

University of Birmingham

Initial algebras and final coalgebras consisting of
nondeterministic finite trace strategies
Bowler, Nathan; Levy, Paul Blain; Plotkin, Gordon

DOI:
10.1016/j.entcs.2018.11.003

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Bowler, N, Levy, PB & Plotkin, G 2018, Initial algebras and final coalgebras consisting of nondeterministic finite
trace strategies. in S Staton (ed.), Proceedings of the 34th Conference on the Mathematical Foundations of
Programming Semantics (MFPS XXXIV). Electronic Notes in Theoretical Computer Science, vol. 341, pp. 23-44,
34th Conference on the Mathematical Foundations of Programming Semantics (MFPS 2018), Halifax, Canada,
6/06/18. https://doi.org/10.1016/j.entcs.2018.11.003

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 29/05/2019
Bowler, Nathan, Paul Blain Levy, and Gordon Plotkin. "Initial algebras and final coalgebras consisting of nondeterministic finite trace
strategies." Electronic Notes in Theoretical Computer Science 341 (2018): 23-44.
https://doi.org/10.1016/j.entcs.2018.11.003

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 27. Apr. 2024

https://doi.org/10.1016/j.entcs.2018.11.003
https://doi.org/10.1016/j.entcs.2018.11.003
https://birmingham.elsevierpure.com/en/publications/62d54dc5-895a-4024-87ec-58271953c9ca

Initial Algebras and Final Coalgebras
Consisting of Nondeterministic Finite Trace

Strategies

Nathan Bowler1

Department of Mathematics, Universität Hamburg, Germany

Paul Blain Levy2

School of Computer Science, University of Birmingham, UK

Gordon Plotkin3

LFCS, University of Edinburgh, UK

Abstract

We study programs that perform I/O and finite or countable nondeterministic choice, up to finite trace
equivalence. For well-founded programs, we characterize which strategies (sets of traces) are definable, and
axiomatize trace equivalence by means of commutativity between I/O and nondeterminism. This gives
the set of strategies as an initial algebra for a polynomial endofunctor on semilattices. The strategies
corresponding to non-well-founded programs constitute a final coalgebra for this functor.

Keywords: final coalgebra, nondeterministic strategies, trace, algebraic effects, semilattices

1 Introduction

This paper is about nondeterministic programs that perform I/O. To illustrate the

ideas, let us consider the following (infinitary) imperative language:

1 Email: Nathan.Bowler@uni-hamburg.de
2 Email: P.B.Levy@cs.bham.ac.uk
3 Email: gdp@inf.ed.ac.uk

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 341 (2018) 23–44

1571-0661/© 2018 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2018.11.003

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:Nathan.Bowler@uni-hamburg.de
mailto:P.B.Levy@cs.bham.ac.uk
mailto:gdp@inf.ed.ac.uk
http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2018.11.003
https://doi.org/10.1016/j.entcs.2018.11.003
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/

M,N ::= Age?(Mn)n∈N
| Happy?(M,N)

| Continue?(M) | Byen
| M or N

The meaning is as follows.

• The command Age?(Mn)n∈N prints Age? and pauses. If the user then enters n,

it executes Mn.

• The command Happy?(M,N) prints Happy? and pauses. If the user then enters

Yes or No, it executes M or N respectively.

• The command Continue?(M) prints Continue? and pauses. If the user then

enters Yes, it executes M .

• The command Byen prints Byen and pauses. No further input is possible.

• The command M or N nondeterministically chooses to execute M or N .

A play is an alternating sequence of outputs and inputs, e.g.

Happy?Yes.Age?93.Age?27.Continue?Yes.Happy?

A command’s traces are the plays it may give rise to. For example, let

M0
def
= Happy?(Bye3, Bye5 or Continue?(Bye6))

It has the following passive-ending traces (i.e. ones ending with execution paused):

Happy?

Happy?Yes.Bye3

Happy?No.Bye5

Happy?No.Continue?

Happy?No.Continue?Yes.Bye6

and the following active-ending traces (i.e. ones ending with the program executing):

ε (the empty play)

Happy?Yes.

Happy?No.

Happy?No.Continue?Yes.

The following command

M1
def
= Happy?(Bye3, Bye5) or Happy?(Bye3, Continue?(Bye6))

has the same traces as M0, i.e. these commands are trace equivalent (though not

bisimilar). The following questions naturally arise:

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–4424

(i) Given a set σ of plays, under what conditions is σ the trace set of some com-

mand?

(ii) Can we give an axiomatic theory of trace equivalence? (Cf. the axiomatic

analysis of process equivalences in [1,25].)

This paper’s first contribution is to answer these questions. The answer to ques-

tion (ii) is surprisingly simple: we take the ordinary theory of or (commutativity,

associativity and idempotency), together with the fact that each I/O operation

commutes with or. For example:

Age(Mn)n∈N or Age(M ′
n)n∈N = Age(Mn or M ′

n)n∈N
We give our results not only for the language above but also for some variations, as

we shall now explain. The language has two parts—I/O and nondeterminism—and

each can be varied.

(i) The I/O part is determined by a signature, a collection of operations each

with a specified arity—a set of argument indices. The language above has

four I/O operations—Age, Happy, Continue and Bye—of respective arity N,

{Yes,No}, {Yes} and ∅. Our results apply no matter what I/O signature is

used to generate the language.

(ii) We may include commands of the form
∨

n∈NMn. This command nondeter-

ministically chooses n ∈ N and then executes Mn.

In the second part of the paper (Section 6) we consider non-well-founded program

behaviours, up to (finite) trace equivalence. We see that the familiar duality—

initial algebra for well-founded behaviours vs final coalgebra for non-well-founded

ones—arises also in the setting of finite traces.

The significance of these results is shown by their connection to several areas of

semantics.

Effects and monads. I/O operations and nondeterministic choice are examples

of computational effects. A collection of effects is often described by a monad on

Set [20], which can sometimes be presented by a simple theory [21]. Each of our

combination of effects give rise to such a monad on Set corresponding to programs

modulo trace equivalence, which is moreover a tensor of the monads for I/O and

nondeterminism [3,6,7,13].

Game semantics. A program in the language above may be seen as playing a game

(Figure 1) with one active position (indicating that the program is executing), and

several passive positions (indicating that execution is paused). The games that

arise in game semantics may have several active and several passive positions [19].

A different terminology is used: with outputs called “P-moves” and inputs called

“O-moves”. Nonetheless, where finite traces are studied, the same notions of nonde-

terministic strategies [8,9] may be used, and our results characterize these strategies

for these more general games.

Coalgebraic traces. Several coalgebraic accounts of traces have ap-

peared [10,15,16]. Our account (though it does not subsume these) has the novelty

of including both output and input actions. We briefly compare in Section 7.

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–44 25

ACTIVE

POSITIONS

Outputs (P-moves)
�� PASSIVE

POSITIONSInputs (O-moves)

��

Awaiting age
n

��
Program running

Age?
��

Happy?

��

Continue?
��

Byen
��

Awaiting happinessYes
�	

No
	

Awaiting decision to continue
Yes

�

Finishedn

Fig. 1. The game that programs play against the user.

Acknowledgements

We thank V. Vignudelli for explaining the notion of bisimulation between distribu-

tions and suggesting a link to trace equivalence.

2 Preliminaries

2.1 Semilattices

Given a set X, we write PX for the set of subsets, PfX for the set of finite subsets,

PcX for the set of countable subsets. We write X, we write P+X for the set of

inhabited (nonempty) subsets and likewise P+
f X and P+

c X.

A semilattice is a poset (A,�) with all binary joins. It is bounded when it has

a least element, an ω-semilattice when every countable subset has a supremum, an

almost complete semilattice when every inhabited subset has a supremum, and a

complete semilattice when every subset has a supremum.

A map A �� B of semilattices is a monotone map that preserves binary join.

A map of bounded semilattices must preserve the least element, a map of ω-

semilattices must preserve countable joins, a map of almost complete semilattices

must preserve suprema of inhabited subsets, and a map of complete semilattices

must preserve arbitrary suprema.

Rather than describing a semilattice posetally as above, we may also describe

it equationally: a set A with a binary operation ∨ that is commutative, associative

and idempotent. A posetal semilattice (A,�) gives an equational one by setting

x∨ y to be the join of x and y. Conversely, an equational semilattice (A,∨) gives a
posetal one by setting x � y when x ∨ y = y. These constructions are inverse. A

function between semilattices is a map of equational semilattices (i.e. preserves ∨)
iff it is a map of posetal semilattices (i.e. is monotone and preserves binary join).

Continuing the equational style:

• a bounded semilattice is a semilattice (A,∨) with a neutral element ⊥

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–4426

• an ω-semilattice is a semilattice (A,∨) with an operation
∨
: Aω ��A satisfying

x ∨
∨

n∈N
yn =

∨

n∈N
(x ∨ yn)

∨

n∈N
x= x

∨

n∈N
xn = xm ∨

∨

n∈N
xn (m ∈ N)

A more abstract view: the category of semilattices is the Eilenberg-Moore category

for the monad P+
f on Set. Likewise the category of ω-semilattices for P+

c , the

category of almost complete semilattices for P+, etc.

2.2 Language

Definition 2.1

(i) A signature consists of a set K of operations, and for each operation k ∈ K, a

set Ar(k) of argument indices.

(ii) A transition system over a signature (Ar(k))k∈K consists of a setX and function

ζ : X �� P∑
k∈K

∏
i∈Ar(k)X. We write x ⇒k (yi)i∈Ar(k) when (k, (yi)i∈Ar(k)) ∈

ζx.

Informally x ⇒k (yi)i∈Ar(k) means that x outputs k and pauses, and if the user

then inputs i, it executes yi.

For the sequel, we fix a signature S = (Ar(k))k∈K . The set of commands is

defined inductively by the grammar

M,N ::= Req k?(Mi)i∈Ar(k) | M or N

The set of commands forms a transition system. The transition relation M ⇒k
(Ni)i∈Ar(k) is inductively defined as follows.

Req k?(Mi)i∈Ar(k) ⇒k (Mi)i∈Ar(k)

M ⇒k (Ni)i∈Ar(k)

M or M ′ ⇒k (Ni)i∈Ar(k)

M ′ ⇒k (Ni)i∈Ar(k)

M or M ′ ⇒k (Ni)i∈Ar(k)

For countable nondeterminism, we extend the syntax as follows:

M ::= · · · |
∨

n∈N
Mn

and include the operational rule

Mn ⇒k (Ni)i∈Ar(k)
n ∈ N∨

n∈N
Mn ⇒k (Ni)i∈Ar(k)

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–44 27

Definition 2.2 A transition system (X, ζ) is

• total when, for all x ∈ X, the set ζx is inhabited

• deterministic when, for all x ∈ X, the set ζx has at most one element

• finitely nondeterministic when, for all x ∈ X, the set ζx is finite

• countably nondeterministic when, for all x ∈ X, the set ζx is countable

• well-founded 4 when there is no infinite sequence of transitions

x0 ⇒k0 (y0i)i∈Ar(k0) y0i0 = x1 ⇒k1 (y1i)i∈Ar(k1) · · ·
Proposition 2.3

(i) The set of finitely nondeterministic commands, as a transition system, is total,

finitely nondeterministic and well-founded.

(ii) The set of countably nondeterministic commands, as a transition system, is

total, countably nondeterministic and well-founded.

Proof. We prove by induction on M that ζM is finite/countable and inhabited,

and there is no infinite sequence of transitions from M . �

2.3 Bisimulation

Although it is not used in the sequel, we briefly look at bisimulation.

Definition 2.4 A bisimulation on a transition system (X, ζ) is a a relation R on

X such that xRx′ implies that, if x =⇒k (yi)i∈Ar(k) then there exists (y′i)i∈Ar(k)
such that x′ =⇒k (y′i)i∈Ar(k) and ∀i ∈ Ar(k). yiR y′i, and vice versa. The greatest

bisimulation is called bisimilarity.

For example, the commands M0 and M1 in Section 1 are not bisimilar. We

axiomatize bisimilarity as follows.

Definition 2.5 Basic equivalence, written ≡, is the least congruence on commands

sastifying the semilattice laws:

M or N ≡N or M (1)

(M or N) or P ≡M or (N or P) (2)

M or M ≡M (3)

Also, for the countably nondeterministic language, the ω-semilattice laws:

M or
∨

n∈N
Mn ≡

∨

n∈N
(M or Mn) (4)

∨

n∈N
M ≡M (5)

∨

n∈N
Mn ≡Mm or

∨

n∈N
Mn (m ∈ N) (6)

4 Cf. the notion of well-founded coalgebra [2,24].

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–4428

Proposition 2.6 For both the finitely and countably nondeterministic languages,

basic equivalence is bisimilarity.

Proof. Induction on ≡ shows that ≡ implies bisimilarity and that it is a bisimula-

tion. �

2.4 Traces and Strategies

Our basic notion of interaction is as follows.

Definition 2.7 A play is a sequence k0, i0, k1, i1, . . . with kr ∈ K and ir ∈ Ar(kr).
It is active-ending, passive-ending or infinite according as its length is even, odd or

infinite.

As illustrated by M0 and M1 in Section 1, two commands are trace equivalent iff

they have the same passive-ending traces; the active-ending traces are redundant.

This motivates the following.

Definition 2.8

(i) A nondeterministic finite trace strategy is a set σ of passive-ending plays such

that sik ∈ σ implies s ∈ σ.

(ii) An active-ending play is enabled by σ when it is either ε (the empty play), or

si for s ∈ σ.

Henceforth “strategy” means “nondeterministic finite trace strategy”.

Definition 2.9 Let (X, ζ) be a transition system and x ∈ X. A play k0, i0, . . . is a

trace of x when there is a sequence

x = x0 ⇒k0 (y0i)i∈Ar(k0) y0i0 = x1 ⇒k1 (y1i)i∈Ar(k1) · · ·

The strategy consisting of the passive-ending traces of x is written Tracesx.

Clearly the active-ending traces of x are the plays enabled by Tracesx. By

contrast, the infinite traces are, in general, not derivable from Tracesx. For example,

in a non-well-founded extension of the language, the following commands

N0
def
=

∨

n∈N
Continue?n (Bye3) or Continueω

N1
def
=

∨

n∈N
Continue?n (Bye3)

are trace equivalent, but the infinite play (Continue?Yes.)ω is a trace of N0 and

not of N1. This cannot happen in a well-founded system, because there are no

infinite traces. Nor can it happen in a finitely nondeterministic system, because of

the following version of König’s lemma.

Proposition 2.10 For a finitely nondeterministic system

ζ : X �� P∑
k∈K

∏
i∈Ar(k)X and x ∈ X, an infinite play k0, i0, . . . is a trace

of x iff all its passive-ending prefixes are in Tracesx.

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–44 29

Let us look at some useful operations on strategies. Firstly, we put strategies

together as follows.

Definition 2.11 For k ∈ K and a family of strategies (σi)i∈Ar(k), we define the

strategy

Req k?(σi)i∈I
def
= {(k)} ∪ {k.i.s | i ∈ Ar(k), s ∈ σi}

Proposition 2.12 On commands, we can give Traces compositionally:

Traces Req k?(Mi)i∈Ar(k) = Req k?(TracesMi)i∈Ar(k)
Traces (M or N) = TracesM ∪ TracesN

Traces
∨

n∈N
Mn =

⋃

n∈N
TracesMn

Secondly, we decompose strategies as follows.

Definition 2.13 Let σ be a strategy. We write Initσ for the set of k ∈ K such

that (k) ∈ σ. For each such k and each i ∈ Ar(k), we define the strategy σ/ki
def
=

{s | k.i.s ∈ σ}.

3 Well-founded behaviour

3.1 Commuting Equivalence

We begin with the matter of axiomatizating trace equivalence. As we shall see, the

appropriate axiomatization is as follows.

Definition 3.1 Commuting equivalence, written ≡c, is the least congruence on

commands that satisfies the semilattice laws (1)–(3) and commutativity between

Req k? and or:

Req k?(Mia or Ni)i∈Ar(k) = Req k?(Mi)i∈Ar(k) or Req k?(Ni)i∈Ar(k) (k ∈ K) (7)

Also, for the countably nondeterministic language, the ω-semilattice laws (4)–(6)

and commutativity between Req k? and
∨
:

Req k?(
∨

n∈N
Mi,n)i∈Ar(k) =

∨

n∈N
Req k?(Mi,n)i∈Ar(k) (k ∈ K) (8)

For example, the commands M0 and M1 in Section 1 are commuting equivalent.

Proposition 3.2 (Soundness) If M ≡c N then TracesM = TracesN .

Proof. This is proved by induction; the soundness of the laws follows from Propo-

sition 2.12. For example:

Req k?(
⋃

n∈N
σi,n)i∈Ar(k) = {k} ∪ {k.i.s | i ∈ Ar(k), s ∈

⋃

n∈N
σi,n}

⋃

n∈N
Req k?(σi,n)i∈Ar(k) =

⋃

n∈N
({k} ∪ {k.i.s | i ∈ Ar(k), s ∈ σi,n})

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–4430

and these are equal since N is inhabited. Hence (8) is sound. �

We shall now prove completeness, i.e. the converse of Proposition 3.2. We use

the following.

Lemma 3.3 For every command M we have

M ≡c

∨

k∈L
Req k?(Nk,i)i∈Ar(k)

for some L ∈ P+
f K and family of commands (Nk,i)k∈L,i∈Ar(k). For the countably

nondeterministic language, L ∈ P+
c K.

Proof. Induction on M . The case that M = Req k?(Nk,i)i∈Ar(k) is obvious. In the

case M =
∨

n∈NMn we have Mn ≡c
∨

k∈Ln
Req k?(Nn,k,i)i∈Ar(k). Then

∨

n∈N
Mn ≡c

∨

n∈N,k∈Ln

Req k?(Nn,k,i)i∈Ar(k)

≡c

∨

k∈⋃n∈N
Ln

∨

n∈N : k∈Ln

Req k?(Nn,k,i)i∈Ar(k)

≡c

∨

k∈⋃n∈N
Ln

Req k?(
∨

n∈N : k∈Ln

Nn,k,i)i∈Ar(k)

Likewise for the case M = M0 or M1. �

Our completeness proof proceeds by characterizing trace inclusion, the preorder

that relates M to N when TracesM ⊆ TracesN .

Proposition 3.4 Write M �c N when M or N ≡c N .

(i) �c is a preorder.

(ii) M or N is a least upper bound of M and N

(iii)
∨

n∈N is a least upper bound of (Mn)n∈N.

(iv) or and
∨

n∈N and Req k? for k ∈ K are all monotone, i.e. �c is a precongru-

ence.

Proof. Parts (i)–(iii) follow the construction of a posetal semilattice from an equa-

tional semilattice in Section 2.1. Monotonicity of or and
∨

n∈N follow from the least

upper bound property. Monotonicity of Req k? follows from (7), because the latter

may be viewed as saying that Req k? is a map of equational semilattices and hence

a map of posetal semilattices. �

Proposition 3.5 M �c N iff TracesM ⊆ TracesN .

Proof. (⇒) follows from Proposition 3.2. We prove (⇐) by induction on M .

The cases M = M0 or M1 and M =
∨

n∈NMn follow from the least upper

bound property. Suppose M = Req k?(Mi)i∈Ar(k). Lemma 3.3 gives N ≡c∨
k∈L Req k?(Nk,i)i∈Ar(k) and so

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–44 31

Traces Req k?(Mi)i∈Ar(k) ⊆Traces
∨

k∈L
Req k?(Nk,i)i∈Ar(k)

i.e. Req k?(TracesMi)i∈Ar(k) ⊆
⋃

k∈L
Req k?(TracesNk,i)i∈Ar(k)

Thus k ∈ L, and for each i ∈ Ar(k) we have TracesMi ⊆ TracesNk,i implying

Mi �c Nk,i by the inductive hypothesis. Hence

M = Req k?(Mi)i∈Ar(k)

�c Req k?(Nk,i)i∈Ar(k)

�c
∨

k∈L Req k?(Nk,i)i∈Ar(k) ≡c N

�

Corollary 3.6 M ≡c N iff TracesM = TracesN .

3.2 Definability for finite nondeterminism

We shall now characterize which strategies are of the form TracesM for a finitely

nondeterministic command M . We also give a second proof of completeness of ≡c

that is direct in the sense of not involving trace inclusion (but it appears not to

adapt to the setting of countable nondeterminism).

We consider the following conditions on strategies.

Definition 3.7 Let σ be a strategy.

(i) For an enabled play s, a response to s is an operation k ∈ K such that sk ∈ σ.

(ii) σ is a tree when every enabled play has a unique response.

(iii) σ is total when every enabled play has at least one response.

(iv) σ is deterministic, or a partial tree, when every enabled play has at most one

response.

(v) σ is finitely nondeterministic when every enabled play has only finitely many

responses.

(vi) σ is finitely founded when it is finitely nondeterministic and no infinite play has

all passive-ending prefixes in σ. A tree or partial tree with the latter property

is also called well-founded.

Let us illustrate these conditions with examples.

• The following strategy is finitely founded:

{ Happy?, Happy?Yes.Bye3, Happy?Yes.Bye5 }

It is not total, since the enabled play Happy?No. has no response.

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–4432

• The following strategy is total:

{ Happy?, Happy?Yes.Bye3, Happy?Yes.Bye5 } ∪ {Happy?No.Byen | n ∈ N}

It is not finitely nondeterministic, since the enabled play Happy?No. has infinitely

many responses.

• The following strategy is total and finitely nondeterministic:

{ Happy?, Happy?Yes.Bye3, Happy?Yes.Bye5 }
∪ {Happy?No.(Continue?Yes.)n Continue? | n ∈ N}

It is not finitely founded, since the infinite play Happy?No.(Continue?Yes.)ω has

all passive-ending prefixes in it.

Proposition 3.8 Let (X, ζ) be a transition system, and let x ∈ X.

(i) If ζ is total, then so is Tracesx.

(ii) If ζ is deterministic, then so is Tracesx.

(iii) If ζ is finitely nondeterministic, then so is Tracesx.

(iv) If ζ is finitely nondeterministic and well-founded, then Tracesx is finitely

founded.

Proof. The plays enabled by Tracesx are the active-ending traces of x. For (i) we

prove that each such trace s has a response, by induction on s. The case s = ε is

easy, and if s = k.i.s′ then there is z such that s =⇒k (yi)i∈Ar(k) and z = yi and s′

has a response in Traces z, so k.i.s′ has a response in Tracesx. The proof of (ii)–(iii)
is similar. Part (iv) follows from Proposition 2.10. �

Let us mention the deterministic fragment.

Proposition 3.9 Deterministic commands, which are given inductively by the

grammar M ::= Req k?(Mi)i∈Ar(k), correspond via M �→ TracesM to well-founded

trees.

Proposition 3.10 For every finitely founded, total strategy σ we have σ =

TracesM , for some command M , unique up to ≡c.

Proof. For a finitely founded, total strategy σ, let P (σ) assert that σ = TracesM ,

for some command M , unique up to ≡c. We shall show that ∀k ∈ Initσ. ∀i ∈
Ar(k). P (σ/ki) implies P (σ). This implies our result because otherwise Dependent

Choice gives an infinite trace whose passive-ending prefixes are all in σ.

For each k ∈ Initσ and i ∈ Ar(k), suppose P (σ/ki), so we choose a command

Nk,i such that TracesNk,i = σ/ki. Then we have

Traces
∨

k∈Initσ
Req k?(Nk,i)i∈Ar(k) =

⋃

k∈Initσ
Req k?σ/ki = σ

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–44 33

For uniqueness, suppose σ = TracesM . Lemma 3.3 gives

M ≡c

∨

k∈L
Req k?(N ′

k,i)i∈Ar(k)

Hence σ = TracesM

= Traces
∨

k∈L
Req k?(N ′

k,i)i∈Ar(k)

=
⋃

k∈L
Req k?(TracesN ′

k,i)i∈Ar(k)

Hence L = Initσ and for each k ∈ Initσ and i ∈ Ar(k) we have TracesN ′ = σ/ki,

giving N ′
k,i ≡c Nk,i by hypothesis. So

M ≡c

∨

k∈L
Req k?(N ′

k,i)i∈Ar(k)

≡c

∨

k∈L
Req k?(Nk,i)i∈Ar(k)

�

Corollary 3.11 A strategy is of the form TracesM , for a finitely nondeterministic

command M , iff it is total and finitely founded.

Finally we obtain our second proof of completeness: if TracesM = TracesN = σ,

then M ≡c N .

3.3 Definability for Countable Nondeterminism

For the countably nondeterministic language, we again want to characterize those

strategies σ that are of the form TracesM . As has often been observed, the situation

differs from Definition 3.7(vi): we cannot rule out an infinite play having all passive-

ending prefixes in σ. For example, the command
∨

n∈N Continuen(Bye3) has trace

set

{(Continue?Yes.)n Continue? | n ∈ N} ∪ {(Continue?Yes.)n Bye3 | n ∈ N} (9)

which contains every passive-ending prefix of the infinite play (Continue?Yes)ω.

The appropriate conditions are the following, as we shall see.

Definition 3.12 Let σ be a strategy.

(i) σ is countably nondeterministic when every enabled play has countably many

responses.

(ii) For an enabled play s, a response tree to s is a tree τ such that for all t ∈ τ ,

the concatenation of s and t is in σ.

(iii) σ is well-foundedly total when every enabled play has a well-founded response

tree. (Cf. [18, Definition 19] and [22, Appendix].)

We illustrate these conditions with examples.

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–4434

• In our example signature, K is countable, so every strategy is countably nonde-

terministic.

• The strategy (9) is well-foundedly total.

• The following strategy is total:

{Bye3} ∪ {(Continue?Yes.)nContinue? | n ∈ N}

It is not well-foundedly total, since the enabled play Continue?Yes. has no well-

founded response tree.

The counterpart of Proposition 3.8 is as follows.

Proposition 3.13 Let (X, ζ) be a transition system, and let x ∈ X.

(i) If ζ is countably nondeterministic, then so is Tracesx.

(ii) If ζ is countably nondeterministic, total and well-founded, then Tracesx is well-

foundedly total.

Proof. Part (i) is analogous to Proposition 3.8(iii). To prove part (ii), we first

choose, for each z ∈ X, some R(z) ∈ ζz. Any play k0, i0, . . . , kn−1, in−1 enabled by

Tracesx is a trace of x, i.e. there is a sequence

x = x0 ⇒k0 (y0i)i∈Ar(k0) y0i0 = x1 ⇒k1 (y1i)i∈Ar(k1) · · · yn−1
in−1

= xn

The trace set of xn in the well-founded, total deterministic system (X, z �→ {R(z)})
is a well-founded response tree for k0, i0, . . . , kn−1, in−1. �

Theorem 3.14 A strategy σ is of the form TracesM , for some command M , iff it

is countably nondeterministic and well-foundedly total.

Proof. (⇒) follows from Proposition 3.13. For (⇐), we proceed as follows. For

n ∈ N, we write Playn for the set of plays k0, i0, . . . , km with m < n. An n-

approximant of σ is a command M such that

σ ∩ Playn ⊆ TracesM ⊆ σ

We show that, for all n ∈ N, every countably nondeterministic, totally well-founded

strategy σ has an n-approximant, by induction on n.

• To show it is true for 0, let τ be a tree response to ε, then the corresponding

deterministic command (Proposition 3.9) is a 0-approximant of σ.

• Suppose it is true for n. For each k ∈ Initσ and i ∈ Ar(k), let Mk,i be an n-

approximant of σ/ki. The set Initσ is countable, being the set of responses to ε.

So
∨

k∈Initσ Req k?(Mk,i)i∈Ar(k) is an (n+ 1)-approximant to σ.

For each n ∈ N, let Mn be an n-approximant to σ. Then Traces
∨

n∈NMn = σ. �

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–44 35

4 Initial Algebras

4.1 Initial algebra for a signature

The purpose of this section is to recast our results in a way that does not mention the

languages. Recall that S is our signature (Ar(k))k∈K . The following is well-known.

Definition 4.1

(i) An S-algebra consists of a set X and, for each k ∈ K, a function

θk :
∏

i∈Ar(k)X ��X.

(ii) An S-algebra homomorphism (X, (θk)k∈K) �� (Y, (φk)k∈K) is a function

f : X �� Y satisfying f(θk(xi)i∈Ar(k)) = φk(fxi)i∈Ar(k) for all k ∈ K.

This leads to a standard result:

Proposition 4.2 The set of well-founded trees with (Req k?)k∈K is an initial S-

algebra.

Our aim is to combine nondeterminism and I/O in a similar way. We generalize

Definition 4.1 as follows.

Definition 4.3 Let C be a category with products.

(i) An S-algebra in C consists of X ∈ C and, for each k ∈ K, a morphism

θk :
∏

i∈Ar(k)X ��X.

(ii) An S-algebra homomorphism (X, (θk)k∈K) �� (Y, (φk)k∈K) is a morphism

f : X �� Y such that
∏

i∈Ar(k)X
∏

i∈Ar(k) f ��

θk
��

∏
i∈Ar(k) Y

φk

��
X

f
�� Y

commutes for all

k ∈ K.

We now formulate our results for finite nondeterminism, without mentioning the

language.

Theorem 4.4

(i) For a strategy σ, the following are equivalent:
• σ = Tracesx, for some element x of a well-founded, finitely nondeterministic,

total system.
• σ is finitely founded and total.

(ii) An initial S-algebra on SL (the category of semilattices) is given by the set of

finitely founded total strategies, ordered by inclusion, with (Req k?)k∈K .

Proof.

(i) (⇒) is Proposition 3.8. (⇐) follows from Proposition 3.10.

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–4436

(ii) An S-algebra in semilattices consists of a semilattice (X,∨) and a family

(θk)k∈K of functions θk :
∏

i∈Ar(k)X ��X that are homomorphisms of (equa-

tional) semilattices:

θk(xi ∨ yi)i∈Ar(k) = θk(xi)i∈Ar(k) ∨ θk(yi)i∈Ar(k)

A homomorphism is a function preserving ∨ and θk for all k ∈ K. Thus an

initial S-algebra in semilattices is given by the ≡c-classes of finitely nondeter-

ministic commands. In view of Proposition 3.10, these correspond to finitely

founded, total strategies.

�

Likewise we have the following.

Theorem 4.5

(i) For a strategy σ, the following are equivalent:
• σ = Tracesx, for some element x of a well-founded, countably nondetermin-

istic, total system.
• σ is countably nondeterministic and well-foundedly total.

(ii) An initial S-algebra on ωSL (the category of ω-semilattices) is given by the

set of countably nondeterministic, well-foundedly total strategies, ordered by

inclusion, with (Req k?)k∈K .

The notion of almost complete semilattices (Section 2.1) gives another variation:

Theorem 4.6

(i) For a strategy σ, the following are equivalent:
• σ = Tracesx, for some element x of a well-founded, total system.
• σ is well-foundedly total.

(ii) An initial S-algebra on category of ACSL (almost complete semilattices) is

given by the set of well-foundedly total strategies, ordered by inclusion, with

(Req k?)k∈K .

Proof. Let C be the set of well-founded total strategies. Let λ be the maximum of

ℵ0 and the cardinalities of C and K. Thus for any strategy σ, every enabled play

has � λ responses. By extending the countably nondeterministic language with λ-

ary nondeterministic choice
∨

i<λMi, we obtain analogous results to Theorem 4.5.

Thus every strategy is TracesM for some command M , giving part (i).

Say that a λ-semilattice is a semilattice where every inhabited subset of size � λ

has a supremum, and a homomorphism is a function that preserves these suprema.

Then C forms an initial S-algebra in λ-semilattices. Let A be an S-algebra in almost

complete semilattices, and f : C �� A the unique homomorphism of S-algebras in

λ-semilattices. Any inhabited R ⊆ C has cardinality � λ, so its supremum is

preserved by f . Hence f is a homomorphism of almost complete semilattices. �

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–44 37

4.2 Initial algebra for an endofunctor

Recall that Definition 4.3 applies to any category C with products. If C
also has coproducts, then S-algebras in C are algebras for the endofunctor∑

k∈K
∏

i∈Ar(k). Each of our categories—semilattices, ω-semilattices and almost

complete semilattices—has coproducts that admit a simple explicit description.

Proposition 4.7 Let (Aj)j∈J be a family of semilattices.

(i) The coproduct
⊕f

j∈J Aj in SL is the set of pairs (U, (aj)j∈U), with U ∈ P+
f J

and each aj ∈ Aj. The order gives (U, (aj)j∈U) � (V, (bj)j∈V) when U ⊆ V

and aj � bj for all j ∈ U . For j ∈ J , the jth embedding ej : Aj
��
⊕

j∈J Aj

sends is a �→ ({j}, (a)j).
(ii) For a finite inhabited set L, the L-indexed suprema in

⊕f
j∈J Aj are given by

∨

l∈L
(Ul, (al,j)j∈Ul

) = (V, (bj)j∈V)

where V =
⋃

l∈L Ul and bj =
∨

l∈L : j∈Ul
al,j.

(iii) For a family of semilattice homomorphisms (fj : Aj
��B)j∈J , the cotuple sends

(U, (aj)j∈U) to
∨

j∈U fj(aj).

We likewise describe a coproduct
⊕c

j∈J Aj in ωSL, and a coproduct
⊕

j∈J in ACSL.

Let us reformulate Theorems 4.4–4.6 in these terms. We shall make use of the

following constructions.

Definition 4.8 Let Strat be the set of all strategies.

(i) The function Φ:
∑

L∈PK

∏
k∈L

∏
i∈Ar(k) Strat �� Strat sends

(L, ((σk,i)i∈Ar(k))k∈L) to
⋃

k∈L Req k?(σk,i)i∈Ar(k).

(ii) The function Ψ: Strat ��
∑

L∈PK

∏
k∈L

∏
i∈Ar(k) Strat sends σ to

(Initσ, ((σ/ki)i∈Ar(k))k∈Initσ).

Note that Φ and Ψ are inverse. Recall also Lambek’s Lemma: the structure of

an initial algebra is an isomorphism.

Theorem 4.9

(i) An initial
⊕f

k∈K
∏

i∈Ar(k)-algebra on SL is given by the set of finitely founded,

total strategies, ordered by inclusion, with structure u �→ Φu, whose inverse is

σ �→ Ψσ.

(ii) Likewise for ω-semilattices, using countably nondeterministic, well-foundedly

total strategies.

(iii) for almost complete semilattices, using well-foundedly total strategies.

Proof. Part (i) is a restatement of Theorem 4.4(ii). By Proposition 4.7(iii), the

cotuple of (Req k?)k∈K is u �→ Φu. Likewise for parts ii–iii. �

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–4438

5 Neutral Element

Suppose we add to our language a command die that has no transitions.

• To characterize definability, we drop the conditions of totality and well-founded

totality. Thus a strategy is definable by a finitely nondeterministic command iff it

is finitely founded. And it is definable by a countably nondeterministic command

iff it is countably nondeterministic.

• To characterize trace equivalence, we add to the definition of ≡c the equation

M or die≡c die

That is the only change required. The commutativity law between Req k? and

die, viz. Req k?(die)i∈Ar(k) = die, must be omitted, as it is unsound.

We want to view the set of finitely bounded strategies as an initial algebra on

BSL (the category of bounded semilattices). We do so using the following con-

struction. For a family of semilattices (Aj)j∈J , the bounded semilattice
⊕f⊥

j∈J Aj

is as in Proposition 4.7 but with the empty set included; thus it consists of pairs

(U, (aj)j∈L) with U ∈ PfJ . It satisfies the following universal property: for any

bounded semilattice B and family of semilattice maps (fj : Aj
��B)j∈J , there is a

unique bounded semilattice map g :
⊕⊥

j∈J Aj
��B such that Aj

fj
�

ej ��
⊕⊥

j∈J
g

��
B

com-

mutes for all j ∈ J . Explicitly, g sends (U, (aj)j∈U) to
∨

j∈U fj(aj). We thus have

functors
∏

j∈J : BSLJ �� SL and
⊕f⊥

j∈J : SL
J ��BSL

Theorem 5.1 An initial
⊕f⊥

k∈K
∏

i∈Ar(k)-algebra on BSL is given by the set of

finitely founded strategies, ordered by inclusion, with structure u �→ Φu, whose in-

verse is σ �→ Ψσ.

Proof. A
⊕f⊥

k∈K
∏

i∈Ar(k)-algebra may be described as a bounded semilattice A

together with a family of (mere) semilattice maps (fk :
∏

i∈Ar(k)A �� A)k∈K . The

category of such algebras is the category of models for our theory. �

Likewise, writing BωSL for the category of bounded ω-semilattices, we define

functors
∏

j∈J : BωSLJ �� ωSL and
⊕c⊥

j∈J : ωSL
J �� BωSL. Then the set of

countably nondeterministic strategies forms an initial
⊕c⊥

k∈K
∏

i∈Ar(k)-algebra on

BωSL.

Likewise, writing CSL for the category of complete semilattices, we define func-

tors
∏

j∈J : CSLJ �� ACSL and
⊕⊥

j∈J : ACSLJ �� CSL. Then the set of all

strategies forms an initial
⊕⊥

k∈K
∏

i∈Ar(k)-algebra on CSL.

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–44 39

6 Non-well-founded behaviour

6.1 Final coalgebras

So far we have characterized those strategies that are of the form Tracesx for some

element x of a well-founded system. We now turn to non-well-founded systems.

Recall that, just as the set of well-founded trees forms an initial
∑

k∈K
∏

i∈Ar(k)-
algebra, so the set of all trees forms a final

∑
k∈K

∏
i∈Ar(k)-coalgebra. We shall see

a similar phenomenon arising for nondeterministic systems.

We treat the unrestricted case only. It is straightforward to enforce finite or

countable nondeterminism and/or to enforce totality, if desired.

Proposition 6.1 Every strategy σ is of the form Tracesx for some element x of a

transition system (X, ζ).

Proof. Consider the system ζ : Strat �� P∑
k∈K

∏
i∈Ar(k) Strat where

ζ : σ �→ {(k, (σ/ki)i∈Ar(k)) | k ∈ Initσ}
Then Tracesσ = σ by induction over plays, separating the cases (k) and k.i.s′. �

Our first goal is to show that Strat forms a final
⊕⊥

k∈K
∏

i∈Ar(k)-coalgebra on

the category CSL of complete semilattices.

Definition 6.2 Let (A, ζ) be a
⊕⊥

k∈K
∏

i∈Ar(k)-coalgebra on CSL. For a ∈ A, a

trace of r is a play k0, i0, . . . such that

a = a0 ζ(a0) = (L0, ((b
0
k,i)i∈Ar(k))k∈L0) k0 ∈ L0

b0k0,i0 = a1 ζ(a1) = (L1, ((b
1
k,i)i∈Ar(k))k∈L1) k1 ∈ L1

· · ·

The strategy consisting of the passive-ending traces of a is written Traces a.

Theorem 6.3 A final
⊕⊥

k∈K
∏

i∈Ar(k)-coalgebra on CSL is given by Strat, ordered
by inclusion, with structure σ �→ Ψσ, whose inverse is u �→ Φu. The unique coalge-

bra morphism from (A, ζ) to the final coalgebra is a �→ Traces a.

Proof.

Induction over plays, separating the cases (k) and k.i.s′. �

What is missing from Theorem 6.3 is a characterization of the map x �→ Tracesx
on a transition system. We give this next, using the following notions.

Definition 6.4 Given a family of functions (Xj
��Aj)j∈J where Xj is a set and Aj

an almost complete semilattice, we write
∑�

j∈J fj : P
∑

j∈J Xj
��
⊕⊥

j∈J Aj for the

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–4440

unique complete semilattice homomorphism h such that Xj
fj ��

{inj −}
��

fj ��Aj

ej

��
P∑

j∈J Xj h
��
⊕

j∈J Aj

commutes for all j ∈ J . Explicitly it sends R to (L, (yj)j∈L) where

L= {j ∈ J | ∃x ∈ Xj . inj x ∈ R}
yj =

∨

x∈Xj : inj x∈R
fj(x) for j ∈ L.

Definition 6.5 Let (X, ζ)X be a transition system, and (A, ξ) a
⊕⊥

k∈K
∏

i∈Ar(k)-
coalgebra on CSL. A map h : (X, ζ) �� (A, ξ) is a function X �� A such that

X h ��

ζ

��

A

ξ
��

P∑
k∈K

∏
i∈Ar(k)X ∑�

k∈K

∏
i∈Ar(k) h

��
⊕⊥

k∈K
∏

i∈Ar(k)A

commutes.

Note that such a map can be precomposed with a coalgebra morphism

(X ′, ζ ′) �� (X, ζ), or postcomposed with a coalgebra morphism (A, ξ) �� (A′, ξ′),
by function composition.

Theorem 6.6 Let (X, ζ) be a transition system. Then x �→ Tracesx is the unique

map from (X, ζ) to the final coalgebra.

Proof. Induction over plays, separating the case (k) and k.i.s′. �

6.2 Determinization and Bisimulation

Because the functor
⊕⊥

k∈K
∏

i∈Ar(k) is a lift of a polynomial functor on Set, we may

describe its coalgebras as “deterministic”. As we shall see, they enjoy an important

property of deterministic systems: trace equivalence coincides with bisimilarity.

Definition 6.7 Let (A, ζ) be a
⊕⊥

k∈K
∏

i∈Ar(k)-coalgebra on CSL. A bisimulation

on (A, ζ) is a relation R on A (not necessarily closed under suprema) such that,

for all aR a′, if ζa = (L, ((bk,i)i∈Ar(k))k∈L and ζa′ = (L′, ((b′k,i)i∈Ar(k))k∈L′ we have

L = L′ and ∀k ∈ L. ∀i ∈ Ar(k). bk,iR b′k,i.

Proposition 6.8 On a
⊕⊥

k∈K
∏

i∈Ar(k)-coalgebra, trace equivalence is the largest

bisimulation, and closed under suprema.

We can exploit Proposition 6.8 to reason about our transition systems.

Definition 6.9 Let (X, ζ) be a transition system. The determinization of (X, ζ) is

the
⊕⊥

k∈K
∏

i∈Ar(k)-coalgebra (PX, ζ̂) where ζ̂ is defined by {−} : (X, ζ) �� (PX, ζ̂)

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–44 41

is a map. That is:

X
{−} ��

ζ

��

PX

ζ̂
��

P∑
k∈K

∏
i∈Ar(k)X ∑�

k∈K

∏
i∈Ar(k){−}

��
⊕⊥

k∈K
∏

i∈Ar(k) PX

via the fact that PX is the free complete semilattice on X. Explicitly, ζ̂ sends

R ∈ PX to (L, ((Sk,i)i∈Ar(k))k∈L) where

L= {k ∈ K | ∃x ∈ R. x =⇒k (yi)i∈Ar(k)}
Sk,l = {z ∈ X | ∃x ∈ R., x =⇒k (yi)i∈Ar(k) ∧ yi = z}

It follows from Theorems 6.3–6.6 that (X, ζ)
{−} ��

Traces �

(PX, ζ̂)

Traces
��

(Strat,Ψ)

commutes. So, for

a transition system (X, ζ), and x, x′ ∈ X, we conclude that x, x′ are trace equivalent
iff {x}, {x′} are trace equivalent, i.e. iff there is a bisimulation relating {x} and {x′}.

The notion of a bisimulation relating sets of states appears to be new, but

numerous authors use bisimulations that relate distributions, e.g. [4,5,11,12,23].

7 Conclusion and variations

Modulo trace equivalence, we have seen that well-founded programs form an ini-

tial algebra, and non-well-founded programs a final coalgebra, for an appropriate

endofunctor. We comment on the connections outlined in Section 1.

Firstly, each signature S and notion of strategy gives rise to a monad on Set.

For example: the monad sending a set X to the set of countably nondetermin-

istic, well-foundedly total strategies for S + X, i.e. the signature that extends S

with X-many constants. Our axiomatization of trace equivalence shows this to be

the tensor of the monad P+
c with the free monad on S, meaning that it is gen-

erated by the commutativity laws (7)–(8). (These laws are redundant in the case

that k is constant, so adding constants to S does not give rise to additional laws.)

By contrast, as shown in [13], the coproduct of these two monads is the monad

μY .P+
c (−+

∑
k∈K Y Ar(k)), which by Proposition 2.6 models bisimilarity.

Secondly, we have studied transition systems that are P∑
k∈K

∏
i∈Ar(k)-

coalgebras, consisting of active states. Alternatively we could consider∏
k∈K P∑

i∈Ar(k)-coalgebras, consisting of passive states. The story would be es-

sentially the same. Yet another version would consider systems with both active

and passive states, in a variety of active and passive positions [17,19].

The account of traces in [10] studies coalgebras for FB,A
def
= P(B+A×−), where

B and A are sets, especially the case B = 1. This is an instance of our functor

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–4442

P∑
k∈K

∏
i∈Ar(k). But only complete traces, i.e. elements of A∗×B, are considered,

so the results are different from ours.

The account in [15] studies coalgebras for GC,A
def
= C ×∏

a∈A P−, where C is a

complete semilattice and A a set. This resembles our functor
∏

k∈K P∑
i∈Ar(k) but

is not an instance. In that work, the main case of interest is C = PB (in particular

B = 1) giving GC,A
∼= FB,A and again it is complete traces that are considered.

Despite the focus on complete traces, these accounts share some general structure

with ours, especially the analysis of determinization in [15]. See [14].

Notable areas of future work are probabilistic programs and infinite traces.

References

[1] Samson Abramsky and Steven Vickers. Quantales, observational logic and process semantics.
Mathematical Structures in Computer Science, 3(2):161–227, 1993.

[2] Jǐŕı Adámek, Stefan Milius, Lawrence S Moss, and Lurdes Sousa. Well-Pointed Coalgebras. Logical
Methods in Computer Science, Volume 9, Issue 3, August 2013.

[3] Nathan Bowler, Sergey Goncharov, Paul Blain Levy, and Lutz Schröder. Exploring the boundaries of
monad tensorability on set. Logical Methods in Computer Science, 9(3), 2013.

[4] Y. Deng, Y. Feng, and U. Dal Lago. On coinduction and quantum lambda calculi. In 26th International
Conference on Concurrency Theory (CONCUR), volume 42 of LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015.

[5] C. Eisentraut, H. Hermanns, and L. Zhang. Concurrency and composition in a stochastic world. In Paul
Gastin and François Laroussinie, editors, 21th International Conference on Concurrency (CONCUR
2010), volume 6269 of LNCS, pages 21–39. Springer, 2010.

[6] P. Freyd. Algebra valued functors in general and tensor products in particular. Colloquium
Mathematicae, 14(1), 1966.

[7] S. Goncharov and L. Schröder. Powermonads and tensors of unranked effects. In LICS, 2011.

[8] R. Harmer. Games and full abstraction for nondeterministic languages. PhD thesis, Univ. of London,
1999.

[9] R Harmer and G McCusker. A fully abstract game semantics for finite nondeterminism. In 14th
Symposium on Logic in Comp. Sci. IEEE, 1999.

[10] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction. Logical Methods in
Computer Science, 3(4), 2007.

[11] Matthew Hennessy. Exploring probabilistic bisimulations, part i. Formal Asp. Comput, 24(4-6):749–
768, 2012.

[12] Holger Hermanns, Jan Krcál, and Jan Kret́ınský. Probabilistic bisimulation: Naturally on distributions.
CoRR, abs/1404.5084, 2014.

[13] J. M. E. Hyland, G. D. Plotkin, and A. J. Power. Combining effects: sum and tensor. Theoretical
Computer Science, 357, 2006.

[14] B. Jacobs, P. B. Levy, and J. Rot. Steps and traces. to appear, 14th IFIP WG 1.3 International
Workshop on Coalgebraic Methods in Computer Science (CMCS), 2018.

[15] Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. J. Comput.
Syst. Sci, 81(5):859–879, 2015.

[16] B. Klin and J. Rot. Coalgebraic trace semantics via forgetful logics. In Andrew M. Pitts, editor,
Foundations of Software Science and Computation Structures (FoSSaCS), volume 9034 of LNCS, pages
151–166. Springer, 2015.

[17] Dexter Kozen. Realization of coinductive types. In Proceedings, 27th Conference on the Mathematical
Foundations of Programming Semantics, volume 276 of ENTCS, pages 237–246, 2011.

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–44 43

[18] P. B. Levy. Infinite trace equivalence. Annals of Pure & Applied Logic, 151(2–3), 2008.

[19] Paul Blain Levy and Sam Staton. Transition systems over games. In Thomas A. Henzinger and Dale
Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 64:1–64:10. ACM, 2014.

[20] E Moggi. Notions of computation and monads. Information and Computation, 93, 1991.

[21] G. Plotkin and J. Power. Notions of computation determine monads. In Proceedings, Foundations of
Software Science and Computation Structures, 2002, volume 2303 of LNCS, pages 342–356. Springer,
2002.

[22] A. W. Roscoe. Unbounded non-determinism in CSP. Journal of Logic and Computation, 3(2), 1993.

[23] D. Sangiorgi and V. Vignudelli. Environmental bisimulations for probabilistic higher-order languages.
In Rastislav Bod́ık and Rupak Majumdar, editors, Proceedings, 43rd Symposium on Principles of
Programming Languages (POPL), pages 595–607. ACM, 2016.

[24] P. Taylor. Practical Foundations of Mathematics. Cambridge University Press, 1999.

[25] R. J. van Glabbeek. The linear time — branching time spectrum I. The semantics of concrete, sequential
processes. In J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra, pages
3–99. North-Holland, 2001.

N. Bowler et al. / Electronic Notes in Theoretical Computer Science 341 (2018) 23–4444

	Introduction
	Preliminaries
	Semilattices
	Language
	Bisimulation
	Traces and Strategies

	Well-founded behaviour
	Commuting Equivalence
	Definability for finite nondeterminism
	Definability for Countable Nondeterminism

	Initial Algebras
	Initial algebra for a signature
	Initial algebra for an endofunctor

	Neutral Element
	Non-well-founded behaviour
	Final coalgebras
	Determinization and Bisimulation

	Conclusion and variations
	References

