumulation. This has the natural effect of increasing
its accumulation. As disease incidence and human capital simultaneously affect each
other, increase human capital increases incentives to control diseases. It implies that
projections of the economic burden of disease which largely focus on lost productivity
and cost of treatment are going to underestimate the cost as they do not account for
the changed incentives for human capital accumulation and thus not account for the
change in the growth rate.

5 Optimal public health policy

In this section, we examine the centralized economy and characterize the optimal
public health policy where a social planner takes into account the effect of controlling
diseases at the household level on the aggregate disease dynamics.We then characterize
the subsidy that decentralizes this outcome.

5.1 Centralized economy

The centralized economy differs from the decentralized one as the social planner
takes into account that the intervention can effectively control the proportion of the
infected in total population. Recall that in the decentralized economy household takes
the proportion of the infected in total population as fixed, shown in Eq. (2). The social
planner’s maximization problem is essentially similar to the one we considered above
with the only difference being in the law of motion for labor force participation, which
is now given by the true dynamics:

L̇ = (b + γ )(1 − L) − α(1 − L)L. (21)

32 However, we know from the disease dynamics in “Appendix 1” that the disease-free equilibrium is not
stable if b+ γ < α. Since b+ γ < α(q) for all q by assumption, disease-free economic growth is also not
a stable BGP. This explains why in developed countries, even though diseases are eradicated there is still
concern about the possible outbreak of infectious diseases. Goenka et al. (2014) have a detailed discussion
of stability properties of the steady states in the neoclassical model with SI S dynamics.
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In the following analysis, the superscript c is used in denoting variables in the central-
ized economy.

Proposition 4 In the centralized economy,

1. There exists a disease-free BGP with the growth rate gc = ψ − (ρ − b + d);
2. There exists a disease-endemic case with L∗,c = L(q∗,c).

(a) If L∗,c >
ρ−b+d

ψ
or q∗,c > q̂ , it is a BGP with u∗,c = ρ−b+d

ψL∗,c , and gc =
ψL∗,c − (ρ − b + d);

(b) If L∗,c ≤ ρ−b+d
ψ

or q∗,c ≤ q̂ , it is a poverty trap.

Moreover, the effective health capital q∗,c is determined by the equation

G(q) + b + γ = 0.

Proof The proof is similar to the proof of Proposition 1. 	

Similar to the decentralized case, there always exists a disease-free balance growth

path. Since the social planner and the households only differ in how they view the
impact of their behavior on the disease transmission, there is no difference between the
optimal growth path and competitive equilibrium path when diseases are eradicated.

There also exists a disease-endemic case. The effective health capital is optimally
chosen according to:

λ1(1 − β)AK β(euL)−βeu − λ4 (b + γ + α(q)(1 − L)

−α(q)L) + λ3ψe(1 − u) = λ4(ρ − b + d).

The right-hand side of the above equation is marginal cost of labor supply and the left-
hand side ismarginal value of labor supply, consisting of its contribution to production,
the evolution of labor force participation and human capital accumulation. Compared
with Eq. (19), since the social planner takes into account the positive externality of
disease control, the marginal value of labor is always higher in the centralized than
the decentralized economy, exactly by the amount λ4α(q)L or λ4(b+γ ). Thus, in the
centralized economy, the effective health capital q∗,c is determined by the equation
G(q) + b+ γ = 0, which is higher in the centralized economy than the decentralized
one. It suggests that infectious diseases are better controlled in the centralized economy
and the labor force participation rate is higher. Thus, with an effective public health
policy, it is more likely that countries can escape the poverty trap or grow at a faster
rate.

Note that in the planning problem the planner is choosing the optimal sequence
given the feasibility conditions—which include the laws of motion of the state
variables. As in the decentralized case, depending on the parameters, due to the non-
convexity in disease dynamics there is either only a disease-free balanced growth path
(that is locally stable) or the disease-free and disease-endemic balanced growth paths
coexist. In the second situation, the disease-free balanced growth path is locally unsta-
ble and the disease-endemic one is locally stable. Thus, the situation where both these
coexist and are both locally stable never arises. If the parameters are such that they
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permit a disease-endemic balanced growth path, as the disease-free balanced growth
path is locally unstable, there is no continuous path to eradicate the disease.33 Hence,
it is also not feasible for the planner to entirely eliminate the diseases in the model.

To be more specific, Fig. 2 describes three different scenarios for the comparison
between the decentralized and centralized economies. In all the panels, the solid line is
the functionG(q), determining the effective health capitalq∗ in the decentralized econ-
omy, and the dashed line is the functionG(q)+b+γ , determining the effective health
capital q∗,c in the centralized economy. The critical value q̂ for the positive growth is
the same in both economies. In the upper panel, the country is in a positive balanced
growth pathwith the decentralized economy,while it grows at a faster ratewith the cen-
tralized economy. That is, q∗,c > q∗ > q̂, L∗,c > L∗ >

ρ−b+d
ψ

and gc > g > 0.

In this case, the saving rates in both economies are given as β(1 − ρ−b+d
ψL+b−d+δ

), of

which the q
1+q is invested in health expenditure. Notice these are increasing functions

of labor supply. Thus, the centralized economy has a higher saving rate and investment
rate for health expenditure, is better in controlling infectious diseases (lower α(q)),
and hence, grows at a faster rate.

In the bottom left panel, the decentralized economy is in a poverty trap, while the
centralized economy is in a positive growth path. That is, q∗,c > q̂ ≥ q∗, L∗,c >
ρ−b+d

ψ
≥ L∗ and gc > g = 0. In this case, because individuals fail to take into

account the positive externality of disease control, the economy is stuck in the poverty
trap, which otherwise would have taken off in a centralized economy. The saving rate
in the centralized economy is given as β(1− ρ−b+d

ψL∗,c+b−d+δ
), while in the decentralized

economy, it is given as β(1− ρ−b+d
ρ+δ

). Since ψL∗,c + b − d + δ > ρ + δ, the saving
rate is higher in the centralized economy, more resources are allocated for controlling
infectious diseases, and hence the country escapes the poverty trap.

In the bottom right panel, both the centralized and decentralized economies are
in the poverty trap, but the centralized economy has larger proportion of healthy
individuals than the decentralized one, as in the centralized economy the effective
capital is always higher than in the decentralized one where the disease externality is
ignored by households, that is, q̂ ≥ q∗,c > q∗, ρ−b+d

ψ
≥ L∗,c > L∗ and gc =

g = 0. The saving rates in both economies are given asβ(1− ρ−b+d
ρ+δ

), ofwhich fraction
q

1+q is invested for controlling infectious diseases. Thus, both economies share the
same saving rate, of which centralized economy spends more in health expenditure
than the decentralized ones. The prevalence of infectious diseases is less severe in the
centralized economy.However, the effectiveness of human capital accumulation is still
not large enough for justifying its time allocation, and hence, there is no economic
growth. In this case, the welfare comparison between two economies is ambiguous.
The output and consumption in both economies are given as:34

Y ∗, j = A
1

1−β

(
ρ + δ

β
(1 + q∗, j )

)− β
1−β

L(q∗, j ), and

33 See “Appendix 1” and footnote 32 for further discussion of this.
34 Since human capital is indeterminate in the case of poverty trap, we assume it is given by its initial level
normalized to 1, that is, e0 = 1.
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Fig. 2 Determination of the equilibrium effective health capital: the comparison between the competitive
equilibria and optimal paths.Note The figure describes three different scenarios for the comparison between
the decentralized and centralized economies. In all the panels, the solid line is the functionG(q), determining
the effective health capital q∗ in the decentralized economy, and the dashed line is the functionG(q)+b+γ ,
determining the effective health capital q∗,c in the centralized economy. The critical value q̂ for the positive
growth is the same in both economies. In the upper panel, we have q∗,c > q∗ > q̂ and both the decentralized
and centralized economies grow at a positive rate; in the bottom left panel, we have q∗,c > q̂ > q∗ and
the centralized economies grow at a positive rate, while the decentralized economy is in a poverty trap; in
the bottom right panel, we have q̂ > q∗,c > q∗ and both the centralized and decentralized economies are
stuck in a poverty trap

C∗, j =
(
1 − β

δ + b − d

ρ + δ

)
Y ∗, j ,

depending on q∗, j , where j = c for the centralized economy and j = nil. for the
decentralized economy. Even though labor force participation rate is higher in the cen-
tralized economy, which increases the production, the investment in physical capital is
less compared with to decentralized ones, which tends to lower production. However,

we see that
∂Y ∗

∂q
> 0 when −α′

α
(1+ q) >

β

1 − β
.35 The condition can be interpreted

35 Calculate ∂Y ∗
∂q which is positive if L ′

L (1+ q) >
β

1−β
. Using L = b+γ

α we derive the desired condition.
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as the semi-elasticity of α is high enough, that is the higher q brings down the contact
rate fast enough to counteract the effect of having a smaller portion of savings being
devoted to physical capital in a centralized economy. This is confirmed for a calibrated
economy in Section 6.4; see also Figure 5 where output and consumption-equivalent
welfare are in fact higher in the centralized economy.

5.2 Optimal health subsidy

Compared with the decentralized economy, the centralized economy, taking into
account the positive externality of controlling infectious diseases, either has a higher
growth rate or is more likely to take off, and has a higher consumption level even
in a poverty trap. This provides a justification for introducing effective public health
policy. One of the issues with infectious diseases is that households do not account
for the effect of their actions on the transmission of the disease. The evidence indi-
cates that households seem to underinvest in preventive health care (e.g., Banerjee and
Duflo 2011 who discuss preventive health care in general and Tarozzi et al. 2009 who
focus on the use of insecticide-treated bed nets for prevention of malaria). What is
the nature of the subsidy that will induce households to internalize preventive health
expenditures? This is especially important as countries that are most afflicted with
infectious diseases have weak public health delivery mechanisms. While external aid
is often discussed in the context of controlling diseases, whether it is actually deliv-
ered for the specific need is an open question. There are of course international health
organizations (e.g., WHO) and NGOs (e.g., Carter Foundation that has worked for
eradication of Guinea Worm in sub-Saharan Africa, Gates Foundation, and the earlier
Rockefeller Foundation that played a key role of eradication of hookworm in southern
USA (Bleakley 2007). However, amarket solution via balanced (self-financing) public
health policy ismore sustainable.Here,we focus on health subsidies. In fact, any policy
distorting marginal benefit of physical capital investment and health expenditure can
be equally effective in obtaining the optimal path under the centralized economy, for
instance, proportionate capital income tax, educational subsidy, etc. However, these
are harder to motivate as the effect appears indirect. Also note that the disease-free
steady state is locally unstable and thus, while external aid that does not change the
inherent disease dynamics (untied or lump-sum aid) may help control diseases, the
outcome is not stable. If the aid is targeted to change the relative cost of health expen-
diture (i.e., act like a subsidy), then the following exercise also applies except it need
not be self-financing. The health subsidy can be interpreted in several ways: directly
as a subsidy for preventive health expenditures, but also as vaccination schemes or the
cost of isolating infective individuals (see Goenka and Liu 2012 where the latter two
are discussed further in detail).

We assume for each unit of private health investment, there is a proportional health
subsidy τ , and the law of motion for health capital now is:

Ḣ = (1 + τ)IH − δH − (b − d)H . (22)
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The public health expenditure is financed through a lump-sum tax T , and the budget
constraint is:

C + IK + IH = RK + WeuL − T . (23)

Households maximize Eq. (4) by choosing consumption C , health expenditure IH ,
physical capital investment IK and time allocation u, subject to the constraints Eqs.
(2), (5), (7), (22) and (23). In equilibrium, the period-by-period balance budget (bal-
ancedness) implies T = τ IH .36 The rest is the same as the competitive equilibrium,
defined in Sect. 3.

We solve the maximization problem, and the first-order conditions are similar to
Eqs. (11)–(16). The only difference is Eq. (11) with positive health expenditure which
is now given as:

λ1 = (1 + τ)λ2.

We see that because there is the additional τ unit health subsidy for each unit of private
health expenditure,marginal value of physical capital investment (theLHSof the above
equation) is equal to (1 + τ) times marginal value of private health expenditure (the
RHS of the above equation).

The following proposition gives the optimal subsidy, in the sense that it is chosen
such that the allocations in the decentralized economy with public health subsidy
coincide with the optimal path in the centralized economy.

Proposition 5 Let q∗,c be the optimal effective health capital in the centralized econ-
omy, defined in Proposition 4

1. When the optimal path is a disease-endemic BGPwith g = ψL(q∗,c)−(ρ−b+d),
the optimal health subsidy is:

τ = (1 + q∗,c)(b + γ )

α(q∗,c) − (b + γ ) + ρ − b + d
· ρ + δ + g

ρ + δ − (1 + q∗,c)
b+γ

α(q∗,c)−(b+γ )+ρ−b+d g
;

(24)

2. When the optimal path is a disease-endemic poverty trap, the optimal health sub-
sidy is:

τ = (1 + q∗,c)(b + γ )

α(q∗,c) − (b + γ ) + ρ − b + d
. (25)

Proof See “Appendix 3.” 	

We can see that the optimal subsidy is proportional to the externality b + γ , and the
larger the externality the larger the subsidy. In addition, the faster the economy grows,
the larger is the subsidy. From Eq. (24), we see in the first fraction, the numerator

36 An external aid subsidy would be τ IH = �, where � is the external aid budget and T = 0.
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will be larger (larger q∗,c) and denominator smaller (smaller α(q∗,c)), and the second
fraction is always greater than one. Comparing (24) and (25), we see that in the latter,
not only is q∗,c smaller and α(q∗,c) larger, but also the second fraction is equal to
one. Thus, there is the perverse effect where if an economy is in a poverty trap in the
centralized solution the optimal subsidy will be smaller than in an economy which is
growing. Thus, countries that aremost afflicted by diseasesmayhave the least incentive
to control them. The reason is that when it is worthwhile accumulating human capital,
due to the additional return from human capital, the effective health capital, q, is also
higher. This induces a larger public health subsidy.

6 Calibrations and simulations

The marriage of the economic and epidemiological models provides us a framework
in understanding the close link between the poverty and diseases. In this section,
we calibrate the model for the LDCs in a poverty trap and examine the impact of
increasing effectiveness of controlling diseases, i.e., a new preventive method, and
an increase in life expectancy. We examine the difference between the competitive
equilibrium where households do not take the disease externality into account and the
optimal health policy that does. For the two different changes, we are able to get an
estimate of how significant is this externality as we show how large the change has to
be from the current situation for the economy to start growing, and how the different
variables of interest evolve in the balanced growth path. The analysis here focuses
on the evolution of the growth paths before and after the change, and the transitional
dynamics are ignored due to the complicated dynamical system.37

6.1 Calibration

Both the model and empirical evidence show that the growth paths of countries are
closely related to the prevalence of infectious diseases. This in turn depends on all the
fundamental economic, demographic and epidemiological parameters in the model.
Thus, different sets of model parameters should be calibrated by targeting countries
in different stages of growth paths. As we are interested in the close link between
diseases and poverty and how countries can escape this vicious cycle, the calibration
and simulation exercise are aimed for the LDCsmainly in Sub-SaharanAfrican region.

The following parameters are chosen in line with the literature: discount rate
ρ = 0.055,38 capital share β = 0.36, depreciation rate δ = 0.05, and the scale

37 Thedynamical system is eight-dimensional system,which is complicated to study the transitional dynam-
ics. Thus, we only focus on comparative statics here. Goenka and Liu (2012) are able to characterize the
full global dynamics as there is only a one-way interaction which simplifies the dynamics. Goenka et al.
(2014) have a full analytic characterization of local dynamics in the neoclassical version of the model (six-
dimensional system) and show that the disease-endemic steady state is saddle-point stable under reasonable
assumptions.
38 While a discount rate of 0.04 is often used in business cycle analysis, recent evidence shows that while
the real interest rate in US is 0.02 and that for developing countries is higher - for Republic of South Africa
it is on average 4-6% higher (Fischer 2017). The average real interest rate for sub-Saharan Africa in 2017
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parameter in the production function A is normalized to 1. Some economists believe
that the capital share is typically higher in the LDCs, while others (e.g., Gollin 2002)
show that the share is generally the same with the developed countries, taking into
account self-employing sectors where income, accruing whether to labor or to cap-
ital, is in practice treated as capital income in previous inquiries. So we set capital
share of the LDCs to be the relative upper bound of the estimates for the developed
countries. Compared with the developed countries, both fertility rate and death rate
are much higher in the Sub-Saharan Africa. Using the statistics from theWorld Health
Organization (see The World Bank 2019), we set the birth rate b = 3.5% and death
rate d = 1.85%, which implies 55 years of life expectancy. We could not calibrate the
effectiveness of human capital accumulation ψ directly for the LDCs, as the model
equilibrium does not depend on it due to the poverty trap. Nevertheless, in the devel-
oped countries, the effectiveness of human capital accumulation is calibrated to be
0.05 (Lucas 1988). In the LDCs, human capital formation has received increasing
attention with increased spending on education from both the national budgets and
foreign aid, which has enabled them to narrow the gap in education, particularly in
primary education. However, they are still behind in terms of the quality of the educa-
tion and schooling. Thus, we assume conservatively that the effectiveness in the LDCs
is roughly eighty percent of the one in the developed countries, and we set ψ = 0.04.

In calibrating the disease-related parameters, some papers (e.g., Chakrabory et al.
2010) take a more micro-approach, that is, calibrating epidemiological parameters
to transmission of a single infectious disease. We, on the other hand, take a macro-
approach by targeting the key macroeconomic variables to get a more comprehensive
view of the effect of infectious diseases on Sub-Saharan Africa. The calibration
requires a specific functional form for contact rate. As far as we know, there are
no papers on estimating what this function is likely to be. So we choose the functional
form of contact rate α(q) = q−0.5/a, where a is the effectiveness of controlling dis-
ease. It assumes contact rate is decreasing in effective health capital, and marginal
benefit of controlling diseases decreases as effective health capital increases. This
leaves us with two disease-related model parameters: the effectiveness of controlling
disease, a, and the recovery rate, γ . They are calibrated to match two key disease-
related macro-variables. One is the years loss due to infectious diseases. The average
DALY of the LDCs shown in Table 2 suggests that 38.02% of time is lost due to
infectious diseases. Note that this number represents the loss from both mortality and
morbidity from infectious diseases. Moreover, the statistics provided by the WHO
including a wide array of countries indicate that roughly one-third of DALY is due to
morbidity. This suggests in the LDCs, around 14% of time is lost due to morbidity
from infectious diseases. The other macro-variable used for calibration is the health
expenditure as a share of GDP in controlling infectious diseases. There is an extensive
literature on health expenditure in the developed countries. However, evidence from
developing countries is relatively scarce. Health care expenditure in the LDCs varies
over time and across countries. On average, low-income countries spend around 3%
of GDP on health, though increasing over years. This consists of government health

was 6.91%, while in the USA it was 2.06% (World Bank 2019). We use a conservative real interest rate of
5.5%.
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expenditure, private out-of-pocket health expenditure and external aid. It is estimated
that external aid is around 10–20% of total health expenditure, and government fund-
ing takes up the half of the rest of health expenditure (See Gottret and Schieber 2006;
Xu et al. 2011). So we target the health expenditure ratio in a decentralized economy
to be around 1.5% of GDP. This is likely to be the upper bound of private health
expenditure ratio in the LDCs.

6.2 Impact of increasing effectiveness of controlling diseases

In this subsection, we examine the impact of increasing effectiveness of controlling
diseases in the LDCs by the parameter—a. An increase in a will reduce the contact rate
α for a given level of effective health capital, q. One interpretation for an increase in a is
the discovery of more effective disease prevention methods, such as a new prophylaxis
for malaria, or a more effective strategies to control schistosomiasis through more
effective drugs and control of snail population (see Inobaya 2014). Figure 3 depicts
the evolution of economic variables when a increases. The solid line presents the
change for the decentralized economy, while the dashed line shows the change for the
centralized economy. When a is at its initial level of 0.85, the proportion of health
individuals or the effective labor supply is 86%, and that of the health expenditure
as a share of GDP is 1.5%. These are directly the result of calibration. In addition to
the low level of physical capital, indicating high marginal return to production, the
prevalence of infectious diseases significantly reduces the marginal return to human
capital accumulation. This implies all the time is allocated to production and none to
human capital accumulation. The saving rate is around 22.8%, lying in the reasonable
range of saving rates in the LDCs, 10% to 25%. The large portion of saving is used for
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Fig. 3 Evolution of growth paths due to increasing effectiveness of controlling diseases. Note The figure
depicts the evolution of economic variables when the effectiveness of controlling diseases increases. The
solid line presents the change for the decentralized economy, while the dashed line shows the change for
the centralized economy. The variables included are labor supply (L), fraction of time allocated for human
capital accumulation (1 − u), growth rate (g), saving rate (S/Y ), health expenditure ratio (IH /Y ) and
optimal public health subsidy (τ )

123



Infectious diseases, human capital and economic growth

investment of physical capital, rather than health capital. Thus,with lower effectiveness
of controlling diseases, countries are in a poverty trap. In the decentralized case, when
a increases from 0.85 to 2, which is a 58% decrease in the contact rate, a smaller
portion of the saving is actually spent on health expenditure, but the effective labor
supply increases substantially. The marginal benefit of human capital accumulation
is still not large enough for justifying its time allocation, and hence there remains
no economic growth. Nevertheless, all these start changing when a increases further
above the critical value 2. Countries start investing in human capital accumulation and
transit from a poverty trap to an equilibriumwith positive economic growth. Therefore,
with increasing effectiveness of controlling diseases, the LDCs can eventually escape
the poverty trap.

When we compare the centralized economy with the decentralized ones, the inter-
esting observations are the following. The first is that the introduction of an optimal
public health policy does not necessarily guarantee economic growth. It can be seen
that the centralized economy is also in a poverty trap when a is below 1.48. Sec-
ondly, when effectiveness of controlling diseases increases, the centralized economy
starts taking off before the decentralized economy does, only a 42% decrease in the
contact rate is needed. Thirdly, for the resource allocation, when both economies are
in the poverty trap, the saving rates are in fact the same, though more is spent for
health expenditure in the centralized economy. This is because of the fact that social
planner takes into account the positive externality of controlling disease. Fourthly,
when the economy grows in both the situations, the growth rate in the optimal path
is double than that in the competitive economy. Lastly, the optimal health subsidy is
strictly increasing. The reason is that the positive externality from controlling diseases
becomes increasingly larger as a increases, due to the additional dividend from the
growth.

6.3 Impact of rising life expectancy

In this subsection, we examine the effects of rising life expectancy. In the paper, we
emphasize the interaction between disease transmission and human capital investment,
instead of the interaction between disease transmission and demographics so as to
focus on the role of morbidity. The examination of the effect of an increase in life
expectancy gives us a glimpse of how the demographic transition affects the disease
control, and hence, human capital investment and economic growth.

Figure 4 depicts the evolution of economic variables when mortality rate drops
from 1.85 to 1.25%, that is, life expectancy increases from 55 years to 80 years.
In the decentralized case, when the mortality rate decreases from 1.85 to 1.48% or
life expectancy increases from 55 to 67 years, households become more patient and
save more. However, only a small portion of the increased saving is spent on health
expenditure. This can be seen from the fact that saving rate increases by 1.2%, while
health expenditure ratio increases only by 0.1%. As a result, the effective labor supply
remains relatively the same with an indiscernible increase. The marginal benefit of
human capital accumulation is still not large enough for justifying its time allocation,
and hence, there remains no economic growth. Nevertheless, all these start changing
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Fig. 4 Evolution of growth paths due to rising life expectancy. Note The figure depicts the evolution of
economic variables whenmortality rate drops from the initial level of 1.8 to 1.2%. The solid line presents the
change for the decentralized economy, while the dashed line shows the change for the centralized economy.
The variables included are labor supply (L), fraction of time allocated for human capital accumulation
(1 − u), growth rate (g), saving rate (S/Y ), health expenditure ratio (IH /Y ) and optimal public health
subsidy (τ )

when mortality rate drops further below the critical value 1.48% or life expectancy
increases above 67 years. Households save even more. Moreover, the increment in
saving rate as a result of rising life expectancy increases, which is shown by the
increase of slope for the saving curve. Similarly, health expenditure ratio increases as
well, which leads the effective labor supply to rise. There is also the relative change of
the slope above and below the critical mortality rate, for both the health expenditure
ratio and the effective labor supply in Fig. 4. Countries start investing in human capital
accumulation and transit from a poverty trap to an equilibrium with positive economic
growth. Therefore, with a prospect life expectancy increasing to 68.5 years by 2050,
the LDCs can eventually escape the poverty trap.

Similar to the previous subsection, when we compare the centralized economy
with the decentralized ones, we find that the centralized economy does not neces-
sarily guarantee economic growth; but when mortality rate declines to 1.68% or life
expectancy increases to 59.5 years , the centralized economy starts growing before
the decentralized economy does; when both economies are in the poverty trap, the
saving rates are in fact the same, though more is spent for health expenditure in the
centralized economy; the growth rate is double in the optimal path; and the optimal
health subsidy is convex in shape. The reason is that the positive externality from con-
trolling diseases becomes increasingly larger as life expectancy increases, due to the
additional distortion from the growth. Thus, the fact that poor countries in a poverty
trap have low public health expenditure is not only because they have tighter budget
constraints, but more importantly they lack incentives for investing in health capital.

As life expectancy increases, more health expenditure is allocated for controlling
infectious diseases and labor force participation rate rises, which increase output and
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Fig. 5 Welfare change due to rising life expectancy. Note The figure depicts the change of economic
variables when mortality rate drops from the initial level of 1.85 to 1.65%. That is, both centralized and
decentralized economies are in a poverty trap. The solid line presents the change for the decentralized
economy, while the dashed line shows the change for the centralized economy. The variables included are
output, consumption and consumption-equivalence welfare, where the value is normalized such that it is 0
for the initial level of mortality rate 1.85% in the decentralized economy

consumption level.However, on the other hand, as the result of direct effect of declining
death rate, the consumption level decreases. The reason is thatmore people alive diffuse
the resource allocation and lower consumption level for each individual. This is the so-
calledMalthusian effect. It is not clear in the model which effect dominates. One thing
to note is that the Malthusian effect can take place only when a country is in a poverty
trap. For the other situations, a decrease in the death rate or increase in life expectancy
unambiguously increases growth through the mechanism of increased incentives for
saving due to the decrease in the effective discount rate. Figure 5 depicts the percentage
change of output, consumption and consumption-equivalence welfare change, when
mortality rate drops from the initial level of 1.85% to 1.68%, that is when both the
centralized and decentralized economies are in a poverty trap. The solid line presents
the change for the decentralized economy, while the dashed line shows the change for
the centralized economy. The value is normalized such that it is 0 for the initial level of
mortality rate 1.85% in the decentralized economy. Compared with the decentralized
economy, output and consumption aremuch higher in the centralized economy, though
both are in a poverty trap. As life expectancy rises, output increases slightly. However,
due to Malthusian effect, consumption level declines. Does the household become
worse off as pointed out by the Malthusian effect and what about the welfare change?
Here, we calculate the consumption-equivalence welfare change, which incorporates
the effects from the rising life expectancy, shown in the right panel.39 When the
death rate declines from 1.85% to 1.65%, in the decentralized economy consumption
increases by around 1%, and in the centralize economy, consumption increases by
around 2%. The results suggest that the household is better off as the result of the
rising life expectancy and the dilution effect is dominated by the fact that people now
live longer.

39 The change in welfare due to change in life expectancy is represented by consumption-equivalence wel-
fare change. Total welfare is the sum of discounted stream of utilities, which depends on both consumption
level C and life expectancy (death rate d), shown in Eq. (4). LetW (C, d) denote the total welfare. Before
the change in death rate d, the total welfare is W (C∗, d∗). After the change, death rate decreases from d∗
to d∗∗, and the total welfare isW (C∗∗, d∗∗). The consumption-equivalence welfare change ω is calculated
such that W ((1 + ω)C∗, d∗) = W (C∗∗, d∗∗).
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7 Conclusions

This paper develops an endogenous growthmodelwith human capital formationwhere
the prevalence of an infectious disease causes ill health and incapacitates individuals
from working as well as accumulating human capital. There is an endogenous choice
of health expenditure to prevent infectious diseases. The paper focuses on the effects
of morbidity (ill health) and thus chooses to use an infinitely lived agent framework.
There are multiple balanced growth paths where the endogenous prevalence of the
disease determines whether human capital is accumulated or not, i.e., whether there is
sustained economic growth or a poverty trap. This mirrors the cross-country empirical
evidence. The paper also shows that an exogenous demographic transition could lead
to a takeoff from poverty trap to a positive growth. It shows that beyond the mortality
effects of diseases such as HIV/AIDS andmalaria, the so-called forgotten diseases that
are endemic, do not cause significant mortality and afflict primarily the poor, could be
an important determinant of poverty traps by affecting the amortization of physical,
human and health capital. This affects the size and allocation of savings among the
different types of capital which will be missed in models that treat as exogenous.
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Appendix 1: The SIS epidemiologymodel

Epidemiologicalmodeling refers to dynamicmodelingwhere the population is divided
into groups based on their epidemiological status (e.g., S, susceptible and I , infective),
and flows between the groups are specified by differential equations (as we develop
the model in continuous time). Depending on the given disease, there are different dis-
ease transmission mechanisms with possibly more epidemiology states. In this paper,
we model recurring diseases where having the disease does not confer subsequent
immunity. For these diseases, the SI S model is the canonical model.40

40 Having more epidemiology states does not add significant additional insight at the cost of considerable
complexity. For more details on the epidemiology models, see Hethcote (1994, 2008).
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The total population, N , is divided into two groups: S, the susceptible (healthy and
susceptible to the disease) and I , the infective (infected and capable of transmitting
the disease).41 Individuals are born at the rate b,42 healthy and susceptible to the
disease. We assume homogeneous mixing so that the likelihood of any individual
contracting the disease is the same.43 There is horizontal incidence of the disease, i.e.,
transmission from peers. Let α be the average number of adequate contacts of a person
to catch the disease per unit time or the contact rate. Then, the number of new cases
per unit of time is α(I/N )S, depending on the fraction of the infected. This contact
structure is the standard incidence or frequency-dependent model, commonly used in
the epidemiology literature for human diseases. It is adopted as the pattern of human
interaction is relatively stable and invariant to the size of the population.44 The contact
rate α is the key parameter and reflects two different aspects of disease transmission:
the biological infectivity of the disease and the pattern of social interaction. Changes
in either will change α. We concentrate on the how the former is affected by health
expenditures. The recovery of individuals is governed by the parameter γ and the
total number of individuals who recover from the disease at each time period is γ I .
Upon recovery, individuals move back to the class of susceptible individuals.45 Each
individual faces the exogenous death rate, d, irrespective of health status.46 Figure 6
describes the transfer diagram for the SI S model.

The SI S epidemiology model is given by the following system of differential
equations (Hethcote 2008):

Ṡ = bN + γ I − α(I/N )S − dS

İ = α(I/N )S − γ I − d I

N = S + I

S, I ≥ 0 ; S0, I0 > 0 given.

41 The model is in continuous time. All variables are functions of time. However, we omit the subscript
“t” throughout the paper, if no confusion caused.
42 Birth is understood to mean entry to the labor population either through birth or migration. We abstract
from the age structure in the paper.
43 Thus, how individuals choose interaction (e.g., Kremer 1996) is abstracted from. The choice of who to
interact with is significant for STDs but much less so for other infectious diseases.
44 Naively, it might seem plausible that the population density and hence the contact rate would increase
with population size, but the daily contact patterns of people are often similar in large and small communities,
cities and regions. For human diseases, the contact rate seems to be only very weakly dependent on the
population size. The other commonly used model, i.e., new cases equal to α I S, is used typically for herd
animals. For more discussion about the form of the incidence, see Hethcote (2008).
45 Upon recovery, individuals may or may not develop immunity to the disease. Even though they have
immunity to the disease, they are still susceptible to mutations of the disease, or other types of infectious
diseases. One of the leading examples is influenza: The influenza virus mutates and each year there are
new strains of the disease discovered. Immunity from one type of flu does not typically confer immunity to
other strains.
46 Introducing disease-related mortality rate will make the discount factor nonlinear and endogenous, since
population growth is affected by the composition of the healthy and infected individuals, which are both
endogenous variables. This will become clear in the following subsection, see Eq. (4). Nevertheless, we do
comparative statics of varying death rate or life expectancy, see Sect. 5.
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Fig. 6 Transfer diagram for the SI S epidemiology model. Note In a SI S epidemiology model, the total
population is divided into two groups: the susceptible denoted as S and the infected denoted as I . The birth
rate is b and newborns are born healthy and susceptible. All individuals irrespective of health status die
at the rate d. The susceptible get infected at the rate α I

N and the infected recover at the rate γ . For more
details, see Hethcote (2008)

The first equation shows that the change in the number of the susceptibles equals
the inflow of newborns, bN , and the recovered, γ I , minus the outflow due to both
being infected, α(I/N )S, and death, dS. Similarly, the second equation shows that
the change in the number of the infected is the difference between the inflow of newly
infected, α(I/N )S, and the outflow of the those recovered, γ I and dead, d I . As the
total population consists of the susceptibles and the infected, letting s = S/N be the
fraction of the susceptibles we can simplify the dynamical system to:

ṡ = (b + γ )(1 − s) − α(1 − s)s (26)

with the total population growing at the rate b − d.47 Note that the probability for a
healthy individual to contract diseases is α(1 − s), depending on the contact rate α

and the fraction of the infected (1− s) in the population. We maintain the assumption
that b − d ≥ 0, that is, the net population growth is always nonnegative.

This SI S epidemiology model admits two steady states: The disease-free steady

state (s∗ = 1) and the disease-endemic steady state
(
s∗ = b+γ

α

)
. We note that the

former exists for all parameter values, while the latter exists only when b+γ
α

< 1.48

The epidemiology model described so far is a biological one with the disease trans-
mission as given. In the economic epidemiology model, we endogenize the disease
transmission through health expenditures that affect infectivity of the disease, and
study how this interacts with choices on physical and human capital.

47 Let i = I/N be the fraction of the infected and i = 1 − s. We can rewrite the SI S epidemiological
model as:

ṡ = b − ds − αis + γ i − s(b − d)

i̇ = αis − γ i − di − i(b − d).

Since i = 1 − s, one of these equations is redundant.
48 When both steady states coexist, that is b+γ

α < 1, the disease-free steady state is unstable.
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Appendix 2: The decentralized economy

Proof of Proposition 1: Existence of the BGPs
The dynamical system of the decentralized economy is given as follows:

C + [K̇ + (δ + b − d)K ] + [Ḣ + (δ + b − d)H ] = AK β(euL)1−β (27)

ė = ψeL(1 − u) (28)

L̇ = (b + γ )(1 − L) − α

(
H

K

)
(1 − L)L (29)

1

C
= λ1 (30)

λ1 = λ2 + θ3, θ3 ≥ 0, IH ≥ 0, θ3 IH = 0 (31)

λ1(1 − β)AK β(euL)−βeL

= λ3ψeL + θ1, θ1 ≥ 0, 1 − u ≥ 0, θ1(1 − u) = 0 (32)

λ̇1 = (ρ − b + d)λ1

− λ1(βAK β−1(euL)1−β − (δ + b − d)) − λ4α
′
(
H

K

)
H

K 2 (1 − L)L (33)

λ̇2 = (ρ − b + d)λ2 + λ2(δ + b − d) + λ4α
′
(
H

K

)
1

K
(1 − L)L (34)

λ̇3 = (ρ − b + d)λ3 − λ3ψL(1 − u) − λ1(1 − β)AK β(euL)−βuL (35)

λ̇4 = (ρ − b + d)λ4 − λ3ψe(1 − u) + λ4(b + γ + α

(
H

K

)
(1 − L))

− λ1(1 − β)AK β(euL)−βeu + θ2, θ2 ≥ 0, 1 − L ≥ 0, θ2(1 − L) = 0.

(36)

In addition, the following TVCs: limt→∞ e−(ρ−b+d)tλ1K = 0,
limt→∞ e−(ρ−b+d)tλ2H = 0, limt→∞ e−(ρ−b+d)tλ3e = 0, and limt→∞ e−(ρ−b+d)t

λ4L = 0 have to be satisfied in the equilibrium.
Disease-free case In this case, infectious diseases are eradicated, all individuals

are healthy, and health expenditure for disease control is zero, IH = 0. Otherwise,
if IH > 0, we have θ3 = 0 and λ1 = λ2. Combining Eqs. (33) and (34), we obtain
λ1βAK β−1(eu)1−β = 0, which contradicts λ1 = 1

C > 0.

Differentiating both sides of Eq. (30), we get − Ċ
C = λ̇1

λ1
. Dividing both sides of Eq.

(33) by λ1, we get
λ̇1
λ1

= ρ + δ −βAK β−1(eu)1−β . Since u is a constant along BGP, it
implies growth rates of human capital and physical capital are the same. Similarly, by
dividing both sides of Eq. (27) by K , growth rates of physical capital and consumption
are the same. So consumption, physical and human capital all grow at the same rate
g = ψ(1 − u), given by Eq. (28). Dividing both sides of Eq. (35) by λ3, we have
λ̇3
λ3

= λ̇1
λ1

= −g.

If u∗ = 1, g = 0 and λ̇1 = λ̇3 = 0. FromEq. (32), θ1 ≥ 0 and λ1(1−β)AK βe−β >

λ3ψ . From Eq. (35), λ1(1−β)AK βe−β = λ3(ρ −b+d). So we haveψ < ρ −b+d,

123



A. Goenka, L. Liu

contradicting the assumptionψ > ρ−b+d. So, u∗ is strictly less than one, θ1 = 0 and
λ1(1−β)AK βe−β = λ3ψ . Substituting this into Eq. (35), we get g = ψ −(ρ−b+d)

and u∗ = ρ−b+d
ψ

.
Disease-endemic case In this case, infectious diseases are prevalent and L(q) =

b+γ
α(q)

. Since L∗ is a constant along BGP, q∗ is also a constant, implying physical and
health capital grow at the same rate. Due to the Inada condition, health expenditure
is strictly positive. So in Eq. (31) θ3 = 0 and λ1 = λ2. Then, we could rewrite Eqs.
(33)–(36) as:

λ̇1

λ1
= ρ − b + d −

[
βA

(
euL

K

)1−β

− (δ + b − d)

]
− λ4

λ1
α′(q)

H

K 2 (1 − L)L

(37)

λ̇1

λ1
= ρ − b + d + (δ + b − d) + λ4

λ1
α′(q)

1

K
(1 − L)L (38)

λ̇3

λ3
= ρ − b + d − ψL(1 − u) − λ1

λ3
(1 − β)A

(
euL

K

)−β

uL (39)

λ̇4

λ4
= ρ − b + d − λ3

λ4
ψe(1 − u) + (b + γ + α(q)(1 − L))

− λ1

λ4
(1 − β)Aeu

(
euL

K

)−β

. (40)

By some manipulations, we can see that consumption, physical, health and human

capital grow at the same rate g = ψL(q∗)(1 − u∗), λ̇1
λ1

= λ̇3
λ3

= −g and λ̇4
λ4

= 0.
Substituting these into Eqs. (37)–(39), we have

λ1

λ3
= ρ − b + d

(1 − β)AK β(euL)−βuL
, and

λ4

λ1
= − g + ρ + δ

α′(q) 1
K (1 − L)L

.

Then, substituting these into Eq. (40), we obtain:

−1 − β

β
α′(q)(1 − L(q))(1 + q)

−α(q) − 1 − β

β
α′(q)(1 − L(q))(1 + q)

ψL(q)(1 − u)

ρ − b + d
= ρ − b + d, (41)

which is a function of both q and u. Moreover, from Eq. (32), we have:

θ1 = λ1(1 − β)A

(
euL

K

)−β

eL − λ3ψeL

= λ3
e

u
[(ρ − b + d) − ψuL]

≥ 0.
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Since λ1
λ3

> 0 and λ1 > 0, we have λ3 > 0. So Eq. (32) reduces to

ρ − b + d − ψuL ≥ 0, u ≤ 1, and (ρ − b + d − ψuL)(1 − u) = 0. (42)

Therefore, Eqs. (41) and (42) determine (u∗, q∗).
There are two scenarios. If u∗ = 1, growth rate g = 0. Equation (41) simplifies to:

GL(q) = −1 − β

β
α′(q)(1 − L(q))(1 + q) − α(q) − (ρ − b + d) = 0.

Since u∗ = 1, we have θ1 ≥ 0, implying ψL(q∗) ≤ ρ − b + d. That is, a disease-
endemic poverty trap exists if q∗ ≤ q̂ .

If u∗ < 1, we have λ1(1 − β)AK β(eL)1−βu−β = λ3ψeL and u∗ = ρ−b+d
ψL∗ . q∗ is

determined by:

GR(q) = −1 − β

β
α′(q)(1 − L(q))(1 + q)

ψL(q)

ρ − b + d
− α(q) − (ρ − b + d) = 0.

Since u∗ < 1, we have ψL(q∗) > ρ − b + d. That is, a disease-endemic BGP exists
if q∗ > q̂ .

If we compare the two functions GL(q) and GR(q), we find that GL(q) > GR(q)

if q < q̂ , GL(q) < GR(q) if q > q̂ , and GL(q) = GR(q) if q = q̂ . Thus, q∗ is
determined by function

G(q) = max{GL(q),GR(q)} = 0.

Furthermore, the function G is continuous, limq→0 G = +∞ and limq→∞ G < 0.
By intermediate value theorem, there exists a q∗ > 0 such that G(q) = 0, that is,
there exists an endemic disease case. If q∗ ≤ q̂ , it is a poverty trap, and if q∗ > q̂ , it
is a positive growth path.

Proof of Lemma 1: Uniqueness of q∗
Since the functions GL(q) and GR(q) are differentiable, we have

∂GL(q)

∂q
= −1 − β

β
α′(q)(1 − L(q))(1 + q)

[
α′′(q)

α′(q)
+ L(q)

1 − L(q)
· α′(q)

α(q)
+ 1

1 + q

]
− α′(q);

∂GR(q)

∂q
= −1 − β

β
α′(q)(1 − L(q))(1 + q)

ψL(q)

ρ − b + d[
α′′(q)

α′(q)
+ L(q)

1 − L(q)
· α′(q)

α(q)
+ 1

1 + q
− α′(q)

α(q)

]
− α′(q).

We further assume α′′(q) is big enough, that is:

α′′(q) > −α′(q) max

{
β

(1 − β)(1 − L(q))(1 + q)
+ L(q)

1 − L(q)
· α′(q)

α(q)
+ 1

1 + q
,
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β

(1 − β)(1 − L(q))(1 + q)
· ρ − b + d

ψL(q)
+ L(q)

1 − L(q)
· α′(q)

α(q)
+ 1

1 + q
− α′(q)

α(q)

}
.

Therefore, we can show that both functions GL(q) and GR(q) are monotonically
decreasing in q. Moreover, since G(q) = GL(q) when q < q̂ , G(q) = GR(q)

when q > q̂ , and G(q) = GL(q) = GR(q) when q = q̂ , function G(q) is also
monotonically decreasing in q. Thus, there exists a unique q∗ such that G(q) = 0.

Proof of Proposition 2: Comparative Statics
Since ψ

b+γ

α(q̂)
= ρ − b + d, we have

∂q̂

∂ρ
= − α(q̂)

α′(q̂)(ρ − b + d)
> 0; ∂q̂

∂d
= −α(q̂)

α′(q̂)(ρ − b + d)
> 0;

∂q̂

∂ψ
= b + γ

α′(q̂)(ρ − b + d)
< 0.

Define Ĝ = G(q̂) = − 1−β
β

α′(q̂)(1−L(q̂))(1+ q̂)−α(q̂)−(ρ −b+d). If Ĝ ≤ 0,

it is a disease-endemic poverty trap, and if Ĝ > 0, it is a disease-endemic BGP.

When α′′(q) is big enough, we have ∂Ĝ
∂q̂ < 0. Then,

dĜ

dβ
= −

(
− 1

β2

)
α′(q̂)(1 − L(q̂))(1 + q̂) < 0;

dĜ

dρ
= ∂Ĝ

∂ρ
+ ∂Ĝ

∂q̂
· ∂q̂

∂ρ
= −1 + ∂Ĝ

∂ q̂
· ∂ q̂

∂ρ
< 0;

dĜ

dd
= ∂Ĝ

∂d
+ ∂Ĝ

∂q̂
· ∂q̂

∂d
= −1 + ∂Ĝ

∂q̂
· ∂ q̂

∂d
< 0;

dĜ

dψ
= ∂Ĝ

∂q̂
· ∂q̂

∂ψ
> 0.

That is, when infectious diseases are endemic, countries are more likely to undergo
a positive economic growth path, if capital share (β) is smaller; households are more
patient (i.e., ρ is smaller); life expectancy rises (i.e., d is smaller), or effectiveness of
human capital accumulation (ψ) is higher.

Proof of Proposition 3: Resource Allocation
Here, we provide resource allocation in a decentralized economy.

(1) Countries in the disease-free BGP: Substituting L∗ = 1 and λ1
λ1

= −g into Eq.

(33), we have βA( K
eu )β−1 = g + ρ + δ. Then,

IK
Y

= K̇ + (δ + b − d)K

Y
=

(
K̇

K
+ δ + b − d

)
1

A

(
K

eu

)1−β

= β
g + δ + b − d

g + ρ + δ
;
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C

Y
= 1 − IK

Y
= 1 − β

g + δ + b − d

g + ρ + δ
.

Substituting g = ψ − (ρ − b + d), we obtain the results for countries in the
disease-free BGP.

(2) Countries in the disease-endemic BGP: Combining Eqs. (37) and (38), we have
βA( K

euL )β−1 = (g + ρ + δ)(1 + q). Then,

IK
Y

= K̇ + (δ + b − d)K

Y
=

(
K̇

K
+ δ + b − d

)
1

A

(
K

euL

)1−β

= β
g + δ + b − d

g + ρ + δ
· 1

1 + q
;

IH
Y

= Ḣ + (δ + b − d)H

Y
= (g + δ + b − d) · H

K
· K
Y

= β
g + δ + b − d

g + ρ + δ
· q

1 + q
;

C

Y
= 1 − IK

Y
− IH

Y
= 1 − β

g + δ + b − d

g + ρ + δ
.

Substituting g = ψL∗ − (ρ − b + d), we obtain the results for countries in the
disease-endemic BGP.

(3) Countries in the disease-endemic poverty trap: Similar to countries in the disease-
endemic BGP, we substitute g = 0 and obtain the results for countries in the
poverty trap.

Appendix3: The centralizedeconomyandoptimalpublichealthpolicy

Centralized Economy
Here, we present the optimization problem in the centralized economy. The cen-

tralized economy differs from the decentralized one as the social planner takes into
account that the intervention can effectively control the proportion of the infected in
total population. The social planner’s maximization problem is essentially similar to
the decentralized economy with the only difference being in the law of motion for
labor force participation:

L̇ = (b + γ )(1 − L) − α(1 − L)L.

Thus, the social planner solves the following problem by choosing the allocations
on consumption (C), physical capital investment (IK ), health expenditure (IH ) and
fraction of time in production (u):

max{C,IK ,IH ,u}

∫ ∞

0
e−(ρ−b+d)t u(C)dt,
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s.t.

C + IK + IH = AK β(euL)1−β

K̇ = IK − δK − (b − d)K

Ḣ = IH − δH − (b − d)H

ė = ψeL(1 − u)

L̇ = (b + γ )(1 − L) − α(1 − L)L

0 ≤ u ≤ 1, 0 ≤ L ≤ 1, IH ≥ 0

What we are interested in is to find the optimal allocation and see how it differs
from the decentralized competitive equilibrium allocation.

Optimal Health Subsidy
Here, we present a decentralized economy with public health subsidy which can

replicate the optimal BGP in the centralized economy.
We assume for each unit of private health investment, there is a proportional health

subsidy τ , which is financed through a lump-sum tax T . The representative house-
hold solves the following problem by choosing consumption (C), physical capital
investment (IK ), health expenditure (IH ) and fraction of time in production (u):

max{C,IK ,IH ,u}

∫ ∞

0
e−(ρ−b+d)t u(C)dt,

s.t.

C + IK + IH = RK + WeuL − T

K̇ = IK − δK − (b − d)K

Ḣ = (1 + τ)IH − δH − (b − d)H

ė = ψeL(1 − u)

L̇ = (b + γ )(1 − L) − α(1 − L)L

0 ≤ u ≤ 1, 0 ≤ L ≤ 1, IH ≥ 0

In equilibrium, the period-by-period balance budget (balancedness) implies T =
τ IH .

Whatwe are interested in is to find the health subsidy τ , withwhich the decentralized
competitive equilibrium allocation is the same as the centralized optimal allocation.
In the following analysis, the superscript τ is used in denoting variables in the decen-
tralized economy with the health subsidy.

Proof of Proposition 5: Optimal Public Health Subsidy
In a decentralized economy with health subsidy,

1. There exists a unique disease-free BGPwith the growth rate gτ = ψ −(ρ−b+d);
2. There exists a unique disease-endemic case with L∗,τ = L(q∗,τ ).
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(a) If L∗,τ >
ρ−b+d

ψ
or q∗,τ > q̂ , it is a BGP with u∗,τ = ρ−b+d

ψL∗,τ , and gc =
ψL∗,τ − (ρ − b + d);

(b) If L∗,τ ≤ ρ−b+d
ψ

or q∗,τ ≤ q̂ , it is a poverty trap.

The effective health capital q∗,τ is determined by the equation

Gτ (q) = max{Gτ
L(q),Gτ

R(q)} = 0,

where

Gτ
L(q) = −1 − β

β
α′(q)(1 − L(q))(1 + q + τ) − α(q) − (ρ − b + d), and

Gτ
R(q) = −1 − β

β
α′(q)(1 − L(q))

(
1 + q + ρ + δ

ρ + δ + (1 + τ)g
τ

)
ψL(q)

ρ − b + d
−α(q) − (ρ − b + d).

The proof is the similar to the proof of proposition of the decentralized economy
without subsidy, andhence ignoredhere.When infectious diseases are eradicated, there
is no health expenditure and thus no need for the health subsidy. The disease-free BGP
is the same as those in the decentralized economy and the centralized economy shown.
When infectious diseases are endemic, the effective health capital q∗,τ is determined
by the equation Gτ (q) = 0. Compared with G(q) = 0 in the decentralized economy
without subsidy, the difference lies in the first term in the net marginal benefit, which
is distorted by the relative marginal value of physical capital investment and health
expenditure, due to the subsidy τ . We can rewrite Gτ (q) as follows:

Gτ
L(q) = GL(q) +

[
−1 − β

β
α′(q)(1 − L(q))τ

]
, and

Gτ
R(q) = GR(q) +

[
−1 − β

β
α′(q)(1 − L(q))

ψL(q)

ρ − b + d

ρ + δ

ρ + δ + (1 + τ)g
τ

]
.

Clearlywith the health subsidy, countries aremore likely to be in the positive economic
growth path.

The subsidy τ is chosen such that q∗,τ determined by equation Gτ (q) = 0 is the
same as q∗,c determined by equation G(q) + b + γ = 0. Let q∗ = q∗,τ = q∗,c.

If q∗ ≤ q̂ , we knowG(q∗)+b+γ = 0, which implies− 1−β
β

α′(q∗)(1−L(q∗))(1+
q∗) − α(q∗) − (ρ − b + d) + b + γ = 0. From Gτ (q∗) = 0, we have

τ = α(q∗) + ρ − b + d

− 1−β
β

α′(q∗)(1 − L(q∗))
− (1 + q∗)

= α(q∗) + ρ − b + d
α(q∗)−(b+γ )+ρ−b+d

1+q∗
− (1 + q∗)

= (1 + q∗) b + γ

α(q∗) − (b + γ ) + ρ − b + d
.
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Similarly, if q∗ > q̂ , we knowG(q∗)+b+γ = 0, which implies− 1−β
β

α′(q∗)(1−
L(q∗))(1 + q∗) ψL∗

ρ−b+d − α(q∗) − (ρ − b + d) + b + γ = 0. From Gτ (q∗) = 0, we
have

ρ + δ

ρ + δ + (1 + τ)g
τ = (1 + q∗) b + γ

α(q∗) − (b + γ ) + ρ − b + d
,

and

τ = (1 + q∗) b + γ

α(q∗) − (b + γ ) + ρ − b + d
· ρ + δ + g

ρ + δ − (1 + q∗) b+γ
α(q∗)−(b+γ )+ρ−b+d g

.

Appendix 4: An extension of the model with the disease contact rate
depending on both health and human capital

Here, we present an extension of the model, where the disease contact rate α depends
on both effective health and human capital. The idea is that higher human capital
through greater awareness and understanding of epidemiology of diseases will reduce
the contact rate.

The contact rate α is assumed to depend on both health capital H and human
capital e. In order to have a balanced growth path, we further assume that the contact

rate depends on the effective human capital, qe = e

K
, and effective health capital,

qH = H

K
. For ease of exposition, we use the following functional form:

α = 1

a

(
H

K

)−φ1 ( e

K

)−φ2
,

where a is the effectiveness of controlling disease. We can see that when φ2 = 0, the
model is same as the baseline model in the paper.

We solve the social planner’s optimization problem. The difference from the base-
line centralized economy in the paper is the two equations—the evolution of shadow
value λ1 and λ3, which takes into account the effect of change in physical capita and
human capital on the contact rate:

λ̇1 = (ρ − b + d)λ1 − λ1(βAK β−1(euL)1−β − (δ + b − d))

− λ4α(1 − L)L
1

K
(φ1 + φ2)

λ̇3 = (ρ − b + d)λ3 − λ3ψL(1 − u)

− λ1(1 − β)AK β(euL)−βuL − λ4α(1 − L)L
φ2

e
.
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In the BGP, the dynamical system is:

C

K
+

(
1 + H

K

)
(g + δ + b − d) = A

(
K

euL

)β−1

g = ψL(1 − u)

λ1(1 − β)A

(
K

euL

)β

eL = λ3ψeL

+ θ1; θ1 ≥ 0, 1 − u ≥ 0, θ1(1 − u) = 0

−g = ρ − b + d − βA

(
K

euL

)β−1

+ δ + b − d

+ λ4

λ1
α(1 − L)L

1

K
(φ1 + φ2)

−g = ρ − b + d + δ + b − d − λ4

λ1
α(1 − L)L

φ1

H

−g = ρ − b + d − λ1

λ3
(1 − β)A

(
K

euL

)β

uL

−ψL(1 − u) − λ4

λ3
α(1 − L)L

φ2

e

0 = ρ − b + d − λ1

λ4
(1 − β)A

(
K

euL

)β

eU

− λ3

λ4
ψe(1 − u) + b + γ + α(1 − L) − αL.

Similar to the baseline model in the paper, there are two scenarios.

Case 1 If u∗ = 1, the economy is in the poverty trap and the growth rate is zero
g = 0. In the steady state, human capital is given by its initial condition e0. The
steady-state health capital H∗ and physical capital K ∗ (or the effective health capital
q∗
H = H∗/K ∗ and effective human capital q∗

e = e0/K ∗) are determined by the
following two equations:

ρ − b + d = 1 − β

β
φ1α(1 − L)(1/qH + 1 + φ2/φ1) − α + (b + γ )

βA

(
1

qeL

)β−1

= (ρ + δ)[1 + qH (1 + φ2/φ1)].

The steady state exists only if the following condition holds in the steady state:

(ρ − b + d)
φ1

1−β
β

[1/qH + 1 + φ2/φ1](ρ + δ + g)

φ1
1−β
β

[1/qH + 1 + φ2/φ1](ρ + δ + g) + φ2
> ψL.

We can see that in the special case φ2 = 0, the steady-state conditions are exactly the
same as those in the baseline model in the paper.
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Case 2 If u∗ < 1, the economy grows at the rate g = ψL(1− u). (q∗
H , q∗

e , u∗) are
determined by the following three equations:

u = ρ − b + d

ψL

φ1
1−β
β

[1/qH + 1 + φ2/φ1](ρ + δ + g)

φ1
1−β
β

[1/qH + 1 + φ2/φ1](ρ + δ + g) + φ2

ρ − b + d = 1 − β

β
φ1α(1 − L)(1/qH + 1 + φ2/φ1) − α + (b + γ ) +

+ ψL(1 − u)

ρ − b + d
α(1 − L)[1 − β

β
φ1(1/qH + 1 + φ2/φ1) + φ2]

βA

(
1

qeL

)β−1

= (ρ + δ + g)[1 + qH (1 + φ2/φ1)].

The model here becomes more complex to solve compared with the baseline model
in the paper, where all the equations reduce to one equation which determines the
effective health capital qH .

Nevertheless, here we focus on what new insights on the conditions for a country to
take off by in the specification where the contact rate also depends on human capital.
Let us define q̂H such that

(ρ − b + d)
φ1

1−β
β

[1/qH + 1 + φ2/φ1](ρ + δ + g)

φ1
1−β
β

[1/qH + 1 + φ2/φ1](ρ + δ + g) + φ2
= ψL.

When φ2 = 0, the equation reduces to ρ −b+d = ψL , which is exactly the condition
for q̂ , i.e., the threshold q above which there is growth in the baseline model. Here,
with a positive φ2, that is, human capital does play a direct role in controlling disease,
the LHS of the equation is smaller than ρ − b+ d, as the fraction multiplying it is less
than one. Thus, the cutoff L beyond which the economy will grow is smaller than the
case when human capital does not affect the contact rate. Furthermore, as the RHS

ψL = b + γ

α(qH , qe)
the threshold contact rate that permits growth is also higher. Thus,

even with higher disease incidence, the economy can still grow. Thus, the new insights
we gain by extending the model are that:

– Even with a high contact rate, the economy may take off.
– The criterion for a country to take off depends on the stock of human capital in
the country.

– The country with higher human capital level is more likely to take off, compared
with the country with lower human capital level.

The implication is that policies that increase human capital accumulation are alsomore
likely to increase the possibility that an economywill start to grow as the higher human
capital, through greater awareness of transmission and control of diseases, reduces dis-
ease incidence. This indirect effect of human capital through the evolution of diseases
is different from the traditional direct effect of human capital on productivity as in
Lucas (1988). Ultimately, the main driver of growth in the model is human capital
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accumulation. As there is now an additional marginal benefit of the human capital,
the decrease in the contact rate, there will be an increased incentive in accumulating
it and make it more likely for the economy to take off.

References

Acemoglu, D., Johnson, S.: Disease and development: the effect of life expectancy on economic growth. J.
Political Econ. 115, 925–985 (2007)

Aksan, A.-M., Chakraborty, S.: Mortality versus morbidity in demographic transition. Eur. Econ. Rev. 70,
470–492 (2014)

Antunes, J.L.,Waldman, E.A.: The impact of AIDS, immigration and housing overcrowding on tuberculosis
deaths in Sao Paulo, Brazil, 1994–1998. Soc. Sci. Med. 52(7), 1071–80 (2001)

Ashraf, Q.H., Lester, A., Weil, D.N.: When does improving health raise GDP? NBER Macroecon. Annu.
23, 157–204 (2008)

Azomahou, T.T., Bouccekkine, R., Diene, B.: HIV/AIDS and development: a reappraisal of the productivity
and factor accumulation effects. Am. Econ. Rev. Pape. Proc. 106(5), 472–477 (2016)

Banerjee, A., Duflo, E.: Poor Economics. Perseus Books Group, Philadelphia (2011)
Barro, R., Lee, J.W.: A new data set of educational attainment in the world, 1950–2010. J. Dev. Econ. 104,

184–198 (2013)
Bleakley, H.: Disease and development: evidence from hookworm eradication in the American South. Q.

J. Econ. 122, 73–117 (2007)
Bleakley, H.: Malaria eradication in the Americas: a retrospective analysis of childhood exposure. Am.

Econ. J. Appl. Econ 2, 1–45 (2010)
Bleakley, H., Lange, F.: Chronic disease burden and the interaction of education, fertility and growth. Rev.

Econ. Stat. 91, 52–65 (2009)
Bloom, D.E., Canning, D., Fink, G.: Diseases and development revisited. J. Political Econ. 122, 1355–1366

(2014)
Bosi, S., Desmarchelier.: Pollution and infectious diseases. Int. J. Econ. Theory. 14(4), 351–372 (2018)
Bonds, M.H., Keenan, D.C., Rohani, P., Sachs, J.D.: Poverty trap formed by the ecology of infectious

diseases. In: Proceedings of the Royal Society (2009)
Chakrabory, S., Papageorgiou, C., Perez-Sebastian, F.: Diseases, infection dynamics and development. J.

Monet. Econ. 57, 859–872 (2010)
Chakrabory, S., Papageorgiou, C., Perez-Sebastian, F.: Health cycles and health transitions. Macroecon.

Dyn. 20(1), 189–213 (2016)
Chauhan, A., Johnston, S.L.: Air pollution and infection in respiratory illness. Br. Med. Bull. 68(1), 95–112

(2003)
Cohen, S., Williamson, G.M.: Stress and infectious diseases in humans. Psychol. Bull. 109(1), 5–24 (1991)
Clarke, K.E.N.: Review of the epidemiology of diphtheria - 2000–2016, US Centers for Disease Control

and Prevention (2018)
Cutler, D., Fung, W., Kremer, M., Singhal, M., Vogl, T.: Early-life malaria exposure and adult outcomes:

evidence from malaria eradication in India. Am. Econ. J. Appl. Econ. 2, 72–94 (2010)
Decosas, J., et al.: Migration and AIDS. Lancet 346, 826–828 (1995)
Delfino, D., Simmons, P.J.: Positive and normative issues of economic growth with infectious diseases.

Discussion Papers in Economics, University of York (2000)
Epstein, P.R.: Climate change and emerging infectious diseases. Microbes Infect. 3, 747–754 (2001)
Fischer, S.: The global low level of real interest rates. BIS Speech (2017)
Fortson, J.G.: HIV/AIDS and fertility. Am. Econ. J. Appl. Econ. 1(3), 170–194 (2009)
Fortson, J.G.: Mortality risk and human capital investment: the impact of HIV/AIDS in Sub-Saharan Africa.

Rev. Econ. Stat. 93, 1–15 (2011)
Fox,M.P., et al.: The impact ofHIV/AIDS on labor productivity inKenya. Trop.Med. Int. Health 9, 318–324

(2004)
Fuller, T.D., et al.: Chronic stress and psychological well-being: evidence from Thailand on household

crowding. Soc. Sci. Med. 42(2), 265–280 (1996)
Gallup, J., Sachs, J.D.: The economic burden of malaria. Am. J. Trop. Med. Hyg. 64(S1), 85–96 (2001)

123



A. Goenka, L. Liu

Geoffard, P.-Y., Philipson, T.: Rational epidemics and their public control. Int. Econ. Rev. 37(3), 603–24
(1996)

Gersovitz, M., Hammer, J.S.: The economical control of infectious diseases. Econ. J. 114(492), 1–27 (2004)
Godbout, J.P., Glaser, R.: Stress-induced immune dysregulation: implications for wound healing, infectious

disease and cancer. J. Neuroimmune Pharmacol. 1, 421–427 (2006)
Goenka, A., Liu, L.: Infectious diseases and endogenous fluctuations. Econ. Theory 50(1), 125–149 (2012).

https://doi.org/10.1007/s00199-010-0553-y
Goenka, A., Liu, L., Nguyen, M.-H.: Infectious diseases and economic growth. J. Math. Econ. 50, 34–53

(2014)
Gokhale, K.: Leprosy return shows neglect in India of ancient blight, Bloomberg News (18/09/2013)
Gollin, D.: Getting income shares right. J. Political Econ. 110, 458–474 (2002)
Gottret, P., Schieber, G.: Health Financing Revisited: A Practitioner’s Guide. The World Bank, Washington

(2006)
Herbert, T.B., Cohen, S.: Stress and immunity in humans: A meta-analytic review. Psychosom. Med. 55,

364–379 (1993)
Hethcote, H.W.: A thousand and one epidemic models. Front. Theor. Biol. 100, 504–515 (1994)
Hethcote, H.W.: TheBasic EpidemiologyModels, EpidemiologyModelswithVariable Population Size, and

Age-Structured EpidemiologyModels, Mathematical Understanding of Infectious Disease Dynamics.
World Scientific, Singapore (2008)

Inobaya, M.T., et al.: Prevention and control of schistosomiasis: a current perspective. Res. Rep. Trop. Med.
5, 65–75 (2014)

Kalemli-Ozcan, S., Turan, B.: HIV and fertility revisited. J. Dev. Econ. 96, 61–65 (2011)
Kalemli-Ozcan, S., Ryder, H., Weil, D.N.: Mortality decline, human capital investment, and economic

growth. J. Dev. Econ. 62, 1–23 (2000)
Kremer, M.: Integrating behavioural choice into epidemiological models of the AIDS epidemic. Q. J. Econ.

111, 549–573 (1996)
Lucas, A.: Malaria eradication and educational attainment: evidence from Paraguay and Sri Lanka. Am.

Econ. J. Appl. Econ. 2, 46–71 (2010)
Lucas, R.E.: On the mechanics of economic development. J. Monet. Econ. 22, 3–42 (1988)
Manuelli, R.: Disease and development: The role of human capital. HCEOWorking Paper, Chicago (2011)
McMichael, A.J.: Environmental and social influences on emerging infectious diseases: past, present and

future. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359(1447), 1049–1058 (2004)
McMichael, A.J., Woodruff, R.E., Hales, S.: Climate change and human health: present and future risks.

Lancet 367, 859–69 (2006)
Miguel, E., Kremer, M.: Worms: identifying impacts on education and health in the presence of treatment

externalities. Econometrica 72, 159–217 (2004)
Murray, C.J.L., et al.: Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions,

1990–2010: a systematic analysis of global burden of disease study 2010. Lancet 380, 2197–2223
(2012)

Patz, J.A., et al.: Effects of environmental change on emerging parasitic diseases. International Journal for
Parasitology 30, 1395–1405 (2000)

Patz, J.A., et al.: Climate change and infectious diseases. In: McMichael, A.J., et al. (eds.) Climate Change
and Human Health: Risks and Responses, pp. 103–132. OMS, Geneva (2003)

Pavlovsky, E.N.: Natural Nidality of Transmissible Diseases. University of Illinois Press, Urbana (1966)
Peterson, P.K., et al.: Stress and pathogenesis of infectious disease. Rev. Infect. Dis. 13(4), 710–720 (1991)
Quah, D.: Empirical cross-section dynamics in economic growth. Eur. Econ. Rev. 37, 426–434 (1993)
Salomon, J.A., et al.: Common values in assessing health outcomes from disease and injury: disability

weights measurement study for the Global Burden of Disease Study 2010. Lancet 380, 2129–2143
(2012)

Soares, R.: Mortality reductions, educational attainment, and fertility choice. Am. Econ. Rev. 95(3), 580–
601 (2005)

Sobngwi, E., et al.: Exposure over the life course to an urban environment and its relation with obesity,
diabetes, and hypertension in rural and urban Cameroon. Int. J. Epidemiol. 33, 769–776 (2004)

Steinmann, P.,Keiser, J., Bos,R., Tanner,M.,Utzinger, J.: Schistosomiasis andwater resources development:
systematic review, meta-analysis, and estimates of people at risk. Lancet 6(7), 411–425 (2006)

123

https://doi.org/10.1007/s00199-010-0553-y


Infectious diseases, human capital and economic growth

Tarozzi, A., Mahajan, A., Yoong, J., Blackburn, B.: Commitment mechanisms and compliance with health-
protecting behavior: preliminary evidence from Orissa, India. Am. Econ. Rev. Pap. Proc. 99(2), 231–
235 (2009)

Tatem, A.J., Rogers, D.J., Hay, S.I.: Global transport networks and infectious disease spread. Adv. Parasitol.
62, 293–343 (2006)

Weisbrod, B., et al.: Disease and development: the impact of parasitic diseases in St. Lucia. Int. J. Soc.
Econ. 1(1), 111–117 (1974)

World Bank, Data on real interest rates. https://data.worldbank.org/indicator/fr.inr.rinr. Accessed 19 Mar
2019

World Bank, Data on health, https://data.worldbank.org/topic/health. Accessed 2 July 2019
Xu, K., Saksena, P., Holly, A.: The determinants of health expenditure: a country-level panel data analysis.

World Health Organization, Working Paper (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://data.worldbank.org/indicator/fr.inr.rinr
https://data.worldbank.org/topic/health

	Infectious diseases, human capital and economic growth
	Abstract
	1 Introduction
	2 The empirical facts
	3 The economic epidemiology model
	4 Competitive equilibria
	5 Optimal public health policy
	5.1 Centralized economy
	5.2 Optimal health subsidy

	6 Calibrations and simulations
	6.1 Calibration
	6.2 Impact of increasing effectiveness of controlling diseases
	6.3 Impact of rising life expectancy

	7 Conclusions
	Acknowledgements
	Appendix 1: The SIS epidemiology model
	Appendix 2: The decentralized economy
	Appendix 3: The centralized economy and optimal public health policy
	Appendix 4: An extension of the model with the disease contact rate depending on both health and human capital
	References




