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Abstract. We present signature schemes whose security relies on computational
assumptions relating to isogeny graphs of supersingular elliptic curves. We give two
schemes, both of them based on interactive identification protocols. The first identifica-
tion protocol is due to De Feo, Jao and Plût. The second one, and the main contribution
of the paper, makes novel use of an algorithm of Kohel, Lauter, Petit and Tignol for the
quaternion version of the �-isogeny problem, for which we provide a more complete
description and analysis, and is based on a more standard and potentially stronger com-
putational problem. Both identification protocols lead to signatures that are existentially
unforgeable under chosen message attacks in the random oracle model using the well-
known Fiat-Shamir transform, and in the quantum random oracle model using another
transform due to Unruh. A version of the first signature scheme was independently
published by Yoo, Azarderakhsh, Jalali, Jao and Soukharev. This is the full version of
a paper published at ASIACRYPT 2017.

Keywords. Isogenies, Public Key Signatures, Post-quantum Cryptography.

1. Introduction

A recent research area is cryptosystems whose security is based on the difficulty of
finding a path in the isogeny graph of supersingular elliptic curves [10,12,19,25,27].
Unlike other elliptic curve cryptosystems, the only known quantum algorithm for these
problems, due to Biasse, Jao and Sankar [8], has exponential complexity. Hence, addi-
© The Author(s) 2019
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tional motivation for the study of these cryptosystems is that they are possibly suitable
for post-quantum cryptography.
Some of the first constructions in supersingular isogeny cryptography include the

collision-resistant hash function of Charles, Goren and Lauter [10], the key exchange
protocol of Jao and De Feo [25], and the public key encryption scheme and interac-
tive identification protocol of De Feo, Jao and Plût [19]. Focusing on signatures, Jao-
Soukharev [27] presented an undeniable signature, andXi, Tian andWang [48] presented
a designated verifier signature.
In this paper we present two public key signature schemes whose security relies on

computational problems related to finding a path in the isogeny graph of supersingular
elliptic curves.
Thefirst scheme is obtained relatively simply from theDeFeo-Jao-Plût [19] interactive

identification protocol by using the Fiat-Shamir transform to turn it into a non-interactive
signature scheme. We also use a variant of the Fiat-Shamir transform due to Unruh to
obtain a post-quantum signature scheme. Essentially the same signature scheme was
independently published by Yoo, Azarderakhsh, Jalali, Jao and Soukharev [49], but our
version has improved signature size. This scheme has the advantage of being simple to
describe, at least to a reader who is familiar with the previous work in the subject, and
easy to implement. On the other hand, it inherits the disadvantages of [19], in particular it
relies on a non-standard isogeny problem using small isogeny degrees, reveals auxiliary
points, and uses special primes.
The fastest classical attack on the first scheme has heuristic running time of Õ(p1/4)

bit operations, and the fastest quantum attack (see Section 5.1 of [19]) has running time
of Õ(p1/6). Galbraith, Petit, Shani and Ti [22] and Petit [36] showed that revealing
auxiliary points may be dangerous in certain contexts. It is therefore highly advisable to
build cryptographic schemes based on the most general, standard and potentially hardest
isogeny problems.
Our second scheme uses completely different ideas and relies on the difficulty of

a more standard computational problem, namely the problem of computing the endo-
morphism ring of a supersingular elliptic curve (equivalently, computing an isogeny
between two given elliptic curves). This computational problem has heuristic classical
complexity of Õ(p1/2) bit operations, and quantum complexity Õ(p1/4). In particular,
the second scheme does not involve sending auxiliary points and so avoids the attacks
of [22,36]. The identification scheme is based on a sigma protocol that is very similar to
the proof of graph isomorphism. One obtains a signature scheme by applying the Fiat-
Shamir transform or Unruh’s transform. We now briefly sketch the main ideas behind
our second scheme. The public key is a pair of elliptic curves (E0, E1) and the private
key is an isogeny ϕ : E0 → E1. To interactively prove knowledge of ϕ one chooses a
random isogeny ψ : E1 → E2 and sends E2 to the verifier. The verifier sends a bit b.
If b = 0 the prover reveals ψ . If b = 1 the prover reveals an isogeny η : E0 → E2. In
either case, the verifier checks that the response is correct. The interaction is repeated a
number of times until the verifier is convinced that the prover knows an isogeny from
E0 to E1. However, the subtlety is that we cannot just set η = ψ ◦ ϕ, as then E1 would
appear on the path in the graph from E0 to E2 and so we would have leaked the private
key. The crucial idea is to use the algorithm of Kohel-Lauter-Petit-Tignol [33] to produce
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a “pseudo-canonical” isogeny η : E0 → E2 that is independent of ϕ. The algorithm of
Kohel-Lauter-Petit-Tignol is based on the theory of quaternion algebras.
The paper is organized as follows. In Section 2 we give preliminaries on isogeny

problems, random walks in isogeny graphs, security definitions and the Fiat-Shamir
transform. Sections 3 and 4 describe our two signature schemes and Section 5 concludes
the paper. In a first reading to get the intuition of our schemes without all implementation
details, one can safely skip parts of the paper, namely Sections 2.3, 2.4, 2.5, 2.7, 2.8, 4.3
and 4.4.

2. Preliminaries

2.1. Quaternion Algebras

We summarize the required background on quaternion algebras. For a more detailed
exposition of the theory, see [42,43,45].
The quaternion algebras used in this paper are quaternion algebras over Q ramified

at a prime p and at infinity, where moreover p = 3 mod 4. Such an algebra can be
represented as Bp,∞ := Q〈i, j〉, where i2 = −1, j2 = −p, k = ij = −ji. The canonical
involution on Bp,∞ is given by

α = x0 + x1i + x2j + x3k �−→ ᾱ = x0 − x1i − x2j − x3k.

from which the reduced trace and norm take the form

Trd(α) = α + ᾱ = 2x0 and Nrd(α) = αᾱ = x20 + x21 + px22 + px23 .

An ideal of Bp,∞ is a Z-lattice of rank 4. Ideals can be multiplied in the usual way.
The norm of an ideal I is the gcd of the reduced norms of its elements. An order of Bp,∞
is an ideal that is also a ring. A maximal order is an order that is not strictly contained in
any other order. Elements of an order are integers, namely their reduced norm and trace
are in Z. Orders and ideals in Bp,∞ may be represented by a Z-basis, namely 4 elements
ω0, ω1, ω2, ω3 ∈ Bp,∞. For orders we can always take ω0 = 1. The quaternion algebra
Bp,∞ has a maximal orderO0 = 〈1, i, 1+k

2 ,
i+j
2 〉 that will be of particular interest in this

paper.
For any ideal I , the left order of I is the set O = {h ∈ Bp,∞|hI ⊂ I }. We also say

that I is a left ideal of O. Right orders and ideals are defined in a similar way. For any
orderO, any left ideal ofO can be written as I = On +Oα where n is the norm of the
ideal, and α ∈ O is such that n|Nrd(α). For any order O and any prime � 
= p, there
are � + 1 left ideals of O with norm �.
We define equivalence classes of ideals and orders as follows. Two orders O1 and

O2 are equivalent if and only if there exists q ∈ B∗
p,∞ such that O1q = qO2. For any

orderO and any I1, I2 left ideals ofO0, I1 and I2 are equivalent if and only there exists
q ∈ B∗

p,∞ such that I1q = I2. These equivalence classes are compatible in the sense
that the left ideals I1 and I2 are equivalent if and only if their right orders are equivalent.
The number of equivalence classes is independent of O and is called the class number.
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2.2. Hard Problem Candidates Related to Isogenies

Wesummarize the required background on elliptic curves. For amore detailed exposition
of the theory, see [39].
Let E, E ′ be two elliptic curves over a finite field Fq . An isogeny ϕ : E → E ′ is

a non-constant morphism from E to E ′ that maps the neutral element to the neutral
element. The degree of an isogeny ϕ is the degree of ϕ as a morphism. An isogeny of
degree � is called an �-isogeny. If ϕ is separable, then degϕ = # ker ϕ. In particular, the
multiplication by m map, denoted by [m], is an isogeny of degree m2 and is separable
when char(Fq) � m. If there is a separable isogeny between two curves, we say that they
are isogenous. Tate’s theorem is that two curves E, E ′ over Fq are isogenous over Fq if
and only if #E(Fq) = #E ′(Fq).
We say that an integer N is B-powersmooth if N = ∏

i �
ei
i where the �i are distinct

primes and �
ei
i ≤ B. A separable isogeny can be identified with its kernel [47]. Given

a subgroup G of E , we can use Vélu’s formulae [44] to explicitly obtain an isogeny
ϕ : E → E ′ with kernel G and such that E ′ ∼= E/G. These formulas involve sums
over points in G, so using them is efficient as long as #G is small. Kohel [32] and
Dewaghe [16] have (independently) given formulae for the Vélu isogeny in terms of the
coefficients of the polynomial defining the kernel, rather than in terms of the points in
the kernel. Given a prime � 
= char(Fq), the torsion group E[�] contains exactly � + 1
cyclic subgroups of order �, each one corresponding to a different isogeny.

A composition of n separable isogenies of degrees �i for 1 ≤ i ≤ n gives an isogeny
of degree N = ∏

i �i with kernel a group G of order N . Conversely any isogeny whose
kernel is a group of smooth order can be decomposed as a sequence of isogenies of
small degree, hence can be computed efficiently. For any permutation σ on {1, . . . , n},
by considering appropriate subgroups of G, one can write the isogeny as a composition
of isogenies of degree �σ(i). Hence, there is no loss of generality in the protocols in our
paper by considering chains of isogenies of increasing degree.
For each isogeny ϕ : E → E ′, there is a unique isogeny ϕ̂ : E ′ → E , which is called

the dual isogeny of ϕ, and which satisfies ϕϕ̂ = ϕ̂ϕ = [degϕ]. An isomorphism is an
isogeny of degree 1. Isomorphism classes of elliptic curves over Fq can be labeled with
their j-invariant [39, III.1.4(b)]. An isogeny ϕ : E → E ′ such that E = E ′ is called an
endomorphism. The set of endomorphisms of an elliptic curve, denoted by End(E), has
a ring structure with the operations point-wise addition and function composition.
Elliptic curves can be classified according to their endomorphism ring. Over the

algebraic closure of the field, End(E) is either an order in a quadratic imaginary field
or a maximal order in a quaternion algebra. In the first case, we say that the curve is
ordinary, whereas in the second case we say that the curve is supersingular. Indeed, the
endomorphism ring of a supersingular curve over a field of characteristic p is a maximal
order O in the quaternion algebra Bp,∞ ramified at p and ∞.
In the case of supersingular elliptic curves, there is always a curve in the isomorphism

class defined over Fp2 , and the j-invariant of the class is also an element of Fp2 . A
theorem by Deuring [15] gives an equivalence of categories between the j-invariants of
supersingular elliptic curves over Fp2 up to Galois conjugacy in Fp2 , and the maximal
orders in the quaternion algebra Bp,∞ up to the equivalence relation given byO ∼ O′ if
and only ifO = α−1O′α for some α ∈ B∗

p,∞. Specifically, the equivalence of categories
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associates to every j-invariant a maximal order that is isomorphic to the endomorphism
ring of any curve with that j-invariant.
Furthermore, if E0 is an elliptic curve with End(E0) = O0, there is a one-to-one

correspondence (which we call the Deuring correspondence) between isogenies ϕ :
E0 → E and leftO0-ideals I . More details on the Deuring correspondence can be found
inChapter 42 of [45]. The key concept is that the ideal I is a kernel ideal for the isogenyϕ,
meaning that the group E0[I ] := {P ∈ E0(Fp) : α(P) = 0,∀α ∈ I } is equal to ker(ϕ).
In Section 4 we will heavily use kernel ideals. In particular we will use the following
result: Let ϕ : E0 → Er be an isogeny of degree

∏
1≤ j≤r �

e j
j that can be factored as

a sequence of isogenies φi : Ei−1 → Ei of degree �
ei
i for 1 ≤ i ≤ r . Write Ii for the

kernel ideal of the composition φi ◦· · ·◦φ1, which is an isogeny from E0 to Ei of degree∏
1≤ j≤i �

e j
j . If we let I0 = O0 then we have Ii = Ii−1�

ei
i + Ii−1α where α ∈ End(E0)

is an element such that ker(ϕ) ∩ E0[�ei
i ] ⊆ ker(α) and gcd(deg(α), �

ei +1
i ) = �

ei
i .

We now present some hard problem candidates related to supersingular elliptic curves,
and discuss the related algebraic problems in light of the Deuring correspondence.

Problem 1. Let p, � be distinct prime numbers. Let E, E ′ be two supersingular elliptic
curves over Fp2 with #E(Fp2) = #E ′(Fp2) = (p + 1)2, chosen uniformly at random.
Find k ∈ N and an isogeny of degree �k from E to E ′.

The fastest classical algorithm known for this problem uses a meet-in-the-middle
strategy, and has heuristic running time of Õ(p1/2) bit operations [21,25].

Problem 2. Let p, � be distinct prime numbers. Let E be a supersingular elliptic curve
over Fp2 , chosen uniformly at random. Find k1, k2 ∈ N, a supersingular elliptic curve
E ′ over Fp2 , and two distinct isogenies of degrees �k1 and �k2 , respectively, from E to
E ′.

The hardness assumption of the second problem has been used in [10] to prove
collision-resistance of a proposed hash function. Variants of the first problem, in which
some extra information is provided, were used in [19] to build an identification scheme,
a key exchange protocol and a public-key encryption scheme.
Moreprecisely, the identificationprotocol ofDeFeo-Jao-Plût [19] relies onProblems3

and 4 below (which De Feo, Jao and Plût call the Computational Supersingular Isogeny
(CSSI) and Decisional Supersingular Product (DSSP) problems). In order to state them
we need to introduce some notation. Let p be a prime of the form �

e1
1 �

e2
2 f ±1, and let E

be a supersingular elliptic curve over Fp2 . Let {R1, S1} and {R2, S2} be bases for E[�e1
1 ]

and E[�e2
2 ], respectively.

Problem 3. (Computational Supersingular Isogeny) Let φ1 : E → E ′ be an isogeny
with kernel 〈[m1]R1 + [n1]S1〉, where m1, n1 are chosen uniformly at random from
Z/�

e1
1 Z, and not both divisible by �1. Given E ′ and the values φ1(R2), φ1(S2), compute

a compact representation of the isogeny φ1 (such as a point in E(Fp2) that generates
〈[m1]R1 + [n1]S1〉).
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The fastest known algorithms for this problem use a meet-in-the-middle argument.
The classical [21,25] and quantum [19,25] algorithms have heuristic running time
respectively of Õ(�

e1/2
1 ) and Õ(�

e1/3
1 ) bit operations, which is respectively Õ(p1/4)

and Õ(p1/6) in the context of De Feo-Jao-Plût [19].

Problem 4. (Decisional Supersingular Product) Let E, E ′ be supersingular elliptic
curves over Fp2 such that there exists an isogeny φ : E → E ′ of degree �

e1
1 . Fix

generators R2, S2 ∈ E[�e2
2 ] and suppose φ(R2) and φ(S2) are given. Consider the two

distributions of pairs (E2, E ′
2) as follows:

– (E2, E ′
2) such that there is a cyclic group G ⊆ E[�e2

2 ] of order �
e2
2 and E2 ∼= E/G

and E ′
2

∼= E ′/φ(G).
– (E2, E ′

2) where E2 is chosen at random among the curves having the same cardi-
nality as E, and φ′ : E2 → E ′

2 is a random �
e1
1 -isogeny.

The problem is, given (E, E ′) and the auxiliary points (R2, S2, φ(R2), φ(S2)), plus a
pair (E2, E ′

2), to determine from which distribution the pair is sampled.

We stress that Problems 3 and 4 are potentially easier than Problems 1 and 2 because
special primes are used and extra points are revealed. Furthermore, it is shown inSection4
of [22] that if End(E) is known and one can find any isogeny from E to E ′ then one can
compute the specific isogeny of degree �

e1
1 . The following problem, on the other hand,

offers better foundations for cryptography based on supersingular isogeny problems.

Problem 5. Let p be a prime number. Let E be a supersingular elliptic curve over Fp2 ,
chosen uniformly at random. Determine1 the endomorphism ring of E.

Note that it is essential that the curve is chosen randomly in this problem, as for
special curves the endomorphism ring is easy to compute. Essentially, Problem 5 is
the same as explicitly computing the forward direction of Deuring’s correspondence.
This problem was studied in [32], in which an algorithm to solve it was obtained, but

with expected running time Õ(p). It was later improved by Galbraith to Õ(p
1
2 ), under

heuristic assumptions [21]. Interestingly, the best quantum algorithm for this problem,

due to Biasse, Jao and Sankar [8], runs in time Õ(p
1
4 ), only providing a quadratic

speedup over classical algorithms. This has largely motivated the use of supersingular
isogeny problems in cryptography.

Problem 6. Let p be a prime number. Let E, E ′ be supersingular elliptic curves over
Fp2 , chosen uniformly at random.2 Find3 an isogeny E → E ′.

Heuristically, if we can solve Problem 1 or Problem 6, then we can solve Problem 5.
To compute an endomorphism of E , we take two random walks φ1 : E → E1 and

1There are several possible meanings of “determine the endomorphism ring”, but we assume the output
should be a Z-module basis in the quaternion algebra Bp,∞.

2The special case E ′ = E occurs with negligible probability so it can be ignored.
3The isogeny should be represented in some compact way.
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φ2 : E → E2, and solve Problem 6 on the pair E1, E2, obtaining an isogeny ψ : E1 →
E2. Then the composition φ̂2ψφ1 is an endomorphism of E . Repeating the process, it
is plausible to find four endomorphisms that are linearly independent, thus generating
a subring of End(E). Repeating the process further, we expect to obtain a Z-basis of
the full endomorphism ring after having constructed at most O(log p + log D) such
endomorphisms, where D is a bound on the degree of the isogeny ψ . Indeed the subring
index N is bounded by the product of the degrees of its generators which is (pD)O(1),
any randomly chosen new element will be in that subring with a probability 1/N , and
every new element not in the subring will decrease the index by at least a factor of 2.
For the converse, suppose that we can compute the endomorphism rings of both E

and E ′, represented as Z-modules in Bp,∞. The strategy is to compute a lattice I in
Bp,∞ of appropriate norm that is a left ideal of End(E) and a right ideal of End(E ′),
and to translate it back to the geometric setting to obtain an isogeny. This approach
motivated the quaternion �-isogeny algorithm of Kohel-Lauter-Petit-Tignol [17,33,37],
which solves the following problem:

Problem 7. Let p, � be distinct prime numbers. Let O0,O1 be two maximal orders in
Bp,∞. Find k ∈ N and an ideal I of norm �k such that I is a left O0-ideal and its right
order is isomorphic to O1.

The algorithm can be adapted to produce ideals of B-powersmooth norm for B ≈
7
2 log p and using O(log p) different primes, instead of ideals of norm a power of �. We
will use that version in our second signature scheme.
For completeness wemention that ordinary curve versions of Problems 1 and 5 are not

known to be equivalent, and in fact there is a subexponential algorithm for computing
the endomorphism ring of ordinary curves [9], whereas the best classical algorithm
known for computing isogenies is still exponential. There is, however, a subexponential
quantum algorithm for computing an isogeny between ordinary curves [11], which is
why the main interest in cryptography is the supersingular case.

2.3. Random Walks in Isogeny Graphs

Let p ≥ 5 be a prime number. There are Np := � p
12� + εp supersingular j-invariants

in characteristic p, with εp = 0, 1, 1, 2 when p = 1, 5, 7, 11 mod 12 respectively. For
any prime � 
= p, one can construct a so-called isogeny graph, where each vertex is
associated to a supersingular j-invariant, and an edge between two vertices is associated
to a degree � isogeny between the corresponding vertices.
Isogeny graphs are regular4 with regularity degree � + 1; they are undirected since to

any isogeny from j1 to j2 corresponds a dual isogeny from j2 to j1. Isogeny graphs are
also very good expander graphs [24]; in fact they are optimal expander graphs in the
following sense.

4One needs to pay close attention to the cases j = 0 and j = 1728 when counting isogenies, but this has
no effect on our general schemes.
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Definition 1. (Ramanujan graph) Let G be a k-regular graph, and let k, λ2, · · · , λr be
the eigenvalues of the adjacency matrix sorted by decreasing order of the absolute value.
Then G is a Ramanujan graph if

λ2 ≤ 2
√

k − 1.

This is optimal by the Alon-Boppana bound: given a family {G N } of k-regular graphs as
above, and denoting by λ2,N the corresponding second eigenvalue of each graph G N , we
have lim infN→∞ λ2,N ≥ 2

√
k − 1. The Ramanujan property of isogeny graphs follows

from the Weil conjectures proved by Deligne [14,38].
Let p and � be as above, and let j be a supersingular invariant in characteristic p.

We define a random step of degree � from j as the process of randomly and uniformly
choosing a neighbour of j in the �-isogeny graph, and returning that vertex. For a
composite degree n = ∏

i �i , we define a randomwalk of degree n from j0 as a sequence
of j-invariants ji such that ji is a random step of degree �i from ji−1. We do not require
the primes �i to be distinct.
The output of random walks in expander graphs converges quickly to a uniform

distribution. In our signature scheme we will be using random walks of B-powersmooth
degree n, namely n = ∏

i �
ei
i , with all prime powers �

ei
i smaller than some bound B,

with B as small as possible. To analyse the output distribution of these walks we will
use the following generalization5 of classical random walk theorems [24].

Theorem 1. (Randomwalk theorem)Let p be a prime number, and let j0 be a supersin-
gular invariant in characteristic p. Let j be a random variable giving the final j-invariant
reached by a random walk of degree n = ∏

i �
ei
i from j0. Then for every j-invariant j̃

we have
∣
∣
∣
∣Pr[ j = j̃] − 1

Np

∣
∣
∣
∣ ≤

∏

i

(
2
√

�i

�i + 1

)ei

.

Proof. Let vt j be the probability that the outcome of the first t random steps is a given
vertex j , and let vt = (vt j ) j be vectors encoding these probabilities. Let v0 correspond
to an initial state of the walk at j0 (so that v0 j0 = 1 and v0 j = 0 for all j 
= j0). Let
A�i be the adjacency matrix of the �i -isogeny graph. Its largest eigenvalue is ki . By the
Ramanujan property the second largest eigenvalue is smaller than ki in absolute value,
so the eigenspace associated to λ1 = ki is of dimension 1 and generated by the vector
u := (N−1

p ) j corresponding to the uniform distribution. Let λ2i be the second largest
eigenvalue of A�i in absolute value.
If step t is of degree �i we have vt = 1

ki
A�i vt−1. Moreover we have ||vt − u||2 ≤

1
ki

λ2i ||vt−1 − u||2 since the eigenspace associated to ki is of dimension 1. Iterating on
all steps we deduce

||vt − u||2 ≤
∏

i

| 1ki
λ2i |ei ||v0 − u||2 ≤

∏

i

| 1ki
λ2i |ei

5Random walk theorems are usually stated for a single graph whereas our walks will switch from one
graph to another, all with the same vertex set but different edges.
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since ||v0 − u||22 = (1 − 1
Np

)2 + Np−1
Np

( 1
Np

)2 ≤ 1 − 2
Np

+ 2
N2

p
≤ 1. Finally we have

∣
∣
∣
∣Pr[ j = j̃] − 1

Np

∣
∣
∣
∣ = ||vt − u||∞ ≤ ||vt − u||2 ≤

∏

i

| 1ki
λ2i |ei ≤

∏

i

(
2
√

�i

�i + 1

)ei

,

where we have used the Ramanujan property to bound the eigenvalues. �

In our security proof we will want the right-hand term to be smaller than (p1+ε)−1

for an arbitrary positive constant ε, and at the same time we will want the powersmooth
bound B to be as small as possible. The following lemma shows that taking B ≈
2(1 + ε) log p suffices asymptotically.

Lemma 1. Let ε > 0. There is a function cp = c(p) such that lim p→∞ cp = 2(1+ε),
and, for each p,

∏

�i prime
ei :=max{e∈N|�e

i <cp log p}

(
�i + 1

2
√

�i

)ei

> p1+ε .

Proof. Let B be an integer. We have

∏

�i prime
ei :=max{e∈N|�e

i <B}

(
�i + 1

2
√

�i

)ei

>
∏

�i <B
�i prime

(
�i + 1

2
√

�i

)

>
∏

�i <B
�i prime

(√
�i

2

)

.

Taking logarithms, using the prime number theorem and replacing the sum by an integral
we have

log

⎛

⎜
⎜
⎝

∏

�i <B
�i prime

(√
�i

2

)
⎞

⎟
⎟
⎠ =

∑

�i <B
�i prime

1

2
log �i −

∑

�i <B
�i prime

log 2

≈ 1

2

∫ B

1
log x

1

log x
dx − log 2

B

log B
=

= 1

2
B − log 2

B

log B
≈ 1

2
B

if B is large enough.Taking B = c log(p)where c = 2(1+ε)gives 1
2 B = (1+ε) log p =

log(p1+ε) which proves the lemma. �

2.4. Efficient Representations of Isogeny Paths and Other Data

Our schemes require representing/transmitting elliptic curves and isogenies. In this sec-
tion we first explain how to represent certain mathematical objects appearing in our
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protocol as bitstrings in a canonical way so that minimal data needs to be sent and
stored. Next, we discuss different representations of isogeny paths and their impact on
the efficiency of our signature schemes. As these paths will be sent from one party to
another, the second party needs an efficient way to verify that the bitstring received
corresponds to an isogeny path between the right curves.
Let p be a prime number. Every supersingular j-invariant is defined over Fp2 . A

canonical representation of Fp2 -elements is obtained via a canonical choice of degree 2
irreducible polynomial over Fp. Canonical representations in any other extension fields
are defined in a similar way. Although there are only about p/12 supersingular j-
invariants in characteristic p, we are not aware of an efficient method to encode these
invariants into log p bits, so we represent supersingular j-invariants with the 2 log p bits
it takes to represent an arbitrary Fp2 -element.
Elliptic curves are defined by their j-invariant up to isomorphism. Hence, rather

than sending the coefficients of the elliptic curve equation, it suffices to send the j-
invariant. For any invariant j there is a canonical elliptic curve equation E j : y2 =
x3 + 3 j

1728− j x + 2 j
1728− j when j 
= 0, 1728, y2 = x3 + 1 when j = 0, and y2 = x3 + x

when j = 1728. If one needs a particular group order then onemight need to take a twist.
We now turn to representing chains E0, E1, . . . , En of isogenies φi : Ei−1 → Ei

each of prime degree �i where 1 ≤ i ≤ n. Here �i are always very small primes. A
useful feature of our protocols is that isogeny chains can always be chosen such that the
isogeny degrees are increasing �i ≥ �i−1. First we need to discuss how to represent the
sequence of isogeny degrees. If all degrees are equal to a constant � (e.g., � = 2) then it
is only necessary to state the length. If the degrees are different then the most compact
representation seems to be

N =
n∏

i=1

�i

which might be a global system parameter, or may be sent as part of the protocol. The
receiver can recover the sequence of isogeny degrees from N by factoring using trial
division and ordering the primes by size. This representation is possible due to our
convention the isogeny degrees are increasing and since the degrees are all small.
Now we discuss how to represent the curves themselves in the chain of isogenies. We

give several methods.

1. There are two naive representations. One is to send all the j-invariants ji = j (Ei )

for 0 ≤ i ≤ n. This requires 2(n + 1) log2(p) bits. Note that the verifier is able to
check the correctness of the isogeny chain by checking that Φ�i ( ji−1, ji ) = 0 for
all 1 ≤ i ≤ n, where Φ�i is the �i -th modular polynomial. The advantage of this
method is that verification is relatively quick (just evaluating a polynomial that can
be precomputed and stored).
The other naive method is to send the x-coordinate of a kernel point Pi ∈ E ji
on the canonical curve. Given ji−1 and the kernel point Pi−1 one computes the
isogeny φi on E ji−1 whose image is isomorphic to E ji using the Vélu formula and
hence deduces ji . Note that the kernel point is not unique and is typically defined
over an extension of the field. Both these methods require huge bandwidth.
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A refinement of the second method is used in our first signature scheme, where � is
fixed and one can publish a point that defines the kernel of the entire isogeny chain.
Precisely a curve E and points R, S ∈ E[�n] are fixed. Each integer 0 ≤ α < �n

defines a subgroup 〈R +[α]S〉 and hence an �n isogeny. It suffices to send α, which
requires log2(�

n) bits. In the case � = 2 this is just n bits, which is smaller than
all the other suggestions in this section.

2. One can improve upon the naive method in several simple ways. One method is to
send every second j-invariant. The Verifier accepts this as a valid path if, for all
odd integers i , the greatest common divisor over Fp2 [y]

gcd(Φ�i ( ji−1, y),Φ�i+1(y, ji+1))

is a non-constant polynomial, which will almost always be (y − ji ).
Another method is to send only some least significant bits (more than log2(�i + 1)
of them) of the ji instead of the entire value. The verifier can reconstruct the
isogeny path by factoring Φ�i ( ji−1, y) over Fp2 (it will always split completely in
the supersingular case) and then selecting ji to be the root that has the correct least
significant bits (depending on how many bits are used there may occassionally
be a non-unique choice of root, but considering the path globally the compressed
representation should lead to a unique sequence of j-invariants).

3. An optimal compressionmethod seems to be to define a well-ordering onFp2 (e.g.,
lexicographic order on the binary representation of the element). Instead of ji one
sends the index k such that when the �i + 1 roots of Φ�i ( ji−1, y) are written in
order, ji is the k-th root. It is clear that the verifier can reconstruct the value ji
and hence can reconstruct the whole chain from this information. The sequence of
integers k can be encoded as a single integer in terms of a “base

∏i
j=1(�i + 1)”

representation.
If the walk is non-backtracking and the primes �i are repeated then one can remove
the factor (y − ji−2) that corresponds to the dual isogeny of the previous step, this
can save some bandwidth.
We call thismethod “optimal” since it is hard to imagine doing better than log2(�i +
1) bits for each step in general,6 though we have no proof that one cannot do better.
However, note that the verifier now needs to perform polynomial factorisation,
which may cause some overhead in a protocol. Note that in the case where all
�i = 2 and the walk is non-backtracking then this method also requires n bits,
which matches the method we use in our first signature scheme (mentioned in item
1 above).

4. A variant of the optimal method is to use an ordering on points/subgroups rather
than j-invariants. At each step one sends an index k such that the isogeny φ :
Ei−1 → Ei is defined by the k-th cyclic subgroup of E ji−1[�i ]. Again the verifier
can reconstruct the path, but this requires factoring �i -division polynomials.
To be precise: Given a canonical ordering on the field of definition of E[�], one
can define a canonical ordering of the cyclic kernels, hence represent them by a

6In the most general case, when all primes �i are distinct, then there are
∏

i (�i +1) possible isogeny paths
and thus one cannot expect to represent an arbitrary path using fewer than log2(

∏
i �i ) bits.



S. D. Galbraith et al.

single integer in {0, . . . , �}. One can extend this canonical ordering to kernels of
composite degrees in various simple ways (see also [3, Section 3.2]). If two curves
are connected by two distinct isogenies of the same degree then either one can be
chosen (it makes no difference in our protocols), so the ambiguity in exceptional
cases is never a problem for us.
In practice, since these points may be defined over an extension of Fp2 , we believe
that ordering the roots of Φ�i ( ji−1, y) is significantly more efficient than ordering
kernel subgroups.

Finally we give a brief analysis of the complexity of the basic operations required for
our schemes, assuming fast (quasi-linear) modular and polynomial arithmetic.
As discussed above, an isogeny step of prime degree � can be described by a single

integer in {0, . . . , �}. Similarly, by combining integers in a product, an isogeny of degree∏
i �

ei
i can be described by a single positive integer smaller than

∏
i (�i +1)ei . This integer

can define either a list of subgroups (specified in terms of some ordering), or a list of
supersingular j-invariants (specified in terms of an ordering on the roots of the modular
polynomial). In the first case, at each step the verifier, given a j-invariant, will need to
compute the curve equation, then its full �i torsion (which may be over a large field
extension), then to sort with respect to some canonical ordering the cyclic subgroups
of order �i to identify the correct one, and finally to compute the next j-invariant with
Vélu’s formulae [44]. In the second case, at each step the verifier, given a j-invariant,
will need to specialize one variable of the �i -th modular polynomial, then to compute all
roots of the resulting univariate polynomial and finally to sort the roots to identify the
correct one. The second method is more efficient as it does not require running Vélu’s
formulae over some large field extension, and the root-finding and sorting routines are
applied on smaller inputs. We assume that the modular polynomials are precomputed.
In our second signature scheme we will have �

ei
i = O(log p). The cost of computing

an isogeny increases with the size of �i . Hence it suffices to analyse the larger case, for
which ei = 1 and �i = O(log p). Assuming precomputation of themodular polynomials
and using [46] for polynomial factorization, the most expensive part of an isogeny step
is evaluating the modular polynomials Φ�i (x, y) at x = ji−1. As these polynomials are
bivariate with degree �i in each variable they have O(�2i )monomials and so this requires
O(log2 p) field operations for a total cost of Õ(log3 p) bit operations since j-invariants
are defined overFp2 . In our first signature scheme based on the De Feo-Jao-Plût protocol

we have �i = O(1) so each isogeny step costs Õ(log p) bit operations.
Alternatively, isogeny paths can be given as a sequence of j-invariants. To verify

the path is correct one must compute Φ�i ( ji−1, ji ), which still requires Õ(log3 p) bit
operations. However, in practice it would be much quicker to not require root-finding
algorithms. Also, all the steps can be checked in parallel, and all the steps of a same
degree are checked using the same polynomial, so we expect many implementation
optimizations to be possible.

2.5. Identification Schemes and Security Definitions

In this section we recall the standard cryptographic notions of sigma-protocols and
identification schemes. Good general references are Chapter 8 of Katz [28] and the
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lecture notes of Damgård [13] and Venturi [41]. A sigma-protocol is a three-round proof
of knowledge of a relation. An identification scheme is an interactive protocol between
two parties (a Prover and a Verifier). We use the terminology and notation of Abdalla-
An-Bellare-Namprempre [1] (also see Bellare-Poettering-Stebila [5]).We also introduce
a notion of “recoverability” which is implicit in the Schnorr signature scheme and seems
to be folklore in the field. All algorithms below are probabilistic polynomial-time (PPT)
unless otherwise stated.

Definition 2. Let λ be a security parameter and let X = X (λ) and Y = Y (λ) be sets.
Let R be a relation onY ×X that defines a language L = {y ∈ Y : ∃x ∈ X, R(y, x) = 1}.
Given y ∈ L , an element x ∈ X such that R(y, x) = 1 is called a witness. Let K be a
PPT algorithm such that K (1λ) outputs pairs (y, x) such that R(y, x) = 1.

A sigma-protocol for the relation R is a 3-round interactive protocol between a prover
P and a Verifier V . Both P and V are PPT algorithms with respect to the parameter λ.
The prover holds a witness x for y ∈ L and the verifier is given y. The prover first sends a
value α (the commitment) to the verifier, the verifier responds with a challenge β (chosen
fromsome set of possible challenges), and the prover answerswithγ . The verifier outputs
1 if it accepts the proof and zero otherwise. The triple (α, β, γ ) is called a transcript.
Formally the protocol runs as α ← P(y, x); β ← V(y, α); γ ← P(y, x, α, β); b ←
V(y, α, β, γ ) is such that b ∈ {0, 1}.

A sigma-protocol is complete if the verifier outputs 1 with probability 1. A transcript
for which the verifier outputs 1 is called a valid transcript.
A sigma-protocol is 2-special sound if there is an extractor algorithm X such that

for any y ∈ L , given two valid transcripts (α, β, γ ) and (α, β ′, γ ′) for the same first
message α but β ′ 
= β, then X (y, α, β, γ, β ′, γ ′) outputs a witness x for the relation.
A sigma-protocol is honest verifier zero-knowledge (HVZK) if there is an efficient

simulator S that on input y ∈ L generates valid transcripts (α, β, γ ) that are distributed
identically to the transcripts of the real protocol. Formally, there exists a PPT simulator
S such that for all PPT adversaries A, we have

|Pr[(y, x) ← K (1λ); (α, st′) ← P(y, x); (β, st) ← A(y);
γ ← P(y, x, st′, α, β) : A(st, y, α, γ ) = 1]

− Pr[(y, x) ← K (1λ); (β, st) ← A(y); (α, γ ) ← S(y, β) : A(st, y, α, γ ) = 1]|
≤ negl(λ).

An identification (ID) scheme is an interactive protocol between two parties (a Prover
and a Verifier), where the Prover aims to convince the Verifier that it knows some secret
without revealing anything about it. This is achieved by the Prover first committing to
some value, then the Verifier sending a challenge, and finally the Prover computing a
response that depends on the commitment, the challenge and the secret.

Definition 3. A canonical identification scheme is ID = (K ,P,V, c) where K is a
randomised algorithm (key generation) that on input a security parameter λ outputs a
pair (pk, sk);P is an algorithm taking input sk, random coins r and state information st,
that returns a message; c is the length of the challenge (a function of the parameter k);
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and V is a deterministic verification algorithm that takes as input pk and a transcript and
outputs 0 or 1. A transcript of an honest execution of the scheme ID is the sequence:
cmt ← P(sk, r), ch ← {0, 1}c, rsp ← P(sk, r, cmt, ch). On an honest execution we
require that V(pk, cmt, ch, rsp) = 1.

An impersonator for ID is an algorithm I that plays the following game: I takes
as input a public key pk and a set of transcripts of honest executions of the scheme
ID; I outputs cmt, receives ch ← {0, 1}c and outputs rsp. We say that I wins if
V(pk, cmt, ch, rsp) = 1. The advantage of I is |Pr(I wins) − 1

2c |. We say that ID is
secure against impersonation under passive attacks if the advantage is negligible for all
probabilistic polynomial-time adversaries.
An ID-scheme ID is non-trivial if c ≥ λ.
An ID-scheme is recoverable if there is a deterministic algorithm Rec such that for

any transcript (cmt, ch, rsp) of an honest execution we have Rec(pk, ch, rsp) = cmt.

One can transformany2-special sound ID scheme into a non-trivial schemeby running
t sessions in parallel, and this is secure for classical adversaries (see Section 8.3 of [28]).
We will not need this result in the quantum case. One first generates cmti ← P(pk, sk)

for 1 ≤ i ≤ t . One then samples ch ← {0, 1}ct and parses it as chi ∈ {0, 1}c for
1 ≤ i ≤ t . Finally one computes rspi ← P(pk, sk, cmti , chi ). We define

V(pk, cmt1, · · · , cmtt , ch, rsp1, · · · , rspt ) = 1

if and only if V(pk, cmti , chi , rspi ) = 1 for all 1 ≤ i ≤ t . The successful cheating
probability is then improved to 1/2ct , which is non-trivial when t ≥ λ/c.
An ID-scheme is a special case of a sigma-protocol with respect to the relation defined

by the instance generator K as (pk, sk) ← K , where we think of sk as a witness for pk.
More generally, any sigma-protocol for a relation of a certain type can be turned into an
identification scheme.

Definition 4. (Definition 6 of [41]; Section 6 of [13]; Definition 15 of [40], where it is
called “hard instance generator”) A hard relation R on Y × X is one where there exists
a PPT algorithm K that outputs pairs (y, x) ∈ Y × X such that R(y, x) = 1, but for all
PPT adversaries A

Pr[(y, x) ← K (1λ); x ′ ← A(y) : R(y, x ′) = 1] ≤ negl(λ).

The following result is essentially due to Feige, Fiat and Shamir [18] and has become
folklore in this generality. For the proof see Theorem 5 of [41].

Theorem 2. Let R be a hard relation with generator K and let (P,V) be the prover and
verifier in a sigma-protocol for R with c-bit challenges for some integer c ≥ 1. Suppose
the sigma-protocol is complete, 2-special sound, and honest verifier zero-knowledge.
Then (K ,P,V, c) is a canonical identification scheme that is secure against imperson-
ation under (classical) passive attacks.
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Proof. The only difference between the sigma protocol and the ID-scheme is a change
of notation from (y, x) ← K (1λ) to (pk, sk) ← K (1λ), α to cmt, β to ch and γ to rsp.
For details see Theorem 5 of [41]. �

2.6. Signatures and the Fiat-Shamir Transform

For signature schemes we use the standard definition of existential unforgeability under
chosen message attacks [29] (we sometimes abbreviate this to secure). An adversary
can ask for polynomially many signatures of messages of his choice to a signing oracle
Signsk(·). Then, the attack is considered successful if the attacker is able to produce a
valid pair of message and signature for a message different from those queried to the
oracle.

Definition 5. A signature scheme Π = (Gen,Sign,Verify) is said to be existentially
unforgeable under adaptive chosen-message attacks (or secure, for short) if for all prob-
abilistic polynomial time adversaries A with access to Signsk(·),

∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎣

(pk, sk) ← Gen(1λ);
(m, σ ) ← ASignsk(·)(pk) :
Verifypk(m, σ ) = 1 and m 
∈ Q

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

≤ negl(λ).

whereQ is the set of messages queried byA to the Signsk oracle, and #Q is polynomial
in λ.

We now discuss the Fiat-Shamir transform [20] to build a signature scheme from an
identification scheme. The idea is to make the interactive protocol ID = (K ,P,V, c)
non-interactive by using a randomoracle to produce the challenges. Suppose the protocol
ID must be executed in parallel t times to be non-trivial (with soundness probability
1/2tc). Let H be a random oracle that outputs a bit string of length ct .

– (pk, sk) ← K (λ): this is the same as in the identification protocol. The public key
and secret key are the public key and the secret key from key generation algorithm
K of the identification protocol.

– Sign(sk, m): Compute the commitments cmti ← P(sk, ri ) for 1 ≤ i ≤ t .
Compute h = H(m, cmt1, · · · , cmtt ). Parse h as the t values chi ∈ {0, 1}c.
Compute rspi ← P(sk, ri , cmti , chi ) for 1 ≤ i ≤ t . Output the signature
σ = (cmt1, . . . , cmtt , rsp1, . . . , rspt ).

– Verify(m, σ, pk): compute h = H(m, cmt1, · · · , cmtt ). Parse h as the t values
chi ∈ {0, 1}c. Check that V(pk, cmti , chi , rspi ) = 1 for all 1 ≤ i ≤ t . If V returns
1 for all i then output 1, else output 0.

Abdalla-An-Bellare-Namprempre [1] (also see Bellare-Poettering-Stebila [5]) have
proved the security of the Fiat-Shamir transform to a high degree of generality.

Theorem 3. ([1]) Let ID be a non-trivial canonical identification protocol that is
secure against impersonation under passive attacks. Let S be the signature scheme
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derived from ID using the Fiat-Shamir transform. Then S is secure against chosen-
message attacks in the random oracle model.

Remark 1. If the ID-scheme ID is recoverable then one can obtain a more com-
pact signature scheme. Recall that “recoverable” (Definition 3) means there is a deter-
ministic algorithm Rec such that for any transcript of an honest execution we have
Rec(pk, ch, rsp) = cmt. We now describe the signature scheme.

– (pk, sk) ← K (λ).
– Sign(sk, m): Compute the commitments cmti ← P(sk, ri ) for 1 ≤ i ≤ t .
Compute h = H(m, cmt1, · · · , cmtt ). Parse h as the t values chi ∈ {0, 1}c.
Compute rspi ← P(sk, ri , cmti , chi ) for 1 ≤ i ≤ t . Output the signature
σ = (h, rsp1, . . . , rspt ).

– Verify(m, σ, pk): Parse h as the t values chi ∈ {0, 1}c. Compute cmti =
Rec(pk, chi , rspi ) for 1 ≤ i ≤ t . Check that h = H(m, cmt1, · · · , cmtt ) and
that V(pk, cmti , chi , rspi ) = 1 for all 1 ≤ i ≤ t . If V returns 1 for all i then output
1, else output 0.

An attacker against this signature scheme can be turned into an attacker on the original
signature scheme (andvice versa),which shows that both schemeshave the same security.
This is addressed in the following result.

Theorem 4. Let ID be a non-trivial canonical recoverable identification protocol that
is secure against impersonation under passive attacks. Let S be the signature scheme
derived from ID using the Fiat-Shamir transform of Remark 1. Then S is secure against
chosen-message attacks in the random oracle model.

Proof. Let A be an algorithm that forges signatures against the signature scheme of
Remark 1. We will convert A into an algorithm B that forges signatures for the original
Fiat-Shamir signature scheme that is proved secure in Theorem 3.

Let B be given as input a public key pk, and call A on that key. When A makes a
sign query or a hash query, pass these on as queries made by B. Results of hash queries
are forwarded to A. When B gets back a signature (cmt1, . . . , cmtt , rsp1, . . . , rspt )

for message m we compute h = H(m, cmt1, . . . , cmtt , ) and return to A the signature
σ = (h, rsp1, . . . , rspt ).
Finally A outputs a forgery σ ∗ = (h∗, rsp∗

1, . . . , rsp
∗
t ) on message m. This is differ-

ent from previous outputs of the sign oracle, which means that σ 
= (h, rsp1, . . . , rspt )

for every output of the sign oracle. Note that this non-equality means either rsp∗
i 
=

rspi for some i or h 
= h∗. Parse h∗ as a sequence of challenges ch∗
i . Compute

cmt∗
i = Rec(pk, ch∗

i , rsp
∗
i ) for 1 ≤ i ≤ t and return (cmt∗

1, . . . , cmt
∗
t , rsp

∗
1, . . . , rsp

∗
t )

as a forgery on message m for the original scheme. We claim that this is also dis-
tinct from all other signatures that have been returned to B: if equal to some previ-
ous signature (cmt1, . . . , cmtt , rsp1, . . . , rspt ) on message m then rsp∗

i = rspi and
h∗ = H(m, cmt∗

1, . . . , cmt
∗
t ) = h, which violates the fact that σ ∗ was a valid forgery

on m. �
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Remark 2. The question of the output length t of the hash function depends on the
security requirements. The conservative choice in the classical setting is t = 2λ, to
avoid generic collision attacks. However, in the Fiat-Shamir transform the hash value
is h = H(m, cmt1, · · · , cmtt ). To construct an existential forgery when given a
signing oracle (or to break non-repudiation) it is sufficient to generate random com-
mitments cmt1, · · · , cmtt and then find a collision in the hash function H ′(x) =
H(x, cmt1, · · · , cmtt ). For a chosen-message forgery or non-repudiation it is necessary,
given a chosen message m, to find a second message m′ with H(m, cmt1, · · · , cmtt ) =
H(m′, cmt1, · · · , cmtt ), which is essentially computing a second-preimage in the hash
function. As a result, in most practical settings and if H behaves like a random oracle,
then one can take t = λ. This optimisationwas alreadymentioned in the original paper on
Schnorr signatures, and has been discussed in detail by Neven-Smart-Warinschi [34]. It
is known (see Section 6.2 of [7]) that sponge hash functions behave like a random oracle,
as do truncatedMerkle-Hellman functions. Hence, with a well-chosen hash function one
can take t = λ. On the other hand, t = λ would not be sufficient for Merkle-Damgård
functions [31,34].

2.7. Post-Quantum Alternatives To Fiat-Shamir

If one considers a quantum adversary who can make quantum queries to the random
oracle then arguments in the classical random oraclemodel are not necessarily sufficient.
Fortunately, an alternative transform was recently provided by Unruh [40], which con-
verts a sigma-protocol into a signature scheme that is secure against a quantumadversary.
The transform is also discussed by Goldfeder, Chase and Zaverucha [23].
Definition 17 of [40] gives a notion of security for signature schemes in the quantum

random oracle model. The definition is identical to Definition 5 except that queries to
the hash function (random oracle) may be quantum (note that queries to the Sign oracle
remain classical).
We now set the scene for Unruh’s transform. Let K be a generator for a hard relation

as in Definition 4. Let P and V be a sigma-protocol for the relation, where the set of
challenges is {0, 1}c and where 2c is polynomial in the security parameter. Suppose the
sigma-protocol is complete, n-special sound, and honest verifier zero-knowledge. Let t
be a parameter so that 2ct is exponential in the security parameter and let H : {0, 1}∗ →
{0, 1}tc be a hash function that will be modelled as a random oracle. Let Γ be the set
of possible responses γ (also denoted rsp) in the sigma-protocol. The transform also
requires a quantum random oracle G : Γ → Γ which should be injective or at least be
such that every element has at most polynomially many pre-images.
Unruh first gives a construction for a NIZK proof (Figure 1 of [40]) and then gives

a construction for a signature scheme (Definition 16 of [40]). We collapse these into a
single transform and use an optimisation from [23], essentially to define the challenges
to be fixed bitstrings j = chi, j so that they do not need to be hashed or checked.

– Gen(1λ): (pk, sk) ← K (1λ).
– Sign(sk, m): Compute the commitments cmti ← P(pk, sk) for 1 ≤ i ≤ t .
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Now, for each i and all 0 ≤ j < 2c set chi, j to be the binary representation of j .
In other words {chi, j : 0 ≤ j < 2c} is the set of all c-bit binary strings, and so is
the set of all possible challenges.
For all 1 ≤ i ≤ t and 0 ≤ j < 2c compute rspi, j ← P(pk, sk, cmti , chi, j ) and
gi, j = G(rspi, j ) (note that this is t2c values).
Let T (the transcript) be a bitstring representing all commitments, challenges7 and
the values gi, j , so that

T = (cmt1, . . . , cmtt , g1,0, . . . , gt,2c−1).

Let h = H(pk, m, T ) and parse it as ch1, . . . , cht where each value is in {0, 1}c.
More precisely, write Ji for the integer whose binary representation is the i-th block
of c bits in the hash value so that chi = chi,Ji . The signature is

σ = (T, rsp1,J1, . . . , rspt,Jt ).

– Verify(m, σ, pk): Compute h = H(pk, m, T ) and parse it as t integers J1, . . . , Jt .
Check that the challenges are correctly formed in T , that gi,Ji = G(rspi,Ji ), and
that V(pk, cmti , chi,Ji , rspi,Ji ) = 1 for all 1 ≤ i ≤ t . If all checks are correct then
output 1, else output 0.

Theorem 5. ([40]) Let R be a hard relation with generator K and let (P,V) be the
prover and verifier in a sigma-protocol for R with c-bit challenges for some integer
c ≥ 1. Suppose the sigma-protocol is complete, n-special sound, and honest verifier
zero-knowledge. Then the signature scheme obtained by applying the Unruh transform
is existentially unforgeable under an adaptive chosen-message attack in the quantum
random oracle model.

Proof. Apply Theorems 10, 13 and 18 of [40]. �

If the scheme is recoverable then the signature may be compressed in size by comput-
ing cmti = Rec(pk, chi,Ji , rspi,Ji ) for 1 ≤ i ≤ t . However, compared with the original
Fiat-Shamir transform, the saving in signature size is negligible since it is necessary to
send all the gi, j as part of the signature.

Remark 3. In Unruh [40] the set Γ is of a fixed size and all responses have the same
length. The quantum random oracle G is used to commit to all responses at the same
time, and its domain and image sets have the same size to ensure that G is binding in
an unconditional or at least statistical sense (i.e. a computationally binding commitment
would not suffice). In our protocols however, the challenges are just one bit, and the
responses to challenges 0 and 1 have different lengths. We therefore use two quantum
random oracles G0 and G1 to hide responses to challenges 0 and 1 respectively.

7It is not necessary to send the challenges when they are just all c-bit strings in lexicographic order.
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Remark 4. In practice we will replace the random oracle by a concrete hash function
with a certain output length t . The correct choice of t in the quantum setting is still a
subject of active research. As mentioned in Remark 2, a first question is whether one
is concerned with chosen-message forgery/repudiation. The next question is to what
extent quantum algorithms speed up collision finding. The third question is to consider
a concrete analysis of the security proof for Unruh’s transform, and any other factors in
the security reduction that may be influenced by the hash output size. One conservative
option is to assume that Grover’s algorithm gives the maximal speedup for quantum
algorithms, in which case one could take t = 3λ to ensure collision-resistance. Bernstein
[6] has questioned the practicality of quantum collision-finding algorithms. Following
his arguments, Goldfeder, Chase and Zaverucha [23] chose t = 2λ, and a similar choice
was made in Yoo et al. [49]. On the other hand, Beals et al. [4] suggest there may be a
quantum speedup that would require increasing t .

We keep t as a parameter that can be adjusted as more information comes to light.
The tables in Section 4.7 are computed using the conservative choice t = 3λ.

2.8. Heuristic Assumptions used in this Paper

This paper makes use of several heuristic assumptions. All these assumptions say that
some forms of the following approximations are valid.

Approximation 1. LetN1 be a set and letN2 ⊂ N1. Let χ be a probability distribution
on N1. We approximate Pr[x ∈ N2 | x ← χ ] by |N2|/|N1|.

In several cases,N1 will be the set of positive integers up to some bound, andN2 will
be a subset of integers with some factorization pattern. In this case, we will approximate
|N2|/|N1| by the value naturally expected from the density of primes.

Approximation 2. Let B be a positive integer and let N1 := {1, 2, . . . , B}. Let N2 ⊂
N1 be the subset of integers in N1 satisfying some factorization pattern. We approximate
Pr[x ∈ N2 | x ← χ ] by the expected value of |N2|/|N1| following the density of primes.

More precisely:

– In Section 4.3, Step 2c, the existence of β2 is guaranteed if some linear system is
invertible over ZN . Here N is an integer of cryptographic size, and the system is
randomized through the selection of α and β1 in Steps 2a and 2b. We assume that
the probability of having a non invertible system is negligible.

– In Lemma 6, we generate candidates for the ideals Ii according to some distribution
on the set of solutions of a quadratic form. Here there are O(log p) candidate ideals,
and we assume that only O(log p) trials are needed to find the correct one.

– In Section 4.3, Step 1, we construct a random element in an ideal I according to a
specific distribution, and assume the reduced norm of this element will be a prime
with a probability as given by the prime number theorem.
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– In Section 4.3, Steps 2b and 2d, we generate integer elements according to a specific
distribution, andwe assume that the probability that these numbers are “Cornacchia-
nice” (in the sense that Cornacchia’s algorithm will run efficiently on them, which
translates into some factorization pattern) only depends on their size, and is as
expected for numbers of these sizes.

All assumptions except for the second one come from our use of (the powersmooth
variant of) the quaternion isogeny algorithm in [33].
We expect that the first two assumptions above can be removed with a finer analysis,

maybe together with some minor algorithmic changes and a moderate efficiency loss.
In the case of the second assumption, trying all possible solutions to the quadratic form
will maintain a polynomial complexity, though of a slightly bigger degree. One might
then reduce that degree by exploiting the structure of all solutions leading to the same
ideals.
On the other hand, a rigorous proof for the remaining assumptions seem to be beyond

the reach of existing analytic number theory techniques. We stress that these sorts of
assumptions are generally believed to be true by analytic number theory experts “unless
there is a good reason for them to be false”, such as some congruence condition. In the
later case, we expect that simple tweaks to our algorithms will restore their correctness
and improve their complexity.

3. First Signature Scheme

This section presents a signature scheme obtained from the interactive identification
protocol of De Feo-Jao-Plût [19]. First we describe their scheme. The independent work
[49] presents a signature scheme which is obtained in the same way, by applying the
Fiat-Shamir or Unruh transformation to the De Feo-Jao-Plût identification protocol.
Nevertheless, in this paper we obtain a smaller signature size.

3.1. De Feo-Jao-Plût Identification Scheme

Let p be a large prime of the form �
e1
1 �

e2
2 f ± 1, where �1, �2 are small primes (typically

�1 = 2 and �2 = 3). We start with a supersingular elliptic curve E0 defined over Fp2

with #E0(Fp2) = (�
e1
1 �

e2
2 f )2 and a primitive �

e1
1 -torsion point P1. Define E1 = E0/〈P1〉

and denote the corresponding �
e1
1 -isogeny by ϕ : E0 → E1.

Let R2, S2 be a pair of generators of E0[�e2
2 ]. The public key is (E0, E1, R2, S2,

ϕ(R2), ϕ(S2)). The private key is the point P1. The interaction goes as follows:

1. The prover chooses a random primitive �
e2
2 -torsion point P2 as P2 = a R2+bS2 for

some integers 0 ≤ a, b < �
e2
2 . Note that ϕ(P2) = aϕ(R2) + bϕ(S2). The prover

defines the curves E2 = E0/〈P2〉 and E3 = E1/〈ϕ(P2)〉 = E0/〈P1, P2〉, and uses
Vélu’s formulae to compute the following diagram.
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E0 E1

E2 E3

ϕ

ψ ′ψ

ϕ′

The prover sends E2 and E3 to the verifier.
2. The verifier challenges the prover with a random bit ch ← {0, 1}.
3. If ch = 0, the prover reveals P2 and ϕ(P2) (for example by sending the integers

(a, b)).
If ch = 1, the prover reveals ψ(P1).

In both cases, the verifier accepts the proof if the points revealed have the right order
and are the kernels of isogenies between the right curves. We iterate this process to
reduce the cheating probability.
Note that the response to challenge 0 is two points while the response to challenge 1 is

one point. In otherwords, at first sight, the responses have different lengths. Compression
techniques can be used in this case to ensure that responses all have the same length (see
Section 4.2 of [49]).
The following theorem is the main security result for this section. The basic ideas of

the proof are by De Feo-Jao-Plût [19], but we give a slightly different formalisation that
is required for our signature proof.

Theorem 6. If Problems 3 and 4 are computationally hard, then the interactive proto-
col defined above, repeated t times in parallel for a suitable parameter t , is a non-trivial
canonical identification protocol that is secure against impersonation under passive
attacks.

Proof. It is straightforward to check that the scheme is correct (in otherwords, the sigma
protocol is complete). We now show that parallel executions of the sigma protocol are
sound and honest verifier zero knowledge.
For soundness: Suppose A is an adversary that takes as input the public key and

succeeds in the identification protocol with noticeable probability ε. Given a challenge
instance (E0, E1, R1, S1, R2, S2, ϕ(R2), ϕ(S2)) for Problem 3 we run A on this tuple
as the public key. In the first round, A outputs commitments (Ei,2, Ei,3) for 1 ≤ i ≤ t .
We then send a challenge ch ∈ {0, 1}t to A and, with probability ε outputs a response
rsp that satisfies the verification algorithm. Now, we use the standard replay technique:
Rewind A to the point where it had output its commitments and then respond with a
different challenge ch′ ∈ {0, 1}t . With probability ε, A outputs a valid response rsp′.

Now, choose some index i such that chi 
= ch′
i . We now restrict our focus to the

components cmti , rspi and rsp′
i . It meansA sent E2, E3 and can answer both challenges

ch = 0 and ch = 1 successfully. Hence we have an explicit description of the isogenies
ψ,ψ ′ and ϕ′ in the following diagram.
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E0 E1

E2 E3

ϕ

ϕ̃

ψ ′ψ

ϕ′

From this, one has an explicit description of an isogeny ϕ̃ = ψ̂ ′ ◦ ϕ′ ◦ ψ from E0 to
E1. The degree of ϕ̃ is �

e1
1 �

2e2
2 . One can determine ker(ϕ̃)∩ E0[�e1

1 ] by iteratively testing
points in E0[� j

1] for j = 1, 2, . . . . Hence, one determines the kernel of ϕ, as desired.
This proves soundness.
Now we show honest verifier zero-knowledge. For this it suffices to show that one

can simulate transcripts of the protocol without knowing the private key. When b = 0
we simulate correctly by choosing u, v ∈ Z

�
e2
2

and setting E2 = E0/〈u R2 + vS2〉
and E3 = E1/〈uϕ(R2) + vϕ(S2)〉. When b = 1 we choose a random curve E2 and
a random point R ∈ E2[�e1

1 ] and we publish E2, E3 = E2/〈R〉 and answer with the
point R (hence defining the isogeny). Although (E2, E3) are a priori not distributed
correctly, the computational assumption of Problem 4 implies it is computationally hard
to distinguish the simulation from the real game. Hence the scheme has computational
zero knowledge.
Finally we prove the identification scheme is secure against impersonation under

passive attacks. Let I be an impersonator for the scheme. Given a challenge instance
(E0, E1, R1, S1, R2, S2, ϕ(R2), ϕ(S2)) for Problem 3 we run I on this tuple as the pub-
lic key. We are required to provide I with a set of transcripts of honest executions
of the scheme, but this is done using the simulation method used to show the sigma
protocol has honest verifier zero knowledge. If I is able to succeed in its imperson-
ation game then it breaks the soundness of the sigma protocol. We have already shown
that if an adversary can break soundness then we can solve Problem 3. This completes
the proof. �

3.2. Classical Signature Scheme based on De Feo-Jao-Plût Identification Protocol

One can apply the Fiat-Shamir transform from Section 2.6 to the De Feo-Jao-Plût iden-
tification scheme to obtain a signature scheme. One can also check that the scheme is
recoverable and so one can apply the Fiat-Shamir variant from Remark 1. In this section
we fully specify the signature scheme resulting from the transform of Remark 1, together
with some optimisations.
Our main focus is to minimise signature size. Hence, we use the most space-efficient

variant of the Fiat-Shamir transform. Next we need to consider how to minimise the
amount of data that needs to be sent to specify the isogenies. Several approaches were
considered in Section 2.4. For the pair of vertical isogenies it seems to bemost compact to
represent them using a representation of the kernel (this is more efficient than specifying
two paths in the isogeny graph), however this requires additional points in the public
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key. For the horizontal isogeny there are several possible approaches, but we think the
most compact is to use the representation in terms of specifying roots of the modular
polynomial. One can easily find other implementations that allow different tradeoffs of
public key size versus signature size.

Key Generation Algorithm: On input a security parameter λ generate a prime p with at
least 4λ bits, such that p = �

e1
1 �

e2
2 f ±1,with �1, �2, f small (ideally f = 1, �1 = 2, �2 =

3) and �
e1
1 ≈ �

e2
2 . Choose8 a supersingular elliptic curve E0 with #E0(Fp2) = (�

e1
1 �

e2
2 f )2

and j-invariant j0. Fix points R2, S2 ∈ E0(Fp2)[�e2
2 ] and a random primitive �

e1
1 -torsion

point P1 ∈ E0[�e1
1 ]. Compute the isogeny ϕ : E0 → E1 with kernel generated by P1,

and let j1 be the j-invariant of the image curve. Set R′
2 = ϕ(R2), S′

2 = ϕ(S2). Choose a
hash function H with t = 2λ bits of output (see Remark 2). The secret key is P1, and the
public key is (p, j0, j1, R2, S2, R′

2, S′
2, H). One can reduce the size of the public key by

using different representations of isogeny paths, but for simplicity we use this variant.

Signature Algorithm: For i = 1, . . . , t , choose random integers 0 ≤ αi < �
e2
2 . Compute

the isogenyψi : E0 → E2,i with kernel generated by R2+[αi ]S2 and let j2,i = j (E2,i ).
Compute the isogeny ψ ′

i : E1 → E3,i with kernel generated by R′
2 + [αi ]S′

2 and let
j3,i = j (E3,i ). Compute h = H(m, j2,1, . . . , j2,t , j3,1, . . . , j3,t ) and parse the output
as t challenge bits bi . For i = 1, . . . , t , if bi = 0 then set zi = αi . If bi = 1 then compute
ψi (P1) and compute a representation zi of the j-invariant j2,i ∈ Fp2 and the isogeny
with kernel generated by ψi (P1) (for example, as a sequence of integers representing
which roots of the �1-division polynomial to choose at each step of a non-backtracking
walk, or using a compact representation of ψi (P1) in reference to a canonical basis of
E2,i [�e1

1 ]). Return the signature σ = (h, z1, . . . , zt ).

Verification Algorithm: On input a message m, a signature σ and a public key P K ,
recover the parameters p, E0, E1. For each 1 ≤ i ≤ t , using the information provided
by zi , one recomputes the j-invariants j2,i , j3,i . In the case bi = 0 this is done using
zi = αi by computing the isogeny from E0 with kernel generated by R2 + [αi ]S2 and
the isogeny from E1 with generated by R′

2 + [αi ]S′
2. When bi = 1 then the value j2,i is

provided as part of zi , together with a description of the isogeny from E2,i to E3,i .
One then computes

h′ = H(m, j2,1, . . . , j2,t , j3,1, . . . , j3,t )

and checks that the value equals h from the signature. The signature is accepted if this
is true and is rejected otherwise.

Theorem 7. If Problems 3 and 4 are computationally hard then the first signature
scheme is secure in the random oracle model under a chosen message attack.

Proof. This follows immediately from Theorem 4, Theorem 2 and Theorem 6. �

8Costello-Longa-Naehrig [12] choose a special j-invariant in Fp for efficiency reasons in their implemen-
tation of the supersingular key exchange protocol. One could also choose a random j-invariant by performing
a random isogeny walk from any fixed j-invariant.
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Efficiency: As isogenies are of degree roughly
√

p, the scheme requires to use primes p
of size 4λ to defeat meet-in-the-middle attacks. Assuming H is some fixed hash function
and therefore not sent, the secret key is simply x(P1) ∈ Fp2 . A trivial representation
requires 2 log p = 8λ bits; however with a canonical ordering of the cyclic subgroups
this can be reduced to 1

2 log p = 2λ bits.
The public key is p and then j0, j1, x(R2), x(S2), x(R′

2), x(S′
2) ∈ Fp2 which requires

13 log2(p) ≈ 52λ bits. The values of j0, x(R2) and x(S2) can be canonically fixed by
the protocol, in which case the public key is only 7 log p ≈ 28λ bits. The values of
x(R′

2) and x(S′
2) can also be avoided but at the expense of larger signature sizes. The

signature size is analysed in Lemma 2.
De Feo et al [19] showed how to compute an �e-isogeny in around e log(e) expo-

nentiations/Vélu computations using what they call an “optimal strategy”. Assuming
quasi-linear cost Õ(log(p2)) = Õ(λ) for the field operations, the total computational
complexity of the signing and verifying algorithms is Õ(λ3) bit operations.

Lemma 2. The average signature size of this scheme is

t + t
2�log2(�e2

2 )� + t
2

(
2�log2(p)� + �log2(�e1

1 )�) ≈ 6λ2

bits.

Proof. On average half the bits bi of the hash value are zero and half are one. When
bi = 0 we send an integer αi such that 0 ≤ αi < �

e2
2 , which requires �log2(�e2

2 )� ≈ 2λ
bits. When bi = 1 we need to send j2,i ∈ Fp2 , which requires 2�log2(p)� bits, followed
by a representation of the isogeny. One can represent a generator of the kernel of the
isogeny with respect to some canonical generators P ′

1, Q′
1 of E2,i [�e1

1 ] as βi such that
0 ≤ βi < �

e1
1 , thus requiring �log2(�e1

1 )� bits. Alternatively one can represent the non-
backtracking sequence of j-invariants in terms of an ordering on the roots of the �1-th
modular polynomial. This also can be done in �log2(�e1

1 )� bits. For security level λ one
can take t = λ (as explained in Remark 2), giving �

e1
1 ≈ �

e2
2 ≈ 22λ, p ≈ 24λ and so

signatures are around 6λ2 bits. The more conservative choice t = 2λ gives signatures
of around 12λ2 bits. �

3.3. Post-Quantum Signature Scheme based on De Feo-Jao-Plût Identification
Protocol

Next, we describe the signature scheme resulting from applying Unruh’s transform to
the identification scheme of De Feo-Jao-Plût, and we discuss its efficiency.

Key Generation Algorithm: On input a security parameter λ generate a prime p with at
least 6λ bits, such that p = �

e1
1 �

e2
2 f ± 1, with �1, �2, f small (ideally f = 1, �1 = 2,

�2 = 3) and �
e1
1 ≈ �

e2
2 > 23λ. Choose a supersingular elliptic curve E0 with #E0(Fp2) =

(�
e1
1 �

e2
2 f )2 and j-invariant j0. Fix a canonical basis {R2, S2} for E0(Fp2)[�e2

2 ] and a
random primitive �

e1
1 -torsion point P1 ∈ E0[�e1

1 ]. Compute the isogeny ϕ : E0 → E1
with kernel generated by P1, and let j1 be the j-invariant of the image curve. Set R′

2 =
ϕ(R2), S′

2 = ϕ(S2). Choose a hash function H : {0, 1}∗ → {0, 1}t with t = 3λ bits of
output (see Remark 4), and two hash functions Gi : {0, 1}Ni → {0, 1}Ni for i = 0, 1,
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such that every element has polynomially many preimages. Here Ni is an upper bound
on the bitlength of the responses in the protocol when the challenge bit is i . The secret
key is P1, and the public key is (p, j0, j1, R2, S2, R′

2, S′
2, H, G). One can reduce the size

of the public key by using different representations of isogeny paths, but for simplicity
we use this variant.

Signing Algorithm: For i = 1, . . . , t , choose random integers 0 ≤ αi < �
e2
2 . Compute

the isogenyψi : E0 → E2,i with kernel generated by R2+[αi ]S2 and let j2,i = j (E2,i ).
Compute the isogeny ψ ′

i : E1 → E3,i with kernel generated by R′
2 + [αi ]S′

2 and let
j3,i = j (E3,i ). For i = 1, . . . , t , set zi,0 = αi and zi,1 as a representation of the j-
invariant j2,i ∈ Fp2 and the isogeny with kernel generated by ψi (P1) (for example, as a
sequence of integers representing which roots of the �1-modular polynomial to choose
at each step of a non-backtracking walk, or using a compact representation of ψi (P1) in
reference to a canonical basis of E2,i [�e1

1 ]).
Compute gi,0 = G0(zi,0) and gi,1 = G1(zi,1) for 1 ≤ i ≤ t . Compute

h = H(m, j2,1, . . . , j2,t , j3,1, . . . , j3,t , g1,0, g1,1, . . . , gt,0, gt,1)

and parse the output as t challenge bits hi . For i = 1, . . . , t , set rspi = zi,hi . Return the
signature

σ = (h, rsp1, . . . , rspt , g1,1−h1, . . . , gt,1−ht ).

Verification Algorithm: On input a message m, a signature σ and a public key P K ,
recover the parameters p, E0, E1. For each 1 ≤ i ≤ t , using the information provided
by rspi , one recomputes the j-invariants j2,i , j3,i . In the case hi = 0 this is done using
rspi = αi by computing the isogeny from E0 with kernel generated by R2 + [αi ]S2 and
the isogeny from E1 with generated by R′

2 + [αi ]S′
2. When hi = 1 then the value j2,i is

provided as part of rspi , together with a description of the isogeny from E2,i to E3,i .
The verifier computes gi,hi = Ghi (rspi ) for 1 ≤ i ≤ t (padding to N bits using zeros)

and checks that the hash value

h′ = H(m, j1, j2,1, . . . , j2,t , g1,0, g1,1, . . . , gt,0, gt,1).

is the same as h from the signature. In this case the verifier accepts the proof, otherwise
it is rejected.
We now show that this scheme is a secure signature.

Theorem 8. If Problems 3 and 4 are computationally hard then the first signature
scheme is secure in the quantum random oracle model under a chosen message attack.

Proof. This follows immediately from Theorem 5, Theorem 2 and Theorem 6. �

Efficiency: There are four reasons why the post-quantum variant of the signature is less
efficient than the variant in Section 3.2. First, the prime p is larger in the post-quantum
case due to the quantum attack on the isogeny problem due to Biasse, Jao and Sankar
[8]. Second, one must compute responses to both values of the challenge bit, which
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essentially doubles the computation compared with the non-post-quantum case. Thirdly,
one needs to send the values gi, j as part of the signature, which increases signature size.
Note that we have introduced an optimisation that only sends half the values gi, j , since
the missing values can be recomputed by the verifier. And fourth, the chosen value of t
will be larger when aiming for quantum security, as per Remark 4.

We now compute the average signature size. When hi = 0, responses are of the form
αi for a random integer 0 ≤ αi < �

e2
2 , and thus requiring N0 ≈ log �2

e2 ≈ 1
2 log p

bits each. When hi = 1, responses encode the j-invariant j2,i , which takes �2 log p�
bits to represent, and the isogeny with kernel generated by ψi (P1), which has degree
�

e1
1 , and thus requires �log �

e1
1 � bits, for a total of N1 ≈ 5

2 log p. Finally, we note that
the average response length 3

2 log p is doubled as in Unruh transform a commitment
gi,1−hi = G1−hi (zi,1−hi ) to the other challenge value is simultaneously transmitted.
The average size of signatures is therefore t + t · 3 log p. For λ bits of security, we
choose log p = 6λ and t = 3λ, obtaining an average signature size of 54λ2.

4. Second Signature Scheme

We now present our main result. The main advantage of this scheme compared with the
one in the previous section is that its security is based on the general problem of com-
puting an isogeny between two supersingular curves, or equivalently on computing the
endomorphism ring of a supersingular elliptic curve. Unlike the scheme in the previous
section, the prime has no special property and no auxiliary points are revealed.

4.1. Identification Scheme Based on Endomorphism Ring Computation

The concept is similar to the graph isomorphism identification scheme, in which we
reveal one of two graph isomorphisms, but never enough information to deduce the
secret isomorphism.
As recalled in Section 2.4, although it is believed that computing endomorphism

rings of supersingular elliptic curves is a hard computational problem in general, there
are some particular curves for which it is easy.
The following construction is explained in Lemma 2 of [33]. We choose E0 : y2 =

x3 + x over a field Fp2 where p = 3 mod 4 and #E0(Fp2) = (p + 1)2. Unlike the
scheme in Section 3, no constraint on the prime p or group order is necessary. We have
j (E0) = 1728. When p = 3 mod 4, the quaternion algebra Bp,∞ ramified at p and ∞
can be canonically represented asQ〈i, j〉 = Q+Qi+Qj+Qk, where i2 = −1, j2 = −p
and k := ij = −ji. The endomorphism ring of E0 is isomorphic to the maximal order
O0 with Z-basis {1, i, 1+k

2 ,
i+j
2 }. Indeed, there is an isomorphism of quaternion algebras

θ : Bp,∞ → End(E0)⊗Q sending (1, i, j,k) to (1, φ, π, πφ)whereπ(x, y) = (x p, y p)

is the Frobenius endomorphism, and φ(x, y) = (−x, ιy) with ι2 = −1.
Let L be the product of prime powers �e up to B = 2 log(p) (this choice is based

on Lemma 1). In other words, let �1, . . . , �r be the list of all primes up to B and let
L = ∏r

i=1 �
ei
i where �

ei
i ≤ B < �

ei +1
i .
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1. The public key is a pair (E0, E1) and the private key is an isogeny ϕ : E0 → E1 of
powersmooth degree L.

2. The prover performs a random walk starting from E1 of powersmooth degree L in the
graph, obtaining a curve E2 and an isogeny ψ : E1 → E2, and reveals E2 to the verifier.

3. The verifier challenges the prover with a random bit b ← {0, 1}.
4. If b = 0, the prover sends ψ to the verifier.

If b = 1, the prover does the following:
– Compute End(E2) and translate the isogeny path between E0 and E2 into a corre-

sponding ideal I giving the path in the quaternion algebra.
– Use the Find new path algorithm to compute a “pseudo-canonical” path between

End(E0) and End(E2) in the quaternion algebra, represented by an ideal J .
– Translate the ideal J to an isogeny path η from E0 to E2.
– Return η to the verifier.

5. The verifier accepts the proof if the answer to the challenge is indeed an isogeny between
E1 and E2 or between E0 and E2, respectively.

Fig. 1. New Identification Scheme.

To generate the public and private keys, we take a random isogeny (walk in the graph)
ϕ : E0 → E1 of powersmooth degree L and, using this knowledge, compute End(E1).
The public information is E1. The secret is End(E1), or equivalently a path from E0 to
E1. Under the assumption that computing the endomorphism ring is hard, the secret key
cannot be computed from the public key only.
To prove knowledge of ϕ the prover will choose a random isogeny ψ : E1 → E2

and give E2 to the verifier. The verifier challenges the prover to give either the isogeny
ψ : E1 → E2 or an isogeny η : E0 → E2. The fundamental problem is to find
an isogeny η that does not leak any information about ϕ (in particular, the isogeny
path corresponding to ψ ◦ ϕ would not be a secure response). Our scheme uses the
following three algorithms, that are explained in detail in later sections, that allow a
“pseudocanonical” isogeny η to be computed (see Remark 5).

Translate isogeny path to ideal: Given E0,O0 = End(E0) and a chain of isogenies from
E0 to E1, to compute O1 = End(E1) and a left O0-ideal I whose right order is O1.

Find new path: Given a left O0-ideal I corresponding to an isogeny E0 → E2, to
produce a new leftO0-ideal J corresponding to an “independent” isogeny E0 → E2
of powersmooth degree.

Translate ideal to isogeny path: Given E0,O0, E2, I such that I is a left O0-ideal
whose right order is isomorphic to End(E2), to compute a sequence of prime degree
isogenies giving the path from E0 to E2.

Figure 1 gives the interaction between the prover and the verifier. One can see
that Figure 1 gives a canonical, recoverable identification protocol, but it is not non-
trivial as the challenge is only one bit. We repeat the protocol to reduce the cheating
probability.
The isogenies involved in this protocol are summarized in the following diagram:
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E0 E1

E2

ϕ

ψ
η

The two translation algorithms mentioned above in the b = 1 case will be described
in Section 4.4. They rely on the fact that End(E0) is known. The algorithms are efficient
when the degree of the random walk is powersmooth, and for this reason all isogenies in
our protocols will be of powersmooth degree. The powersmooth version of the quater-
nion isogeny algorithm of Kohel-Lauter-Petit-Tignol will be described and analysed in
Section 4.3. The random walks are taken of sufficiently large degree such that their
output has close to uniform distribution, by Theorem 1 and Lemma 1.
In the next subsection we will prove the following result.

Theorem 9. Let λ be a security parameter and t ≥ λ. If Problem 6 is computationally
hard, then the identification scheme obtained from t parallel executions of the protocol
in Figure 1 is a non-trivial, recoverable canonical identification scheme that is secure
against impersonation under (classical) passive attacks.

The advantage of this protocol over De Feo-Jao-Plût’s protocol is that it relies on a
more standard and potentially harder computational problem. In the rest of this section
we first give a proof of Theorem 9, then we provide details of the algorithms involved
in our scheme.

4.2. Proof of Theorem 9

We shall prove that the sigma protocol in Figure 1 is complete, 2-special sound and
honest verifier zero-knowledge. It follows that t parallel executions of the protocol is
non-trivial. The theoremwill then follow from Theorem 2 and Problem 6 (which implies
that the relation being proved is a hard relation).
Note that a standard random-self-reduction [26] shows that the computational hard-

ness of Problem 6 remains essentially the same if the curves are chosen according to a
distribution that is close to uniform.

Completeness. Let ϕ be an isogeny between E0 and E1 of B-powersmooth degree,
for B = O(log p). If the challenge received is b = 0, it is clear that the prover knows
a valid isogeny ψ : E1 → E2, so the verifier accepts the proof. If b = 1, the prover
follows the procedure described above and the verifier accepts. In the next subsections
we will show that this procedure is polynomial time.
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2-special soundness. Let (E0, E1) be an instance of Problem 6 and set it to be the
public key for the scheme. Suppose we are given transcripts (cmt, ch1, ch2, rsp1, rsp2)
for the single-bit scheme such that V(pk, cmt, chi , rspi ) = 1 for all i ∈ {1, 2}. Let
E2 = cmt. Since ch1 
= ch2 the responses rsp1 and rsp2 therefore give two isogenies
ψ : E1 → E2, η : E0 → E2. Given these two valid answers an extraction algorithm
can compute an isogeny φ : E0 → E1 as φ = ψ̂ ◦ η, where ψ̂ is the dual isogeny of
ψ . The extractor outputs φ, which is a solution to Problem 6 (we stress that Problem 6
only asks for an arbitrary isogeny from E0 to E1). This is summarized in the following
diagram.

E0 E1

E2

ψ
η

Honest-verifier zero-knowledge. We shall prove that there exists a probabilistic
polynomial time simulatorS that outputs transcripts indistinguishable from transcripts of
interactions with an honest verifier, in the sense that the two distributions are statistically
close. Note that O0 = End(E0) is public information so is known to the simulator. The
simulator starts by taking a random coin b ← {0, 1}.
– If b = 0, take a random walk from E1 of powersmooth degree L , as in the real
protocol, obtaining a curve E2 and an isogenyψ : E1 → E2. The simulator outputs
the transcript (E2, 0, ψ).

E0 E1

E2

ψ

In this case, it is clear that the distributions of every element in the transcript are
the same as in the real interaction, as they are generated in the same way. This is
possible because, when b = 0, the secret is not required for the prover to answer
the challenge.

– If b = 1, take a random walk from E0 of length L to obtain a curve E2 and an
isogeny μ : E0 → E2, then proceed as in Step 4 of Figure 1 to produce another
isogeny η : E0 → E2. The simulator outputs the transcript (E2, 1, η).
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E0 E1

E2

μ

η

The reason to output η instead of μ is to ensure that the transcript distributions are
indistinguishable from the distributions in the real scheme.
We first study the distribution of E2 up to isomorphism. Let Xr be the output of the

random walk from E1 to produce j (E2) in the real interaction, and let Xs be the output
of the random walk from E0 to produce j (E2) in the simulation.
Let G be the set of all supersingular j-invariants, namely the vertex set of the isogeny

graph. Note that #G = Np ≈ p/12. By Theorem 1 and Lemma 1, since the isogeny
walks have degree L , we have, for any j ∈ G

∣
∣
∣
∣Pr(Xr = j) − 1

Np

∣
∣
∣
∣ ≤ 1

p1+ε
,

∣
∣
∣
∣Pr(Xs = j) − 1

Np

∣
∣
∣
∣ ≤ 1

p1+ε
.

Therefore

∑

j∈G
|Pr(Xr = j) − Pr(Xs = j)| ≤ Np · max

i
|Pr(Xr = j) − Pr(Xs = j)| ≤

≤ Np ·
(

1

p1+ε
+ 1

p1+ε

)

≈ 1

6pε

which is a negligible function of λ for any constant ε > 0. In other words, the statis-
tical distance, between the distribution of j (E2) in the real signing algorithm and the
simulation, is negligible. Now, since η is produced in the same way from E0 and E2 in
the simulation and in the real protocol execution, we have that the statistical distance
between the distributions of η is also negligible. This follows from Lemma 3 in Sec-
tion 4.3, which states that the output of the quaternion path algorithm does not depend
on the input ideal, only on its ideal class.

4.3. Quaternion Isogeny Path Algorithm

In this section we sketch the quaternion isogeny algorithm from Kohel-Lauter-Petit-
Tignol [33] and we evaluate its complexity when p = 3 mod 4. (The original paper
does not give a precise complexity analysis; it only claims that the algorithm runs in
heuristic probabilistic polynomial time.) This is the algorithm used for the Find new
path procedure in the identification scheme.

The algorithm takes as input two maximal orders O,O′ in the quaternion algebra
Bp,∞, and it returns a sequence of left O-ideals I0 = O ⊃ I1 ⊃ . . . ⊃ Ie such that
the right order of Ie is in the same equivalence class as O′. In addition, the output is
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such that the index of Ii+1 in Ii is a small prime for all i . The paper [33] focuses on the
case where the norm of Ie is �e for some integer e, but it mentions that the algorithm
can be extended to the case of powersmooth norms. We will only describe and use
the powersmooth version. In our application there are some efficiency advantages from
using isogenies whose degree is a product of small powers of distinct primes, rather than
a large power of a small prime.
Note that the ideals returned by the quaternion isogeny path algorithm (or equivalently

the right orders of these ideals) correspond to vertices of the path in the quaternion
algebra graph, and to a sequence of j-invariants by Deuring’s correspondence. In the
next subsection we will describe how to make this correspondence explicit; here we
focus on the quaternion algorithm itself.
An important feature of the algorithm is that paths between two arbitrary maximal

orders O and O′ are always constructed as a concatenation of two paths from each
maximal order to a special maximal order. As mentioned above, in our protocol and the
discussion below we fix O0 = 〈1, i, 1+k

2 ,
i+j
2 〉 where i2 = −1 and j2 = −p. General

references for maximal orders and ideals in quaternion algebras are [42,43,45].
We focus on the case where O = O0, and assume that instead of a second maximal

orderO′ we are given the corresponding leftO0-ideal I as input (the two variants of the
problem are equivalent). This will be sufficient for our use of the algorithm. We assume
that I is given by a Z-basis of elements inO0. Note that in our context n(I ) is known, as
it is the degree of the known isogeny. Denote by n(α) and n(I ) the norm of an element
or ideal respectively. The equivalence class of maximal orders defines an equivalence
class ofO0-ideals, where two ideals I and J are in the same class if and only if I = Jq
with q ∈ B∗

p,∞. Therefore our goal is, given a left O0-ideal I , to compute another left
O0-ideal J with powersmooth norm in the same ideal class. Further, in order to be able
to later apply Algorithm 2, we require the norm of I to be odd (but the Find new path
algorithm also allows to find even norm ideals if desired). Without loss of generality we
assume there is no integer s > 1 such that I ⊂ sO0, and that I 
= O0. The algorithm
proceeds as follows:

1. Compute an element δ ∈ I and an ideal I ′ = I δ̄/n(I ) of prime norm N .
2. Find β ∈ I ′ with norm N S where S is powersmooth and odd.
3. Output J = I ′β̄/N .

Steps 1 and 3 of this algorithm rely on the following simple result [33, Lemma 5]:
if I is a left O-ideal of reduced norm N and α is an element of I , then I ᾱ/N is a left
O-ideal of norm n(α)/N . Clearly, I and J are in the same equivalence class.
To compute δ in Step 1, first a Minkowski-reduced basis {α1, α2, α3, α4} of I is

computed [35]. To obtain Lemma 3 below we make sure that the Minkowski basis is
uniformly randomly chosen among all such bases9. Then random elements δ = ∑

i xiαi

are generated with integers xi in an interval [−m, m], where m is determined later, until
the norm of δ is equal to n(I ) times a prime. A probable prime suffices in this context
(actually Step 1 is not strictly needed but aims to simplify Step 2), so we can use the
Miller-Rabin test to discard composite numbers with a large probability.
Step 2 is the core of the algorithm and actually consists of the following substeps:

9One can enumerate all Minkowski bases efficiently. In [33] an arbitrary Minkowski basis was chosen.
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2a. Find α such that I ′ = O0N + O0α.
2b. Find β1 ∈ O0 with odd norm N S1, where S1 is powersmooth.
2c. Find β2 ∈ Zj + Zk such that α = β1β2 mod NO0.
2d. Find β ′

2 ∈ O0 with odd powersmooth norm S2 and λ ∈ Z∗
N such that β ′

2 =
λβ2 mod NO0.

2e. Set β = β1β
′
2.

In Step 2a we need α ∈ I ′ such that gcd(n(α), N 2) = N . This is easily achieved by
taking α as a random small linear combination of a Minkowski basis, until the condition
is met. Note that if α ∈ I ′ is such that gcd(n(α), N 2) = N then J := O0N +O0α ⊆ I ′
and J 
= O0N . Since the norm of O0N is N 2 and N is prime it follows that the norm
of J is N and so J = I ′.
In Step 2b the algorithm actually searches for β1 = a + bi+ cj+ dk. A large enough

powersmooth number S1 is fixed a priori, then the algorithm generates small random
values of c, d until the norm equation a2+b2 = S1− p(c2+d2) can be solved efficiently
using Cornacchia’s algorithm (for example, until the right hand side is a prime equal to
1 modulo 4).
Step 2c is just linear algebra modulo N . As argued in [33] it has a negligible chance

of failure, in which case one can just go back to Step 2b.
In Step 2d the algorithm a priori fixes S2 large enough, then searches for integers

a, b, c, d, λwithλ /∈ NZ such that N 2(a2+b2)+p
(
(λC + cN )2 + (λD + d N )2

) = S2
where we have β2 = Cj+ Dk. If necessary S2 is multiplied by a small prime such that
p(C2 + D2)S2 is a square modulo N , after which the equation is solved modulo N ,
leading to two solutions for λ. An arbitrary solution is chosen, and then looking at the
equation modulo N 2 leads to a linear space of solutions for (c, d) ∈ ZN . The algorithm
chooses random solutions until the equation

a2 + b2 =
(

S2 − p2
(
(λC + cN )2 + (λD + d N )2

))
/N 2

can be efficiently solved with Cornacchia’s algorithm.
The overall algorithm is summarized in Algorithm 1. We now prove two lemmas on

this algorithm. The first lemma shows that the output of this algorithm only depends on
the ideal class of I but not on I itself. This is important in our identification protocol, as
otherwise part of the secret isogeny ϕ could potentially be recovered from η. The second
lemma gives a precise complexity analysis of the algorithm, where [33] only showed
probabilistic polynomial time complexity. Both lemmas are of independent interest.

Lemma 3. The output distribution of the quaternion isogeny path algorithm only
depends on the equivalence class of its input. (In particular, the output distribution
does not depend on the particular ideal class representative chosen for this input.)

Proof. Let I1 and I2 be two leftO0-ideals in the same equivalence class, namely there
exists q ∈ B∗

p,∞ such that I2 = I1q. We show that the distribution of the ideal I ′
computed in Step 1 of the algorithm is identical for I1 and I2. As the inputs are not used
anymore in the remainder of the algorithm this will prove the lemma.
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In the first step the algorithm computes a Minkowski basis of its input, uniformly
chosen among all possible Minkowski bases. Let B1 = {α11, α12, α13, α14} be a
Minkowski basis of I1. Then by multiplicativity of the norm we have that B2 = {α11q,

α12q, α13q, α14q} is a Minkowski basis of I2. The algorithm then computes random
elements δ = ∑

i xiαi for integers xi in an interval [−m, m]. Clearly, for any ele-
ment δ1 computed when the input is I1, there corresponds an element δ2 = δ1q
computed when the input is I2. This is repeated until the norm of δ is a prime times
n(I ). As n(I2) = n(I1)n(q) the stopping condition is equivalent for both. Finally,
an ideal I of prime norm is computed as I δ̄/n(I ). Clearly when δ2 = δ1q we have
I2 δ̄2

n(I2)
= I1qq̄ δ̄1

n(q)n(I1)
= I1 δ̄1

n(I1)
. This shows that the prime norm ideal computed in Step 1 only

depends on the equivalence class of the input. �

Algorithm 1 Find new path algorithm

Input: O0 = 〈1, i, 1+k
2 ,

i+j
2 〉, I a left O0-ideal, n(I ).

Output: J a left O0-ideal of powersmooth norm such that I = Jq for some q ∈ Bp,∞.

1: {α1, α2, α3, α4} Minkowski-reduced basis of I .
2: αi ← {±αi } for i = 1, 2, 3, 4.
3: loop
4: {x1, x2, x3, x4} ← [−m, m]4. Start with m = �log p� and do exhaustive search in the box, increasing

m if necessary.

5: δ := ∑4
i=1 xi αi

6: if N := n(δ)/n(I ) is prime then return N , I ′ := I δ/n(I )

7: Set an a priori powersmooth bound s = 7
2 log p, and odd integers S1, S2 with S1 > p log p, S2 > p3 log p

and s-powersmooth product S1S2.
8: Choose α ∈ I ′ such that gcd(n(α), N2) = N , so that I ′ = O0N + O0α.
9: while a, b are not found do
10: c, d ← [−m, m]2, for m = �√N S1/2p�. Increase S1 and s if necessary.

11: a, b ← Solution of a2 + b2 = N S1 − p(c2 + d2) (solve using Cornacchia’s algorithm).

12: β1 = a + bi + cj + dk
13: Set β2 as a solution of α = β1β2 mod NO0 with β2 ∈ Zj + Zk.
14: Write β2 = Cj + Dk. Try small odd primes r in increasing order until we find one such that(

(C2+D2)S2r
N

)

= 1, and set S2 = S2r . Update s accordingly.

15: λ ← Solution of pλ2(C2 + D2) = S2 mod N .
16: while a, b are not found do
17: c, d ← Solution of pλ2(C2 + D2) + 2pλN (Cc + Dd) = S2 mod N2.

18: a, b ← Solution of a2 + b2 =
(

S2 − p2
(
(λC + cN )2 + (λD + d N )2

))
/N2 (solve using Cornac-

chia’s algorithm). Increase S2 and s if necessary.

19: β ′
2 = a + bi + cj + dk

20: J = I ′β1β ′
2/N

The expected running time given in the following lemma relies on several heuristics
related to the factorization of numbers generated following certain distributions (see
Section 2.8). Intuitively all these heuristics say that asymptotically those numbers behave
in the same way as random numbers of the same size.
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Lemma 4. Let X := max
∣
∣ci j

∣
∣ where ci j ∈ Z are integers such that ci1 + ci2i +

ci3
1+k
2 + ci4

i+j
2 for 1 ≤ i ≤ 4 forms a Z-basis for I . If log X = O(log p) then

Algorithm 1 heuristically runs in time Õ(log3 p), and produces an output of norm S
with log(S) ≈ 7

2 log(p) which is ( 72 + o(1)) log p-powersmooth.

Proof. The Minkowski basis can be computed in O(log2 X), for example using the
algorithm of [35].
For generic ideals the reduced norms of all Minkowski basis elements10 are in O(

√
p)

(see [33, Section 3.1]). In the first loop we initially set m = �log p�. Assuming heuris-
tically that the numbers N generated behave like random numbers we expect the box to
produce some prime number. The resulting N will be in Õ(

√
p). For some non generic

ideals the Minkowski basis may contain a pair of elements with norms significantly
smaller than O(

√
p); in that case we can expect to finish the loop for smaller values of

m by setting x3 = x4 = 0, and to obtain some N of a smaller size.
Rabin’s pseudo-primality test performs a single modular exponentiation (modulo a

number of size Õ(
√

p)), and it is passed by composite numbers with a probability at
most 1/4. The test can be repeated r times to decrease this probability to 1/4r . Assuming
heuristically that the numbers tested behave like random numbers the test will only be
repeated a significant amount of times on actual prime numbers, so in total it will be
repeated O(log p) times. This leads to a total complexity of Õ(log3 p) bit operations
for the first loop using fast (quasi-linear) modular multiplication.
The other two loops involve solving equations of the form x2 + y2 = M . For such

an equation to have solutions it is sufficient that M is a prime with M = 1 mod 4,
a condition that is heuristically satisfied after 2 log M random trials. Choosing S1 and
S2 as in the algorithm ensures that the right-hand term of the equation is positive, and
(assuming this term behaves like a random number of the same size) is of the desired
form for some choices (c, d), at least heuristically. Cornacchia’s algorithm runs in time
Õ(log2 M), which is also Õ(log2 p) in the algorithm. The pseudo-primality tests will
require Õ(log3 p) operations in total, and their cost will dominate both loops.

Computing β2 is just linear algebra modulo N ≈ Õ(
√

p) and this cost can be
neglected. The last two steps can similarly be neglected.
As a result, we get an overall cost of Õ(log3 p) bit operations for the whole algorithm.
Let s = 7

2 log p. We have n(J ) = n(I ′)n(β1)n(β ′
2)/N 2 so neglecting log log factors

log n(J ) ≈ 1
2 log p + log p +3 log p − log p = 7

2 log p. We make the heuristic assump-
tion that log n(J ) = ( 72 +o(1)) log p. Moreover heuristically

∏
p

ei
i <s pei

i ≈ (s)s/ log s ≈
p7/2+o(1) so we can expect to find S1S2 that is s-powersmooth and of the correct size. �

Remark 5. A subtle issue is to understand in what sense the output of Algorithm 1 is a
“random” isogeny. The algorithm appears tomakemany random choices: first a “random
ideal” I ′ is chosen, then a “random” element β1 is constructed, then an “arbitrary”
β2 is constructed, and finally the ideal J is output. However, a crucial observation is
Lemma 3: since J is equivalent to I the output does not actually depend heavily on these
choices (essentially the “choices all cancel each other out”). There is only a small set of

10The reduced norm of an ideal element is the norm of this element divided by the norm of the ideal.
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actual isogenies η that will be output by this algorithm (once the parameter L and other
smoothness bounds are fixed). For this reason, we can view the output as “independent”
of I (and hence of ϕ) and the isogeny η as a “pseudo-canonical” choice of isogeny from
E0 to E2.

4.4. Step-by-Step Deuring Correspondence

We now discuss algorithms to convert isogeny paths into paths in the quaternion algebra,
and vice versa. This will be necessary in our protocols as we are sending curves and
isogenies, whereas the process uses the quaternion isogeny algorithm.
All the isogeny paths that we will need to translate in our signature scheme will

start from the special j-invariant j0 = 1728. We recall (see beginning of Section 4.1)
that this corresponds to the curve E0 with equation y2 = x3 + x and endomorphism
ring End(E0) = 〈1, φ,

1+πφ
2 ,

π+φ
2 〉. Moreover there is an isomorphism of quaternion

algebras sending (1, i, j,k) to (1, φ, π, πφ).
For any isogeny ϕ : E0 → E1 of degree n, we can associate a left End(E0)-ideal

I = Hom(E1, E0)ϕ of norm n, corresponding to a left O0-ideal with the same norm
in the quaternion algebra Bp,∞. Conversely every left O0-ideal arises in this way [32,
Section 5.3]. In our protocol we will need to make this correspondence explicit, namely
we will need to pair up each isogeny from E0 with the correct O0-ideal. Moreover we
need to do this for “large” degree isogenies to ensure a good distribution via our random
walk theorem.

4.4.1. Translating an ideal to an isogeny path.

Let E0 and O0 = End(E0) be given, together with a left O0-ideal I corresponding to
an isogeny of degree n. We assume I is given as a Z-basis {α1, . . . , α4}. The main idea
to determine the corresponding isogeny explicitly is to determine its kernel [47].
Assume for the moment that n is a small prime. One can compute generators for

all cyclic subgroups of E0[n], each one uniquely defining a degree n isogeny which
can be computed with Vélu’s formulae. A generator P then corresponds to the basis
{α1, . . . , α4} if and only if α j (P) = 0 for all 1 ≤ j ≤ 4. To evaluate α(P) with α ∈ I
and P ∈ E0[n], we first write α = (u + vi+wj+ xk)/2, then we compute P ′ such that
[2]P ′ = P and finally we evaluate [u]P ′ + [v]φ(P ′) + [w]π(P ′) + [x]π(φ(P ′)). To
show that any such P ′ works, write β = u + vi+ wj+ xk. Since β = α ◦ [2] it follows
that E0[2] ⊆ ker(β). Ifβ(P ′) = 0 thenα(P) = α([2]P ′) = (α◦[2])(P ′) = β(P ′) = 0.
Since any other choice of P ′ is P ′ + T for some T ∈ E0[2] the choice of P ′ does not
matter.
An alternative to trying all subgroups is to choose a pair {P1, P2} of generators for

E0[n] and, for some α ∈ I , solve the discrete logarithm instance (if possible) α(P2) =
[x]α(P1). It follows that α(P2 − [x]P1) = 0 and so we have determined a candidate
point in the kernel of the isogeny. Both solutions are too expensive for large n.
When n = �e the degree n isogeny can be decomposed into a composition of e degree

� isogenies. If P is a generator for the kernel of the degree �e isogeny then �e−i+1P is
the kernel of the degree �i isogeny corresponding to the first i steps. One can therefore
perform thematching of ideals with kernels step-by-stepwith successive approximations
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of I or P respectively. This algorithm is more efficient than the previous one, but it still
requires to compute �e torsion points, which in general may be defined over a degree
�e extension of Fp2 . To ensure that the �e torsion is defined over Fp2 one can choose p
such that �e | (p ± 1) as in the De Feo-Jao-Plût protocols; however for general p this
translation algorithm will still be too expensive.
We solve this efficiency issue by using powersmooth degree isogenies in our protocols.

When n = ∏
i �

ei
i with distinct primes �i , one reduces to the prime power case as follows.

For simplicity we assume that 2 does not divide n. The isogeny of degree n can be
decomposed into a sequence of prime degree isogenies. For simplicity we assume the
isogeny steps are always performed in increasing degree order; we can require that this is
indeed the case in our protocols. However, rather than working with points on a sequence
of elliptic curves, we work entirely on E0. Using a Chinese Remainder Theorem-like
representation, points in E0[n] can be represented as a sequence of points in E0[�ei

i ].
When one wishes to compute the corresponding sequence of isogenies ϕi : Ei−1 → Ei ,
each of degree �

e j
j , it is necessary to transport the appropriate kernel points across to

Ei−1 along the isogenies already computed.
Given a left O0-ideal I , Algorithm 2 progressively identifies the corresponding

isogeny sequence. When determining points in ker(α) ∩ E0[�ei
i ] the algorithm uses

a natural optimisation of reducing the coefficients of α modulo �
ei
i .

Algorithm 2 Translating ideal to isogeny path

Input: O0 = End(E0) = 〈1, φ,
1+πφ

2 ,
π+φ
2 〉, I = 〈α1, α2, α3, α4〉, n = ∏r

i=1 �
ei
i with 2 � n.

Output: the isogeny corresponding to I through Deuring’s correspondence.

1: for i = 1, . . . , r do
2: Compute a basis {Pi1, Pi2} for the �

ei
i torsion on E0

3: for j = 1, 2 do
4: Compute P ′

i j such that Pi j = [2]P ′
i j

5: ϕ0 = [1]E0
6: for i = 1, . . . , r do
7: for k = 1, 2, 3, 4 do
8: αik = αk with its coefficients reduced modulo �

ei
i .

9: Write αik = (uik + vik i + wik j + xikk)/2.
10: for j = 1, 2 do
11: Pi jk = [uik ]P ′

i j + [vik ]φ(P ′
i j ) + [wik ]π(P ′

i j ) + [xik ]π(φ(P ′
i j ))

12: Solve ECDLP to compute Qi of order �
ei
i such that αik (Qi ) = 0 for all k

13: Compute φi = isogeny with kernel 〈ϕi−1(Qi )〉 (compute with Vélu’s formulae).
14: Set ϕi = φi ϕi−1

15: Output ϕ0, φ1, . . . , φr .

In our protocols we will have �
ei
i = O(log n) = O(log p); moreover we will be using

O(log p) different primes. The complexity of Algorithm 2 under these assumptions is
given by the following lemma. Note that almost all primes �i are such that

√
B < �i ≤ B

and so ei = 1, hence we ignore the obvious �-adic speedups that can be obtained in the
rare cases when �i is small.



Supersingular Isogeny Signatures

Lemma 5. Let n = ∏
�

ei
i with log n = O(log p) and �

ei
i = O(log p). Then Algo-

rithm 2 can be implemented to run in time Õ(log6 p) bit operations for the first loop,
and Õ(log5 p) for the rest of the algorithm.

Proof. Without any assumption on p the �
ei
i torsion points will generally be defined

over �
ei
i degree extension fields, hence they will be of O(log2 p) size. However the

isogenies themselves will be rational, i.e. defined over Fp2 . This means their kernel is
defined by a polynomial over Fp2 . Isogenies over Fp2 of degree d can be evaluated at
any point in Fp2 using O(d) field operations in Fp2 .

Let d = �
ei
i . To compute a basis of the d-torsion,wefirst factor the division polynomial

over Fp2 . This polynomial has degree O(d2) = O(log2 p). Using the algorithm in [30]

this can be done in Õ(log4 p) bit operations. Since the isogenies are defined over Fp2 ,
this will give factors of degree at most (d − 1)/2, each one corresponding to a cyclic
subgroup. We then randomly choose some factor with a probability proportional to its
degree, andwe factor it over its splitting field, until we have found a basis of the d-torsion.
After O(1) random choices we will have a basis of the d-torsion. Each factorization
costs Õ(log5 p) using the algorithm in [46], and verifying that two points generate the
d-torsion can be done with O(d) field operations. It then takes O(d) field operations
to compute generators for all kernels. As r = O(log p) we deduce that the first loop
requires Õ(log6 p) bit operations.
Computing Pi jk involves Frobenius operations andmultiplications by scalars bounded

by d (and so O(log log p) bits). This requires O(log log p) field operations, that is a total
of Õ(log3 p) bit operations. Any cyclic subgroup of order �

ei
i is generated by a point

Qi = a Pi1 + bPi2, and the image of this point by αik is a Pi1k + bPi2k . One can
determine the integers a, b by an ECDLP computation or by testing random choices.
There are roughly �

ei
i = O(log p) subgroups, and testing each of them requires at

most O(log log p) field operations, so finding Qi requires Õ(log p) field operations.
Evaluating ϕi−1(Qi ) requires O(log2 p) field operations. Computing the isogeny φi

can be done in O(log p) field operations using Vélu’s formulae. As r = O(log p) we
deduce that the second loop requires Õ(log5 p) bit operations. �

We stress that in our signature algorithm, Algorithm 2 will be run O(log p) times.
However the torsion points are independent of both the messages and the keys, so they
can be precomputed. Hence the “online” running time of Algorithm 2 is Õ(log5 p) bit
operations per execution.

4.4.2. Translating an isogeny path to an ideal.

Let E0, E1, . . . , Er be an isogeny path and suppose φi : Ei−1 → Ei is of degree
�

ei
i . We define I0 = O0. Then for i = 1, . . . , r we compute an element αi ∈ Ii−1
and an ideal Ii = Ii−1�

ei
i + O0αi that corresponds to the isogeny φi ◦ · · · ◦ φ1. This is

analogous in the power-smooth case to the notation Ii as used in Section 4.3; in particular
I0 = O0 ⊃ I1 ⊃ . . . ⊃ Ir . The idea is to determine suitable endomorphisms αi ∈ Ii−1
with the desired norm and that kill the required kernel point.
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Algorithm 3 Translating isogeny path to ideal

Input: E0, E1, . . . , Er isogeny path, φi : Ei−1 → Ei of degree �
ei
i .

Output: the ideal path I0, . . . , Ir corresponding to the isogeny path.

1: Let I0 = O0
2: for i = 1, . . . , r do
3: Find Qi of order �

ei
i that generates the kernel of φi

4: Compute [β](Qi ) for all β ∈ {1, i, i+j
2 , 1+k

2 }
5: Let {β1, β2, β3, β4} a basis of Ii−1
6: Let fi (w, x, y, z) = n(wβ1 + xβ2 + yβ3 + zβ4)
7: repeat
8: Pick a random solution to fi (w, x, y, z) = 0 mod �

ei
i

9: Set αi = wβ1 + xβ2 + yβ3 + zβ4
10: until [αi ](Qi ) = 0
11: Set Ii = Ii−1�

ei
i + O0αi

12: Perform basis reduction on Ii

In our protocols we will have �
ei
i = O(log n) = O(log p); moreover we will be using

O(log p) different primes. The complexity of Algorithm 3 for these parameters is given
by the following lemma.

Lemma 6. Let n = ∏r
i=1 �

ei
i with log n = O(log p) and �

ei
i = O(log p). Assuming

natural heuristics, Algorithm 3 can be implemented to run in expected time Õ(log4 p)

and the output is a Z-basis with integers bounded by X such that log X = O(log p).

Proof. The input consists of a sequence of isogenies, and we remind that the represen-
tation of an isogeny is usually by explicitly specifying a kernel point (or else equivalent
information, such as a polynomial whose roots are the kernel points). We remind that
the �

ei
i torsion points will generally be defined over degree �

ei
i extension fields, hence

they will be of O(log2 p) size. Isogenies of degree d can be evaluated at any point using
O(d) field operations.
When the degree is odd the isogeny φi is naturally given by a polynomialψi such that

the roots of ψi correspond to the x-coordinates of affine points in ker ϕi . To identify a
generator Qi we first factor ψi over Fp2 . Using the algorithm in [46] this can be done

with Õ(log3 p) bit operations. We choose a random irreducible factor with a probability
proportional to its degree, we use this polynomial to define a field extension of Fp2 ,
and we check whether the corresponding point is of order �

ei
i . If not we choose another

irreducible factor and we repeat. We expect to only need to repeat this O(1) times, and
each step requires Õ(log p) bit operations. So the total cost for line 3 is Õ(log3 p).

Step 4 requires O(log log p) field operations to compute a point Q′
i such that [2]Q′

i =
Qi . After that it mostly requires O(log p)field operations to compute the Frobeniusmap.
The total cost of this step is therefore Õ(log3 p).

Basis elements for all the ideals Ii appearing in the algorithm can be reduced modulo
O0n, hence their coefficients are of size log n = O(log p).
To compute a random solution to fi modulo �

ei
i , we choose uniformly random values

for w, x, y, and when the resulting quadratic equation in z has solutions modulo �
ei
i
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we choose a random one. As �
ei
i = O(log p) the cost of this step can be neglected.

Computing [αi ](Qi ) requires O(log log p) operations over a field of size O(log2 p). On
average we expect to repeat the loop O(�

ei
i ) = O(log p) times, resulting in a total cost

of Õ(log3 p). Computing each fi costs Õ(log p) bit operations.
As r = O(log p) the total cost of the algorithm is Õ(log4 p).
One can check that all integers in the algorithm are bounded in terms of n, and so

coefficients are of size X where log X = O(log n) = O(log p). �

Recall that the condition log X = O(log p) is needed in Lemma 4.

4.5. Classical Signature Scheme based on Endomorphism Ring Computation

In this section we give the details of our second signature scheme based on our new
identification protocol, with security relying on computing the endomorphism ring of a
supersingular elliptic curve.

Key Generation Algorithm: On input a security parameter λ generate a prime p with 2λ
bits, which is congruent to 3 modulo 4. Let E0 : y2 = x3+ Ax over Fp be supersingular,
and let O0 = End(E0). Fix B, S1, S2 as small as possible11 such that Sk := ∏

i �
ek,i
k,i ,

�
ek,i
k,i < B, gcd(S1, S2) = 1, and

∏
(

2
√

�k,i

�k,i +1

)ek,i

< (p1+ε)−1. Perform a random isogeny

walk of degree S1 from the curve E0 with j-invariant j0 = 1728 to a curve E1 with
j-invariant j1. Compute O1 = End(E1) and the ideal I corresponding to this isogeny.
Choose a hash function H with t bits of output (e.g., t = λ or, more conservatively,
t = 2λ). The public key is pk = (p, j1, H) and the secret key is sk = O1, or equivalently
I .

Signing Algorithm: On input a message m and keys (pk, sk), recover the parameters p
and j1. For i = 1, . . . , t , generate a random isogeny walk wi of degree S2, ending at a
j-invariant j2,i . Compute h := H(m, j2,1, . . . , j2,t ) and parse the output as t challenge
bits bi . For i = 1, . . . , t , if bi = 1 use wi and Algorithm 3 of Section 4.4 to compute
the corresponding ideal Ii and hence its right order O2,i = End(E2,i ), then use the
algorithm of Section 4.3 on input I Ii to compute a “fresh” path between O0 and O2,i ,
and finally use Algorithm 2 to compute an isogeny path w′

i from j0 to j2,i . If bi = 0 set
zi := wi , otherwise set zi := w′

i . Return the signature σ = (h, z1, . . . , zt ).

Verification Algorithm:On input a messagem, a signature σ and a public key pk, recover
the parameters p and j1. For each 1 ≤ i ≤ t one uses zi to compute the image curve
E2,i of the isogeny. Hence the verifier recovers the j-invariants j2,i for 1 ≤ i ≤ t . The
verifier then recomputes the hash H(m, j2,1, . . . , j2,t ) and checks that the value is equal
to h, accepting the signature if this is the case and rejecting otherwise.

We now show that this scheme is a secure signature.

Theorem 10. If Problem 6 is computationally hard then the signature scheme is secure
in the random oracle model under a chosen message attack.

11The exact procedure is irrelevant here.
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Proof. As shown in Section 4.2, if Problem 6 is computationally hard then the iden-
tification scheme (sigma protocol) has 2-special soundness and honest verifier zero-
knowledge. Theorem 2 therefore implies that the identification scheme is secure against
impersonation under passive attacks. It follows fromTheorem3 that the signature scheme
is secure in the random oracle model. �

Efficiency: As the best classical algorithm for computing the endomorphism ring of a
supersingular elliptic curve runs in time Õ(

√
p) one can take log p = 2λ. By Theorem 1

and Lemma 1, taking B ≈ 2(1 + ε) log p ensures that the outputs of random walks are
distributed uniformly enough.Randomwalks then require 2(1+ε) log p bits to represent,
so signatures are

t + t

2

(

2(1 + ε)�log p� + 7

2
�log p�

)

bits on average, depending on the challenge bits. For λ bits of security, we choose t = λ,
so the average signature length is approximately λ + ( λ

2 )(4(1 + ε)λ + 7λ) ≈ 1
2 (11 +

4ε)λ2 ≈ 11
2 λ2. The conservative choice t = 2λ gives signatures of size approximately

11λ2 bits.
Private keys are 2(1+ ε) log p ≈ 4λ bits if a canonical representation of the kernel of

the isogeny between E0 and E1 is stored. This can be reduced to 2λ bits for generic E1:
if I is the ideal corresponding to this isogeny, it is sufficient to store another ideal J in
the same class, and for generic E1 there exists one ideal of norm n ≈ √

p. To represent
this ideal in the most efficient way, it is sufficient to give n and a second integer defining
the localization of I at every prime factor � of n, for canonical embeddings of Bp,∞ into
M2(Q�), where M2(Q�) is the group of 2 × 2 matrices over the �-adics. This reduces
storage costs to roughly 2λ bits. Public keys are 3 log p = 6λ bits. A signature mostly
requires t calls to the Algorithms of Sections 4.3 and 4.4 , for a total cost of Õ(λ6).
Verification requires to check O(λ) isogeny walks, each one comprising O(λ) steps
with a cost O(λ2) field operations each when modular polynomials are precomputed,
hence a total cost of Õ(λ6) bit operations (under the same heuristic assumptions as in
Lemma 4).

Optimization with Non Backtracking Walks: In our description of the signature scheme
we have allowed isogeny paths to “backtrack”. We made this choice to simplify the
convergence analysis of random walks and because it does not affect the asymptotic
complexity of our schemes significantly. However in practice at any concrete security
parameter, it will be better to use non-backtracking random walks as they will converge
more quickly to a uniform distribution [2].

4.6. Post-Quantum Signature Scheme based on Endomorphism Ring Computation

We briefly describe the signature scheme arising from applying Unruh’s transform to
the identification protocol of Section 4.

Key Generation Algorithm: On input a security parameter λ generate a prime p with 4λ
bits, which is congruent to 3 modulo 4. Let E0 : y2 = x3+ Ax over Fp be supersingular,
and let O0 = End(E0). Set t = 3λ. Fix B, S1, S2 as in the key generation algorithm
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of Section 4.5. Perform a random isogeny walk of degree S1 from the curve E0 with
j-invariant j0 = 1728 to a curve E1 with j-invariant j1. Compute O1 = End(E1) and
the ideal I corresponding to this isogeny.

Choose a hash function H : {0, 1}∗ → {0, 1}t . Let N0 ≈ 2 log p and N1 ≈ 7
2 log p be

upper bounds for the bitlengths of the representations of isogeny paths in the algorithm,
respectively in responses to challenges 0 and 1. For i = 0, 1 let Gi : {0, 1}Ni → {0, 1}Ni

be a hash function such that every element has polynomiallymany preimages. The public
key is pk = (p, j1, H, G0, G1) and the secret key is sk = O1, or equivalently I .

Signing Algorithm: On input a message m and keys (pk, sk), recover the parameters p
and j1. For i = 1, . . . , t generate a random isogeny walk wi of degree S2, ending at a
j-invariant j2,i .
For i = 1, . . . , t apply Algorithm 3 of Section 4.4 to compute the ideal Ii corre-

sponding to the isogeny path wi , then use the algorithm of Section 4.3 on input I Ii to
compute a “fresh” ideal corresponding to a path between O0 and O2,i , and finally use
Algorithm 2 to compute an isogeny path w′

i from j0 to j2,i .
Compute gi,0 = G0(wi ) and gi,1 = G1(w

′
i ) for 1 ≤ i ≤ t , where the bitstrings wi

and w′
i are padded with zeroes to become binary strings of length N . Compute h :=

H(m, j1, j2,1, . . . , j2,t , g1,0, g1,1, . . . , gt,0, gt,1) and parse the output as t challenge bits
hi . For i = 1, . . . , t , if hi = 0 then set rspi = wi and if hi = 1 then set rspi = w′

i .
Return the signature σ = (h, rsp1, . . . , rspt , g1,1−h1, . . . , gt,1−ht ).

Verification Algorithm:On input a messagem, a signature σ and a public key pk, recover
the parameters p and j1.

For each 1 ≤ i ≤ t one uses rspi to compute the image curve E2,i of the isogeny (if
hi = 0 then rspi is a path from E1 and if hi = 1 then it is a path from E0). Hence the
verifier recovers the j-invariants j2,i for 1 ≤ i ≤ t .
The verifier then computes gi,hi = Ghi (rspi ) for 1 ≤ i ≤ t (again padding to N bits

using zeros). Finally the verifier computes the hash value

h′ = H(m, j1, j2,1, . . . , j2,t , g1,0, g1,1, . . . , gt,0, gt,1).

If h′ = h then the verifier accepts the signature and otherwise rejects.
We now show that this scheme is a secure signature.

Theorem 11. If Problem 6 is computationally hard then the signature scheme is secure
in the quantum random oracle model under a chosen message attack.

Proof. As shown in Section 4.2, if Problem 6 is computationally hard then the iden-
tification scheme (sigma protocol) has 2-special soundness and honest verifier zero-
knowledge. A result of Unruh [40] then implies that the signature scheme is secure in
the quantum random oracle model. �

Efficiency: For the same reasons as in the application of the Unruh transform to the De
Feo-Jao-Plût scheme, this signature scheme is less efficient than its classical counterpart.
Again, we only send half the values gi, j , since the missing values can be recomputed by
the verifier.



S. D. Galbraith et al.

Table 1. Asymptotic efficiency of four signature schemes using De Feo-Jao-Plût and our identification pro-
tocol, and Fiat-Shamir and Unruh transform, as a function of the security parameter λ. All sizes are in bits and
computation costs are in bit operations.

Private Key Size Public Key Size Signature Size Signing Costs Verification Costs

DFJP + FS 2λ 28λ 6λ2 Õ(λ3) Õ(λ3)

Sec 4 + FS 2λ 6λ 11
2 λ2 Õ(λ6) Õ(λ6)

DFJP + U 3λ 42λ 54λ2 Õ(λ3) Õ(λ3)

Sec 4 + U 4λ 12λ 66λ2 Õ(λ6) Õ(λ6)

Table 2. Concrete efficiency of our signature schemes at security levels of 128 and 256 bits. Security level pro-
vided are against classical or quantum adversaries for schemes based on the Fiat-Shamir or Unruh transforms
respectively. All sizes are in bits.

128 bit 256 bit

Private Key Public Key Signature Private Key Public Key Signature

DFJP + FS 256 3584 98304 512 7168 393216
Sec 4 + FS 256 768 90112 512 1536 360448
DFJP + U 384 5376 884736 768 10752 3538944
Sec 4 + U 512 1536 1081344 1024 3072 4325376

The average signature size is t + t ((2 log p + 7
2 log p)), on the basis that half the

challenge bits are 0 and half of them are 1. For λ bits of security, we choose log p = 4λ
and t = 3λ. Then the average signature size is approximately 66λ2.

4.7. Comparison

Tables 1 and 2 summarize the main efficiency features of the four signature schemes
based either on De Feo-Jao-Plût or on our new identification scheme, and on the Fiat-
Shamir or Unruh transforms. The numbers provided were obtained by optimizing signa-
ture sizes first, then signing and verification time andfinally key sizes; other trade-offs are
of course possible. The scheme based on the De Feo-Jao-Plût identification protocol and
Unruh transformwas discovered independently in [49]; the version we give incorporates
optimizations that reduce the signature sizes for the same security guarantees12. Signa-
tures based on De Feo-Jao-Plût identification protocol are simpler and somewhat more
efficient than signatures based on our new identification protocol; however the latter have
the advantage to rely on more standard and potentially harder computational problems.
Schemes based on the Fiat-Shamir transform are more efficient than schemes based
on Unruh’s transform; however the latter provide security guarantees against quantum
adversaries.
Table 1 and a quick comparison with RSA signatures suggest that isogeny-based

signatures schemesmay be efficient enough for practical use. Indeed for RSA signatures,

12Both signature sizes depend linearly on a parameter t which we fixed in a more conservative manner than
Yoo et al. With t = 2λ their signatures are 69λ2 bits and ours are 48λ2 bits, and with t = 3λ their signatures
are �103.5λ2� bits and ours are 72λ2 bits.
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key sizes are cubic in the security parameter, and signing and verification times are
respectively quasi-quadratic and quasi-linear in the key sizes (the latter assuming a small
public key exponent is used), amounting to Õ(λ3) and Õ(λ6).As for concrete parameters,
key sizes are much smaller for isogeny-based signatures than for RSA signatures and
comparable to ECDSA signatures. Further work in this area should aim at decreasing
signature sizes.

5. Conclusion

We have presented two signature schemes based on supersingular isogeny problems.
Both schemes are built from a parallel execution of an identification scheme with
bounded soundness, using the Fiat-Shamir transform. The first scheme is built directly
from the De Feo-Jao-Plût identification protocol with some optimization. A similar
scheme was given by Yoo, Azarderakhsh, Jalali, Jao and Soukharev [49]. The sec-
ond scheme is more involved, and introduces a new randomisation method for isogeny
paths. A crucial ingredient for our second protocol is the quaternion isogeny algorithm of
Kohel-Lauter-Petit-Tignol [33] in the powersmooth case, for which we provide a more
complete description and analysis. The first scheme is significantlymore efficient, but the
second one is based on an arguably more standard and potentially harder computational
problem.
Our schemes rely onproblems that canpotentially resist quantumalgorithms.However

this family of problems are also are rather new in cryptography. Among all of them, we
believe that the problem of computing the endomorphism ring of a supersingular elliptic
curve (on which our second signature scheme relies) is the most natural one to consider
from an algorithmic theory point of view, and it was the subject of Kohel’s PhD thesis
in 1996 [32, Chapter 7]. The problem is also potentially harder than Problems 3 and 4
considered in previous works (and used in our first signature scheme). Yet, even that
problem is far from having received the same scrutiny as more established cryptography
problems like discrete logarithms or integer factoring. We hope that this paper will
encourage the community to study its complexity.
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