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Abstract
We investigate the problem of classification in the presence of unknown class-conditional label
noise in which the labels observed by the learner have been corrupted with some unknown class
dependent probability. In order to obtain finite sample rates, previous approaches to classification
with unknown class-conditional label noise have required that the regression function is close to
its extrema on sets of large measure. We shall consider this problem in the setting of non-compact
metric spaces, where the regression function need not attain its extrema.

In this setting we determine the minimax optimal learning rates (up to logarithmic factors).
The rate displays interesting threshold behaviour: When the regression function approaches its
extrema at a sufficient rate, the optimal learning rates are of the same order as those obtained
in the label-noise free setting. If the regression function approaches its extrema more gradually
then classification performance necessarily degrades. In addition, we present an adaptive algorithm
which attains these rates without prior knowledge of either the distributional parameters or the local
density. This identifies for the first time a scenario in which finite sample rates are achievable in
the label noise setting, but they differ from the optimal rates without label noise.
Keywords: Label noise, minimax rates, non-parametric classification, metric spaces.

1. Introduction

In this paper we investigate the problem of classification with unknown class-conditional label noise
on non-compact metric spaces. We determine minimax optimal learning rates which reveal an
interesting dependency upon the behaviour of the regression function in the tails of the distribution.

Classification with label noise is a problem of great practical significance in machine learning.
Whilst it is typically assumed that the train and test distributions are one and the same, it is often
the case that the labels in the training data have been corrupted with some unknown probability
(Frénay and Verleysen, 2014). We shall focus on the problem of class-conditional label noise,
where the label noise depends on the class label (Bootkrajang and Kabán, 2014). This has numerous
applications including learning from positive and unlabelled data (Elkan and Noto, 2008; Li et al.,
2019) and nuclear particle classification (Natarajan et al., 2013; Blanchard et al., 2016). Learning
from class-conditional label noise is complicated by the fact that the optimal decision boundary
will typically differ between test and train distributions. This effect can be accommodated for if
the learner has prior knowledge of the label noise probabilities (the probability of flipping from one
class to another) (Natarajan et al., 2013). Unfortunately, this is rarely the case in practice.

c© 2019 H.W.J. Reeve & A. Kabán.



CLASSIFICATION WITH LABEL NOISE ON NON-COMPACT FEATURE SPACES

The seminal work of Scott et al. (2013) showed that the label noise probabilities may be con-
sistently estimated from the data, under the mutual irreducibility assumption, which is equivalent to
the assumption that the regression function η has infimum zero and supremum one (Menon et al.,
2015). Without further assumptions the rate of convergence may be arbitrarily slow (Blanchard
et al., 2010; Scott et al., 2013; Blanchard et al., 2016). However, Scott (2015) demonstrated that a
finite sample rate of orderO(1/

√
n) may be obtained provided that the following strong irreducibil-

ity condition holds: There exists a family of sets S of finite VC dimension (eg. the set of metric
balls in Rd), such that for a pair of sets S0, S1 ∈ S of positive measure, the regression function
η is uniformly zero on S0 and uniformly one on S1. Finite sample rates have also been obtained
by Reeve and Kabán (2019) for the robust k-nearest neighbour classifier of Gao et al. (2018), with
a strong uniform smoothness condition, in conjunction with the mutual irreducibility condition of
Scott et al. (2013). In both cases, the learning rates for classification with unknown-class conditional
label noise match the optimal rates for the corresponding label noise free setting, up to logarithmic
terms. This motivates the question of whether there are scenarios in which finite sample rates are
achievable in the label noise setting, yet the rates differ from the optimal rates without label noise?

In this work we focus on a flexible non-parametric setting which incorporates various natural
examples where the marginal distribution is supported on a non-compact metric space. We will
make a flexible tail assumption, due to Gadat et al. (2016), which controls the decay of the measure
of regions of the feature space where the density is below a given threshold. This avoids the common
yet restrictive assumption that the density is bounded uniformly from below or the assumption of
finite covering dimension (Audibert et al., 2007). For non-compact metric spaces it is natural to
consider settings where the regression function never attains its infimum and supremum, and instead
approaches these values asymptotically, in the tails of the distribution. This occurs, for example,
when the class-conditional distributions are mixtures of multivariate Gaussians. In this work we
explore the relationship between the rate at which the regression function approaches its extrema
and the optimal learning rates. Our contributions are as follows:

• We determine the minimax optimal learning rate (up to logarithmic factors) for classifica-
tion in the presence of unknown class-conditional label noise on non-compact metric spaces
(Theorems 1 and 5). The rate displays interesting threshold behaviour: When the regression
function approaches its extrema at a sufficient rate, the optimal learning rates are of the same
order as those obtained by Gadat et al. (2016) in the label-noise free setting. If the regression
function approaches its extrema more gradually then classification performance necessarily
degrades. This identifies, for the first time, a scenario in which finite sample rates are achiev-
able in the label noise setting, but they differ from the rates achievable without label noise.

• We present an algorithm for classification with unknown class-conditional label noise on non-
compact metric spaces. The algorithm is straightforward to implement and adaptive, in the
sense that it does not require any prior knowledge of the distributional parameters or the local
density. A high probability upper bound is proved which demonstrates that the performance
of the algorithm is optimal, up to logarithmic factors (Theorem 5).

• As a byproduct of our analysis, we introduce a simple and adaptive method for estimating the
maximum of a function on a non-compact domain. A high probability bound on its perfor-
mance is given, with a rate governed by the local density at the maximum, if the maximum is
attained, or the rate at which the function approaches its maximum otherwise (Theorem 3).
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We begin by formalising the statistical setting in Section 2. We then present our minimax lower
bound in Section 3. In Section 4 we introduce an adaptive algorithm with a high probability upper
bound. Formal proofs may be found within the Appendix.

2. The statistical setting

We consider the problem of binary classification in metric spaces with class-conditional label noise.
Suppose we have a metric space (X , ρ), a set of possible labels Y = {0, 1}, and a distribution P
over triples (X,Y, Ỹ ) ∈ X × Y2, consisting of a feature vector X ∈ X , a true class label Y ∈ Y
and a corrupted label Ỹ ∈ Y , which may be distinct from Y . We let Pclean denote the marginal
distribution over (X,Y ) and let Pcorr denote the marginal distribution over (X, Ỹ ). Let F(X ,Y)
denote the set of all decision rules, which are Borel measureable mappings φ : X → Y . The goal
of learner is to determine a decision rule φ ∈ F(X ,Y) which minimises the risk

R (φ) := Pclean [φ(X) 6= Y ] =

∫
(φ(x) (1− η(x)) + (1− φ(x)) η(x)) dµ(x)

Here η : X → [0, 1] denotes the regression function η(x) := Pclean [Y = 1|X = x] and µ denotes
the marginal distribution over X . The risk is minimised by the Bayes decision rule φ∗ ∈ F(X ,Y)
defined by φ∗(x) := 1

{
η(x) ≥ 1

2

}
. Since η is unobserved, the learner must rely upon data. We

assume that the learner has access to a corrupted sampleDcorr = {(Xi, Ỹi)}i∈[n] where each (Xi, Ỹi)
is sampled from Pcorr independently. We let (Pcorr)

⊗n denote the corresponding product distribution
over samples Dcorr, and let E⊗ncorr denote expectation with respect to (Pcorr)

⊗n. The sample Dcorr is
utilised to train a classifier φ̂n, which is a random member of F(X ,Y), measurable with respect to
Dcorr. The key difficulty of classification with label noise is that Pcorr and Pclean may differ. Without
further assumptions on the relationship between Pcorr and Pclean the problem is clearly intractable.
We utilise the assumption of class-conditional label noise introduced by Scott et al. (2013):

Assumption A (Class-conditional label noise) We say that P satisfies the class-conditional label
noise assumption with parameter νmax ∈ (0, 1) if there exists π0, π1 ∈ (0, 1) with π0 + π1 < νmax

such that for Borel setsA ⊂ X , P[Ỹ = 1|X ∈ A, Y = 0] = π0 and P[Ỹ = 0|X ∈ A, Y = 1] = π1.

The remainder of our assumptions depend solely upon Pclean and are specified in terms of µ
and η. We begin with two assumptions which are standard in the literature on non-parametric
classification. The first is Tysbakov’s margin assumption (Mammen and Tsybakov, 1999).

Assumption B (Margin assumption) Given α ∈ [0,∞) and Cα ∈ [1,∞), we shall say that P
satisfies the margin assumption with parameters (α,Cα) if the following holds for all ξ ∈ (0, 1),

µ

({
x ∈ X : 0 <

∣∣∣∣η(x)− 1

2

∣∣∣∣ < ξ

})
≤ Cα · ξα.

We will also assume that the regression function η is Hölder continuous.

Assumption C (Hölder assumption) Given a function f : X → [0, 1] and constants β ∈ (0, 1],
Cβ ≥ 1 we shall say that f satisfies the Hölder assumption with parameters (β,Cβ) if for all
x0, x1 ∈ X with ρ(x0, x1) < 1 we have |f(x0)− f(x1)| ≤ Cβ · ρ(x0, x1)β .

3
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We shall also require some assumptions on µ. We let Xµ ⊂ X denote the measure-theoretic
support of µ and for each x ∈ X and r ∈ (0,∞) we let Br(x) := {z ∈ X : ρ(x, z) < r}.

Assumption D (Minimal mass assumption) Given d > 0 and a function ωµ : X → (0, 1).
We shall say that µ satisfies the minimal mass assumption with parameters (d, ωµ) if we have
µ (Br(x)) ≥ ωµ(x) · rd for all x ∈ Xµ and r ∈ (0, 1).

Assumption E (Tail assumption) Given γ ∈ (0,∞), Cγ ≥ 1, tγ ∈ (0, 1) and a density function
ωµ : X → (0, 1), we shall say that µ satisfies the tail assumption with parameters (γ,Cγ , tγ , ωµ) if
for all ε ∈ (0, tγ) we have µ ({x ∈ X : ωµ(x) < ε}) ≤ Cγ · εγ .

Assumptions D and E are natural generalisations to metric spaces of the corresponding assump-
tions from Gadat et al. (2016) in the Euclidean setting. In particular, these assumptions apply to
various examples such as Gaussian, Laplace and Cauchy distributions (Gadat et al., 2016, Table 1),
with ωµ proportional to the probability density function.

Our final assumption is the most distinctive. It is a quantitative analogue of the mutual irre-
ducibility assumption from (Scott et al., 2013) which implies that infx∈Xµ {η(x)} = 0 and
supx∈Xµ {η(x)} = 1. Rather than assume the existence of positive measure regions of the feature
space upon which η is uniformly zero and one, as required for the finite sample rates in (Scott, 2015,
Theorem 2), (Blanchard et al., 2016, Theorem 14), we make a weaker assumption that governs the
rate at which the regression function approaches its extrema in the tail of the distribution.

Assumption F (Quantitative range assumption) Given τ ∈ (0,∞), Cτ ≥ 1, tτ ∈ (0, 1) and
a function ωµ : X → (0, 1), we shall say that P satisfies the quantitative range assumption with
parameters (τ, Cτ , tτ , ωµ) if for all ε ∈ (0, tτ ) we have

max

{
inf
x∈Xµ

{η(x) : ωµ(x) > ε} , inf
x∈Xµ

{1− η(x) : ωµ(x) > ε}
}
≤ Cτ · ετ .

If there are regions Smin ⊂ X and Smax ⊂ X with positive measure min{µ(Smin), µ(Smax)} >
0 such that ∀x ∈ Smin, η(x) = 0 and ∀x ∈ Smax, η(x) = 1 then Assumption F holds with
arbitrarily large τ > 0 (see Figure 1 (A)). More generally, if there exists xmin, xmax ∈ Xµ with
min{ωµ(xmin), ωµ(xmin)} > 0, η(xmin) = 0 and η(xmax) = 1 then Assumption F again holds
with arbitrarily large τ > 0 (see Figure 1 (B)). However, Assumption F can also hold in scenarios
in which the extrema of the regression function approaches its extrema gradually in the tails of
the distribution. For example, consider a family of distributions {Pτ}τ>0 where for each τ , Pτ
has a marginal distribution µ equal to the standard Laplace measure on R with probability density
function p(x) = 1

2 · e
−|x| and regression function ητ (x) = 1/(1 + e−τ ·x) (see Figure 1 (C)). For

each τ > 0, ητ does not attain its extrema, yet Assumption F holds with exponent τ . The exponent
τ controls the rate at which the regression function approaches its extrema as the density function
ωµ ≈ p approaches zero.
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Figure 1: (A) An example of a regression function in which both the maximum and the minimum
of η are attained uniformly on sets of positive measure. (B) An example in which both
the maximum and the minimum of η are each attained at a single point. (C) A family
of examples in which the regression function η(x) = 1/(1 + e−τ ·x) does not attain its
extrema. The marginal distribution µ is the standard Laplace measure on R with density
p(x) = 1

2 · e
−|x|. In each case, Assumption F holds with the corresponding exponent τ .

In what follows we consider the following class of distributions.

Definition 2.1 (Measure classes) Take Γ = (νmax, d, (α,Cα), (β,Cβ), (γ, tγ , Cγ), (τ, tτ , Cτ )) con-
sisting of exponents α ∈ [0,∞), β ∈ (0, 1], d, γ, τ ∈ (0,∞) and constants Cα, Cβ, Cγ , Cτ ≥ 1
and νmax, tγ , tτ ∈ (0, 1). We let P (Γ) denote the set of all distributions P on triples (X,Y, Ỹ ) ∈
X × Y2, where (X , ρ) is a metric space and there is some function ωµ : X → (0, 1) such Assump-
tions A, B, C, D, E, F hold with the corresponding parameters.

Now that we have introduced our assumptions we are ready to state our main results.

3. Minimax rates for classification with unknown class conditional label noise

Our first main result gives a minimax lower bound for classification with unknown class conditional
label noise on non-compact domains.

Theorem 1 Take Γ = (νmax, d, (α,Cα), (β,Cβ), (γ, tγ , Cγ), (τ, tτ , Cτ )) consisting of exponents
α ∈ [0,∞), β ∈ (0, 1], d ∈ [αβ,∞), γ ∈ (0, 1], τ ∈ (0,∞) and constants Cα ≥ 4α, Cβ , Cγ ,
Cτ ≥ 1 and νmax ∈ (0, 1), tγ ∈ (0, 1/24), tτ ∈ (0, 1/3). There exists a constant c(Γ) > 0,
depending solely upon Γ, such that for all n ∈ N

inf
φ̂n

{
sup

P∈P(Γ)

{
E⊗ncorr

[
R
(
φ̂n

)]
−R (φ∗)

}}
≥ c(Γ) · n−min

{
γβ(α+1)

γ(2β+d)+αβ
,
τβ(α+1)
τ(2β+d)+β

}
.

The infimum is taken over all classifiers φ̂n which are measurable with respect to Dcorr.

In Section 4 we shall introduce a classifier which attains the rates in Theorem 1 up to logarithmic
factors, with high-probability (Theorem 5). Theorem 1 displays an interesting threshold behaviour
not seen in the label noise free setting. When the exponent τ is large (τ · α ≥ γ) and the regression
function η approaches its extrema sufficiently quickly, the exponent matches the label noise free

5
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rate. However, when the exponent τ is smaller (τ ·α < γ) and the regression function η approaches
its extrema more gradually, the learning behaviour deteriorates accordingly.

The proof of Theorem 1 reflects this threshold behaviour, and may be split into two claims:

inf
φ̂n

{
sup

P∈P(Γ)

{
E⊗ncorr

[
R
(
φ̂n

)]
−R (φ∗)

}}
≥ c0(Γ) · n−

βγ(α+1)
γ(2β+d)+αβ , (1)

inf
φ̂n

{
sup

P∈P(Γ)

{
E⊗ncorr

[
R
(
φ̂n

)]
−R (φ∗)

}}
≥ c1(Γ) · n−

τβ(α+1)
τ(2β+d)+β . (2)

The lower bound in (1) corresponds to the difficulty of the pure classification problem, with or
without label noise. The exponent is the same as that identified in (Gadat et al., 2016, Theorem
4.5). A full proof of claim (1) is presented in Appendix A.2 (Proposition 11). The proof method is
broadly similar to that of Gadat et al. (2016), with two key differences. Firstly, our lower bounds
hold for non-integer as well as integer dimension d. Secondly, technical adjustments are required to
ensure that Assumption F is satisfied.

Figure 2: An illustration of the construction for the proof of Theorem 1 when τα ≤ γ. A pair of dis-
tributions with substantially different regression functions η for which the corresponding
corrupted regression functions ηcorr are close.

The lower bound in (2) corresponds to the difficulty of estimating the noise probabilities and
the resultant effect upon classification risk. This component of the lower bound is more interesting
as it reflects behaviour unseen in the label noise free setting. The proof of the lower bound in (2) is
given in Appendix A.1 (Proposition 6). The idea is as follows. We construct a pair of distributions
such that the corrupted regression functions closely resemble one another, yet the true regression
functions are substantially different, and lie on different sides of the classification threshold 1

2 for
large fractions of the feature space. Thus, whilst it is difficult to distinguish the two distributions
based upon the corrupted sample Dcorr, failing to do so results in substantial increase in risk relative
to the Bayes classifier. The construction is illustrated in Figure 2.

4. An adaptive algorithm with a minimax optimal upper bound

In this section we construct a classifier for learning with unknown label noise on non-compact
domains. In Section 4.4 we shall present high-probability performance guarantee for the algorithm
(Theorem 5) which matches the minimax lower bound (Theorem 1) up to logarithmic factors.
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4.1. Constructing an algorithm for classification with class conditional label noise

Our methodology is founded on observations due to Menon et al. (2015): Define ηcorr : X → [0, 1]
to be the corrupted regression function, given by ηcorr(x) := Pcorr[Ỹ = 1|X = x] for x ∈ X . By
Assumption A, ηcorr is related to η by

ηcorr(x) = (1− π0 − π1) · η(x) + π0. (3)

Assumption F implies that infx∈Xµ{η(x)} = 0 and supx∈Xµ{η(x)} = 1. Combining with (3)
yields infx∈Xµ{ηcorr(x)} = π0 and supx∈Xµ{ηcorr(x)} = 1− π1. Moreover, relation (3) implies

φ∗(x) = 1 {η(x) ≥ 1/2} = 1 {ηcorr(x) ≥ (1/2) · (1 + π0 − π1)} .

These observations motivate the ‘plug-in’ style template given in Algorithm 1. To instantiate Algo-
rithm 1 in our setting we require a procedure for estimating the value of the corrupted regression
function at a point η̂corr(x) and a procedure for providing estimates M̂ (ηcorr) and M̂ (1− ηcorr)
for the supremum of ηcorr and 1 − ηcorr, respectively, based on the corrupted sample Dcorr. Con-
sequently, we turn to the subject of estimating the values of the corrupted regression function at a
point in Section 4.2 and to the subject of estimating the extrema of the corrupted regression function
in Section 4.3. In Section 4.4 we bring these pieces together to provide a concrete instantiation of
Algorithm 1 with a high probability risk bound.

1. Compute an estimate of the corrupted regression function η̂corr(x) with sample Dcorr;

2. Estimate π̂0 = 1− M̂ (1− ηcorr) and π̂1 = 1− M̂ (ηcorr);

3. Let φ̂(x) := 1 {η̂corr(x) ≥ 1/2 · (1 + π̂0 − π̂1)}.
Algorithm 1: A meta-algorithm for classification with class-conditional label noise.

4.2. Function estimation with k-nearest neighbours and Lepski’s rule

In this section we consider supervised k-nearest neighbour regression. Whilst we are motivated by
the estimation of ηcorr we shall frame our results in a more general fashion for clarity. Suppose we
have an unknown function f : X → [0, 1] and a distribution Pf on X × [0, 1] such that f(x) =
E [Z|X = x] for all x ∈ X . In this section we consider the task of to estimating f based on a sample
Df = {(Xi, Zi)}i∈[n] with (Xi, Zi) ∼ Pf generated i.i.d. Given x ∈ X we let {τn,q(x)}q∈[n] be an
enumeration of [n] such that for each q ∈ [n−1], ρ

(
x,Xτn,q(x)

)
≤ ρ

(
x,Xτn,q+1(x)

)
. The k-nearest

neighbour regression estimator is given by

f̂n,k(x) :=
1

k
·
∑
q∈[k]

Zτn,q(x).

To apply f̂n,k we must choose a value of k. The optimal value of k will depend upon the distribu-
tional parameters and the local density ωµ(x) at a test point. Inspired by Kpotufe and Garg (2013)
we shall use Lepski’s method to select k. For each x ∈ X , n ∈ N, k ∈ [n] and δ ∈ (0, 1) we define

În,k,δ(x) :=

[
f̂n,k(x)−

√
2 log((4n)/δ)

k
, f̂n,k(x) +

√
2 log((4n)/δ)

k

]
.

7
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We then let

k̂n,δ(x) := max
k∈N∩[8 log(2n/δ),n/2]

 ⋂
q∈N∩[8 log(2n/δ),k]

În,q,δ(x) 6= ∅

 ,

and define f̂n,δ(x) := f̂n,k(x) with k = k̂n,δ(x). Intuitively, the value of k is increased until the
bias begins to dominate the variance, which reflects itself in non-overlapping confidence intervals.

Theorem 2 Suppose that f satisfies the Hölder assumption with parameters (β,Cβ) and µ satisfies
the minimal mass assumption with parameters (d, ωµ). Given any n ∈ N, δ ∈ (0, 1) and x ∈ X ,
with probability at least 1− δ over Df we have

∣∣∣f̂n,δ(x)− f(x)
∣∣∣ ≤ (8

√
2) · Cβ

d
2β+d ·

(
log(4n/δ)

ωµ(x) · n

) β
2β+d

. (4)

A proof of Theorem 2 is presented in Appendix C. The principal difference with Kpotufe and
Garg (2013) is that we do not require an upper bound on the ε-covering numbers. This is crucial for
our setting since the assumption of an upper bound on the ε-covering numbers rules out interesting
non-compact settings. Theorem 2 will be applied to the label noise problem in Section 4.4.

4.3. A lower confidence bound approach for estimating the supremum of a function

In this section we deal with the problem of estimating the supremum of a function M(f) :=
supx∈Xµ{f(x)}. This is motivated by the challenge of estimating the label noise probabilities (Sec-
tion 4.1). We adopt the general statistical setting from Section 4.2. One might expect to obtain
an effective estimator of the maximum by simply taking the empirical maximum of f̂n,δ over the
data. However, this approach is likely to overestimate the maximum in our non-compact setting
since estimates at points with low density will have large variance. To mitigate this effect we must
subtract a confidence interval. The error due to the variance of f̂n,k(x) can be bounded via Hoeffd-
ing’s inequality. The error due to bias is more difficult to estimate since it depends upon unknown
distributional parameters. Fortunately, for estimating M(f) this is not a problem since the bias at
any given point is always negative. This motivates the following simple adaptive estimator:

M̂n,δ(f) := max
(i,k)∈[n]2

{
f̂n,k(Xi)−

√
log(4n/δ)

k

}
. (5)

Theorem 3 Suppose that f satisfies the Hölder assumption with parameters (β,Cβ) and µ satisfies
the minimal mass assumption with parameters (d, ωµ). Given any n ∈ N and δ ∈ (0, 1) with
probability at least 1− δ over Df we have

sup
x∈Xµ

{
f(x)− 7 · Cβ

d
2β+d ·

(
log(4n/δ)

ωµ(x) · n

) β
2β+d

}
≤ M̂n,δ(f) ≤M(f). (6)

Proof It suffices to show that for any fixed x0 ∈ X with probability at least 1− δ over Df we have

f(x0)− 7 · Cβ
d

2β+d ·
(

log(4n/δ)

ωµ(x0) · n

) β
2β+d

≤ M̂n,δ(f) ≤M(f). (7)

8
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Indeed, the bound (6) may then be deduced by continuity of measure.

Choose k̃ := b1
2 · (ωµ(x0) · n)

2β
2β+d ·

(
log(4n/δ) · C−2

β

)d/(2β+d)
c. By an application of the multi-

plicative Chernoff bound (Lemma 15), the following holds with probability at least 1− δ/2,

ρ
(
x0, Xτn,k̃(x)

)
<

(
2k̃

ωµ(x0) · n

) 1
d

≤ ξ :=

(
log(4n/δ)

C2
β · ωµ(x0) · n

) 1
2β+d

, (8)

provided that 8 log(2n/δ) ≤ k̃ ≤ ωµ(x0) · n/2. By Hoeffding’s inequality (see Lemma 16) com-
bined with the union bound the following holds simultaneously over all pairs (i, k) ∈ [n]2 with
probability at least 1− δ/2,∣∣∣∣∣∣f̂n,k(Xi)−

1

k

∑
q∈[k]

f
(
Xτn,q(Xi)

)∣∣∣∣∣∣ <
√

log(2/(δ/(2n2))

2k
≤
√

log(4n/δ)

k
. (9)

Let us assume that (8) and (9) hold. By the union bound this is the case with probability at least
1− δ. Now take i0 = τn,1(x0) ∈ [n]. The upper bound in (7) follows immediately from (9).

To prove the lower bound in (7) we assume, without loss of generality, that n is sufficiently large

that 8 log(2n/δ) ≤ k̃ ≤ ωµ(x0) · n/2 and k̃ ≥ 1
4 · (ωµ(x0) · n)

2β
2β+d ·

(
log(4n/δ) · C−2

β

)d/(2β+d)
.

Indeed the lower bound is trivial for smaller values of n. By (8) combined with the triangle inequal-
ity, for each q ∈ [k̃] we have ρ

(
Xi0 , Xτn,q(x)

)
≤ ρ (x0, Xi0) + ρ

(
x0, Xτn,q(x)

)
≤ 2 · ξ, where ξ is

defined in (8). Hence, for each q ∈ [k̃] we have ρ
(
Xi0 , Xτn,q(Xi0 )

)
≤ 2·ξ. Applying (8) once again

we see that for all q ∈ [k̃], we have ρ
(
x0, Xτn,q(Xi0 )

)
≤ ρ (x0, Xi0) + ρ

(
Xi0 , Xτn,q(Xi0 )

)
≤ 3 · ξ.

By the Hölder assumption we deduce that∣∣∣∣∣∣1k
∑
q∈[k̃]

f
(
Xτn,q(Xi0 )

)
− f(x0)

∣∣∣∣∣∣ ≤ max
q∈[k̃]

{
Cβ · ρ

(
x0, Xτn,q(Xi0 )

)β}

≤ Cβ · (3 · ξ)β ≤ 3 · Cβ
d

2β+d ·
(

log(4n/δ)

ωµ(x0) · n

) β
2β+d

.

Combining with (9) we deduce that

M̂n,δ(f) ≥ f̂n,k(Xi0)− f(x0)−

√
log(4n/δ)

k̃

≥ 1

k

∑
q∈[k̃]

f
(
Xτn,q(Xi0 )

)
− 4 ·

√
log(4n/δ)

4k̃

≥ f(x0)− 3 · Cβ
d

2β+d ·
(

log(4n/δ)

ωµ(x0) · n

) β
2β+d

− 4 ·

√
log(4n/δ)

4k̃

≥ f(x0)− 7 · Cβ
d

2β+d ·
(

log(4n/δ)

ωµ(x0) · n

) β
2β+d

.

9
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This gives the lower bound in (7) and completes the proof of Theorem 3.

Theorem 3 implies the following corollary.

Corollary 4 Suppose that f satisfies the Hölder assumption with parameters (β,Cβ) and µ sat-
isfies the minimal mass assumption with parameters (d, ωµ). Suppose further that for some τ ∈
(0,∞], Cτ ≥ 1 and tτ ∈ (0, 1), for each ε ∈ (0, tτ ) we have supx∈Xµ {f(x) : ωµ(x) > ε} ≥
M(f)− Cτ · ετ . Then, for each n ∈ N and δ ∈ (0, 1) with probability at least 1− δ over Df ,

∣∣∣M̂n,δ(f)−M(f)
∣∣∣ ≤ 8 ·

(
C
d/β
β · (Cτ/tτ )

) β
2β+d ·

(
log(4n/δ)

n

) τβ
τ(2β+d)+β

.

Proof Combine Theorem 3 with supx∈Xµ {f(x) : ωµ(x) > ε} ≥M(f)− Cτ · ετ and

ε = min

{
tτ ,
(
Cdβ/C

2β+d
τ

) 1
τ(2β+d)+β ·

(
log(4n/δ)

n

) β
τ(2β+d)+β

}
.

Corollary 4 highlights the dependency of the maximum estimation method upon the rate at
which the function approaches its maximum in the tails of the distribution.

4.4. A high-probability upper bound for classification with class conditional label noise

We now combine the procedures introduced in Sections 4.2 and 4.3 to instantiate the template given
in Algorithm 1. Given a corrupted sample Dcorr and a confidence parameter δ ∈ (0, 1) proceed as
follows: First, we estimate ηcorr(x) using the k-NN method introduced in Section 4.2 η̂corr(x) =

(̂ηcorr)n,δ2/3(x). Second, we apply the maximum estimation procedure introduced in Section 4.3

to obtain estimates π̂0 = 1 − M̂n,δ/3 (1− ηcorr) and π̂1 = 1 − M̂n,δ/3 (ηcorr). Third, we take
φ̂n,δ(x) := 1 {η̂corr(x) ≥ 1/2 · (1 + π̂0 − π̂1)}. The classifier φ̂n,δ satisfies the high probability
risk bound given in Theorem 5.

Theorem 5 Take Γ = (νmax, d, (α,Cα), (β,Cβ), (γ, tγ , Cγ), (τ, tτ , Cτ )) consisting of exponents
α ∈ [0,∞), β ∈ (0, 1], d ∈ (0,∞), γ ∈ (β/(2β+d),∞), τ ∈ (0,∞) and constants νmax ∈ (0, 1),
Cα, Cβ, Cγ , Cτ ≥ 1 and tγ , tτ ∈ (0, 1). Then there exists a constant C(Γ) depending solely upon
Γ such that for any n ∈ N and δ ∈ (0, 1) the following risk bound holds with probability at least
1− δ over the corrupted data sample Dcorr,

R
(
φ̂n,δ

)
−R (φ∗) ≤ C(Γ) ·

(
log(n/δ)

n

)min
{

γβ(α+1)
γ(2β+d)+αβ

,
τβ(α+1)
τ(2β+d)+β

}
+ δ.

A full proof of Theorem 5 is presented in Appendix B. By Theorem 1 the classifier φ̂n,δ is minimax
optimal up to logarithmic factor. We emphasise that the classifier φ̂n,δ is fully adaptive and does
not require any prior knowledge of either the local density ωµ(x), or the distributional parameters.
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5. Related work

Classification with label noise The problem of learning a classifier from data with corrupted
labels has been widely studied (Frénay and Verleysen (2014)). Broadly speaking, there are two ap-
proaches to addressing this problem from a theoretical perspective. One approach is to assume that
the label noise is either symmetric (but possibly instance dependent) or becomes symmetric as the
regression function approaches 1/2. In this setting the optimal decision boundary does not differ
between test and train distributions and classical approaches such as k-nearest neighbours are con-
sistent with finite sample rates (Cannings et al., 2018; Menon et al., 2018). In turn, our focus is on
class-conditional label noise for which the optimal decision boundary will typically differ between
test and train distributions and classical algorithms will no longer be consistent. Natarajan et al.
(2013) demonstrated that classification with class-conditional label noise is reducible to classifica-
tion with a shifted threshold, provided that the noise probabilities are known. This method has been
generalised to provide empirical risk minimisation based approaches for various objectives when
one only has access to corrupted data (Natarajan et al., 2018; van Rooyen and Williamson, 2018).
Scott (2015) demonstrated that the label noise probabilities may be estimated from the corrupted
sample at a rate of O(1/

√
n) provided that there exists a family of sets S of finite VC dimension

with S0, S1 ∈ S such that min{µ(S0), µ(S1)} > 0, ∀x ∈ S0, η(x) = 0 and ∀x1 ∈ S1, η(x1) = 1.
This gives rise to a finite sample rate of O(1/

√
n) for classification with unknown label noise over

hypothesis classes of bounded VC dimension (Scott, 2015; Blanchard et al., 2016). Ramaswamy
et al. (2016) has provided an alternative approach to estimating label noise probabilities at a rate of
O(1/

√
n). However, the bound requires a separability condition in a Hilbert space, which does not

apply in our setting. Gao et al. (2018) gave an adaptation of the k-nearest neighbour (k-NN) method
and prove convergence to the Bayes risk. Reeve and Kabán (2019) obtained minimax optimal fast
rates for the method of Gao et al. (2018) under the measure smoothness assumptions of Chaudhuri
and Dasgupta (2014); Döring et al. (2017) combined with the mutual irreducibility condition. In
both (Scott, 2015; Blanchard et al., 2016) and (Reeve and Kabán, 2019) the assumptions ensure
that the regression function is close to its extrema on sets of large measure. This implies that the
statistical difficulty of estimating the label noise probabilities is dominated by the difficulty of the
classification problem. Consequently, in both cases, the finite sample rates for classification with
unknown label noise match the optimal rates for the corresponding label noise free setting, up to
logarithmic terms (Blanchard et al., 2016; Reeve and Kabán, 2019). In this work we have studied
a non-compact setting which includes examples where the minimax optimal rates for learning with
label noise are strictly greater than those for learning without label noise.

Non-parametric classification in unbounded domains The problem of non-parametric classifi-
cation on non-compact domains where the marginal density is not bounded from below has received
some recent attention. One approach is the measure-theoretic smoothness assumption of (Chaudhuri
and Dasgupta, 2014; Döring et al., 2017) whereby deviations in the regression function are assumed
to scale with the measure of metric balls. This means that the regression function must become
increasingly smooth (i.e. smaller Lipschitz constant) as the density approaches zero. In this work
we have adopted the less restrictive approach of Gadat et al. (2016) where the Lipschitz constant
is not controlled by the density. Instead assumptions are made which bound the measure of the
tail of the distribution (Assumption E). This more flexible setting includes natural examples (Gadat
et al., 2016, Table 1) and results in optimal convergence rates which are provably slower than those
achieved with densities bounded from below. The primary difference between our setting and that of

11
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Gadat et al. (2016) is that we allow for class-conditional label noise with unknown label noise prob-
abilities. This requires alternative techniques and can result in different optimal rates (Theorems
1 and 5). In addition, our method is adaptive to the unknown distributional parameters and local
density, unlike the local k-NN method of Gadat et al. (2016) which assumes prior knowledge of the
local density at a test point. This adaptivity is especially significant in the label noise setting where
one cannot tune hyper-parameters by minimising the classification error on a hold out set. In order
to tune k we use the Lepski method (Lepski and Spokoiny, 1997). Our use of the Lepski method
is drawn from the work of Kpotufe and Garg (2013) who applied this method to kernel regression.
The principal difference is that whereas Kpotufe and Garg (2013) establish a uniform bound which
holds simultaneously for all test points, we only require a pointwise bound. The major advantage
of this is that we are able to avoid the restrictive assumption of an upper bound on the ε-covering
numbers (which would rule out non-compact domains of interest). An alternative approach to non-
compact domains has been pursued by Cannings et al. (2017). Whilst we follow Gadat et al. (2016)
in bounding the measure of the regions of the feature space where the density falls below a given
value (see Assumption E), Cannings et al. (2017) instead employ a moment assumption. Note that
whereas Cannings et al. (2017) make use of an additional set of unlabelled data to locally tune the
optimal value of k, our method is optimally adaptive without any additional data.

Supremum estimation Central to our method is the observation of Menon et al. (2015) that under
the mutual irreducibility assumption the noise probabilities may be determined by estimating the ex-
trema of the corrupted regression function. This leads to the problem of determining the supremum
of a function on an unbounded metric space based on labelled data. This is closely related to the
problem of mode estimation studied by Dasgupta and Kpotufe (2014) in an unsupervised setting
and by Jiang (2019) in a supervised setting. The primary difference is that whereas we are only
interested in estimating the value of the supremum, those papers focus on estimating the point in
the feature space which attains the supremum. This is a more challenging problem which requires
strong assumptions including a twice differentiable function. In our setting the feature space is not
assumed to have a differentiable structure, so such assumptions cannot be applied. Note also that the
sup norm bound of Jiang (2019) does not hold in our setting since it requires a uniform lower bound
on the density. Our problem is also related to the simple regret minimisation problem in X -armed
bandits (Bubeck et al., 2011; Locatelli and Carpentier, 2018) in which the learner actively selects
points in the feature space in order to locate and determine the supremum. However, the techniques
are quite different, owing to the active rather than passive nature of the problem. In particular, there
is no marginal distribution over the feature vectors, since these are selected by the learner. In our
setting, conversely, the behaviour of the marginal distribution plays an absolutely crucial role.

6. Conclusion

We have determined the minimax optimal learning rate (up to logarithmic factors) for classification
in the presence of unknown class-conditional label noise on non-compact metric spaces. The rate
displayed an interesting threshold behaviour depending upon the rate at which the regression func-
tion approaches its extrema in the tails of the distribution. In addition, we presented an adaptive
classification algorithm that attains the minimax rates without prior knowledge of the distributional
parameters or the local density.
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L Birgé. A new look at an old result: Fano’s lemma. Technical Report, Universite Paris VI., 2001.
Gilles Blanchard, Gyemin Lee, and Clayton Scott. Semi-supervised novelty detection. Journal of

Machine Learning Research, 11(Nov):2973–3009, 2010.
Gilles Blanchard, Marek Flaska, Gregory Handy, Sara Pozzi, and Clayton Scott. Classification with

asymmetric label noise: Consistency and maximal denoising. Electronic Journal of Statistics, 10
(2):2780–2824, 2016.

Jakramate Bootkrajang and Ata Kabán. Learning kernel logistic regression in the presence of class
label noise. Pattern Recognition, 47(11):3641–3655, 2014.
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Appendix A. Proof of the lower bound

In this section we shall present the proof of the main lower bound - Theorem 1. The proof of Theo-
rem 1 consists of two components. The first component corresponds to the difficulty of estimating
the noise probabilities and the resultant effect upon classification risk. This component is presented
in Proposition 6 in Section A.1. The second component corresponds to the difficulty of the core
classification problem which would have been present even if the learner had access to clean labels.
This component is presented in Proposition 11 in Section A.2. Theorem 1 follows immediately
from Propositions 6 and 11.

Before presenting Propositions 6 and 11 we shall remind the reader of some notation that will be
useful in the proof of the lower bound. Recall that we have a distribution P over triples (X,Y, Ỹ ).
We let Pclean denote the marginal distribution over (X,Y ) and Pcorr denote the marginal distri-
bution over (X, Ỹ ). In addition, we let P⊗nclean denote the product distribution over clean samples
D = {(Xi, Yi)}i∈[n] with (Xi, Yi) sampled from Pclean independently and let P⊗ncorr denote the prod-
uct distribution over corrupted samples Dcorr = {(Xi, Ỹi)}i∈[n] with (Xi, Ỹi) sampled from Pcorr.
Similarly, we let E⊗nclean denote the expectation over clean samples D ∼ P⊗nclean and let E⊗ncorr denote
the expectation over corrupted samples Dcorr ∼ P⊗ncorr.

A.1. A lower bound for unknown label noise

The goal of this section is to prove Proposition 6 which corresponds to the difficulty of estimating
the noise probabilities and the resultant effect upon classification risk.

Proposition 6 Take Γ = (νmax, d, (α,Cα), (β,Cβ), (γ, tγ , Cγ), (τ, tτ , Cτ )) consisting of expo-
nents α ∈ [0,∞), β ∈ (0, 1], d ∈ [αβ,∞), γ ∈ (0, 1], τ ∈ (0,∞) and constants νmax ∈ (0, 1),
Cα ≥ 4α, Cα, Cβ , Cγ , Cτ ≥ 1 and tγ ∈ (0, 1/24), tτ ∈ (0, 1/3). There exists a constant c0(Γ),
depending solely upon Γ, such that for any n ∈ N and any classifier φ̂n which is measurable with
respect to the corrupted sample Dcorr, there exists a distribution P ∈ P(Γ) such that

E⊗ncorr

[
R
(
φ̂n

)]
−R (φ∗) ≥ c1(Γ) · n−

τβ(α+1)
τ(2β+d)+β .

To prove Proposition 6 we will show that there exists a pair of distributions P0 and P1 such
that whilst the corrupted regression functions (η0

corr and η1
corr) closely resemble one another, the true

regression functions (η0 and η1) are substantially different. Thus, whilst it is difficult to distinguish
P0 and P1 based upon the corrupted sample Dcorr, failing to do so results in substantial misclassifi-
cation error. Figure 2 in Section 3 illustrates the construction. To formalise this idea we require the
following variant of Fano’s lemma due to Birgé (2001).

Lemma 7 (Birgé) Given a finite family S consisting of probability measures on a measureable
space (Z,Σ) and a random variable Z with an unknown distribution in the family, then we have

inf
T̂

{
sup
PZ∈S

{
PZ
[
T̂ (Z) 6= PZ

]}}
≥ min

0.36, 1− inf
PZ∈S

∑
P̃Z∈S

DKL

(
PZ , P̃Z

)
|S| log |S|


 ,

where the infimum is taken over all measureable (possibly randomised) estimators T̂ : Z → S.
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We apply Lemma 7 as follows: Given an integer n ∈ N and a quintuple (∆, r, u, v, w) ∈
(0, 1/6)5 (to be selected in terms of n later) we shall construct a measureable space with a pair of
distributions. First we construct a metric space by letting X = {a, b, c, d} and choosing ρ such that

ρ(x0, x1) = r if x0, x1 ∈ {a, b} and x0 6= x1

ρ(x0, x1) ≥ 1 if x0 /∈ {a, b} or x1 /∈ {a, b} and x0 6= x1

ρ(x0, x1) = 0 if x0 = x1.

Note that there are metric spaces (X , ρ) of this form embedded isometrically in any Euclidean
space (RD, ‖ · ‖2). We shall define a pair of probability distributions P0,P1 over random triples
(X,Y, Ỹ ) ∈ X ×Y2 as follows. First we define a Borel probability measure µ onX by µ({a}) = u,
µ({b}) = 1/3, µ({c}) = v and µ({d}) = 2/3 − u − v. Second, we define a pair of regression
functions η0, η1 : X → [0, 1] on X as follows by

η0(a) = 1, η0(b) = 1−∆, η0(c) =
1−∆

2−∆
η0(d) = 0

η1(a) = 1, η1(b) = 1, η1(c) =
1

2−∆
η1(d) = 0.

Third, we define probabilities πιj ∈ (0, 1) for {ι, j} ∈ {0, 1} by taking π0
0 = π0

1 = 0, π0
1 = νmax/4

and π1
1 = ∆+(νmax/4)·(1−∆). We then put these pieces together by taking, for each ι ∈ {0, 1}, Pι

to be the unique distribution on (X,Y, Ỹ ) ∈ X ×Y2 with (a) marginal distribution µ, (b) regression
function ηι(x) = Pι[Y = 1|X = x] and (c) label noise probabilities πιj . In addition, we define
ωµ : X → (0, 1) by ωµ(a) = w, ωµ(c) = v and ωµ(b) = ωµ(d) = 1/3.

Lemma 8 For ι ∈ {0, 1} the measures Pι satisfy the following properties:
a) Pι satisfies Assumption A with parameter νmax provided ∆ ≤ νmax/2;
b) Pι satisfies Assumption B with parameters (α,Cα) whenever Cα ≥ 4α & v ≤ ∆α;
c) ηι satisfies Assumption C with parameters (β,Cβ) whenever ∆ ≤ Cβ · rβ;
d) µ satisfies Assumption D with parameters (d, ωµ) whenever u ≥ w · rd;
e) µ satisfies Assumption E with parameters (γ,Cγ , tγ , ωµ) whenever γ ≤ 1, tγ ≤ 1

3 & u ≤ w;
f) Pι satisfies Assumption F with parameters (τ, Cτ , tτ , ωµ) whenever tτ ≤ 1/3 & ∆ ≤ Cτ ·wτ .

Proof We check each property in turn.
Property A follows immediately from the construction of Pι and the definitions of πιj .
Property B follows from the fact that since ∆ < 1/6, we have |ηι(x)− 1/2| ≥ 1/3 for x 6= c and
|ηι(c)− 1/2| ≥ ∆/4. Property C follows from the fact that the only two distinct points x0, x1 with
ρ(x0, x1) < 1 are a & b with ρ(a, b) = r and |ηι(a)− ηι(b)| ≤ ∆.
Property D follows from the fact that µ is defined by µ({a}) = u, µ({b}) = 1/3, µ({c}) = v,
µ({d}) = 2/3− u− v and ωµ : X → (0, 1) by ωµ(a) = w, ωµ(c) = v and ωµ(b) = ωµ(d) = 1/3.
In particular, for x 6= a we have for r̃ ∈ (0, 1)

µ(Br̃(x)) ≥ µ({x}) ≥ ωµ(x) ≥ ωµ(x) · r̃d.

On the other hand, for x = a there are two cases. If r̃ ∈ (r, 1) then

µ(Br̃(a)) ≥ µ({b}) ≥ 1/3 ≥ w · r̃d = ωµ(a) · r̃d
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since w < 1/6. If r̃ ≤ r then µ(Br̃(a)) ≥ µ({a}) = u ≥ w · rd ≥ ωµ(a) · r̃d.
Property E requires three cases. If ε ∈ [max{w, v}, 1/3) then we have

µ ({x ∈ X : ωµ(x) < ε}) = µ ({a, c}) = u+ v ≤ 2 max{w, v} ≤ Cγ · εγ .

If ε ∈ [min{w, v},max{w, v}) then we take x0 ∈ {a, c} with ωµ(x0) = minx∈X {ωµ(x)}. Since
u ≤ w we have

µ ({x ∈ X : ωµ(x) < ε}) = µ ({x0}) ≤ ωµ(x0) = min{w, v} ≤ ε ≤ Cγ · εγ .

Finally, for ε ∈ (0,min{w, v}) we have µ ({x ∈ X : ωµ(x) < ε}) = 0.
Property F requires us to consider two cases. If ε ∈ [w, tτ ) then since ωµ(b) = ωµ(d) = 1/3 > ε
and for both ι ∈ {0, 1} we have ηι(b) ≥ 1−∆ and ηι(d) = 0 we have

max

{
inf
x∈Xµ

{ηι(x) : ωµ(x) > ε} , inf
x∈Xµ

{1− ηι(x) : ωµ(x) > ε}
}
≤ ∆ ≤ Cτ · ετ .

On the other hand, if ε ∈ (0, w) then since ωµ(a) = w and ηι(a) = 1, and ηι(d) = 0 we have

max

{
inf
x∈Xµ

{ηι(x) : ωµ(x) > ε} , inf
x∈Xµ

{1− ηι(x) : ωµ(x) > ε}
}

= 0 ≤ Cτ · ετ .

Recall that (Pιcorr)
⊗n is the product distribution with Dcorr ∼ (Pιcorr)

⊗n.

Lemma 9 max
{
DKL

((
P0

corr
)⊗n

,
(
P1

corr
)⊗n)

, DKL

((
P1

corr
)⊗n

,
(
P0

corr
)⊗n)} ≤ 4nu∆2

νmax
.

Proof We shall show that DKL

((
P0

corr
)⊗n

,
(
P1

corr
)⊗n) ≤ (4/νmax) · nu ·∆2. The proof that

DKL

((
P1

corr
)⊗n

,
(
P0

corr
)⊗n) ≤ (4/νmax) ·nu ·∆2 is similar. Recall that for each ι ∈ {0, 1} we let

Pιcorr denote the marginal distribution of Pι over pairs (X, Ỹ ) consisting of a feature vector X ∼ X
and a corrupted label Ỹ ∈ Y . We can compute the corrupted regression functions ηιcorr(x) =
Pι[Ỹ |X = x] for ι ∈ {0, 1} by applying (3). Since π0

0 = 0 and π0
1 = νmax/4 we have η0

corr(x) =
(1−νmax/4)·η0(x) for all x ∈ X . On the other hand, since π1

0 = 0 and π1
1 = ∆+(νmax/4)·(1−∆)

we have η1
corr(x) = (1− νmax/4) · (1−∆) · η1(x) for all x ∈ X .

We begin by bounding the Kullback Leibler divergence between P0
corr and P1

corr using the fact
that µ({a}) = u and η0

corr(x) = η1
corr(x) for x ∈ X\{a},

DKL

(
P0

corr,P1
corr
)

=
∑
x∈X

∑
y∈Y

P0
corr

[
X = x & Ỹ = y

]
log

P0
corr

[
X = x & Ỹ = y

]
P1

corr

[
X = x & Ỹ = y

]


=
∑
x∈X

µ({x})
(

(1− η0
corr(x)) log

(
1− η0

corr(x)

1− η1
corr(x)

)
+ η0

corr(x) log

(
η0

corr(x)

η1
corr(x)

))
= u ·

(
(1− η0

corr(a)) log

(
1− η0

corr(a)

1− η1
corr(a)

)
+ η0

corr(a) log

(
η0

corr(a)

η1
corr(a)

))
≤ u ·

(
η0

corr(a)− η1
corr(a)

)2
min {η0

corr(a), (1− η0
corr(a)), η1

corr(a), 1− η1
corr(a)}

≤ 4

νmax
· u ·∆2.
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The second to last inequality follows from the reverse Pinsker’s inequality (Csiszár and Talata,
2006, Lemma 6.3). The final inequality follows from the fact that η0

corr(a) = (1 − νmax/4) and
η1

corr(a) = (1 − νmax/4) · (1 −∆). Given that (Pιcorr)
⊗n consists of n independent copies of Pιcorr

for ι ∈ {0, 1} we deduce that

DKL

((
P0

corr
)⊗n

,
(
P1

corr
)⊗n)

= n ·DKL

(
P0

corr,P1
corr
)
≤ 4nu∆2

νmax
.

Lemma 10 Suppose that 8nu ·∆2 ≤ νmax. Given any Dcorr-measureable classifier φ̂n,∑
ι∈{0,1}

(
E⊗ncorr

[
R
(
φ̂n

)]
−R (φ∗)

)
≥ v ·∆

8
.

Proof By Lemma 9 combined with 8nu ·∆2 ≤ νmax we have

(2 log 2)−1 ·max
{
DKL

((
P0

corr
)⊗n

,
(
P1

corr
)⊗n)

, DKL

((
P1

corr
)⊗n

,
(
P0

corr
)⊗n)} ≤ 1

2
.

We construct an estimator T̂ : (X × Y)n →
{(

P0
corr
)⊗n

,
(
P1

corr
)⊗n} in terms of an arbitrary clas-

sifier φ̂n as follows. Take T̂ (Dcorr) = (Pιcorr)
⊗n where ι = φ̂n(c) and φ̂n is trained on Dcorr. Note

that η0(c) < 1/2 and η1(c) > 1/2. Hence, for each Pι we have φ∗(c) = ι for the corresponding
Bayes rule. By Birge’s variant of Fano’s lemma (Lemma 7), we have∑

ι∈{0,1}

E⊗ncorr

[
1

{
φ̂n(c) 6= φ∗(c)

}]
=

∑
ι∈{0,1}

(Pιcorr)
⊗n
[
T̂ (Dcorr) 6= (Pιcorr)

⊗n
]
≥ 1

4
, (10)

where the expectation E⊗ncorr is taken over all samplesDcorr = {(Xi, Ỹi)}i∈[n] with {(Xi, Yi, Ỹi)}i∈[n]

generated i.i.d. from Pι. To complete the proof of the lemma we note that for both ι ∈ {0, 1} we
have |2ηι(c)− 1| = ∆/(2−∆) ≥ ∆/2. Hence, for ι ∈ {0, 1} and any φ ∈ F(X ,Y) we have

R (φ)−R(φ∗) =

∫
|2ηι(x)− 1| · 1 {φ(x) 6= φ∗(x)} dµ(x)

≥ µ({c}) · |2ηι(c)− 1| · 1
{
φ̂n(c) 6= φ∗(c)

}
≥ v · ∆

2
· 1
{
φ̂n(c) 6= φ∗(c)

}
.

Combining with (10) completes the proof of the lemma.

Proof of Proposition 6 To prove the proposition we choose parameters (∆, r, u, v, w) ∈ (0, 1/6)5

so as to maximise the lower bound v ·∆/8 whilst satisfying the conditions of Lemma 8 along with

the condition 8nu ·∆2 ≤ νmax from Lemma 10. We define ∆ = 6−(1+ 1
α

+τ) ·νmax ·(2n)
− τβ
τ(2β+d)+β ,

r = ∆
1
β , u = ∆

β+τd
τβ , v = ∆α and w = ∆

1
τ . It follows that (∆, r, u, v, w) ∈ (0, 1/6)5. Moreover,
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one can then verify that the conditions of Lemma 8 hold, so for both ι ∈ {0, 1} we have Pι ∈ P (Γ).
In addition, we have 2nu ·∆2 ≤ 1, so by Lemma 10,

sup
P∈P(Γ)

(
E⊗ncorr

[
R
(
φ̂n

)]
−R (φ∗)

)
≥ 1

2

∑
ι∈{0,1}

(
E⊗ncorr

[
R
(
φ̂n

)]
−R (φ∗)

)
≥ v ·∆

16
=

∆α+1

16
= c1 · n−

τβ(α+1)
τ(2β+d)+β ,

where c1 is determined by Γ. This completes the proof of the Proposition 6. �
To complete the proof of Theorem 1 we will combine Proposition 6 with Proposition 11 in the

next section.

A.2. A lower bound for uncorrupted data

In this section we prove Proposition 11 which component corresponds to the difficulty of the core
classification problem which would have been present even if the learner had access to clean labels.
We can then complete the proof of Theorem 1.

Proposition 11 Take Γ = (νmax, d, (α,Cα), (β,Cβ), (γ, tγ , Cγ), (τ, tτ , Cτ )) consisting of expo-
nents α ∈ [0,∞), β ∈ (0, 1], d ∈ [αβ,∞), γ ∈ (0,∞), τ ∈ (0,∞) with constants Cα,
Cβ, Cγ , Cτ ≥ 1, and tγ ∈ (0, 1/24), tτ ∈ (0, 1/3). There exists a constant c0(Γ), depending
solely upon Γ, such that for any n ∈ N and any classifier φ̂n which is measurable with respect to
the corrupted sample Dcorr, there exists a distribution P ∈ P(Γ) with Pcorr = Pclean such that

E⊗ncorr

[
R
(
φ̂n

)]
−R (φ∗) ≥ c0(Γ) · n−

βγ(α+1)
γ(2β+d)+αβ .

To prove Proposition 11 we will construct a family of measure distributions contained within
P(Γ). We will then use an important lemma of Audibert (Audibert, 2004, Lemma 5.1) to deduce
the lower bound.

Families of measures Take parameters l ∈ N with l ≥ 2, w ≤ 1/3, ∆ ≤ 1, m ≤ 2l−1,
whose value will be made precise below. We let A =

{
a = (aq)q∈[l] ∈ {0, 1}l

}
and choose A] ⊂{

a = (aq)q∈[l] ∈ A : al = 1
}

with
∣∣A]∣∣ = m. This is possible since m ≤ 2l−1. Given a0 =

(a0
q)q∈[l], a1 = (a1

q)q∈[l] ∈ A we let |a0 ∧ a1| := max
{
k ∈ [l] : a0

q = a1
q for q ≤ k

}
denote the

length of the largest common substring. Let X = A ∪ {0} ∪ {1} and define a metric ρ on X by

ρ(x0, x1) =


2−|x0∧x1|/d if x0, x1 ∈ A and x0 6= x1

1 if x0 /∈ A or x1 /∈ A and x0 6= x1

0 if x0 = x1.

One can easily verify that ρ is non-negative, symmetric, satisfies the identity of indiscernibles prop-
erty and the triangle inequality. We may define a Borel probability measure µ on X by letting

µ({x}) =


1
3 if x ∈ {0, 1}
w · 2−l if x ∈ A]
1−3mw·2−l

3(2l−m)
if x ∈ A\A].
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One can easily verify that µ extends to a well-defined probability measure on X and for x ∈ A\A]
we have µ({x}) ≥ (1/6) · 2−l. Finally, we define a density function ωµ : X → (0, 1) by

ωµ(x) =


1
3 if x ∈ {0, 1}
w
8 if x ∈ A]
1
24 if x ∈ A\A].

We now let G =
{
g : A] → {−1,+1}

}
. For each g ∈ G we define an associated regression function

ηg : X → [0, 1] by

ηg(x) =


0 if x = 0

1 if x = 1
1+∆·g(x)

2 if x ∈ A]
1
2 if x ∈ A\A].

Finally, we define distributions Pg on triples (X,Y, Ỹ ) ∈ X × Y2 for each g ∈ G as follows:
1. Let µ be the marginal distribution over X i.e. Pg[X ∈ A] = µ(A) for A ⊂ X ;
2. Let ηg be the regression function i.e. Pg[Y |X = x] = ηg(x) for x ∈ X ;
3. Take Pg[Ỹ = Y ] = 1.

Note that Pg[Ỹ = Y ] = 1 implies that Pgclean = Pgcorr, where Pgclean denotes the marginal over (X,Y )

and Pgcorr denotes the marginal over (X, Ỹ ). The following Lemma gives conditions under which
Pg ∈ P(Γ) for all g ∈ G.

Lemma 12 For all g ∈ G the measure Pg satisfy the following properties:
(A) Pg satisfies Assumption A;
(B) Pg satisfies Assumption B parameters (α,Cα) whenever m · w · 2−l ≤ Cα · (∆/2)α;
(C) ηg satisfies Assumption C with parameters (β,Cβ) whenever ∆ ≤ Cβ · 2−(l−1)·(β/d);
(D) µ satisfies Assumption D with parameters (d, ωµ);
(E) µ satisfies Assumption E with parameters (γ,Cγ , tγ , ωµ) when tγ ≤ 1

24 & m·w
2l
≤ Cγ ·

(
w
8

)γ;
(F) Pι satisfies Assumption F with parameters (τ, Cτ , tτ , ωµ) whenever tτ ≤ 1/3.

Proof Property A is immediate from the fact that Pg[Ỹ = Y ] = 1. Property B follows from the fact
the construction of ηg. Indeed, for ε ∈ [∆/2, 1) we have

µ

({
x ∈ X : 0 <

∣∣∣∣ηg(x)− 1

2

∣∣∣∣ < ε

})
= µ

(
A]
)

= m · w · 2−l ≤ Cα · (∆/2)α ≤ Cα · εα.

However, if ε ∈ (0,∆/2) then
{
x ∈ X : 0 <

∣∣ηg(x)− 1
2

∣∣ < ε
}

= ∅.
Property C follows from the fact that if x0 6= x1 ∈ X satisfy ρ(x0, x1) < 1 then we must have
x0, x1 ∈ A so

|ηg(x0)− ηg(x1)| ≤ ∆ ≤ Cβ · 2−(l−1)·(β/d) ≤ Cβ · ρ(x0, x1)β.

Property D requires four cases. The first case is straightforward: If x ∈ {0, 1} then for any r ∈ (0, 1)
we have µ(Br(x)) = 1

3 = ωµ(x) ≥ ωµ(x) · rd. Next we consider x = (aq)q∈[l] ∈ A with
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r ∈
(
2(1−l)/d, 1

)
. Choose an integer p ∈ [l − 1] with 2−p/d < r ≤ 2(1−p)/d. Then by the

construction of the metric ρ we have

Br(x) ⊃ {ã ∈ A : ãq = aq for all q ≤ p}
⊃ {ã ∈ A : ãq = aq for all q ≤ p and al = 0}

=
{
ã ∈ A\A] : ãq = aq for all q ≤ p and al = 0

}
.

Moreover, the above set is of cardinality 2l−p−1. Hence, the cardinality of Br(x) ∩
(
A\A]

)
is at

least 2l−p−1. Since we have µ({ã}) ≥ (1/6) · 2−l for ã ∈ A\A] it follows that

µ (Br(x)) ≥
(

2l−p−1
)
·
(

(1/6) · 2−l
)

=
1

24
· 2(1−p) ≥ 1

24
· rd ≥ ωµ(x) · rd.

The third case is where x ∈ A] and r ∈
(
0, 2(1−l)/d], in which case we have

µ (Br(x)) ≥ µ ({x}) = w · 2−l ≥ w

2
· rd ≥ ωµ(x) · rd.

Finally, we consider x ∈ A\A] and r ∈
(
0, 2(1−l)/d], in which case

µ (Br(x)) ≥ µ ({x}) =
1

6
· 2−l ≥ 1

12
· rd ≥ ωµ(x) · rd.

Property E requires two cases. If ε ∈ (w/8, tγ) then

µ ({x ∈ X : ωµ(x) < ε}) = µ
(
A]
)

= m · w · 2−l ≤ Cγ ·
(w

8

)γ
≤ Cγ · εγ .

However, if ε ≤ w/8 then {x ∈ X : ωµ(x) < ε} = ∅.
Property F is straightforward since ητ (0) = 0 and ητ (1) = 1, so for ε ∈ (0, tτ ) we have

max

{
inf
x∈Xµ

{η(x) : ωµ(x) > ε} , inf
x∈Xµ

{1− η(x) : ωµ(x) > ε}
}

= 0 ≤ Cτ · ετ .

We now recall some useful terminology due to Audibert (2004).

Definition A.1 (Probability hypercube) Take m ∈ N, v ∈ (0, 1] and ∆ ∈ (0, 1]. Suppose that X
is a metric space with a partition {X0, · · · ,Xm} into m+ 1 disjoint sets. Let µ be a Borel measure
on X such that for each j ∈ {1, · · · ,m}, µ(Xj) = v. Let ξ : X → [0, 1] be a function such that for
each j ∈ {1, · · · ,m} and x ∈ Xj , ξ(x) = ∆. Let σ0 and for each σ = (σj)j∈[m] ∈ {−1,+1}m

we define an associated regression function ησ : X → [0, 1] by

ησ(x) =
1 + σj · ξ(x)

2
for x ∈ Xj .

For each σ = (σj)j∈[m] ∈ {−1,+1}m we let Pσ be the unique probability measure on X × Y
such that Pσ[X ∈ A] = µ(A) for all Borel sets A ⊂ X and Pσ[Y = 1|X = x] = ησ(x) for
x ∈ X . A family of distributions

{
Pσ : σ = (σj)j∈[m] ∈ {−1,+1}m

}
of this form is referred to as

a (m, v,∆)-hypercube.
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We shall utilise the following useful variant of Assouad’s lemma from (Audibert, 2004, Lemma
5.1).

Lemma 13 (Audibert’s lemma) Let P be a set of distributions containing a (m, v,∆). Then for
any classifier φ̂n measureable with respect to the sample D = {(Xi, Yi)} there exists a distribution
P ∈ P with

E⊗n
[
R
(
φ̂n

)]
−R (φ∗) ≥ 1−∆ ·

√
nv

2
· (mv∆),

where E⊗n denotes the expectation over all samples D = {(Xi, Yi)} ∈ (X × Y)n with (Xi, Yi) ∼
P sampled independently.

We are now in a position to complete the proof of Proposition 11.

Proof of Proposition 11 First note that for any class of distributions P the minimax rate,

inf
φ̂n

{
sup
P∈P

{
E⊗ncorr

[
R
(
φ̂n

)]
−R (φ∗)

}}
,

is monotonically non-increasing with n. Hence, it suffices to show that there exists N0 ∈ N and
C0 ∈ (0,∞), both depending solely upon Γ, such that for any n ∈ N and any classifier φ̂n,
measurable with respect to Dcorr, there exists P ∈ P(Γ) with Pclean = Pcorr and

E⊗ncorr

[
R
(
φ̂n

)]
−R (φ∗) ≥ C0 · n

βγ(α+1)
γ(2β+d)+αβ . (11)

Proposition 11 will then follow with an appropriately modified constant. To prove the claim (11)
consider the class of measures {Pg}g∈G with some parameters l ∈ N with l ≥ 2, w ≤ 1/3, ∆ ≤ 1,
m ≤ 2l−1 to be specified shortly. We observe that the set

{
Pgclean

}
g∈G of corresponding clean

distributions is an (m, v,∆) hyper cube with v = w · 2−l. To see this first let {Xj}mj=1 be a partition
of A] into singletons and let X0 = X\A]. Note that this is possible since A] is of cardinality m.
Moreover, we have µ(Xj) = v = w · 2−l for each j ∈ [m]. Define ξ : X → [0, 1] by

ξ(x) =


−1 if x = 0

+1 if x = 1

∆ if x ∈ A]

0 if x ∈ A\A].

It follows that the set of clean distributions
{
Pgclean

}
g∈G is precisely the (m, v,∆) constructed in

Definition A.1. Hence, by applying Lemma 13 we see that for some P ∈ {Pg}g∈G we have

E⊗ncorr

[
R
(
φ̂n

)]
−R (φ∗) = E⊗nclean

[
R
(
φ̂n

)]
−R (φ∗) ≥ 1−∆ ·

√
nv

2
· (mv∆). (12)

Here we have used the fact that for g ∈ G we have Pgclean = Pgcorr.

22



CLASSIFICATION WITH LABEL NOISE ON NON-COMPACT FEATURE SPACES

To complete the proof we select the parameters l ∈ N with l ≥ 2, w ≤ 1/3, ∆ ≤ 1, m ≤ 2l−1

so as to approximately maximise the lower bound in (12) whilst satisfying the conditions of Lemma

12. To do so we take l =
⌈

dγ
γ(2β+d)+αβ ·

log(2n)
log 2

⌉
+ 1 and ∆ =

(
2−l
)β
d so that l ≥ 2, ∆ ≤ 1 and

1

4
β
d

·
(

1

2n

) βγ
γ(2β+d)+αβ

≤ ∆ ≤
(

1

2n

) βγ
γ(2β+d)+αβ

. (13)

Let w = 1
3 · ∆

α
γ and m =

⌊
min

{
1
2 ,

1
2α ,

1
24γ

}
·∆−

αβ+γ(d−αβ)
γβ

⌋
. One can verify that with these

choices we have m ≤ 2l−1, m·w
2l
≤ min

{(
∆
2

)α
,
(
w
8

)γ} and ∆ ≤ 2−(l−1)·(β/d). Thus, by Lemma
12 we have Pg ∈ P (Γ) for all g ∈ G.

Since α · β ≤ d and ∆ decreases towards zero, there exists N0 ∈ N, determined by Γ, such that

for all n ≥ N0 we have min
{

1
2 ,

1
2α ,

1
24γ

}
·∆−

αβ+γ(d−αβ)
γβ ≥ 2. We have v = w·2−l = 1

3 ·∆
αβ+γd
γβ , so

by (13) ∆2 ·n ·v ≤ 1/6. Thus, by (12) we see that there exists a constantsKj , depending only upon
d, (α,Cα), (β,Cβ), (γ, tγ , Cγ), (τ, tτ , Cτ ), such that for all n ≥ N0 and any Dcorr measureable
classifier there exists a distribution P ∈ {Pg}g∈G ⊂ P (Γ) with

E⊗ncorr

[
R
(
φ̂n

)]
−R (φ∗) ≥ K0 · (mv∆) ≥ K1 ·∆−

αβ+γ(d−αβ)
γβ ·∆

αβ+γd
γβ ·∆

= K1 ·∆1+α ≥ K2 ·
(

1

n

) βγ(α+1)
γ(2β+d)+αβ

.

This proves the claim (11) and completes the proof of Proposition 11. �
We can now complete the proof of Theorem 1.

Proof of Theorem 1 Theorem 1 follows immediately from Propositions 6 and 11. �

Appendix B. Proof of the upper bound

In this section we prove Theorem 5. We with an elementary lemma.

Lemma 14 Suppose that π̂0, π̂1 ∈ [0, 1) with π̂0 + π̂1 < 1. Let η̂corr : X → [0, 1] be an estimate
of ηcorr and define η̂ : X → [0, 1] by η̂(x) := (η̂corr(x)− π̂0) / (1− π̂0 − π̂1). Suppose that
π0 + π1 < 1 and max {|π̂0 − π0| , |π̂1 − π1|} ≤ (1− π0 − π1) /4. Then for all x ∈ X we have

|η̂(x)− η(x)| ≤ 8 · (1− π0 − π1)−1 ·max {|η̂corr(x)− ηcorr(x)| , |π̂0 − π0| , |π̂1 − π1|} .

Proof An elementary computation shows that given â, a ∈ [−1, 1] and b̂, b ∈ (0,∞) with |b̂− b| ≤
b/2 and |a/b| ≤ 1 we have ∣∣∣∣ âb̂ − a

b

∣∣∣∣ ≤ 4

b
·max

{
|â− a|, |b̂− b|

}
.

The lemma now follows from ηcorr(x) = (1− π0 − π1) · η(x) +π0 (3) by taking â = η̂corr(x)− π̂0,
a = ηcorr(x)− π0, b̂ = 1− π̂0 − π̂1 and b = 1− π0 − π1.
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Proof of Theorem 5 Throughout the proof we letKl denote constants whose value depends solely
upon d, (α,Cα), (β,Cβ), (γ, tγ , Cγ), (τ, tτ , Cτ ). First we introduce a data-dependent subset Gδ ⊂
X consisting of points where η̂corr(x) provides a good estimate of ηcorr(x),

Gδ :=

x ∈ X : |η̂corr(x)− ηcorr(x)| ≤ (8
√

2) · Cβ
d

2β+d ·
(

log(12n/δ2)

ωµ(x) · n

) β
2β+d

 .

By (3) combined with the Hölder assumption (Assumption C) on η, ηcorr also satisfies the Hölder
assumption with parameters (β,Cβ). By Theorem 2 we have E⊗ncorr [1 {x /∈ Gδ}] ≤ δ2/3, for each
x ∈ Xµ, where E⊗ncorr denote the expectation over the corrupted sample Dcorr. Hence, by Fubini’s
theorem we have

E⊗ncorr [µ (X\Gδ)] = E⊗ncorr

[∫
1 {x /∈ Gδ} dµ(x)

]
=

∫
E⊗ncorr [1 {x /∈ Gδ}] dµ(x) ≤ δ2/3.

Hence, by Markov’s inequality we have µ (X\Gδ) ≤ δ with probability at most 1− δ/3 over Dcorr.
Now let ε (n, δ) := log(n/δ)/n. Recall that M(f) denotes the maximum of an arbitrary function
f . By (3) we have π0 = 1 −M(1 − ηcorr) and π1 = 1 −M(ηcorr). Hence, by Theorem 3 both of
the following bounds hold with probability at least 1− 2δ/3 over Dcorr,

|π̂0 − π0| =
∣∣∣M̂n,δ/3 (1− ηcorr)−M(1− ηcorr)

∣∣∣ ≤ K3 · ε (n, δ)
τβ

τ(2β+d)+β ,

|π̂1 − π1| =
∣∣∣M̂n,δ/3 (ηcorr)−M(ηcorr)

∣∣∣ ≤ K3 · ε (n, δ)
τβ

τ(2β+d)+β . (14)

Thus, applying the union bound once again we have both µ (X\Gδ) ≤ δ and the two bounds in (14),
simultaneously, with probability at least 1− δ over Dcorr. Hence, to complete the proof of Theorem
5 it suffices to assume µ (X\Gδ) ≤ δ and (14), and deduce the following bound,

R
(
φ̂n,δ

)
−R (φ∗) ≤ K4

(1− π0 − π1)1+α ·max

{
ε (n, δ)

γβ(α+1)
γ(2β+d)+αβ , ε (n, δ)

τβ(α+1)
τ(2β+d)+β

}
+ δ.

(15)

We can rewrite φ̂n,δ : X → Y as φ̂n,δ(x) = 1 {η̂(x) ≥ 1/2}, where

η̂(x) := (η̂corr(x)− π̂0) / (1− π̂0 − π̂1) .

Note also that η(x) = (ηcorr(x)− π0) / (1− π0 − π1). Hence, by Lemma 14 for x ∈ Gδ we have,

|η̂(x)− η(x)| ≤ K5

1− π0 − π1
·max

{(
ε (n, δ)

ωµ(x)

) β
2β+d

, ε (n, δ)
τβ

τ(2β+d)+β

}
. (16)

Choose θ0
∗(n, δ) := min{tγ , ε (n, δ)

β
τ(2β+d)+β } so that

ε (n, δ)
τβ

τ(2β+d)+β ≤
(
ε (n, δ)/θ0

∗(n, δ)
) β

2β+d ≤ t
− β

2β+d
γ · ε (n, δ)

τβ
τ(2β+d)+β .
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Let θ ∈
(
0, θ0
∗(n, δ)

]
be a parameter, whose value will be made precise shortly. We define G0

δ :=
{x ∈ Gδ : ωµ(x) ≥ θ} and for each j ≥ 1 we let

Gjδ :=
{
x ∈ Gδ : 21−j · θ > ωµ(x) ≥ 2−j · θ

}
.

Since φ̂n,δ(x) = 1 {η̂(x) ≥ 1/2} and φ∗(x) = 1 {η(x) ≥ 1/2} we see that for x ∈ Gjδ with
φ̂n,δ(x) 6= φ∗(x),∣∣∣∣η(x)− 1

2

∣∣∣∣ ≤ |η̂(x)− η(x)|

≤ K5 · (1− π0 − π1)−1 ·max


(

2j · ε (n, δ)

θ

) β
2β+d

, ε (n, δ)
τβ

τ(2β+d)+β


≤ K5 · (1− π0 − π1)−1 ·

(
2j · ε (n, δ)

θ

) β
2β+d

. (17)

The second inequality follows from (16) combined with the definition of Gjδ and the third inequality

follows from the fact that θ ≤ 2j · θ0
∗(n, δ), so ε (n, δ)

τβ
τ(2β+d)+β ≤

(
2j · ε (n, δ)/θ

) β
2β+d . Hence, by

the margin assumption we have∫
G0δ

∣∣∣∣η(x)− 1

2

∣∣∣∣ dµ(x) · 1
{
φ̂n,δ(x) 6= φ∗(x)

}
≤ K6

(1− π0 − π1)1+α ·
(
ε (n, δ)

θ

)β(1+α)
2β+d

. (18)

By the tail assumption, for j ≥ 1 we have µ
(
Gjδ
)
≤ Cγ ·

(
21−j · θ

)γ and so

∫
Gjδ

∣∣∣∣η(x)− 1

2

∣∣∣∣ · 1{φ̂n,δ(x) 6= φ∗(x)
}
dµ(x) ≤ K7 · 2

−j
(
γ− β

2β+d

)
1− π0 − π1

· θγ ·
(
ε (n, δ)

θ

) β
2β+d

. (19)

Combining (18) and (19) with µ (X\Gδ) ≤ δ we see that

R
(
φ̂n,δ

)
−R (φ∗)

= 2

∫ ∣∣∣∣η(x)− 1

2

∣∣∣∣ · 1{φ̂n,δ(x) 6= φ∗(x)
}
dµ(x)

≤ 2 ·
∞∑
j=0

∫
Gjδ

∣∣∣∣η(x)− 1

2

∣∣∣∣ · 1{φ̂n,δ(x) 6= φ∗(x)
}
dµ(x) + µ (X\Gδ)

≤ K8

(1− π0 − π1)1+α ·

(ε (n, δ)

θ

)β(1+α)
2β+d

+ θγ ·
(
ε (n, δ)

θ

) β
2β+d

+ δ, (20)

where we used the assumption that γ > β/(2β + d) so
∑∞

j=1 2
−j
(
γ− β

2β+d

)
<∞. To complete the

proof we define θ1
∗(n, δ) = ε (n, δ)

αβ
γ(2β+d)+αβ ∈ (0, 1) so that the two terms in (20) are balanced.

If θ1
∗(n, δ) ≤ θ0

∗(n, δ) then (20) holds with θ = θ1
∗(n, δ), which implies (15) If on the other hand
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θ1
∗(n, δ) > θ0

∗(n, δ) then with θ = θ0
∗(n, δ), (20) holds and the term (ε (n, δ)/θ)

β(1+α)
2β+d dominates

the θγ · (ε (n, δ)/θ)
β

2β+d term, which also implies (15). This completes the proof of (15) which
implies Theorem 5.

�

Appendix C. Proof of the regression bound

In this section we prove Theorem 2. We begin by proving the supporting Lemmas 15 & 16 which
were also used in the proof of Theorem 3. We then prove Theorem 17, a high probability bound for
a deterministic k. We then deduce Theorem 2.

Lemma 15 Suppose that µ satisfies the minimal mass assumption with parameters (d, ωµ). Given
any n ∈ N, δ ∈ (0, 1), x ∈ X and k ∈ N ∩ [8 log(1/δ), ωµ(x) · (n/2)], with probability at least

1− δ over Df we have ρ
(
x,Xτn,k(x)

)
< (2k/ (ωµ(x) · n))

1
d .

The proof of Lemma 15 is similar to (Chaudhuri and Dasgupta, 2014, Lemma 8).

Proof of Lemma 15 By the minimal mass assumption combined with the fact that k ≤ ωµ(x) ·
(n/2), if we take r = (2k/(ωµ(x) · n))

1
d then we have µ(Br(x)) ≥ 2k/n. Let PX denote the

marginal distribution overX = {Xi}i∈[n]. Applying the multicative Chernoff bound we have

PX
[
ρ(x,Xτn,k(x)) ≥ r

]
= PX

[
n∑
i=1

1 {Xi ∈ Br(x)} < k

]

≤ PX

[
n∑
i=1

1 {Xi ∈ Br(x)} < n

2
· µ(Br(x))

]
≤ exp

(
−n

8
· µ(Br(x))

)
≤ exp(−k/8) ≤ δ.

�
Let X = {Xi}i∈[n], Z = {Zi}i∈[n] and PZ|X denote the conditional probability over Z,

conditioned onX , with (Xi, Zi) ∼ Pf .

Lemma 16 For all n ∈ N, δ ∈ (0, 1), x ∈ X ,X ∈ X n and k ∈ [n] we have,

PZ|X

∣∣∣∣∣∣f̂n,k(x)− 1

k

∑
q∈[k]

f
(
Xτn,q(x)

)∣∣∣∣∣∣ ≥
√

log(2/δ)

2k

 ≤ δ.
Proof Note that f̂n,k(x) = 1

k

∑
q∈[k] Zτn,q(x) and the random variables Zτn,q(x) are conditionally

independent given X . In addition, for each q ∈ [k] we have EZ|X
[
Zτn,q(x)

]
= f

(
Xτn,q(x)

)
.

Hence, by Hoeffding’s inequality we have

PZ|X

∣∣∣∣∣∣f̂n,k(x)− 1

k

∑
q∈[k]

f
(
Xτn,q(x)

)∣∣∣∣∣∣ ≥
√

log(2/δ)

2k


= PZ|X

∣∣∣∣∣∣1k
∑
q∈[k]

Zτn,q(x) − EZ|X

1

k

∑
q∈[k]

Zτn,q(x)

∣∣∣∣∣∣ ≥
√

log(2/δ)

2k

 ≤ δ.
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�
We have the following high probability performance bound.

Theorem 17 Suppose that f satisfies the Hölder assumption with parameters (β,Cβ) and µ sat-
isfies the minimal mass assumption with parameters (d, ωµ). Given any n ∈ N, δ ∈ (0, 1), x ∈ X
and k ∈ N ∩ [8 log(2/δ), ωµ(x) · (n/2)], with probability at least 1− δ over Df we have∣∣∣f̂n,k(x)− f(x)

∣∣∣ <√ log(4/δ)

2k
+ Cβ ·

(
2k

ωµ(x) · n

)β
d

.

The proof of Theorem 17 is broadly similar to the proof of (Kpotufe, 2011, Theorem 1) adapted to
our assumptions.

Proof of Theorem 17 By Lemmas 15, 16 and the union bound, with probability at least 1−δ over
Df , we have ρ

(
x,Xτn,k(x)

)
< (2k/ (ωµ(x) · n))

1
d and∣∣∣∣∣∣f̂n,k(x)− 1

k

∑
q∈[k]

f
(
Xτn,q(x)

)∣∣∣∣∣∣ <
√

log(2/δ)

2k
.

By the Hölder assumption, combined with ρ
(
x,Xτn,q(x)

)
≤ ρ

(
x,Xτn,k(x)

)
< (2k/ (ωµ(x) · n))

1
d ,

for q ∈ [k] we have ∣∣f(Xτn,q(x))− f(x)
∣∣ ≤ Cβ · ( 2k

ωµ(x) · n

)β
d

.

Hence, the theorem follows by the triangle inequality. �.

Proof of Theorem 2 By Theorem 17 combined with the union bound we see that with probability
at least 1− δ, the following holds simultaneously for all k ∈ N ∩ [8 log(2n/δ), ωµ(x) · n/2]∣∣∣f̂n,k(x)− f(x)

∣∣∣ <√ log(4n/δ)

2k
+ Cβ ·

(
2k

ωµ(x) · n

)β
d

. (21)

We choose k̃ ∈ N so maximally so that the first term in (21) bounds the second,

k̃ :=

1

2
· (ωµ(x) · n)

2β
2β+d ·

(
log(4n/δ)

C2
β

) d
2β+d

 .
We may assume without loss of generality that 8 log(2n/δ) ≤ k̃ ≤ ωµ(x) ·n/2, since otherwise the
RHS in (4) is trivial. Thus, we have

1

4
· (ωµ(x) · n)

2β
2β+d ·

(
log(4n/δ)

C2
β

) d
2β+d

≤ k̃ ≤ 1

2
· (ωµ(x) · n)

2β
2β+d ·

(
log(4n/δ)

C2
β

) d
2β+d

. (22)

By (21) combined with the upper bound in (22) we see that for q ∈ N ∩ [8 log(2n/δ), k̃] we have∣∣∣f̂n,q(x)− f(x)
∣∣∣ <

√
log(4n/δ)

2q
+ Cβ ·

(
2q

ωµ(x) · n

)β
d

≤

√
2 log(4n/δ)

q
.
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Hence, f(x) ∈
⋂
q∈N∩[8 log(2n/δ),k̃] În,q,δ(x) 6= ∅, so k̃ ≤ k̂n,δ(x). Moreover, by the construction of

k̂n,δ(x) we must have
În,k̂n,δ(x),δ(x) ∩ În,k̃,δ(x) 6= ∅.

Combining this with the fact that f̂n,δ(x) ∈ În,k̂n,δ(x),δ(x), f(x) ∈ În,k̃,δ(x) and each interval

În,q,δ(x) is of diameter 2
√

2 log(4n/δ)/q we have

∣∣∣f̂n,δ(x)− f(x)
∣∣∣ ≤ 2

√
2 log(4n/δ)

k̂n,δ(x)
+ 2

√
2 log(4n/δ)

k̃

≤ (8
√

2) ·

√
log(4n/δ)

4̃k
≤ (8
√

2) · Cβ
d

2β+d ·
(

log(4n/δ)

ωµ(x) · n

) β
2β+d

,

where the final inequality follows from the lower bound in (22).
�
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