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The Journal of Immunology

ADAM10-Interacting Tetraspanins Tspan5 and Tspan17
Regulate VE-Cadherin Expression and Promote T
Lymphocyte Transmigration

Jasmeet S. Reyat,*,† Myriam Chimen,† Peter J. Noy,* Justyna Szyroka,*

G. Ed Rainger,†,1 and Michael G. Tomlinson*,1

The recruitment of blood leukocytes across the endothelium to sites of tissue infection is central to inflammation, but also promotes

chronic inflammatory diseases. A disintegrin andmetalloproteinase 10 (ADAM10) is a ubiquitous transmembranemolecular scissor

that is implicated in leukocyte transmigration by proteolytically cleaving its endothelial substrates. These include VE-cadherin, a

homotypic adhesion molecule that regulates endothelial barrier function, and transmembrane chemokines CX3CL1 and CXCL16,

which have receptors on leukocytes. However, a definitive role for endothelial ADAM10 in transmigration of freshly isolated pri-

mary leukocytes under flow has not been demonstrated, and the relative importance of distinct ADAM10 substrates is unknown.

Emerging evidence suggests that ADAM10 can be regarded as six different molecular scissors with different substrate specificities,

depending on which of six TspanC8 tetraspanins it is associated with, but TspanC8s remain unstudied in leukocyte transmigration.

In the current study, ADAM10 knockdown on primary HUVECs was found to impair transmigration of freshly isolated human

peripheral blood T lymphocytes, but not neutrophils or B lymphocytes, in an in vitro flow assay. This impairment was due to delayed

transmigration rather than a complete block, andwas overcome in the presence of neutrophils. Transmigration of purified lymphocytes

was dependent on ADAM10 regulation of VE-cadherin, but not CX3CL1 and CXCL16. Tspan5 and Tspan17, the two most closely

related TspanC8s by sequence, were the only TspanC8s that regulated VE-cadherin expression and were required for lymphocyte

transmigration. Therefore endothelial Tspan5- and Tspan17-ADAM10 complexes may regulate inflammation by maintaining normal

VE-cadherin expression and promoting T lymphocyte transmigration. The Journal of Immunology, 2017, 199: 666–676.

L
eukocyte recruitment during inflammation is essential
for fighting infection and repairing tissue damage. Ordi-

narily this process is under tight control, because loss of

regulation can result in the prolonged and inappropriate patterns of

leukocyte trafficking, which result in chronic inflammatory dis-

eases such as atherosclerosis. During inflammation, leukocytes are

captured from the bloodstream by adhesion molecules on endo-

thelial cells of postcapillary venules (1–4). The leukocytes then

undergo a process of rolling, arrest, crawling, and transendo-

thelial migration. The early events of this process are relatively

well-characterized, but transendothelial migration is less well

understood (1–4).

A disintegrin and metalloproteinase 10 (ADAM10) is a ubiquitous
transmembrane molecular scissor, or sheddase, which cleaves the

extracellular regions from over 40 different transmembrane sub-

strates. Endothelial ADAM10 has the potential to regulate leukocyte

transmigration as a sheddase for the adherens junction protein VE-

cadherin (5, 6) and the transmembrane chemokines CX3CL1 and

CXCL16 (7–9). Indeed, three in vitro studies report a role for endo-

thelial ADAM10 in leukocyte transmigration. In the only one of

these to use relevant populations of freshly isolated blood leuko-

cytes, knockdown of ADAM10 expression on primary human lung

microvascular endothelial cells was found to impair the transmi-

gration of human neutrophils toward CXCL8/IL-8 (10). In the other

two studies, pharmacological inhibition of ADAM10 activity, or

knockdown of expression, on primary HUVECs was found to im-

pair transmigration of cultured human T cells preactivated with the

mitogen PHA (6), and to impair transmigration of a mouse pre-

B cell line transfected with CX3CR1, the CX3CL1 receptor (11).

However, the interpretation of experimental outcomes is complicated

when differentiated cells and cell lines are used, as the patterning of

adhesion and chemokine receptors will deviate from those found on

cells circulating in the blood. The only study to have conducted

assays with freshly isolated blood leukocytes under physiological

flow conditions reports no significant role of endothelial ADAM10

on the transmigration of primary human monocytes (12). Thus,

despite its potential to regulate leukocyte transmigration, endothelial

ADAM10 is not generally included in current models of leukocyte

transmigration (1–4).
We and others have recently discovered that ADAM10 is regulated

by tetraspanins (13–15), which are a superfamily of 33 transmem-

brane proteins in mammals that regulate the intracellular trafficking

and membrane localization of the so-called partner proteins with
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which they associate (16, 17). The ADAM10-interacting tetraspanins
are the recently identified and relatively poorly characterized
TspanC8 subgroup, which are related by sequence and comprise
Tspan5, 10, 14, 15, 17, and 33 (13, 14). Interaction with a TspanC8
is required for ADAM10 exit from the endoplasmic reticulum, and
for enzymatic maturation and trafficking to the cell surface (13–15).
Moreover, emerging evidence indicates that different TspanC8s
traffic ADAM10 to distinct subcellular localizations (13, 18) and
can differentially affect cleavage of the ADAM10 substrates Notch
(13, 18, 19), N-cadherin (13, 15, 20), GPVI (20), amyloid pre-
cursor protein (15, 18), and CD44 (18). Therefore, ADAM10 can be
regarded as six different molecular scissors, depending on its asso-
ciated TspanC8 (21). A potential role for specific TspanC8-ADAM10
complexes in leukocyte transmigration has not been investigated.
The aims of the current study were to determine whether endo-

thelial ADAM10 promotes transmigration of freshly isolated primary
human lymphocytes and neutrophils under physiological flow con-
ditions, to identify the key ADAM10 substrate(s) involved, and to
investigate whether specific TspanC8s regulate this process.

Materials and Methods
Cells

HUVECs were obtained from umbilical cords with consent from the
BirminghamWomen’s Health Care NHS Trust, which was approved by the
University of Birmingham Ethics Committee. HUVECs were isolated
using the collagenase digestion method (22) and cultured in M199 media

supplemented with 20% FBS, 10 ng/ml epidermal growth factor (Sigma),
35 mg/ml gentamicin, 1 mg/ml hydrocortisone, and 2.5 mg/ml amphoter-
icin B. Human PBLs and neutrophils were obtained from venous blood of
healthy individuals, which was collected under ethical approval into EDTA
tubes. PBMCs were isolated by centrifugation on Histopaque 1077 (Sigma),
before being panned on culture plastic to remove adherent monocytes, and
yield a population of PBLs (23). Neutrophils were isolated by centrifugation
of blood on Histopaque 1119 (Sigma). Isolated cells were washed, counted,
and adjusted to a final concentration of 1 3 106 per ml in M199 media
supplemented with 0.15% BSA for static adhesion assays, or in PBS with
0.15% BSA for flow adhesion assays. For experiments in which equal
numbers of PBLs and neutrophils were mixed, the cells were labeled with
25 mM CellTracker Orange (Life Technologies) and 5 mg/ml calcein-AM
(Cambridge Bioscience), respectively. The human embryonic kidney-293
cells expressing the large T-antigen of SV40 (HEK-293T) cell line was
cultured in DMEMmedium containing 10% FBS (Life Technologies), 4 mM
L-glutamine, 100 U/ml penicillin, and 100 mg/ml streptomycin.

Leukocyte transmigration under static conditions

PBL transmigration was assessed using a 12-well format as previously
described (24). First passage HUVECs were seeded on to 12-well tissue
culture plates at a density to yield a confluent monolayer within 24 h. The
HUVECs were stimulated with 100 U/ml TNF-a (R&D Systems) and
10 ng/ml IFN-g (PreproTech) for 24 h prior to carrying out adhesion assays
with lymphocytes. HUVECs were washed with M199 0.15% BSA to
remove residual cytokines and purified PBLs were added. The PBLs were
allowed to settle, adhere, and transmigrate through the HUVEC monolayer
at 37˚C in a CO2 incubator for 7 min, a time point previously shown to
yield a sufficient proportion of migrated PBLs (25). Nonadherent cells were
removed from the HUVECs by gently washing with M199 0.15% BSA, and
video recordings of five fields of view of the endothelial monolayer were

FIGURE 1. Knockdown of endothelial ADAM10 decreases the transmigration of lymphocytes under in vitro flow conditions. (A) HUVECs were

transfected with 10 nM negative control (white bars) or one of two ADAM10 siRNA duplexes (black bars). HUVECs were replated into six-well ibidi slides

4 h post transfection, and stimulated with 100 U/ml TNF-a and 10 ng/ml IFN-g 24 h post transfection. After a further 24 h, freshly isolated human PBLs

were perfused across HUVEC monolayers at 0.05 Pa for 4 min, followed by cell-free PBS 0.15% BSA for 9 min. Video recordings of five different fields of

view of the HUVEC monolayer were then made using time-lapse phase-contrast video microscopy. Cells were classified as rolling, firmly adherent, or

transmigrated. Error bars represent the SEM from five experiments. Data were normalized by arcsine transformation and statistically analyzed by a two-way

ANOVA and Bonferroni post hoc comparison test (***p , 0.001 compared with control siRNA-transfected cells). (B) The experiments were carried out as

explained in (A), except that HUVECs were prestimulated with 100 U/ml TNF-a for 4 h before perfusion of human neutrophils. Error bars represent the

SEM from seven experiments. (C) ADAM10 knockdown was confirmed by flow cytometry. The black line represents ADAM10 staining and the gray line

isotype control staining from a representative experiment. (D) ADAM10 knockdown was quantitated and error bars represent the SEM from the 12 total ex-

periments in (A) and (B). Data were normalized by arcsine transformation and analyzed by t test. ***p , 0.001 compared with control siRNA-transfected cells.
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made using phase-contrast video microscopy. The video recordings were
analyzed using Image-Pro Plus software (DataCell). Each PBL was clas-
sified as either phase bright and adherent to the surface of the HUVEC
monolayer, or phase dark with altered morphology and migrating below
the HUVEC monolayer. The percentage of adherent PBL that had trans-
migrated was calculated.

Leukocyte transmigration under flow

First passage HUVECs were seeded onto ibidi chamber slides (ibidi) at a
density designed to yield a confluent monolayer 24 h later, and stim-
ulated as described for the static assay. The ibidi chamber slides were
attached to a perfusion system mounted on the stage of a phase-contrast
video microscope enclosed in a Perspex chamber at 37˚C, as described
(26). At one end, the ibidi slide was connected to a Harvard withdrawal
syringe pump that delivered the flow at a rate equivalent to a wall shear
stress of 0.05 Pa. At the other end, the ibidi slide was connected to an
electronic switching valve (Lee Products), which selected the flow from
two reservoirs containing leukocytes (PBLs or neutrophils) in PBS
0.15% BSA or cell-free PBS 0.15% BSA. A 4 min bolus of leukocytes
was perfused over the HUVECs followed by cell-free PBS 0.15% BSA
wash buffer. Video recordings were made of a series of microscope
fields along the center-line of the flow channel after 9 min of washout.
Video recordings were analyzed as for static assays, except that leukocytes
adherent to the HUVEC monolayer were classified as rolling (phase
bright spherical cells moving over the surface), firmly adherent (phase
bright cells with distorted shape and migrating slowly on the surface),
or phase dark transmigrated cells. The total number leukocytes ex-
hibiting the various behaviors was calculated and expressed as a
percentage.

Flow cytometry for transmembrane chemokines and
their receptors

PBLs and monocytes were stained with anti-CD3 peridinin-chlorophyll
proteins–Cy5.5, anti-CD4 allophycocyanin-Cy7, anti-CD8 Pacific Blue,
anti-CD14 allophycocyanin, and anti-CD19 PE-Cy7 (BD Biosciences), and
anti-CX3CR1 FITC and anti-CXCR6 FITC (R&D Systems). HUVECs were
stained with anti-CX3CL1 FITC and anti-CXCL16 allophycocyanin (R&D
Systems). As a positive control for these transmembrane chemokines, HEK-
293T cells were transfected with expression constructs for human CX3CL1
(8) or CXCL16 (7), using polyethylenimine (Sigma) as described (27).
HUVECs were also stained with anti-E-selectin PE, anti-ICAM-1 allo-
phycocyanin and anti-VCAM-1 FITC (BD Biosciences). Cells were ana-
lyzed using a Cyan ADP Flow Cytometer (Beckman Coulter) and FlowJo
software (Ashland). Live cells were gated based on forward and side
scatter parameters.

Small interfering RNA knockdown in HUVECs

Silencer Select small interfering RNA (siRNA) duplexes (Life Technolo-
gies) were transfected into HUVECs using Lipofectamine RNAiMAX (Life
Technologies) as described (14), and functional assays were performed
48 h post transfection. ADAM10 and VE-cadherin knockdowns were assessed
by flow cytometry using anti-ADAM10 FITC (R&D Systems) and anti-VE-
cadherin allophycocyanin (BD Biosciences). TspanC8s knockdowns were
assessed by TaqMan (Applied Biosystems) quantitative PCR using RNA
isolated with the RNeasy Mini Kit (Qiagen), from which cDNA was made
using the High Capacity cDNA Reverse Transcription Kit (Life Technolo-
gies), as described (14). TspanC8 data were normalized to quantitative PCR
data for GAPDH.

FIGURE 2. Knockdown of endothelial ADAM10 decreases the transmigration of lymphocytes under in vitro static conditions. (A) HUVECs were siRNA

transfected and stimulated as described in Fig. 1A, but were cultured in 12-well plates. Freshly isolated human PBLs were allowed to adhere to HUVEC

monolayers for 7 min at 37˚C. Phase-contrast images of five different fields of view of the HUVEC monolayer were taken. Cells were classified as firmly

adherent or transmigrated. Error bars represent the SEM from five experiments and statistical analyses were performed as described for Fig. 1A (***p, 0.001).

(B) The experiment was performed as described in (A), except that transmigrated PBLs were harvested following initial removal of surface-adherent PBLs

using 0.02% EDTA in PBS. Expression of major PBL subpopulations (CD19+ B cells, CD4+, and CD8+ T cells) was assessed by flow cytometry. Error bars

represent the SEM from three experiments. *p, 0.05, **p, 0.01 compared with control siRNA-transfected cells. (C) The experiments were carried out as

explained in (A), except that human PBLs were allowed to adhere to HUVEC monolayers for 7 or 60 min at 37˚C. Error bars represent the SEM from three

experiments. ***p, 0.001. (D) ADAM10 knockdown was quantitated and statistical analyses were performed as described in Fig. 1D. Error bars represent

the SEM from five experiments. ***p , 0.001.
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Statistical analyses

All percentage data were normalized by arcsine transformation before sta-
tistical testing by Student t test for two samples, or by ANOVA, followed by
Bonferroni or Dunnett multiple comparison tests for more than two samples.

Results
Endothelial ADAM10 promotes PBL transmigration

Previous studies have shown that endothelial ADAM10 is required
for efficient transmigration of human neutrophils toward CXCL8
(10), cultured human T cells preactivated with the mitogen PHA
(6), and a CX3CR1-transfected pre-B cell line (11) under static
conditions. Under flow conditions, ADAM10 is not required for
primary human monocyte transmigration (12). To test whether
endothelial ADAM10 regulates primary human PBL or neutrophil
transmigration under flow, an established in vitro assay using phys-
iological flow conditions was employed (26), following siRNA
knockdown of ADAM10 on HUVECs. ADAM10 knockdown re-
duced PBL transmigration by ∼50% with two different siRNA
duplexes, with a consequent increase in the percentage of firmly
adherent cells that had failed to transmigrate (Fig. 1A). In contrast,
endothelial ADAM10 knockdown did not affect neutrophil trans-
migration (Fig. 1B). ADAM10 knockdown efficiency was confirmed
by flow cytometry (Fig. 1C) and found to be ∼90% upon quantita-
tion (Fig. 1D). These data show that endothelial ADAM10 is required
for normal PBL, but not neutrophil, transmigration under physiolog-
ical flow conditions in our in vitro model system driven by endothelial
cell responses to inflammatory cytokines.

To establish a more high-throughput assay of transmigration to
facilitate future mechanistic studies, PBL transmigration was
assessed under static conditions. Consistent with the studies under
flow, ADAM10 knockdown on HUVECs reduced PBL transmi-
gration (by ∼35%), with a consequent increase in the percentage
of firmly adherent cells that had not transmigrated (Fig. 2A). To
investigate whether a particular major PBL subset was affected
by loss of endothelial ADAM10, transmigration of CD19+

B lymphocytes and CD4+ and CD8+ T lymphocytes were as-
sessed, because together they account for ∼80% of PBLs (data not
shown). CD4+ and CD8+ T lymphocytes had reduced transmi-
gration following endothelial ADAM10 knockdown, but CD19+

B lymphocytes did not (Fig. 2B). To determine whether reduced
PBL transmigration was due to a delay or a complete block,
transmigration was allowed to proceed for 60 min, in comparison
with the previous time point of 7 min. This confirmed delayed
PBL transmigration following endothelial ADAM10 knockdown,
because transmigration had reached normal levels after 60 min
(Fig. 2C). ADAM10 knockdown efficiency was ∼80% by flow
cytometry (Fig. 2D). To determine if impaired PBL transmigration
was maintained in the presence of neutrophils, CellTracker Orange-
labeled PBLs were mixed with calcein-labeled neutrophils. No
defect in PBL transmigration under flow, over a 60-min time course,
was observed in the presence of neutrophils, using ADAM10-
knockdown HUVECs stimulated with either TNF-a/IFN-g (Fig. 3A,
3B) or TNF-a alone (Fig. 3C, 3D). ADAM10 knockdown efficiency
was 85–90% (Fig. 3E). Taken together, these data show that en-
dothelial ADAM10 can enhance the initial rate of T lymphocyte

FIGURE 3. In the presence of neutrophils, knockdown of endothelial ADAM10 does not decrease transmigration of lymphocytes under in vitro flow

conditions. HUVECs were transfected with 10 nM negative control (white bars) or one of two ADAM10 siRNA duplexes (black bars). HUVECs were

replated into six-well ibidi slides 4 h post transfection, and stimulated with either 100 U/ml TNF-a and 10 ng/ml IFN-g for 24 h (A and B) or 100 U/ml

TNF-a alone for 4 h (C and D), prior to perfusing a bolus of freshly isolated human PBLs (fluorescently labeled with CellTracker Orange) and neutrophils

(fluorescently labeled with calcein-AM) over the HUVEC monolayers at 0.05 Pa for 4 min. After a 2 min wash with cell-free PBS 0.15% BSA, a single

image of one field of view of the HUVEC monolayer was made using time-lapse phase-contrast microscopy at the indicated time points. Cells were

classified as firmly adherent or transmigrated. The data were adjusted such that the magnitude of transmigration following ADAM10 knockdown was

expressed as a percentage of the negative control knockdown. Of note, the number of PBLs that were recruited on TNF-a–stimulated HUVECs was 60–

70% reduced in comparison with the numbers recruited following TNF-a/IFN-g stimulation. Error bars represent the SEM from three experiments. Data

were normalized by arcsine transformation and statistically analyzed by a two-way ANOVA and Bonferroni post hoc comparison test; no significant

differences were detected. (E) ADAM10 knockdown was confirmed by flow cytometry and quantitated. Error bars represent the SEM from the three

experiments in (A)–(D). Data were normalized by arcsine transformation and analyzed by t test. *p , 0.05 compared with control siRNA-transfected cells.
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transmigration under both flow and static conditions, but the re-
quirement for ADAM10 is lost in the presence of neutrophils.

The transmembrane chemokines CX3CL1 and CXCL16 on
HUVECs are not involved in PBL transmigration

The transmembrane chemokines CX3CL1 and CXCL16 are
ADAM10 substrates with the potential to regulate PBL transmi-
gration. Indeed, an adhesion assay using primary human leukocytes,
adhering to a CX3CL1-transfected epithelial cell line, suggested the
possibility that ADAM10 cleavage of CX3CL1 might release cap-
tured leukocytes to promote subsequent transmigration (9). How-
ever, whether endogenous levels of these chemokines on HUVECs
can facilitate the recruitment and subsequent transmigration of
PBLs has not previously been demonstrated. To investigate the
potential for this, the expression levels of CX3CL1 and CXCL16
were assessed on HUVECs by flow cytometry. HUVECs expressed
CX3CL1 but not CXCL16 (Fig. 4A). As a positive control, to
confirm the efficacy of the chemokine Abs, both detected their re-
spective targets on HEK-293T cells transiently transfected with
human CX3CL1 or CXCL16 (Fig. 4A). To determine if endogenous
CX3CL1 on HUVECs had the potential to support the adhesion and
transmigration of PBLs, the expression of the CX3CL1 receptor,
CX3CR1, was assessed on PBLs by flow cytometry. Gating for the
three most abundant PBL subsets, B lymphocytes, CD4+, and CD8+

T lymphocytes, revealed that CX3CR1 expression was undetectable

on these cells (Fig. 4B). As a positive control for the CX3CR1 Ab,
CX3CR1 was detected on human monocytes (Fig. 4B). These
findings suggest that CX3CL1 and CXCL16 play no role in PBL
transmigration across HUVEC monolayers in our model system,
because the receptor for CX3CR1 is not expressed on the PBLs and
CXCL16 is not expressed on the HUVECs. Thus, regulation of PBL
transmigration must be due to another ADAM10-sensitive substrate.

VE-cadherin expression levels increase in the absence of
ADAM10, and partial VE-cadherin knockdown to normal
levels rescues the PBL transmigration defect

The ADAM10 substrate VE-cadherin is a homotypic cell adhesion
molecule that forms adherens junctions between endothelial cells,
and is critical for endothelial barrier function (1–4). Previous
studies have shown that ADAM10 inhibition or knockdown
decreases shedding of VE-cadherin and decreases endothelial
monolayer permeability (5, 6, 28). This is accompanied by a re-
duction in transmigration efficiency of human T cell blasts (6).
However, this study did not assess whether elevated VE-cadherin
levels were responsible for the transmigration phenotype. In this
study, surface VE-cadherin levels following ADAM10 knockdown
on HUVECs were assessed by flow cytometry. Surface VE-cadherin
was found to be increased by ∼50% using two different siRNA
duplexes, and following treatment with either TNF-a/IFN-g
(Fig. 5A, 5B) or TNF-a alone (Fig. 5C, 5D). In contrast, expression

FIGURE 4. HUVECs express the transmembrane chemokine CX3CL1 but not CXCL16, and lymphocytes do not express the CX3CL1 receptor

CX3CR1. (A) Expression of CX3CL1 and CXCL16 on HUVECs was assessed by flow cytometry, for which the black line represents chemokine staining

and the gray line isotype control staining. HEK-293T cells transiently transfected with CX3CL1 or CXCL16 were used as a positive control, for which the

black line represents chemokine-transfected cells and the gray line mock-transfected cells. (B) Expression of CX3CR1 on the major PBL subpopulations

CD19+ B cells, CD4+, and CD8+ T cells was assessed by flow cytometry. CD14+ monocytes were used as a positive control. The black line represents

CX3CR1 expression and the gray line isotype negative control staining. All data are representative of three experiments.
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FIGURE 5. Knockdown of endothelial ADAM10 increases VE-cadherin surface expression but does not affect the surface expression of major cellular

adhesion molecules E-selectin, ICAM-1 and VCAM-1. HUVECs were siRNA transfected as described in Fig. 1A and 48 h later stimulated for 24 h with

TNF-a/IFN-g or for 4 h with TNF-a. (A–D) VE-cadherin expression was measured by flow cytometry. The black line represents VE-cadherin expression on

cells following ADAM10 siRNA transfection, the broken line represents VE-cadherin expression on cells following control siRNA transfection, and the

gray line is isotype negative control staining. Representative data are shown in (A and C), and quantitated data are shown in (B) and (D). Error bars represent

the SEM from four experiments. Data were normalized by arcsine transformation and analyzed by t test compared with the (Figure legend continues)
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levels of the major endothelial cell adhesion molecules E-selectin,
ICAM-1, and VCAM-1 were not significantly affected by ADAM10
knockdown (Fig. 5E–J). To determine whether increased VE-
cadherin expression levels were causing the transmigration defect,
ADAM10 knockdown was combined with partial VE-cadherin
knockdown designed to return VE-cadherin levels to normal.
Strikingly, this approach restored PBL transmigration under
conditions of ADAM10 knockdown, with one of two different
VE-cadherin siRNA duplexes (Fig. 6A). Flow cytometry con-
firmed that VE-cadherin expression levels had returned to nor-
mal following the partial knockdown, and quantitation revealed
that this was significant (Fig. 6B, 6C). These results strongly
suggest that the elevated VE-cadherin surface expression level
is responsible for impaired PBL transmigration in the absence
of ADAM10.

TspanC8 tetraspanins Tspan5 and Tspan17 regulate
VE-cadherin expression and promote PBL transmigration

The six TspanC8 tetraspanins have recently emerged as ADAM10-
interacting proteins andmay traffic the metalloproteinase to distinct
subcellular localizations and substrates (21). HUVECs express five
TspanC8s, namely Tspan5, 10, 14, 15 and 17; Tspan33 is not
detectable (14). To determine whether a specific TspanC8 reg-
ulates PBL transmigration, and to overcome potential redundancy
between TspanC8s, a combination knockdown approach was un-
dertaken, in which HUVECs were systematically transfected with
siRNA duplexes corresponding to all but one of the six TspanC8s.
This approach revealed that only the knockdown combinations
that retained expression of either Tspan5 or Tspan17, maintained
normal PBL transmigration (Fig. 7A). This was accompanied by a
reduction in surface VE-cadherin levels (Fig. 7B). This require-
ment of Tspan5 or Tspan17 to maintain PBL transmigration was
not due to increased ADAM10 surface levels (Fig. 7C). Indeed, a
partial reduction in ADAM10 was detected when only Tspan5 or
Tspan17 were retained, and only Tspan14 expression was suffi-
cient to maintain normal levels of the metalloproteinase (Fig. 7C),
which is consistent with the relatively high expression level
Tspan14 in HUVECs (14). Knockdown of each tetraspanin was
confirmed by RT-PCR (Fig. 7D), because Abs are not available to
most TspanC8s. Knockdown was not complete, but varied from
∼55% for Tspan14 to 90% for Tspan15 (Fig. 7D). Interestingly,
CLUSTAL V protein sequence analysis showed that Tspan5 and
Tspan17 are the two most highly related TspanC8s, sharing 78%
identity in humans (Fig. 7E), providing an explanation for their
common role revealed in this study. Collectively these results
suggest that Tspan5 and Tspan17, which have not been studied
functionally before, are novel facilitators of T lymphocyte trans-
migration through their regulation of ADAM10 and VE-cadherin
(Fig. 8).

Discussion
This study reports three main findings that provide insights into the
molecular mechanism of leukocyte transmigration. First, endo-
thelial ADAM10 promotes transmigration of T lymphocytes, but
not B lymphocytes or neutrophils, in an in vitro flow assay. Second,
this function of ADAM10 is mediated via its substrate VE-cadherin,
but not CX3CL1 and CXCL16. Third, Tspan5 and Tspan17 regulate
VE-cadherin expression and promote lymphocyte transmigration,
but the other four ADAM10-interacting TspanC8 tetraspanins do not.

The previously proposed role for endothelial ADAM10 in leu-
kocyte transmigration is based on in vitro transwell assays in the
absence of flow (6, 10, 11). One of these studies showed a positive
role for endothelial ADAM10 using unstimulated HUVECs at
passage two to four, following ADAM10 knockdown or inhibition,
and cultured human T cell blasts (6). A second study reported a
positive role for endothelial ADAM10 using HUVECs up to
passage four, stimulated with IFN-g and TNF-a and subjected to
ADAM10 knockdown, and a CX3CR1-transfected mouse B cell
line (11). However, in both of these studies, the cells used may
transmigrate by mechanisms that are different to those employed
by blood-borne cells, which are the physiologically relevant
populations to study in the context of leukocyte trafficking during
inflammation. A third study showed that endothelial ADAM10
facilitates transmigration of freshly isolated human neutrophils in
response to CXCL8, using lung human microvascular endothelial
cells subjected to ADAM10 knockdown and used at passage five
to six (10). Such assays that use artificially generated chemotactic
gradients across unstimulated endothelial cell monolayers are
difficult to interpret. Appropriate adhesion molecules may be
absent and the endogenous and sequential signals that regulate
the trafficking of neutrophils after recruitment from flow are
unlikely to be operative. To highlight the problems inherent in
interpreting such assays, we have previously shown that CXCL8
plays no role in the migration of human neutrophils across TNF-
a–stimulated HUVECs (29). Thus, to our knowledge the current
study is the first to demonstrate a requirement for endothelial
ADAM10 under flow conditions using freshly isolated primary
lymphocytes from peripheral blood. The HUVECs were at a
relatively low passage one and were stimulated with IFN-g and
TNF-a to mimic inflammatory conditions. The requirement for
endothelial ADAM10 was observed for T lymphocytes but not
B lymphocytes or neutrophils, and it will now be important to
determine whether this holds true in vivo. For such an experiment,
the endothelial-specific ADAM10 knockout mouse (30) will be
required, because of the embryonic lethality of the whole-body
ADAM10 knockout.
Schulz et al. (6) identified VE-cadherin as an ADAM10 sub-

strate and demonstrated that transmigration of T cell blasts was
dependent on endothelial ADAM10. VE-cadherin is a homotypic
cell-cell adhesion molecule and a major component of adherens
junctions, and functions as a critical regulator of endothelial
permeability and leukocyte transmigration (1–4). Together, these
data prompted Schulz et al. (6) to suggest that VE-cadherin
shedding was necessary for T cell transmigration, although they
acknowledged that their data did not prove this. In the current
study, ADAM10 knockdown resulted in an almost 50% increase in
cell surface VE-cadherin expression and almost 50% impaired
lymphocyte transmigration, consistent with the hypothesis of
Schulz et al. (6). This was due to a delay in transmigration, be-
cause the phenotype was observed at a 7-min time point but was
no longer evident at 60 min. To determine whether elevated sur-
face VE-cadherin was responsible for impaired transmigration,
ADAM10 knockdown was combined with partial VE-cadherin
knockdown, to return VE-cadherin levels to normal. Remarkably
this restored lymphocyte transmigration, strongly suggesting that
elevated surface VE-cadherin was responsible for impaired
transmigration. The two most likely other ADAM10 sub-
strates that could have been regulating transmigration were the

control siRNA treatment. *p , 0.05, **p , 0.01. (E–J) HUVECs were subjected to ADAM10 knockdown as described in (A)–(D), and then surface

expression of E-selectin (E and H), ICAM-1 (F and I), and VCAM-1 (G and J) was measured by flow cytometry and quantitated as described in (B) and (D).

Error bars represent the SEM from three to four experiments.
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transmembrane chemokines CX3CL1 and CXCL16 (7–9), but
these were ruled out by the lack of detectable CXCL16 on HUVECs,
and the lack of the CX3CL1 receptor (CX3CR1) on lymphocytes.
Our CX3CR1 data are consistent with a previous report of mini-
mal expression on freshly isolated lymphocytes, although ex-
pression can be strikingly induced after 5 d of in vitro polarization
in IL-2 (31). Taken together these data suggest that, in this in vitro
model system, impaired lymphocyte transmigration in the absence
of endothelial ADAM10 is a consequence of elevated surface VE-
cadherin, which would provide a stronger barrier to lymphocyte
transmigration. The fact that transmigration in the absence of
ADAM10 can be restored to normal, by reducing VE-cadherin to
normal levels, suggests that ADAM10 activity is not required to
shed VE-cadherin during transmigration. Indeed, in the currently
proposed model of transmigration (1–4), the leukocyte provides an
outside-in signal to loosen adherens junctions by removing VE-
cadherin molecules from the path of the leukocyte. The precise
mechanism by which this occurs is not clear and may differ
depending on the vascular bed and activation stimuli. Dephos-
phorylation of a key tyrosine residue in the VE-cadherin cyto-
plasmic tail is reported to promote VE-cadherin endocytosis in a
mouse model (32). In another study, endocytosis is not observed in
cultured primary human endothelial cells; instead tyrosine phos-
phorylation of the VE-cadherin tail is associated with displace-
ment of VE-cadherin in an undefined way (33). Also important is
the interaction between VE-cadherin and catenin proteins, which
link the adhesion molecule to the actin cytoskeleton. Over-
expression of p120-catenin in cultured human endothelial cells
increases VE-cadherin expression and stability at the cell surface,
reducing leukocyte transmigration (33). Similarly, in a mouse
model, a VE-cadherin fusion construct with a-catenin promotes
the stability of endothelial cell junctions and impairs leukocyte
transmigration (34). To incorporate our findings with these data,
we propose that in the absence of ADAM10, the elevated VE-
cadherin levels lead to a delay in VE-cadherin endocytosis and/
or displacement, with the result that T lymphocyte transmigration
is delayed.
A requirement for neutrophil ADAM10 in neutrophil transmi-

gration has been demonstrated in vitro and in vivo, albeit without a
definitive mechanism (35). The role for endothelial ADAM10 in
neutrophil transmigration is less clear, given that the current study
suggests that it is not required, but that of Dreymueller et al. (10)
suggests that it is. A possible explanation is the different assays
employed to measure transmigration. The major differences in the
Dreymueller study were the endothelial cells used, specifically
their origin, passage number and lack of cytokine stimulation, and
the use of transwells with CXCL8 as a chemoattractant (10).
Therefore, endothelial ADAM10 may be required for neutrophil
transmigration under some circumstances but not others. A po-
tential mechanism to explain a less important role for endothelial
ADAM10 in neutrophil transmigration, versus lymphocyte trans-
migration, is the specific expression of neutrophil elastase and
cathepsin G, two proteases that can cleave VE-cadherin during
neutrophil transmigration (36). These may thus overcome the re-
quirement for endothelial ADAM10. Interestingly, when neutro-
phils were mixed with lymphocytes, no impaired transmigration of

FIGURE 6. Partial knockdown of VE-cadherin, in combination with full

ADAM10 knockdown, restores lymphocyte transmigration. (A) HUVECs

were transfected with 10 nM negative control siRNA or one of two

ADAM10 siRNA duplexes in the presence or absence of one of two VE-

cadherin siRNA duplexes at 0.5 nM. PBL static transmigration assays were

performed as described in Fig. 2A. Error bars represent the SEM from five

independent experiments. Data were normalized by arcsine transformation

and statistically analyzed by a two-way ANOVA and Bonferroni post hoc

comparisons test. ***p, 0.001 compared with the negative control siRNA

transfected data. (B) Partial VE-cadherin knockdown was confirmed 48 h

post transfection by flow cytometry. Error bars represent the SEM from

five independent experiments. Data were normalized by arcsine transfor-

mation and statistically analyzed by one-way ANOVA and Dunnett post

hoc comparisons test. **p , 0.01 compared with negative control siRNA

transfected data. (C) Representative flow cytometry histograms from the

data quantitated for (B). The black line represents VE-cadherin expression

on cells following ADAM10 siRNA transfection, the broken line represents

VE-cadherin expression on cells following negative control siRNA trans-

fection, and the gray line is isotype negative control staining. Confirmation

of ADAM10 knockdown was assessed by flow cytometry, as explained in

the legend to Fig. 1, and found to be ~90% reduced upon quantitation (data

not shown).
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the latter was observed across ADAM10-deficient endothelium.
This suggests that lymphocyte transmigration can be assisted by
neutrophils, possibly mediated via neutrophil elastase and
cathepsin G cleavage of VE-cadherin.
Recent studies have shown that ADAM10 interacts with six

different tetraspanin transmembrane proteins, Tspan5, 10, 14, 15,
17, and 33, which are related by protein sequence and termed the

TspanC8s (13–15, 18, 20). Individual tetraspanins function by
interacting with specific partner proteins and regulating their in-
tracellular trafficking and lateral mobility and clustering at the cell
surface (16, 17). Indeed, TspanC8s are essential for ADAM10 exit
from the ER (13–15) and different TspanC8s have distinct sub-
cellular localizations (13, 18), promote ADAM10 shedding of
distinct substrates (13, 18, 20), and may cause ADAM10 to adopt

FIGURE 7. The presence of Tspan5

or Tspan17 on endothelial cells is suf-

ficient to maintain lymphocyte transmi-

gration. (A) HUVECs were transfected

with negative control siRNA, or 5 nM

siRNA to each of the six TspanC8s in

combination, or 5 nM siRNA to differ-

ent combinations of five TspanC8s. Two

different siRNA duplexes (i and ii) were

used for each TspanC8. (Ai and Aii)

PBL transmigration assays were per-

formed as described in Fig. 2A. (Bi and

Bii) VE-cadherin and (Ci and Cii)

ADAM10 surface levels on the trans-

fected HUVECs from (A) were assessed

by flow cytometry. Error bars represent

the SEM from at least three independent

experiments. Data were normalized by

arcsine transformation and statistically

analyzed by a two-way ANOVA and

Bonferroni post hoc comparison test.

Data corresponding to siRNA duplex 1

is on the left and data corresponding

to siRNA duplex 2 is on the right.

*p , 0.05, **p , 0.01, ***p , 0.001

compared with control siRNA trans-

fected cells. (D) Knockdown efficiency

of TspanC8 tetraspanins was assessed

by RT-PCR. Data were statistically an-

alyzed by t test. *p , 0.05, **p , 0.01,

***p , 0.001 compared with the neg-

ative control siRNA transfected cells.

(E) Amino acid sequences of human

TspanC8s were analyzed by the mul-

tiple sequence alignment tool Clustal

V (37), and the data presented as a

dendrogram.
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distinct conformations (20). Therefore, ADAM10 can be regarded
as six different molecular scissors, depending on the associated
TspanC8 (21). HUVECs have previously been shown to express
mRNA for Tspan5, 10, 14, 15, and 17, but not Tspan33 (14);
effective Abs are not available to most TspanC8s. To determine
which TspanC8(s) might be important for the role of endothelial
ADAM10 in lymphocyte transmigration, a systematic knockdown
of the six different combinations of five TspanC8s was performed
in HUVECs. Despite TspanC8 knockdown efficiencies of only
55–90% in these experiments, this approach showed that expression
of either Tspan5 or Tspan17 was sufficient to maintain lymphocyte
transmigration. In contrast, all knockdown combinations that
knocked down both Tspan5 and Tspan17 yielded impaired
lymphocyte transmigration. This Tspan5/17 effect was not due
to any specific impact on ADAM10 surface expression, but did
correlate with VE-cadherin surface levels, consistent with the
earlier finding that VE-cadherin provides a mechanistic explana-
tion for the role of endothelial ADAM10 in lymphocyte trans-
migration. Tspan5 and Tspan17 are largely unstudied TspanC8s;
the only studies to date have shown Tspan5 to promote ADAM10-
mediated Notch activation and osteoclast formation in vitro (13,
18, 19). However, protein sequence alignments indicate that they
are the two most closely related tetraspanins, with the human
forms sharing 78% amino acid identity. This suggests redundant
roles for Tspan5 and Tspan17 in regulating ADAM10 and VE-
cadherin levels. Future studies will aim to determine whether
Tspan5 and Tspan17 localize ADAM10 into close proximity to VE-
cadherin, and/or promote an ADAM10 conformation favorable to
VE-cadherin shedding.
In summary, and taking together all the available literature on the

role of TspanC8s, ADAM10, and VE cadherin in leukocyte traf-
ficking, we now propose the following model to explain how T cell
transmigration is regulated by these molecules (Fig. 8). Endothelial
Tspan5/ADAM10 and Tspan17/ADAM10 complexes constitu-
tively shed VE-cadherin to maintain an optimal expression level.
When T cells bind to endothelial cells to initiate transmigration,
VE-cadherin is endocytosed to allow the T cell to migrate through
endothelial junctions. Although such endocytosis does not require
ADAM10 activity, excessive basal VE-cadherin expression levels
in the absence of Tspan5/ADAM10 and Tspan17/ADAM10 com-
plexes will delay the process. Finally, our data using combinations
of leukocytes strongly implies an alternative route of T cell migration

that is assisted by neutrophils, whereby proteases on migrating neu-
trophils render the endothelial cell pool of ADAM10 redundant by
rapidly cleaving VE-cadherin to allow efficient T cell transmigration.
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