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This paper is concerned with microbubble dynamics in a viscous compressible liquid near a rigid 

boundary. The compressible effects are modelled using the weakly compressible theory of Wang & 

Blake (J. Fluid Mech. 730, 245-272, 2010), since the Mach number associated is small. The viscous 

effects are approximated using the viscous potential flow theory of Joseph & Wang (J. Fluid Mech., 

505, 365-377, 2004), because the flow field is characterized as being an irrotational flow in the bulk 

volume but with a thin viscous boundary layer at the bubble surface. Consequently, the 

phenomenon is modelled using the boundary integral method, in which the compressible and 

viscous effects are incorporated into the model through including corresponding additional terms in 

the far field condition and the dynamic boundary condition at the bubble surface, respectively. The 

numerical results are shown in good agreement with the Keller-Miksis equation, experiments and 

computations based on the Navier-Stokes equations. The bubble oscillation, topological transform, 

jet development and penetration through the bubble and the energy of the bubble system are 

simulated and analyzed in terms of the compressible and viscous effects.   

 

1. Introduction 

 Microbubble dynamics are associated cavitation damage to pumps, turbines and propellers 

(Blake 1987; Lauterborn & Kurz 2010), as well as applications in biomedical ultrasonics (Coussios 

& Roy 2007; Curtiss et al. 2013; Wang et al. 2015b; Vyas et al. 2016, 2017), sonochemistry 

(Suslick 1990; Blake 1999) and cavitation cleaning (Ohl et al. 2006; Reuter et a. 2017).  

 The boundary integral method (BIM) based on the incompressible potential flow theory is 

widely used in simulating bubble dynamics (Blake et al. 1986, 1987). Using the BIM the dimension 

of the problem reduces by one and it thus is grid free in the flow domain and costs less CPU time as 

compared to the domain approaches. However, the compressible effects of liquid are essential 

although the associated Mach number is small, which are associated with acoustic radiation at the 

inception of a bubble and the end of collapse (Prosperetti & Lezzi 1986; Lezzi & Prosperetti 1987). 
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Viscous effects may be important for very small bubbles (Boulton-Stone & Blake 1993; Wang 

2016; Smith et al. 2017). Since the Reynolds number associated is often O(10) or larger, the flow is 

potential in the bulk volume of the liquid except a thin viscous boundary layer at the bubble surface 

(Boulton-Stone & Blake 1993).  

 Transient bubble dynamics considering viscous effects were simulated based on the Navier-

Stokes equations using the finite volume method (FVM) (Popinet & Zaleski 2002; Minsier et al. 

2009; Hua & Lou 2007) or finite element method (FEM) (Kim et al. 2006; Chen et al.2016). The 

compressible effects were modelled by Tiwari et al. (2013) and Han et al. (2015) using a diffuse 

interface model and the FEM, respectively. It is a multi-scaled problem with the thickness of the 

viscous boundary layer at the bubble surface is small compared with the bubble radius, and both of 

them change order of magnitude with time. In addition, the wavelength of acoustic waves is in turn 

much larger than the bubble radius. Simulations of bubble dynamics using FEM or FVM are 

computationally demanding and are usually carried out for axisymmetric configurations and/or for 

one cycle of oscillation. Consequently, any theoretical development that can reduce the 

computational complexity is desirable and thus opening up the opportunity for a relatively simple 

computational analysis of a wide range of models. 

 Wang & Blake (2010, 2011) analyzed nonspherical bubble dynamics in a compressible liquid, 

using the method of matched asymptotic expansions. The flow far away from the bubble is shown 

to satisfy the linear wave equation to the second order in terms of the Mach number and obtained 

analytically. The flow near the bubble is shown to satisfy Laplace’s equation to second order too. 

Wang (2013, 2014) showed the computational results based on the weakly compressible theory 

agreed well with the experiments for underwater explosion bubbles (Hung et al. 2010) and laser 

generated bubbles near a rigid boundary (Philipp & Lauterborn 1998). 

 Viscous fluid dynamics can be described approximately by potential flows when the vorticity 

is small or is confined to a thin viscous boundary layer (Joseph & Wang 2014). It is particularly 

useful for a gas–liquid two-phase flow with an interface. A key issue in the theory is that the shear 

stress should approximately vanish at a gas-liquid interface, but it does not in the irrotational 

approximation. An auxiliary function, the viscous pressure correction to the potential pressure, has 

been introduced to address this discrepancy by Joseph & Wang (2014). They argued that the power 

done by the shear stress due to the irrotational flow should be equal to the power done by the 

viscous correction pressure to conserve the energy of the system. This theory was applied by Lind 
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& Phillips (2010, 2012, 2013) for bubble dynamics near a boundary based on the BIM, Klaseboer et 

al. (2011) and Zhang & Ni (2014) for a bubble rising and deforming in a viscous liquid, and Manmi 

& Wang (2017) for microbubble dynamics subject to ultrasound.  

 The remainder of the paper is organized as follows. The physical and mathematical model is 

described in section 2 based on the weakly compressible theory and the viscous potential flow 

theory coupled with the boundary integral method. In section 3, our numerical model is validated by 

comparing with the Keller-Miksis equation for a spherical bubble oscillating in an unbounded fluid, 

the experiment (Philipp & Lauterborn 1998) and the FVM computation (Minsier et al. 2009) for the 

dynamics of a transient bubble near a rigid boundary. In section 4, we analyze bubble dynamics 

near a rigid boundary based on the compressible viscous BIM.  

 

2. Physical and mathematical model 

 Consider the dynamics of a gas bubble near a rigid flat boundary in a viscous and 

compressible liquid. A Cartesian-coordinate system is set, with the x-axis at the rigid boundary and 

the z-axis along the axis of symmetry for the configuration, as illustrated in figure 1. It is assumed 

that it is a potential flow in the bulk volume of the fluid except for a thin viscous boundary layer at 

the bubble surface.  

 

 

 

 

 

 

 

 

Figure 1. Illustration of a bubble near a rigid boundary, with a standoff distance s from the centre of 

the initial bubble surface to the boundary, and the coordinates used. 

 The reference length, density and pressure are chosen as the maximum bubble radius Rmax, the 

density of the liquid ρ∞ in the undisturbed liquid, and ∆p = p∞ - pv, respectively, where p∞ and pv are 

the ambient pressure and vapour pressure of the liquid, respectively. The reference velocity is thus 

obtained as . We introduce dimensionless quantities, denoted by subscripts “*”, as 

follows: 

∞ρ∆= /pU

z 

S 

Initial 

Bubble 

Rigid boundary x 

s 
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= ,                               (2.1) 

where r = (x, y, z), t is the time, ϕ the velocity potential and p the pressure of the liquid flow.  

 The highest speed of the liquid flow induced by bubble dynamics is usually associated with 

the velocity of the bubble jet, which is often lower than 200 m s
-1

 at normal ambient pressure, as 

observed in experiments (Benjamin & Ellis 1966, Lauterborn & Bolle 1975, Shima et al. 1981, 

Tomita & Shima 1986, Vogel et al. 1989, 1990, Lauterborn & Ohl 1997, Philipp & Lauterborn 

1998, Lindau, & Lauterborn 2003, Brujan & Matsumoto 2012, Yang et al. 2013; Zhang et al. 2015). 

The maximum velocity of the liquid flow associated with the jet occurs locally and for very 

short period, the velocity during the most time or anywhere else is much smaller than the jet 

velocity. As the speed of sound in water is about 1500 m s
-1

, the flow induced by the bubble 

dynamics is assumed to be associated with a low Mach number, ε, defined as follows: 

1
U

c
ε = << ,                                                                      (2.2) 

where c is the speed of sound of liquid. Lauterborn & Vogel (2013) observed that a newly formed 

laser bubble’s surface expands with an initial velocity of about 2450 ms
-1

, which decays rapidly to 

about 250 ms
-1

 within 140 ns.  

 We divide the bulk fluid domain of the inviscid flow into two regions: the inner region near 

the bubble where (x, y, z) = O(Rmax) and the outer region far away from the bubble where (x, y, z) = 

O(λ), where λ = cRmax/U is the wavelength of acoustic waves. Using the method of matched 

asymptotic expansions, the outer solution was shown to satisfy the linear wave equation to second 

order in terms of the Mach number and an analytical solution was obtained as follows (Wang 2013, 

2014): 

( )
( )* * * 2

* 0

*

V t r
C O

r

ε
ϕ ε

−
= − +

ɺ

,                                                 (2.3) 

where V is the transient bubble volume and C0 is a given constant with a value of 1/(4π) and 1/(2π) 

for a bubble in an unbounded liquid and near a rigid boundary, respectively. 

 The inner solution to second order satisfies Laplace’s equation and the kinematic boundary 

condition on the bubble surface, S, as follows (Wang & Blake 2010, 2011): 

( )2 2

* * Oϕ ε∇ = ,                                                              (2.4a) 

( )2*
* *

*

D
O

Dt
ϕ ε= ∇ +

r
  on S,                                                   (2.4b) 

 The far field boundary condition of the inner solution is obtained by matching with the outer 

solution as follows (Wang 2016): 
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( )
( )

( )* * 2

* 0 * *

*

V t
C V t O

r
ϕ ε ε

 
→ − +  

 

ɺ
ɺɺ   as  r*→∞.                                   (2.4d) 

 The initial condition on the boundary is given as 

*0**00* on     
*

RrRttn =−=
=

ϕ ,                                                        (2.4e) 

where n is the unit normal at the bubble surface pointing to the gas side, R0* and *0tR are the initial 

radius of the bubble and its initial rate of change, respectively. 

 A thin viscous boundary layer exists at the bubble surface if the associated Reynolds number 

is O(10) or larger (Boulton-Stone & Blake 1993). In the viscous potential flow theory, the normal 

stress balance at the bubble surface, considering the surface tension is given as follows: 

vcL n Bp p pσ τ+ + ∇ ⋅ − =n , 

2

2
2n

n

ϕ
τ µ

∂
=

∂
,                                              (2.5)     

where pL is the liquid pressure at the bubble surface,  σ surface tension, τn the normal viscous stress, 

pvc viscous pressure correction and µ is viscosity of the liquid.  

 The tangential stress at the bubble surface should be zero as a result of the relatively low 

viscosity of the gas inside the bubble. However, the shear stress due to a potential flow is non-zero. 

Joseph & Wang [1, 34] introduced the viscous pressure correction to resolve the this discrepancy. A 

rational model for the viscous correction is unavailable at the moment. We assume that the viscous 

correction pressure pvc is proportional to the normal stress vc np Cτ= −  (Manmi & Wang 2017) 

 ( )
2

2
2 1L Bp C p

n

ϕ
σ µ

∂
+ ∇ ⋅ − + =

∂
n .

                                              
(2.6) 

 The constant C is to be determined as following. To satisfy energy conservation for the liquid 

flow, the viscous pressure correction is set to perform the equal power as the shear stress at the free 

surface, which leads to the following relation at the bubble surface (Joseph & Wang 2004), 

dSdSpu
S

s

S

n ∫∫ ⋅=− τ τu)( vc
,                                                             (2.7)  

where τs is the shear stress at the bubble surface.  

  Using the Bernoulli equation, the dynamic boundary condition at the bubble surface can be 

written as 

( )
( )

2
2 02 20

0 2

 1 2 1
1

2 2

*** *
* * g * * *

* *

V tVD ( C )
p z O

Dt V Re n

κ
ϕ ϕ

ϕ σ δ ε ε
π

′′  ∂+
= + ∇ − + ∇ ⋅ − + − + 

∂ 
n  on S,     

(2.4f) 

where pg0* = pg0/∆p is the initial partial pressure of the bubble gases inside the bubble, V0* is the 

initial bubble volume, κ  the polytropic index of the bubble gas, σ* = σ/(Rmax∆p) the surface tension, 

/maxgR pδ ρ ∆=  the buoyancy parameter, and 0Re R p /∆ ρ µ=  the Reynolds number. We 

assumed in (2.4f) that the expansion and contraction of the bubble gases are adiabatic. We do not 
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consider the thermal effects associated with this phenomenon, which may reference to (Szeri et al. 

2003; Fuster & Montel 2015).  

 Examining the initial and boundary value problem of (2.4), one can see that the compressible 

effects to second order appear only in the far field condition (2.4c), and the viscous effects appear in 

the dynamics boundary condition at the bubble surface (2.4f). As the basic equation is Laplace’s 

equation, this problem can be modeled using the boundary integral method (BIM). The details on 

the numerical model using the BIM for this problem can be found in (Wang et al. 1996a; Curtiss et 

al. 2013; Wang 2014).  

 A nonspherical bubble collapse often leads to the formation of a high speed liquid jet. The jet 

subsequently impacts the opposite bubble surface and penetrates the bubble, and the liquid domain 

is then transformed from a singly connected to a doubly connected domain. The solution to a 

potential problem in a doubly connected domain is non-unique. The doubly connected domain can 

be made singly connected by, for example, using a branch cut by Best (1993) or a vortex sheet by
 

Zhang, Duncan & Chahine (1993)
 
and Zhang & Duncan (1994). Here the branch cut is an 

artificial boundary introduced into the flow domain and across which the potential is 

discontinuous, the value of this discontinuity being equal to the circulation in the flow. 

 Pedley (1968) and Lundgren & Mansour
 
(1991) modeled the dynamics of a bubble torus with 

a vortex ring inside, started with a circular cross-section. Wang, et al.
 
(1996b, 2005)

 
developed a 

vortex ring model from these earlier ideas to model the topological transition of a singly connected 

bubble to a subsequent toroidal bubble. In the vortex ring model, a vortex ring is put inside the 

toroidal bubble after jet impact. The circulation of the vortex ring is equal to the jump of the 

potential ϕ* across the contact point at the time of jet impact 

* * * * *N S

C

dΓ ϕ ϕ ϕ= ∇ ⋅ = −∫ r� ,                                                        (2.8) 

where ϕN* and ϕS* are potentials at the impact point. Here we assume jet impact occurs at a single 

point. The potential ϕ* is then decomposed as follows:  

* vrϕ ϕ φ= + ,                                                                   (2.9) 

where ϕvr is the potential of the vortex ring, which can be obtained from the Biot-Savart law (Wang 

et al. 1996b, 2005; Liu et al. 2016). With the potential jump being accounted for by the vortex ring 

using (2.9), the remnant potential φ is continuous in the flow field and can be simulated using the 

BIM model.  

 The mechanical energy of a bubble system consists of the potential energy and the kinetic 

energy of the bubble system. The potential energy EP is given as follows (Wang & Manmi 2014)  

***

1

*

*0*0*0

*
1

VA
V

VVp
E

g

P +σ+








−κ
=

−κ

,                                      (2.10) 

where A* is the area of the bubble surface. The reference energy is chose as 3

maxR p∆ . 
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 The kinetic energy in the bubble gases is negligible since density of gases are usually three 

orders of magnitude smaller than liquids. Wang (2015) introduced the local kinetic energy ELK of 

the liquid flow in the inner asymptotic region ΩL near the bubble. ΩL is bounded by the bubble 

surface S and a large sphere S∞, with its centre at the centre of the initial bubble surface and with a 

radius being large compared to the bubble radius and small compared to the wavelength λ of the 

acoustic wave. The local kinetic energy ELK is given as follows (Wang 2015): 

( ) ( )∫∫∫ ε+ϕϕ=ε+
∂

ϕ∂
ϕ=ϕ∇ρ=

∞+Ω S

n

SS

Lk OdSOdS
n

dVE

L

 
2

1
  

2

1

2

1
**

2*
*

2

**** .          (2.11) 

 The local energy of a bubble system in a compressible liquid consists of the potential energy 

EP and the local kinetic energy ELK as follows:  

∫ ϕϕ++σ+








−κ
=+=

−κ

S

n

g

LKPL dSVA
V

VVp
EEE *****

1

*

*0*0*0

***
2

1

1
 .                 (2.12) 

 

3. Validations of numerical model 

3.1 Comparison with the Keller-Miksis equation  

Figure 2 compares the viscous compressible BIM (VCBIM) and the Keller-Miksis equation (KME) 

for a spherical bubble damping in an infinite liquid. The parameters in calculations are Rmax = 6.0 

µm, κ = 1.667, ε  = 100, p0 = 101.1 kPa, ρ = 1000 kg/m
3
, pa* = 0, σ = 0.073 N/m and Re = 60. The 

VCBIM agrees well with the Keller-Miksis equation for five cycles of oscillations. Due to the 

compressible and viscous effects, the bubble undergoes a damped oscillation, with the maximum 

radius decreasing and the minimum radius increasing with time.  

 

 

 

 

 

 

 

 

 

Figure 2. Comparison of the CVBIM and Keller-Miksis equation (KME) for the time histories of 

the radius R* for a bubble oscillating in an infinite fluid for Rmax = 6.0 µm, κ = 1.667, ε = 100, p0 = 

101.1 kPa, ρ = 1000 kg/m
3
, pa* = 0, σ = 0.073 N/m and Re = 60.   

R* 

t * 
 



8 
 

3.2 Comparison with the numerical model based on the Navier-Stokes equation 

We now compare the computational results of the VCBIM and a numerical model based on the 

Navier-Stokes equation (Minsier et al. 2009). The case considered is for a bubble collapsing near a 

rigid boundary with the dimensionless standoff distanceγ= s/Rm = 0.9, in oil with viscosity µ = 0.05 

kg/(m s). The Reynolds number for the case is Re = 224. Figure 3 shows the bubble shapes in the 

collapse phase at typical times, which are noted at the upper-left and upper-right corners of each 

frame for the numerical model based on the Navier-Stock equation and the VCBIM, respectively. 

The two models agree well in terms of the bubble shape during the whole cycle of oscillation. A 

large part of the bubble surface is flattened against the rigid boundary at the maximum volume (see 

frame 1) and is kept in contact with the boundary subsequently. The top part of the surface collapses 

down and a jet forms subsequently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The comparison of the shapes of a bubble near a rigid boundary at γ = 0.6 calculated using 

the VCBIM and numerical model based on the Navier–Stokes equation (Minsier et al. 2009) (dash 

line), in the liquid with viscosity µ = 0.05 kg(m s)
-1

. The rigid boundary is located at the bottoms of 

the frames. Other parameters are R0 = 0.224 mm, pg0 = 42 bar, s = 1 mm, p∞ = 101.3 Kpa, ρ = 998 

kg m
-1

 and κ = 1.4. 

  

 113µs 

 

 112µs 

 

176µs 

 

 172µs 

 

 221 µs 

 

219µs 

 

 233µs 

 

 226µs 

 



9 
 

3.3 Comparison with experiment results 

We next compare the VCBIM with experiments for dynamics of a laser generated bubble with the 

maximum radius Rmax = 1.45 mm near a rigid boundary with the dimensionless standoff distance γ = 

s/Rmax = 0.9. Other computational parameters are chosen as σ* = 0.00051, κ = 1.4, Rt*(0) = 31, ε = 

0.013, pg0* = 127 and R*(0) = 0.1. The corresponding dimensional parameters are p∞ = 98.1 kPa, pv =
 

2.98
 
kPa, ρ 

=
 
1000 kg⋅m-3

, σ 
=

 
0.07

 
N⋅m-1

, R(0)
 
= 1.45

 
mm, Rt(0)

 
=

 
307

 
m s

-1
 and pg0

 
=

 
12.1

 
MPa.  

 Figure 4 compares the bubble shapes obtained from the VCBIM computation and the 

experiments (Philipp & Lauterborn 1998), shown on the left and right columns, respectively. In 

addition, the computational results (dashed lines) are added overlapped with the experimental 

images for a direct comparison. The computation agrees very well with the experiments during the 

first cycle of oscillation (figure 4A). The expansion of the lower part of the bubble surface is 

retarded by the boundary at t = 35 µs. It approximately takes the shape of half of a sphere at its 

maximum volume at t = 177 µs, with the lower part of the bubble surface being flattened by the 

boundary. The upper part of the bubble surface then collapses down, taking a cone shape at the 

middle stage of the collapse phase at t = 300 µs. The jet shown in the computational results is not 

visible in the experimental images due to opaqueness of the bubble surface. Nevertheless, the outer 

profiles of the bubble obtained in the computation and experiment agree well. The bubble ring of 

the computation at the end of collapse at t = 355 µs agrees well with the experiment, when the 

bubble reaches its minimum volume. 

 Figure 4B shows the comparison during the second cycle of oscillation. The bubble surface in 

the experiments is not clear due to physical instabilities occurred. Nevertheless, the bubble shapes 

calculated correlate with the experiment data in terms of the outer profile at various times. The 

bubble ring rebounds and recollapses in contact with the boundary. They agree in terms of the 

external radius and height of the bubble ring. 
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4. Numerical analyses 

 The viscous effects are negligible for the case in figure 4 as the associated Reynolds number, 

Re = 1450, is large. To consider the viscous effects, we repeat this case for a microbubble for Rmax = 

6.0 µm, with the associated Reynolds number Re = 60 and dimensionless surface tension σ* = 0.12. 

Figure 7 compares the results for γ  = 0.6, and Rmax = 6 µm  (Re = 60 and σ* = 0.12) and Rmax = 1.45 

mm (Re = 1450 and σ* = 0.00051), respectively. 

 The bubble for Rmax = 1.45 mm expands a longer time to a large maximum volume, having 

larger part of the bubble surface being flatten by the boundary. During collapse, the bubble 

collapses towards the boundary and a liquid jet forms on the distal side during the later stage of 

collapse pointing to the boundary. The bubble for Rmax = 1.45 mm has a large volume before the jet 

penetrating through the bubble and the jet is sharper. Once it penetrates though the bubble at time of 

t* = 2.11, 1.67 for Rmax = 1.45 mm, 6.0 µm, respectively, the jet impacts on the boundary 

immediately. This is associated with higher damage potential as comparing to the damage caused 

by a bubble jet formed away from the rigid boundary. For the latter case, the jet momentum 

decreases while penetrating though the liquid before reaching the boundary. 

 A bubble ring forms after the jet penetrating through the bubble and collapses continuously. 

After impacting on the boundary, the jet re-directs radically, pushing the inner side of the bubble 

ring outwards. Meanwhile, the bubble ring collapses from all sides rapidly except for the bottom. 

When it reaches its minimum volume at t* = 2.24, 1.69 for Rmax = 1.45 mm, 6.0 µm, respectively,  

the bubble ring in contacting with the rigid boundary reaches the maximum pressure and 

temperature. This gives rise to another damage potential. In addition, a shock wave is emitted at the 

minimum bubble volume with high pressure amplitude, it impinges on the rigid boundary once it is 

emitted and has clear damage potential.   

 Afterwards, the bubble ring rebounds upwards and outwards along the boundary. It then re-

collapses from the top to the bottom and from the external to the internal. The radius of the bubble 

ring at the end of re-collapse is smaller than that at the end of collapse. The bubble keeps in touch 

with the boundary during the second cycle of oscillation. 
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Figure 5. The bubble motion near a rigid boundary for γ  = 0.9, and Rmax = 1.45 mm (Re = 1450 and 

σ* = 0.00051) (left column) and Rmax = 6 µm  (Re = 60 and σ* = 0.12) (right column). The remaining 

parameters are the same as in figure 4. 

  

 Figure 6 compares the results for γ  = 0.6, and Rmax = 6 µm  (Re = 60 and σ* = 0.12) and Rmax = 

1.45 mm (Re = 1450 and σ* = 0.00051), respectively. The bubble for Rm = 1.45 mm are associated 

with a larger maximum volume, a larger part of the surface being flattened by the rigid boundary 

and a larger volume at the moment of jet impact toward the end of collapse. Once the jet penetrates 

the bubble for t* = 2.11, 1.55 for Rmax = 6 µm, 1.45 mm, respectively, it immediately impacts the 

rigid boundary. After jet impact, the bubble becomes a bubble ring. It collapses further, reaching the 

minimum volume at t* = 2.29, 1.69 for Rmax = 6 µm, 1.45 mm, respectively, when a shockwave is 

emitted, which impacts on the rigid boundary immediately. It then rebounds and recollapses, 

keeping in contact with the rigid boundary. The bubble ring for Rm = 1.45 mm has a larger radius 

and larger maximum volume.   

 

  



15 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0.00 

 

1.07 

 0.31 

 

Expansion 

1.97 

 

2.11 

 

1.07 

 

 Collapse

 

Rebound

 

Collapse in toroidal 

form 

 

Recollaps

e 

0.00 

 

0.78 

 0.24 

 

1.56 

 

1.32 

 

1.55 

 

0.79 

 

1.47 

 



16 
 

Figure 6. The bubble motion near a rigid boundary for γ  = 0.6, and Rmax = 1.45 mm (Re = 1450 and 

σ* = 0.00051) (right column) and Rmax = 6 µm  (Re = 60 and σ* = 0.12) (left column). The remaining 

parameters are the same as in figure 4. 

 

 Figure 7 shows the time histories of the equivalent bubble radius Req* for a bubble near a 

rigid boundary for the cases shown in figures 5 and 6, for Rmax = 6 µm, 1.45 mm, and γ  = 0.9, 0.6, 

respectively. For all the four cases, the maximum radius and period of oscillation decrease 

significantly from the first cycle to the second cycle of oscillation. The maximum radius and the 

period for Rmax = 6 µm decrease more from the first to second cycle than that for Rm = 1.45 mm, 

since the former is associated with the viscous effects. However, from the second to the third cycle, 

maximum radius for Rmax = 6 µm decreases less.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Time histories of the equivalent bubble radius Req* for a bubble near a rigid boundary for 

the cases in figures 5 and 6, for  Rmax = 6 µm, 1.45 mm, and γ  = 0.9, 0.6, respectively. 
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 Figure 8 shows the corresponding time histories for the local energy. The local energy 

deceases about 40% at the inception of the bubble for all the four cases, which is corresponding to 

the emission of a shockwave. At inception, the bubble size is small and relatively far away from the 

rigid boundary, the emission of shockwave does not depend on the standoff distance significantly. 

The viscous effects during the short period of the emission of shockwave are negligible too. The 

local energy for Rm = 1.45 mm remains almost constant before the end of collapse, since the 

associated Reynolds number is large. However the local energy for Rmax = 6 µm decreases gradually 

during oscillation. At the end of collapse, the local energy decrease significantly for both of the two 

cases, when another shockwave is emitted. The bubble for Rmax = 1.45 mm is associated with larger 

local energy before the shockwave emission and is thus associated with stronger collapse, stronger 

shockwave and larger energy loss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Time histories of the local energy for a bubble near a rigid boundary for the cases in 

figures 5 and 6, for  Rmax = 6 µm, 1.45 mm, and γ  = 0.9, 0.6, respectively. 
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5. Summary and conclusions 

 Bubble dynamics near a rigid boundary are modelled using the weakly compressible theory 

and viscous potential flow theory coupled with the boundary integral method (BIM). Our 

computations correlate well the experimental data for both the first- and second-cycles of oscillation 

and the computations based on the Navier-Stokes equation.  

 The energy of a bubble system decreases due to both the compressible effects and viscous 

effects. At the inception of a bubble, the energy of a bubble system loses significantly for a very 

short time period, which is associated with the emission of a shockwave. This part of energy loss 

does not depend on the viscous effects and the presence of a rigid boundary. This is because the 

bubble size at inception is small and relatively far away from the rigid boundary, the emission of 

shockwave does not depend on the standoff distance significantly. The viscous effects during the 

short period of emission of shockwave are negligible too. 

 If the Reynolds number is large, the energy remains constant during the most part of 

oscillation period, where the compressible effects are negligible. If the Reynolds number is not 

large, the energy loses gradually during oscillation due to the viscous effects. The dimensionless 

oscillation period and the maximum bubble radius thus decrease due to viscous effects (i.e. increase 

with the Reynolds number).  

 The sharpness of the jet, the bubble volume at the jet impact, and the radius of the bubble ring 

formed at the end of collapse decrease with the viscous effects. At the end of collapse, the energy 

deceases rapidly and significantly, when another shockwave emits. For a smaller Reynolds number, 

a weaker shockwave is emitted at the end of collapse, since more energy losses during the first 

oscillation period. The radius of the bubble ring formed during recollapse is smaller than that during 

collapse. 
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